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1. Introduction
1.1. Background

In the Euclidean space R™, it is a well known fact that, given any probability mea-
sure, there exists a point such that any closed halfspace including this point has mass
at least 1/(n + 1) [28, Theorem 1], [19, Lemma 6.3]. This bound is tight since there
are probability measures (e.g., the uniform distribution on the vertex set of a simplex)
such that every point is in a closed halfspace with mass at most 1/(n + 1). Hence,
this result becomes very little informative when the dimension n is very large because
it does not allow to discriminate between points in general. Nonetheless, the bound
can be improved, provided that the measure satisfies some geometric properties. For
instance, for the uniform distribution on a bounded convex set 2 C R"™, Griinbaum’s
inequality [28, Theorem 2] states that any closed halfspace including the barycenter
(centroid) of Q must have volume at least (n/(n 4+ 1))™. Grinbaum’s inequality remains
informative in any dimension since (n/(n+1))" > e~!, and it has been extended to log-
concave distributions (among which uniform distributions on convex sets) [34, Lemma
5.12]. Namely, for any log-concave probability measure on R™, any closed halfspace con-
taining the barycenter must have mass at least e™!, independently of the dimension
n. By virtue of the Prékopa—Leindler inequality, it is in fact sufficient to consider the
one-dimensional case in order to prove the inequality for log-concave measures [34]. Fur-
thermore, as we will see in this work, a family of functional inequalities that generalize
the Prékopa—Leindler inequality, namely the Borell-Brascamp—Lieb inequalities, allows
to generalize the bound even further, to broader classes of distributions. We refer to
[1,40,41,51] for some other generalizations of Griinbaum’s inequality in the Euclidean
setting.

The problem described here is directly related to a notion that is central in descriptive
statistics, called Tukey’s depth. Given a probability distribution p on R™, Tukey’s depth
of a point € R relative to u is defined as D, (x) := infy p(H), where the infimum is
taken over all closed halfspaces H C R" containing z. Then, the inequalities discussed
above can be summarized as follows:

 For any distribution p on R™, there exists a point z € R™ with D,(x) > 1/(n + 1);
moreover, there exists p for which sup,cgn Dy(x) =1/(n+1).

e If p is the uniform distribution on a convex set 2 in R™, then there exists x € R™
with D, (z) > (n/(n+1))" and = can be chosen to be the barycenter of €.

o If u is a log-concave distribution on R™, then there exists z € R" with D,,(z) > e™*

and one can choose x to be the barycenter of p.

The function D, is called a depth function [59] because it provides a measure of centrality
relative to p. Roughly speaking, D,, () is the amount of mass that can be separated from
x by a hyperplane. Therefore, the aforementioned results indicate that under a shape
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constraint on the measure u, even in large dimensions, there exist deep points. Deep
points are relevant in various applications: In statistics, a deepest point (called Tukey
median) provides a notion of center of a distribution that is robust to perturbations of
that distribution [42, Section 3.2.7], which is important when dealing with data from
that distribution, that may have been corrupted. In numerical optimization, existence of
deep points is essential for cutting plane methods [9] while Grinbaum’s inequality has
also found applications in convex optimization methods [6]. On the computational side,
finding deep points is relevant in algorithmic geometry [16].

In a non-Euclidean setup, a negative result was proved in [50], showing that the above
inequalities cannot be extended to nonpositively curved spaces in general. Precisely, [50,
Theorem 2] states that given any Hadamard manifold M, for any probability measure p
on M that is absolutely continuous with respect to the Riemannian volume measure (note
that this additional restriction is only technical), there exists * € M such that any closed
halfspace H containing x* must satisfy p(H) > 1/(n + 1), where n = dim M. Moreover,
there are cases where p is the uniform distribution on a convex set and the bound is tight.
In this context, a closed halfspace is a subset of M of the form {y € M | (v, 4.y(0)) > 0},
for some x € M and v € T, M \ {0}, where ., denotes the (unique) minimal geodesic
from x to y.

In this article, we show that under a right framework, the above inequalities can be
extended to non-Euclidean setups. We work on metric measure spaces whose generalized
Ricci curvature, in a synthetic sense, is nonnegative. We appeal to Cheeger—Gromoll-type
splitting theorems, which allow, as in the Euclidean case, to reduce the computations to
a one-dimensional analysis.

1.2. Notations and definitions
We briefly recall some concepts necessary to explain our results.

1.2.1. Metric geometry

Let (X, dx) be a metric space. Given z,y € X, a (minimal) geodesic from x to y means
a path v: [0,1] — X such that v(0) = z, v(1) = y, and dx (v(s),7(t)) = |s — t|dx (z,y)
for all s,t € [0,1]. We call (X,dx) a geodesic space if any pair x,y € X can be connected
by a geodesic. A subset Q C X is said to be (geodesically) convez if, for any z,y € €,
any geodesic between them is included in 2. We say that a function f: X — R U {co}
is convez if it is convex along all geodesics, i.e., f(y(t)) < (1 —t)f(x) + tf(y) for all
z,y € X, all geodesics v: [0,1] — X from z to y and all ¢ € [0,1]. In particular,
supp(f) := f~1(R) is a convex set. We say that f is concave if —f is convex.

