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Abstract
Identifying amino acid residues that are critical for the catalytic function of
enzymes is essential for elucidating reaction mechanisms, facilitating drug
discovery, and advancing protein engineering. However, experimentally
and computationally distinguishing residues that maintain structural integrity
from those directly involved in enzymatic function remains a major chal-
lenge. In this study, we developed a methodology to identify amino acid res-
idues that influence substrate specificity in enzymes with homologous
structures. We framed the sequence comparison as a classification prob-
lem, treating each residue as a feature, thereby enabling the rapid and
objective identification of key residues responsible for functional differences.
To validate the proposed method, we applied it to three enzyme pairs—
trypsin/chymotrypsin, adenylyl cyclase/guanylyl cyclase, and lactate dehy-
drogenase (LDH)/malate dehydrogenase (MDH). The results confirmed the
accurate prediction of previously identified specificity-determining residues.
Furthermore, we conducted experiments on the LDH/MDH pair and suc-
cessfully introduced mutations into key residues to alter substrate specific-
ity, enabling LDH to utilize oxaloacetate while maintaining its expression
levels. These findings demonstrate the potential of this method for efficiently
identifying residues that govern substrate specificity. We have further devel-
oped this approach into a practical tool, the EZSCAN: Enzyme Substrate-
specificity and Conservation Analysis Navigator (https://ezscan.pe-tools.
com/), which enables rapid identification of amino acid residues critical for
enzyme function.

KEYWORDS
enzyme, software, substrate specificity

1 | INTRODUCTION

Enzymes are biological catalysts that drive chemical
reactions with high precision and efficiency. Their cata-
lytic function originates from coordinated conforma-
tional changes and electron transfer mediated by
amino acid side chains (Arora and Brooks 2007;
Hammes 2002; Palmer 2015; Siegbahn and Blomberg
2010). Identifying the amino acid residues essential for
catalysis and substrate specificity is critical for

understanding structure–function relationships. This
knowledge provides practical insights into how muta-
tions contribute to disease pathogenesis and how tar-
geted mutagenesis can be used to redesign enzyme
specificity for biotechnological applications, such as
metabolic engineering and cell manipulation (Adzhubei
et al. 2010; Yue et al. 2005).

Advances in DNA synthesis and sequencing tech-
nologies have paved the way for in-depth studies of
mutation–function relationships, such as deep
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mutational scanning and multiplexed variant assays
(Fowler and Fields 2014; Kinney and McCandlish 2019;
Starita et al. 2017). These methods systematically
mutate each amino acid residue into all 20 possible var-
iants, generating extensive libraries. Using NGS,
researchers can identify residues critical for enzyme
function by subjecting these populations to functional
selection and tracking changes in abundance. Although
large-scale mutation analysis offers functional mutation
profiles, distinguishing functionally critical residues from
those conserved due to structural constraints remains a
challenge, as does identifying synergistic mutations
(Li and Lehner 2020). Moreover, as nearly half of the
loss-of-function mutations result from decreased pro-
tein abundance (Cagiada et al. 2021), new approaches
are necessary to pinpoint residues directly influencing
enzyme function.

In contrast to experimental methods, computational
techniques offer rapid, cost-effective, and scalable
alternatives for identifying functionally important resi-
dues. Several computational approaches have been
developed to predict these residues based on their
amino acid sequences. Among these, conservation
analysis—which identifies residues that are highly con-
served across proteins—has emerged as a powerful
tool for identifying functionally critical residues (Kumar
et al. 2009; Lichtarge et al. 1996; Lo et al. 2003; Ng and
Henikoff 2003). Although this method has provided
valuable insights into protein–protein interactions,
structural stability, and ligand recognition, it requires
refinement to distinguish between residues essential
for function and those conserved due to structural con-
straints. As both functional and structural constraints
shape protein evolution, the challenge is to identify resi-
dues that are crucial for protein function without being
confounded by structural conservation.

Recent advances in molecular biology and machine
learning have shed light on how specific amino acid resi-
dues determine cofactor specificity. Using supervised
learning on amino acid sequence datasets, we previ-
ously identified key residues that distinguish between
NAD(H)- and NADP(H)-dependent malic enzymes
(Sugiki et al. 2022). Despite clear differences in cofactor
preferences, these enzymes retain a highly conserved
overall structure across species. Guided by machine
learning-based residue rankings, we introduced muta-
tions that not only preserved soluble expression but also
completely switched the enzyme’s cofactor specificity
from NADP to NAD. Notably, these substitutions were
well tolerated, underscoring the functional relevance of
the identified sites and enabling the separation of struc-
tural and functional constraints, which is difficult to
achieve through conventional conservation analysis.
These findings point to a broader principle: functionally
critical residues underlying substrate specificity can be
identified by contrasting enzymes that are structurally
conserved yet functionally distinct.

In this study, we present a computational framework
to uncover the molecular basis of enzyme substrate
specificity. By analyzing the sequence datasets of
homologous enzymes using supervised machine learn-
ing, we identified key amino acid residues that govern
substrate recognition. Focusing on three well-studied
enzyme pairs—trypsin/chymotrypsin, adenylyl/guanylyl
cyclase (AC/GC), and lactate/malate dehydrogenase
(LDH/MDH)—we recovered known specificity-confer-
ring residues and revealed previously unreported sites
critical for function. Experimental validation of the
LDH/MDH pair confirmed that the newly identified resi-
dues contributed directly to differences in substrate
preference. Although protein sequences and functions
have diversified through evolution, their three-dime-
nsional structures are often highly conserved (Illergård
et al. 2009; Orengo et al. 1994). Comparative analyses
of these protein families can provide key insights into
the evolution of functions while maintaining structural
constraints. Our approach not only distinguishes func-
tionally relevant positions in structurally similar
enzymes but also provides a generalizable strategy for
dissecting enzyme specificity. To support its broad
adoption, we developed EZSCAN, a web tool that
enables researchers to explore substrate recognition
features across diverse enzyme families.

2 | RESULTS

2.1 | Prediction of substrate-specific
residues in enzymes using EZSCAN

The EZSCAN protocol represents an advancement in
understanding enzyme functionality through a
machine-learned binary classification algorithm tailored
to extract critical amino acid residues linked to enzyme
cofactor specificity. In this study, we extended this
approach to identify amino acid residues vital for sub-
strate specificity by leveraging two distinct sets of
amino acid sequence data (Figure 1). Initially, we
obtained amino acid sequences of two sets of enzymes
with homologous structures from a comprehensive
database. These sequences were aligned using multi-
ple sequence alignment, converted into one-hot vec-
tors, and subsequently analyzed using a logistic
regression model. Given the structural homology
between the enzyme sets, our classification of residues
associated with enzymatic function is expected to yield
meaningful results. The key explanatory variable in the
trained model was the amino acid type at each position,
and the range between the maximum and minimum
partial regression coefficients served as an important
evaluative metric.

As a practical demonstration, we applied this
method to three enzyme pairs—trypsin/chymotrypsin,
AC/GC, and LDH/MDH—to identify residues critical for
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enzymatic function. Despite their differences in sub-
strate preference, these enzyme pairs share homolo-
gous structures (Figure 2). The average root mean
square deviation (RMSD) and template modeling score
(TM-score) values for each enzyme pair further con-
firmed their high degree of structural similarity. Details
of RMSD and TM scores across all crystal structures
are provided in Tables S1–S6, Supporting Information.
TM-scores range from 0 to 1, with values above 0.5
indicative of structural homology (Zhang and Skol-
nick 2004). In the following sections, we present results
identifying amino acid residues that are pivotal for sub-
strate specificity across these different enzymes.

2.2 | Trypsin/chymotrypsin

Trypsin and chymotrypsin, both serine proteases,
exhibited significant structural homology (Figure 2a).
Trypsin is known for cleaving the C-terminal side of Arg
and Lys at the P1 position of substrate peptides,
whereas chymotrypsin targets Phe, Tyr, and Trp at the
same position (Vajda and Szabo 1976). This distinction
in substrate specificity is primarily attributed to the piv-
otal role of residue S195 (in chymotrypsin numbering),
which defines the S1 pocket adjacent to the active site
(Steitz et al. 1969). Notably, the negative charge gener-
ated by the combination of D189, G216, and G226
(chymotrypsin numbering) significantly influences tryp-
sin substrate specificity. In contrast, S189, G216, and
G226 (chymotrypsin numbering) are critical for chymo-
trypsin specificity (Hedstrom 2002). Interestingly, swap-
ping D189 and S189 alone is insufficient to shift
specificity from trypsin-like to chymotrypsin-like or vice

versa (Graf et al. 1988; Venekei et al. 1996). Addition-
ally, Y172, although not directly involved in substrate
interaction, is essential when transitioning substrate
specificity between two enzymes (Hedstrom et al.
1994). To explore the predictive potential of EZSCAN
for identifying specificity-conferring residues, we
applied the protocol to trypsin and chymotrypsin.

Amino acid sequence data for these enzymes were
obtained from the Kyoto Encyclopedia of Genes and
Genomes (KEGG), focusing on sequences between
240 and 270 residues in length. A total of 793 trypsin
sequences and 652 chymotrypsin sequences were
used as input for EZSCAN analysis (Figure S1a). We
used trypsin and chymotrypsin structures from
Rattus norvegicus as templates to display specificity-
conferring residues. The model predicted Tyr (trypsin)
and Trp (chymotrypsin) at residue 172 as the top
specificity-conferring residues (Figure 3a and Table 1).
Notably, Asp (trypsin) and Ser (chymotrypsin) at resi-
due 189 were ranked fourth, consistent with prior stud-
ies on substrate specificity.

The second ranked residue, Tyr (trypsin) and Trp
(chymotrypsin) at residue 39, is located distally from
the active site but is conserved in mesotrypsin, which is
known to interact with protease inhibitors (Salameh
et al. 2012). These residues may modulate enzyme
activity indirectly, for instance, by limiting solvent acces-
sibility to the active site or inducing subtle conformational
adjustments. Additionally, the third ranked residue at
position 219 and the fifth ranked residue at position
221 form a loop near the substrate pocket, indicating
their likely contribution to the substrate recognition pro-
cess. Notably, the trypsin D189S mutation alone does
not alter catalytic activity; however, substitution of the

F I GURE 1 Schematic illustration of estimation process for specificity-conferring residues using the EZSCAN protocol. The amino acid
sequences of two structurally homologous enzyme groups are used as input data, and a logistic regression model is trained to extract specificity-
conferring residues that distinguish the two enzyme groups. The extracted specificity-conferring residues can be ranked by their contribution and
used for experimental evaluation.
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entire loop with a chymotrypsin-like sequence confers
chymotrypsin-like specificity (Hedstrom 2002; Hedstrom
et al. 1992). Thus, this loop plays a direct role in defining

the substrate pocket architecture, and the G219S and
A221S substitutions likely contribute to its conforma-
tional stabilization and regulatory control.