A straight line is a map v: R — X that satisfies dx (v(s),v(t)) = |s — t| for all
s,t € R. Then, the Busemann function associated with ~y is defined as

b, (x) := tlirgo{t —dx(z,7()}, zeX. (1.1)
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The function b, is 1-Lipschitz and can be interpreted as a projection onto . For instance,
in the Euclidean case, we have b, (z) = (v, 2 — x¢), where v(t) = o + tv for some point
zo and unit vector v.

We denote by P(X) the set of Borel probability measures on X and, for p € [1, 00),
by PP(X) the subset consisting of probability measures with finite p-th moment, i.e.,
those for which the function d% (-, z¢) is integrable for some (and hence, all) zy € X. For
u € P?(X), a point 7y € X attaining

inf /d?x(z,:c),u(da:)

zeX
X

is called a barycenter of u. More generally, even when p only has finite first moment, we
can define its barycenter as a point achieving

: 2 2

inf [ {dk(e.2) = &z0,0)} (o),
X

where zg € X is an arbitrarily fixed point. In Euclidean spaces, we have the unique

barycenter [p, = pu(dz).

1.2.2. Curvature-dimension conditions

The curvature-dimension condition for metric measure spaces is a synthetic geometric
notion of lower Ricci curvature bound described with the help of optimal transport
theory. For brevity, we consider only the case of nonnegative curvature.

A metric measure space (X,dx,m) will mean a complete separable metric space
(X,dx) equipped with a Borel measure m with m(U) € (0,00) for each nonempty
bounded open set U C X.

Given v, vy € P%(X), the L?-Kantorovich—Wasserstein distance is defined by

Walon,) = (| d%<<x,y>w<dxdy>)l/27

XxX

where 7 runs over all couplings of vy and vy (i.e., 7 € P(X x X) with marginals v and
v1). A geodesic (va)rejo,1] With respect to Wy is regarded as an optimal transport from
Vo to vy.

For v = (m € P(X) absolutely continuous with respect to m, we define the relative
entropy

Soo(V) := /Clongm
X

(Seo (V) := 0 if f{<>1} Clog (dm = o), and the Rényi entropy
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o — [ CVU/Ndm N € (1,00),
N(v) = fX C(Nfl)/N dm N € (—00,0).

We say that a metric measure space (X, dx,m) satisfies the curvature-dimension con-
dition CD(0,N) (or (X,dx, m) is a CD(0, N)-space) if the corresponding entropy Sy
is convex with respect to W5 in the sense that, for any absolutely continuous measures
v, 1 € P?(X), there exists a geodesic (Vx)ae[0,1] between them with respect to W such
that

SN(I/)\) < (1 — )\)SN(I/()) + )\SN(I/l) (12)

holds for all X € [0,1].

Consider an n-dimensional Riemannian manifold (M, g) endowed with a measure
m = e ¥ vol, for a smooth function 1 € C°>(M), where vol, is the volume measure
induced from g. The weighted Ricci curvature (a.k.a. Bakry-Emery-Ricci curvature) of
the weighted Riemannian manifold (M, g, m) is defined by

Vb, v)?
Ricy (v) := Ricg(v) + Hess (v, v) — % (1.3)
for ve TM and N € (—o0,0] U (n,00) (Ric, is the usual Ricci curvature of g). We also
define Ricy, and Ric, as the limits. By definition, we have the monotonicity

Ric,, < Ricy < Ricy < Ricys < Ricg (1.4)

for n < N < oo and —oo < N’ < 0 (Ricy can be also regarded as Ric_). Thus,
for example, Ricys > 0 is a weaker condition than Ricy > 0. Note also that Ric, =
limp, Ricy > 0 can make sense only when %) is constant.

A weighted Riemannian manifold (M, g, m) is a CD(0, N)-space if and only if the
weighted Ricci curvature Ricy is nonnegative [14,15,33,45,46,49,52,53].

Moreover, the equivalence between Ricy > 0 and CD(0,N) also holds true for
Finsler manifolds [43]. Then, to develop a genuinely Riemannian theory, the Rieman-
nian curvature-dimension condition RCD(0, N) was introduced as the combination of
CD(0, N) and the so-called infinitesimal Hilbertianity (or, equivalently, the linearity of
heat flow) in [24] and further investigated in [2,20,25]. In RCD(0, N )-spaces, we can ob-
tain much finer properties including a splitting theorem discussed below. We refer to [54]
for a recent survey.