F I GURE 2 Superimposed images. (a) Trypsin (PDB ID 6T5W, 1ANE, and 1OS8) and chymotrypsin (PDB ID 1KDQ, 1ACB, and 1EQ9).
(b) AC (PDB ID 1AB8, 6R3Q, and 7YZI) and GC (PDB ID 2WZ1, 3ET6, and 6PAS). (c) LDH (PDB ID 1LDG, 1LDN, 3VPH, 4AJ2, and 6J9T) and
MDH (PDB ID 1B8P, 1HLP, 2PWZ, 4CL3, and 5UJK). Red, yellow, and green regions represent α-helix, β-sheet, and random coil structures,
respectively. Average values of metrics from the superimposed structures are shown. All scores compared between each structure are shown in
Tables S1–S6.

F I GURE 3 Mapping of specificity-conferring residues estimated by EZSCAN on the crystal structure. (a) Trypsin derived from R. norvegicus
(PDB: 1ANE), (b) AC derived from R. norvegicus (PDB: 1AB8), (c) LDH derived from G. stearothermophilus (PDB: 1LDN). Cyan sticks represent
the top 10 ranked amino acid residues estimated by the EZSCAN protocol. Residues previously reported to be involved in substrate specificity
are shown in blue; all others are shown in black. The numbers in parentheses indicate their ranking.
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2.3 | AC/GC

AC and GC are crucial enzymes in signal transduction,
responsible for converting ATP and GTP into cAMP
and cGMP, respectively. ACs are classified into five
categories based on their structural characteristics
(Barzu and Danchin 1994; Sismeiro et al. 1998). Nota-
bly, Class III ACs exhibit a close phylogenetic relation-
ship with GCs, and their catalytic domains demonstrate
significant structural homology (Figure 2b). The cata-
lytic domain of mammalian Class III AC exists as a het-
erodimer composed of C1 and C2 domains, whereas
the bacterial and protozoan counterparts are homodi-
meric (Liu et al. 1997; Zhang et al. 1997). These
enzymes exhibit strict selectivity for ATP or GTP, with
specific amino acid residues at the dimer interface play-
ing a pivotal role in determining substrate specificity
(Tesmer et al. 1997; Tesmer et al. 1999; Whisnant
et al. 1996). For instance, it has been shown that GC
from Bos taurus can be engineered to function similarly
to AC through just two amino acid substitutions at the
active site—E930K and C1002D (Tucker et al. 1998).
In contrast, similar modifications at corresponding sites
in AC from R. norvegicus did not produce a substantial
change in substrate specificity.

Residue I1019 has been implicated in the formation
of hydrogen bonds with the N-6 amino group of ATP
and is considered essential for this process (Sunahara
et al. 1998). We aimed to evaluate whether such
specificity-conferring residues in AC and GC could be
predicted using the EZSCAN software.

Amino acid sequence data for AC and GC were
obtained from the KEGG database. We analyzed
319 ACs and 572 GCs, with sequence lengths ranging
from 1090 to 1130 amino acids (Figure S1b). In this
analysis, AC from R. norvegicus and GC from B. taurus
served as template structures for identifying specificity-
conferring residues. EZSCAN identified E930 and
C1002 as the third and fourth highest-ranked residues
for AC from R. norvegicus, consistent with previous
findings demonstrating their role in shifting substrate
specificity (Figure 3b and Table 1). Another key

residue, I1019, ranked second and is known to directly
interact with the substrate.

The top-ranked mutation in GC has been implicated
in central areolar choroidal dystrophy, a genetic eye
disease (Hughes et al. 2012), indicating its potential
significance in cyclase function. This residue is located
within 8 Å of I1019 and K938, both of which have previ-
ously been examined for their roles in substrate speci-
ficity conversion, and together they constitute part of
the substrate pocket. Therefore, this residue is likely to
be directly involved in determining substrate specificity.
Interestingly, although our analysis encompassed the
full-length sequences of both AC and GC, the top-
ranked residues predominantly resided in the C2
domain. This finding aligns with prior studies (Childers
and Garcin 2018; Linder 2005; Sunahara et al. 1998;
Tucker et al. 1998) and suggests that the presence of
non-homologous transmembrane domains does not
interfere with the identification of residues essential for
substrate specificity.

2.4 | LDH/MDH

LDH and MDH are essential redox enzymes character-
ized by structural homology and a reliance on NAD(H)
as a cofactor (Figure 2c). LDH catalyzes the intercon-
version between lactate and pyruvate, while MDH is
involved in the conversion of malate and oxaloacetate
(Adeva-Andany et al. 2014; Goward and Nicholls 1994).
The differences in substrate specificity between these
enzymes are primarily due to variations in amino acid
residues within their substrate-binding sites. Notably,
LDH from Geobacillus stearothermophilus can acquire
MDH activity through a single Q86R mutation (Wilks
et al. 1988). Conversely, introducing the reverse muta-
tion into MDH from Escherichia coli does not result in a
comparable enhancement in LDH activity (Cendrin
et al. 1993; Nicholls et al. 1992). Furthermore, one
study reported that introducing five specific mutations—
I12V, R81Q, M85E, G210A, and V214I—dramatically
increased the kcat/KM value of E. coli MDH from 0.14 to

TAB LE 1 Top 10 ranked amino acid residues associated with substrate specificity for trypsin/chymotrypsin, AC/GC, and LDH/MDH as
predicted by EZSCAN.

Enzyme (species)

Rank

1 2 3 4 5 6 7 8 9 10

Trypsin (R. norvegicus) Y172 Y39 G219 D189 A221 V27 C136 K230 C157 G18

Chymotrypsin (R. norvegicus) W172 W29 G218 S189 S221 W27 C136 R230 Q157 N2

AC (R. norvegicus) A946 I1019 K938 D1018 F867 I919 C911 L912 A890 I918

GC (B. taurus) V938 L1003 E930 C1002 L870 Y914 V906 V907 S889 L913

LDH (G. stearothermophilus) Q86 E90 I237 A223 T233 Y224 N170 E178 G29 T149

MDH (E. coli) R81 M85 M227 G210 A223 T211 E168 G176 P25 T147

Note: The predicted residue positions correspond to the amino acid positions in each template enzyme. For trypsin/chymotrypsin, the residue numbering follows the
chymotrypsin numbering scheme.
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3500 M�1 s�1 (Yin and Kirsch 2007). These findings
raise an important question: can EZSCAN accurately
identify the residues responsible for such differences in
substrate specificity between LDH and MDH?

We sourced amino acid sequences for LDH and
MDH from the UniProtKB database and analyzed
228 LDH and 397 MDH sequences. The sequence
lengths ranged from 300 to 340 amino acids
(Figure S1c). Using LDH from G. stearothermophilus
and MDH from E. coli as template structures, we
identified key specificity-conferring residues. Resi-
dues Q81, M85, and G210, previously reported to
play crucial roles in substrate specificity, were ranked
first, second, and fourth, respectively (Figure 3c and
Table 1). The fifth-ranked mutation, from Thr to Gly,
was shown to reduce the enzymatic activity of
G. stearothermophilus LDH by more than 1000-fold,
highlighting its importance in substrate recognition
(Wilks et al. 1988). Interestingly, the third-ranked res-
idue, I237, has not been previously reported but is
located at the base of the substrate pocket, suggest-
ing a potential role in influencing substrate specificity.

We applied the EZSCAN protocol to three
enzyme pairs based on prior experimental findings.
This approach successfully identified amino acid
residues known to determine substrate specificity
and ranked them prominently. Additionally, EZSCAN
revealed new candidate residues that have not been
examined previously, offering valuable targets for
future experimental validation. This method also
provides a comprehensive view by quantifying the
contribution of all 20 amino acid variants at each res-
idue position, enabling a clearer understanding of
the mechanisms underlying enzyme specificity
(Figures S2–S4). These findings support the conclu-
sion that machine learning analysis of homologous
enzyme sequences can effectively uncover sub-
strate specificity–conferring residues.

2.5 | Selection of LDH for experimental
validation

We experimentally validated the amino acid residues
associated with substrate specificity, as predicted by
the EZSCAN protocol. LDH catalyzes the interconver-
sion between pyruvate and lactate, whereas MDH cata-
lyzes the conversion of oxaloacetate to malate
(Figure 4a). To evaluate the accuracy of EZSCAN pre-
dictions, we assessed whether the specificity of tem-
plate LDHs for pyruvate could be decreased and their
specificity for oxaloacetate increased.

Four LDHs from three species were used as tem-
plate enzymes, and the EZSCAN-predicted specificity-
conferring residues in these LDHs were replaced with
MDH-like residues. The LDHs selected for mutagene-
sis were LDH from G. stearothermophilus (gsLDH; Uni-
Prot ID: P00344), LDH from Lactobacillus casei (lcLDH;
UniProt ID: P00343), and LDH from Plasmodium falci-
parum (pfLDH; UniProt ID: Q27743). gsLDH has previ-
ously been reported to acquire MDH activity via a
single Q86R mutation (Wilks et al. 1988). lcLDH was
selected because it has a lower optimal pH (4.8) than
other LDHs (Hensel et al. 1977), which could lead to
distinct mutational effects compared with gsLDH.

pfLDH is a unique LDH found within the MDH clade
rather than the LDH clade (Figure 4b), suggesting it
may have arisen by convergent evolution from an MDH
ancestor (Boucher et al. 2014). Its sequence is there-
fore expected to resemble that of MDH, making it a suit-
able candidate for examining differences between
enzyme templates. Alignment of pfLDH with gsLDH
and lcLDH revealed a five-amino acid insertion from
S89 to W93 in pfLDH (Figure 4c). These inserted resi-
dues are located in the same loop where EZSCAN
ranked residues first and second in importance, sug-
gesting that the insertion likely alters the shape of the
substrate pocket (Figure S5).

F I GURE 4 (a) Reactions catalyzed by LDH and MDH. (b) Phylogenetic tree constructed from the LDH/MDH dataset used for model training.
Blue and orange branches represent LDH and MDH, respectively. (c) Aligned amino acid sequences of pfLDH, gsLDH, and lcLDH. Dashes
indicate alignment gaps. An insertion of SDKEW is observed at positions 89–93 in pfLDH. Residue numbering corresponds to pfLDH. (d) Design
of pfLDH_trunc, in which residues 89–93 (SDKEW) of pfLDH are deleted. Black indicates the truncated region; magenta and cyan highlight
residues ranked first and second in importance, respectively.
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In addition to wild-type pfLDH, we designed a trun-
cated variant, pfLDH_trunc, in which the five-residue
insertion was removed (Figure 4d). Structural prediction
indicated that pfLDH_trunc is homologous to gsLDH
and lcLDH (Figure S5). Using these four types of
LDHs as templates, we evaluated whether the
EZSCAN-predicted specificity-conferring residues, when
replaced, would alter substrate specificity.

2.6 | Experimental validation of
substrate specificity conversion

The investigation of four types of LDH involved
substituting residues identified by the EZSCAN protocol
with MDH-like amino acid residues to assess their
impact on substrate specificity. Mutations were intro-
duced sequentially, following the ranking shown in
Table 1 by EZSCAN, to prioritize residues predicted to
have a major impact on substrate specificity. Because
substrate switching often arises from combinations of
mutations rather than single substitutions, the cumula-
tive introduction of mutations was used to capture
potential epistatic interactions while maintaining
enzyme stability. All amino acid sequence information
can be found in the Supporting Information, under the
sequence information section. Because pfLDH retained
its third-ranked Pro residue, pfLDH3 incorporated the
fourth-ranked amino acid, pfLDH4 added the
fifth-ranked residue, and pfLDH5 introduced the sixth-
ranked residue.

Each gene encoding the wild-type LDH and its cor-
responding mutants was cloned into a pET28a expres-
sion vector. Expression was carried out in E. coli BL21
(DE3), and purification was performed using a Ni-NTA
column. All LDH variants, including the mutants, were
obtained in the soluble fraction. Expression levels

ranged from 40.0 to 167.2% relative to each wild-type
pfLDH, with no significant decrease in expression
observed (Figure S6).

To analyze substrate specificity, the purified
enzymes were tested using pyruvate and oxaloacetate,
and initial reaction velocities were determined by moni-
toring NADH oxidation at 340 nm. Kinetic parameters
were derived from these initial velocities via nonlinear
fitting, as shown in Figure 5. Notably, the Q86R muta-
tion in gsLDH (gsLDH1) drastically reduced its LDH
activity, resulting in a 438-fold reduction in the kcat/KM

value of the wild-type level. At the same time, it enabled
MDH activity that was undetectable in the wild-type
enzyme. gsLDH1 exhibited a kcat/KM for MDH of
366.1 mM�1 s�1, surpassing the wild-type LDH activity.
This switch in substrate specificity due to the Q86R
mutation is consistent with previous findings (Wilks
et al. 1988). Further mutations in gsLDH3 caused LDH
activity to fall below detection limits, yielding a purely
MDH-like enzyme. gsLDH4 showed a 4.4-fold increase
in MDH activity compared to gsLDH3, while gsLDH5
lost MDH activity entirely.

In contrast, lcLDH lost LDH activity with just a single
mutation (Q88R), while showing a 15-fold increase in
MDH activity, which had previously been nearly unde-
tectable. The lcLDH2 variant, incorporating the addi-
tional second-ranked mutation (E92M), displayed an
80-fold increase in MDH activity—a 1191-fold increase
over the wild type. However, as more mutations were
added, MDH activity gradually declined, and lcLDH5
ultimately lost all MDH activity.

For pfLDH, a consistent decline in LDH activity was
observed with each successive mutation, ranked
according to EZSCAN. pfLDH5 retained only 1/3987 of
the wild-type LDH activity. Although pfLDH4 exhibited
slight MDH activity, the conversion to MDH-like speci-
ficity was not as pronounced as in gsLDH or lcLDH.

F I GURE 5 Enzyme activity (kcat/KM) of each LDH variant before and after mutation, based on rankings from the EZSCAN protocol. Blue
bars represent enzyme activity using pyruvate as the substrate, and red bars represent activity using oxaloacetate. Data were collected in
triplicate. Asterisks indicate cases in which kcat/KM values could not be determined. Michaelis–Menten plots and fitted curves are provided in
Figure S7. The kcat and KM values for each LDH are listed in Table S7.
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These results suggest that the SDKEW insertion
sequence, spanning residues 159–163 in pfLDH, hin-
ders the acquisition of MDH activity while preserving
LDH function.

We further evaluated pfLDH_trunc, in which the
SDKEW sequence was removed. This truncation led to
a complete loss of LDH activity, consistent with previ-
ous findings (Boucher et al. 2014; Wirth et al. 2018).
This outcome underscores the importance of the
SDKEW loop structure in maintaining LDH activity.
Interestingly, pfLDH_trunc gained progressively stron-
ger MDH activity with the introduction of additional
mutations. Among these, pfLDH_trunc5 exhibited the
highest MDH activity. This result suggests that convert-
ing pfLDH to MDH functionality—likely governed by a
distinct reaction mechanism—requires both structural
adjustments to the backbone near functional residues
and targeted substitutions.

These findings validate that EZSCAN-predicted res-
idues directly influence substrate specificity. All intro-
duced mutations led to reductions in LDH activity while
promoting MDH activity without significantly affecting
expression levels. This confirms that the amino acid
residues identified by EZSCAN are indeed specificity-
conferring residues.

3 | DISCUSSION

Directed evolution is a widely employed and powerful
strategy in protein engineering. However, the vast
sequence space of proteins makes it challenging to effi-
ciently identify variants with the desired functions
efficiently (Zeymer and Hilvert 2018). In typical directed
evolution, random mutations or DNA shuffling are intro-
duced into natural proteins, followed by high-throughput
screening under selective pressure to enhance protein
properties such as activity or stability. Although the
number of substitutions required to achieve a functional
shift varies depending on the direction of engineering, a
few to a dozen amino acid changes are often sufficient
for functional enhancement or adaptation. Importantly,
protein function and stability often exhibit a trade-off
relationship (Bigman and Levy 2020; Tokuriki
et al. 2008), highlighting the need for strategies that
improve function without compromising structural integ-
rity. A key to the successful design for substrate speci-
ficity conversion is to distinguish amino acids that
contribute to function from those responsible for struc-
ture, and to focus mutations only on the former.

Computational tools are indispensable for identify-
ing important amino acid residues in proteins, particu-
larly for scalable and broadly applicable analyses
(Ebert and Pelletier 2017; Planas-Iglesias et al. 2021).
Although recent methods using NMR chemical shifts
have shown promise in narrowing down potential muta-
tion sites (Ashkenazy et al. 2016; Khersonsky

et al. 2018), in silico approaches remain central to effi-
ciently exploring large sequence spaces. Among these,
evolutionary conservation information is frequently
used to estimate the functional or structural contribution
of each amino acid residue (Bhattacharya et al. 2022;
Gutierrez-Rus et al. 2025). Highly conserved residues
are likely essential for protein folding and biological
activity in native contexts. However, one of the remain-
ing challenges is separating residues critical for specific
functions from those involved in structural integrity—
something that conventional conservation-based
methods alone cannot achieve.

In this study, we proposed a methodology in which
hundreds of amino acid sequences from two structurally
homologous enzyme groups are analyzed using a simple
linear regression equation to extract amino acid residues
where differences in substrate specificity between the
enzyme groups appear. Three structurally homologous
enzyme pairs (trypsin/chymotrypsin, AC/GC, and
LDH/MDH) that had already been investigated in previous
studies were selected, and an attempt was made to
extract the amino acid residues responsible for substrate
specificity from evolutionary information. By applying this
method, we accurately estimated amino acid residues
that are experimentally known to confer substrate speci-
ficity and identified new amino acid residues that have not
yet been investigated. Furthermore, the deduced amino
acid residues for the LDH/MDH pair were experimentally
validated. Four LDHs from three phylogenetically distinct
species were selected, and the amino acid residues iden-
tified by the ranking-based analysis were replaced with
MDH-like residues to evaluate substrate specificity. The
results showed that substrate specificity shifted stepwise
from pyruvate to oxaloacetate as mutations accumulated.
Furthermore, the expression levels of all mutants varied
in the range of 40.0%–167.2%, and the introduced muta-
tions had no significant effect on expression levels. These
results suggest that the amino acid residues inferred
using this method are indeed responsible for functional
specificity.

We also examined the involvement of conserved
amino acid residues in substrate specificity. Using the
228 LDH sequences previously employed in our EZS-
CAN protocol to identify substrate specificity differ-
ences between LDH and MDH, we calculated the
conservation level for each residue. Highly conserved
residues were distributed throughout the protein
sequence (Figure 6a). Interestingly, the top five resi-
dues predicted by EZSCAN as functionally important
for LDH activity had conservation ratios ranging from
85.2% to 98.8%. When the conservation ratios of all
residues were mapped onto the three-dimensional
structure of gsLDH, we observed that the conserved
residues were particularly concentrated in the structural
core, the multimer interface, and the substrate-binding
pocket of the protein (Figure 6b). This pattern supports
earlier findings that residues in the structural core
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evolve more slowly than those on the surface (Illergård
et al. 2009). In total, 72 residues in the gsLDH
sequence had conservation ratios above 0.8, making it
difficult to determine which residues were specifically
responsible for substrate recognition (Figure 6c). In
addition, trypsin and AC were analyzed. The datasets
for trypsin and AC also display broad phylogenetic cov-
erage (Figure S8). Trypsin from R. norvegicus was
used as a reference for the conservation analysis.
Although 27 residues (11.0% of the total) were con-
served at >90%, the top five residues identified by EZS-
CAN showed conservation levels of only 67.7% to
83.5% (Figure S9a). For Y39 (chymotrypsin number-
ing), which was particularly low, 97.8% of the corre-
sponding residues in chymotrypsin were strongly
conserved as Trp. This indicates that EZSCAN detects
residues that differ from those highlighted by simple
conservation analysis. In AC, among the around
300 residues located after residue 800, where the cata-
lytic domain is known to reside, 95 residues were con-
served at >90% (Figure S9b). These findings suggest
that substrate-specific residues can be hidden in highly
conserved regions, making them difficult to identify
using conservation-based methods alone. Notably,
several key residues identified using our method were
not completely conserved, implying that some function-
ally important residues may tolerate minor evolutionary
variation. This highlights the need for comparison
methods that consider not only sequence conservation
but also functional divergence. Our approach, which
contrasts sequences based on functional differences
among structurally related enzymes, offers a promising
strategy for identifying such critical residues.

To make this method broadly accessible, we devel-
oped a user-friendly software tool called EZSCAN.
Many proteins share structural similarities despite per-
forming different biological functions. This structural
similarity can be explored using databases such as
SCOP (Andreeva et al. 2020), CATH (Sillitoe
et al. 2021), and InterPro (Blum et al. 2025), which clas-
sify proteins based on their structural and evolutionary
relationships. For example, the SCOP database
defines over 5900 families of proteins that share struc-
tural motifs but often fulfill distinct biological roles. In
addition to these databases, online tools such as Fold-
seek (van Kempen et al. 2024), DALI (Holm
et al. 2023), and PDBeFold (Krissinel and Henrick 2004)
can rapidly identify proteins with similar structures. It
should be noted, however, that the relationship
between structural homology and prediction accuracy
has not been fully addressed and remains an issue for
future investigation. In this study, EZSCAN was applied
to enzyme pairs with structural homology scores rang-
ing from 1.5 to 2.69 by RMSD and from 0.739 to 0.904
by TM-score. We anticipate that broader applications of
this tool will help delineate the limits of its applicability.
EZSCAN can be used not only to identify amino acid
residues responsible for enzyme substrate specificity
but also to highlight differences between other structur-
ally similar protein pairs that differ in function. With the
rapid expansion of amino acid sequence data from
genome and metagenome projects, and the increasing
availability of predicted protein structures driven by
deep learning, the potential applications of EZSCAN
are expected to grow significantly across both biology
and biotechnology.

F I GURE 6 Visualization of conserved residues. (a) Conservation scores of each amino acid residue using gsLDH as the reference
sequence. Scores closer to 1 indicate higher conservation. Red plots indicate the top 1–5 ranked positions predicted by the EZSCAN protocol as
critical for LDH function. (b) Structural representation of gsLDH (PDB ID: 1LDB) with conservation scores mapped onto each residue. The color
bar indicates the conservation ratio. (c) List of amino acid residues with conservation scores of 0.8 or higher. Residues highlighted in red
represent the top 1–5 ranked positions predicted by the EZSCAN protocol as critical for LDH function.
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In summary, we have proposed a methodology for
extracting substrate specificity-conferring residues
using a linear regression-based classification program
that compares groups of enzymes with homologous
sequences. The estimated amino acid residues alter
substrate specificity without disrupting overall protein
structure. This method enables the identification and
extraction of shared sequence patterns important for
protein function and structure—something difficult to
achieve using conservation information alone. Further-
more, because the method is highly interpretable, rely-
ing only on a linear model, it may prove useful for
experimental validation of protein function and
for selecting mutational targets in protein engineering.

4 | MATERIALS AND METHODS

4.1 | Data collection and computational
prediction

The amino acid sequences of trypsin, chymotrypsin,
AC, GC, LDH, and MDH were collected from the Uni-
Prot (Bateman et al. 2021) and KEGG (Kanehisa and
Goto 2000) databases. Sequence data were retrieved
using EC numbers as queries and filtered by length
based on enzymes characterized in previous studies.
For the trypsin/chymotrypsin pair, the sequence lengths
of trypsin and chymotrypsin from R. norvegicus were
246 and 263 amino acids, respectively; therefore,
sequences were restricted to the range of 245–265
amino acids. Similarly, for AC and GC, the sequence
lengths of AC from R. norvegicus and GC from
B. taurus were 1108 and 1110 amino acids, respec-
tively; therefore, sequences were restricted to the range
of 1090–1120 amino acids. For LDH/MDH, sequences
obtained from SwissProt, the curated section of Uni-
Prot, were used without further filtering. The sequences
were classified based on substrate selectivity and
curated into non-redundant datasets for supervised
machine learning. These sequences were analyzed
using the scheme named the EZSCAN protocol. MSA
was performed using the MAFFT (Katoh et al. 2002)
and MUSCLE (Edgar 2022) software to standardize
sequence lengths for each enzyme pair (trypsin/chymo-
trypsin, AC/GC, and LDH/MDH). The aligned enzyme
sequences were then converted into one-hot vectors of
size M � N (Equation (1)), where the two enzymes in
each pair were assigned labels of one and zero,
respectively, as teacher labels. Here, M represents the
number of amino acid types, and N corresponds to
the sequence length, including gaps,

x¼
x1,1 … x1,N

..

. . .
. ..

.

xM,1 … xM,N

0
BB@

1
CCA� 0, 1f gMN : ð1Þ

The one-hot vectors of size M � N derived from the
amino acid sequences were subsequently converted
into a linear polynomial comprising an intercept term β₀
and coefficient terms βi,j i¼1, 2, 3,…,Mð and j¼
1, 2, 3,…,NÞ (Equation (2)). This polynomial was then
incorporated into a logistic function to model the fea-
tures distinguishing two enzyme pairs, with output
values ranging from zero to one (Equation (3)). 70% of
the data used for training and 30% for testing. The term
β optimized using the steepest descent method,

f xð Þ¼ β0þβ1,1x1,1þβ1,2x1,2þ…þβM,NxM,N, ð2Þ

Φ xð Þ¼ 1
1þe�f xð Þ : ð3Þ

We defined the score for each amino acid residue
position as the difference between the maximum and
minimum values of the model’s partial regression coeffi-
cient β at that position (Equation (4)). This score was
calculated for all positions and ranked based on its
magnitude. We assumed that residues with higher
rankings contribute more significantly to substrate
specificity, and introduced mutations additively into the
template enzyme in accordance with the ranking,

score sj
� �¼ max βj

� ��min βj
� �

: ð4Þ

4.2 | Structure similarity analysis

The crystal structures of trypsin, chymotrypsin, AC,
GC, LDH, and MDH were obtained from the Protein
Data Bank. The PDB IDs for these crystal structures
are listed in the headers of Tables S1–S7. Structural
alignment for each enzyme pair was conducted using
TM-align (Zhang and Skolnick 2005). The aligned
structures, along with the corresponding RMSD and
TM-score, were outputs generated by TM-align.

4.3 | Phylogenetic analysis

Phylogenetic analysis was performed to evaluate
sequence diversity and to confirm that the dataset
spans a sufficient evolutionary depth. The amino acid
sequences of trypsin/chymotrypsin, AC/GC, and
LDH/MDH used in the EZSCAN protocol were
employed for this analysis. MSA was performed using
MAFFT (Katoh et al. 2002) and poorly aligned regions
were removed. The phylogenetic tree was constructed
using the maximum likelihood method in IQ-Tree
2 (Minh et al. 2020). The Bayesian information criterion
with ModelFinder (Kalyaanamoorthy et al. 2017) was
used for selecting the substitution, with the LG + R9
model being selected. The reliability of the estimated
clade was evaluated using the bootstrap method with
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UFBoot2 (Hoang et al. 2018) and 1500 bootstrap itera-
tions. The phylogenetic trees for trypsin/chymotrypsin
and AC/GC are shown in Figure S9, and the tree for
LDH/MDH is shown in Figure 4b.

4.4 | Plasmid construction

Wild-type lcLDH, gsLDH, pfLDH, and their correspond-
ing mutants were synthesized using the GeneArt gene
synthesis service (ThermoFisher Scientific, Waltham,
MA). Each DNA fragment was amplified via PCR using
KOD polymerase (Toyobo, Osaka, Japan) and subse-
quently purified. The genes and the pET28a vector
were digested with NdeI and XhoI restriction enzymes
(New England Biolabs, Ipswich, MA), followed by liga-
tion into the linearized pET28a vector using T4 DNA
ligase (Toyobo). The pfLDH_trunc expression plasmids
were constructed using inverse PCR and a self-ligation
method with the pfLDH expression plasmids as tem-
plates. All strains used in this study were selected on
LB agar plates supplemented with 30 μg mL�1 kanamy-
cin. The integrity of the gene sequences was verified
by Sanger sequencing.

4.5 | Protein expression and purification

E. coli strain BL21(DE3) was transformed with the
constructed plasmids and plated on LB agar contain-
ing 30 μg mL�1 kanamycin. A single colony was ran-
domly selected and grown in LB liquid medium with
30 μg mL�1 kanamycin at 37�C. Following overnight
incubation, the culture was transferred into baffled
Erlenmeyer flasks containing 2� YT medium with
30 μg mL�1 kanamycin and grown at 37�C with
shaking. When the optical density at 600 nm reached
0.4–0.6, IPTG was added to a final concentration of
0.5 mM to induce protein expression, and the culture
was incubated overnight at 18�C with shaking.

Cells were harvested by centrifugation and lysed
using BugBuster Master Mix (Merck Millipore,
Burlington, MA). After gently stirring at room tempera-
ture for 20 min, the lysate was centrifuged, and the
supernatant was collected. The supernatants were fil-
tered through 0.22 μm pore size membranes (Merck,
Kenilworth, NJ) and applied to Ni-NTA resin-packed
columns for purification. The resin was washed with
Buffer A (50 mM Tris–HCl, 200 mM NaCl, and 50 mM
imidazole) and eluted with Buffer B (50 mM Tris–HCl,
200 mM NaCl, and 300 mM imidazole). The eluted
proteins were subjected to buffer exchange into
Buffer C (50 mM Tris–HCl and 200 mM NaCl) using a
PD-10 column (Cytiva, Marlborough, MA). Protein
concentrations were determined by measuring absor-
bance at 280 nm.

4.6 | Kinetic assay

Enzyme activity was assessed by monitoring the
dynamic consumption of NADH during the reductive
conversion of pyruvate to lactate and oxaloacetate to
malate, measured at 340 nm using a Synergy HTX
multi-mode reader (Agilent Technologies Inc., Santa
Clara, CA). Each reaction was performed in a 200 μL
volume, and measurements were taken for 10 min, with
the enzyme solution added last to initiate the reaction.

The reaction mixture contained 0.3 mM NADH,
50 mM Tris–HCl (pH 7.4) for wild-type gsLDH, pfLDH,
pfLDH_trunc, and their variants, or 50 mM acetate
buffer (pH 4.8) for wild-type lcLDH and its variants. The
mixture also included 3 mM fructose-1,6-bisphosphate
as an activator (Arai et al. 2002) and 0.01 to 35 mM
sodium pyruvate or 0.01 to 4 mM oxaloacetate as the
substrate. The rate of substrate conversion was calcu-
lated based on changes in NADH absorbance. Kinetic
parameters were derived from the average values of
three independent replicates. The reaction rate was
determined from the slope of the linear portion of the
absorbance curve and fitted to the Michaelis–Menten
model using Python.
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