1.2.3. Splitting theorems

For a Riemannian manifold (M, g) of nonnegative Ricci curvature, Cheeger—Gromoll’s
celebrated splitting theorem [13] asserts that, if there is a straight line v: R — M,
then M is isometric to a product space R x ¥, where ¥ is a Riemannian manifold of
nonnegative Ricci curvature, and the Busemann function b, as in (1.1) coincides with
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the projection to R. The splitting theorem was generalized to RCD(0, N)-spaces by Gigli
[25, Theorem 1.4], [23]. In short, it states that if (X,dx,m) is an RCD(0, N)-space for
some N € (1,00) including a straight line v: R — X, then X is isometric to a product
space R xY where (Y, dy,n) is an RCD(0, N —1)-space when N > 2, and Y is a singleton
when N € (1,2). (We will not consider the case of N =1, since RCD(0, N) with N > 1
is weaker than RCD(0, 1).)

In general, such an isometric splitting is false for CD(0, V)-spaces, unless the infinites-
imal Hilbertianity is assumed (see (B) in Section 7). This is why, in our main results, we
consider only RCD-spaces, although some intermediate results may be stated in more
generality for CD-spaces.

1.3. Main results

Theorem 1.1 (Main theorem; N > 1). Let (X,dx,m) be an RCD(0, N)-space with N €
(1,00), p = pm € PYX) with a measurable function p: X — [0,00), and g € X be
any barycenter of . Suppose that there is a straight line v: R — X.

() If p*/B=N) s concave on p~1((0,00)) for some 3 > N, then the Busemann func-
tion b, : X — R satisfies

)ﬁ, (15)

)ﬁ. (1.6)

u({z € X | by(2) < by (20)}) > (

fsS
= 4|
—

p({z € X [by(2) > by(z0)}) > (5 T1

(ii) Iflogp: X — R U{—o0} is concave, then b, satisfies

,u({x € X | by(z) 2 v(xo)}) >el.

(iii) If p*/B=N) . X — R U {oo} is convex for some 3 < —1, then we have

B
p({z € X | by(z) < by(z0)}) > (b’f—l> ,

3 B
X|b >b > L= .
(e € X by 2 b)) 2 (557
Remark 1.2. Under the hypothesis in (i), it follows from Lemma 2.2 that (X, dx, i) is an
RCD(0, 8)-space. Then, by virtue of Lemma 2.1, the support of u is necessarily bounded.
In particular, u is of finite second moment.
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The condition on p in (i) means that, for any geodesic v: [0, 1] — X with p(y(0)) > 0
and p(y(1)) > 0, p/(B=N) o~ is concave. This is equivalent to the concavity of / by setting
p(x) = p(x)B=N)if p(z) > 0 and p(z) := —oo if p(x) = 0. Note that, on the one hand,
supp(p) is convex in all the cases (i)—(iii). On the other hand, given a convex set Q C X
with m(Q2) € (0,00), the uniform distribution ug := m(Q2)"1yom on Q satisfies the
hypothesis of (i) for any § > N, where xgq is the indicator function of © (with value 1
on  and 0 on X \ ). Hence, taking the limit as 5 | N yields the following corollary,
as a direct extension of Griinbaum’s inequality. By a barycenter of 2, we will mean a
barycenter of puq.

Corollary 1.3. Let Q2 be a convex set in an RCD(0, N)-space (X,dx,m) with N € (1, 00)
such that m(Q) € (0,00), and let xg € X be a barycenter of Q. Then, for any straight
line v: R — X, the associated Busemann function b,: X — R satisfies

N
m({x € Q|by(z) <by(x0)}) > (Nl—i—l> -m(Q),

N
m({z € Q| by(z) > by(z0)}) > <NL—|—1> -m(Q).

We remark that a barycenter of {2 may not be unique in this generality. For instance,
consider the cylinder X = R x S! endowed with the 2-dimensional Hausdorff measure,
which is an RCD(0, 2)-space. Then, for Q = [~1,1] x S, we find that any point on the
circle {0} x S! is a barycenter of Q. It seems unclear (to the authors) if every barycenter
of Q lives in €.

Remark 1.4. A subset of the form b>'((—oc,r]), for some straight line v and r € R,
is called a (closed) horoball. Thus, Corollary 1.3 can be rephrased by saying that every
horoball (or the closure of the complement of a horoball) including x has mass at least
(N/(N + 1)) - m(Q). In Euclidean spaces, horoballs are simply closed halfspaces. In
general, horoballs are not geodesically convex, unless X is nonpositively curved. See, for
example, [31] concerning convex optimization on Hadamard spaces by means of horoballs.

We also study when equality holds in (1.5). Roughly speaking, equality holds only
when g has a cone structure (see Theorem 4.3 for the precise statement). This kind of
rigidity for geometric and analytic inequalities is one of the major problems in comparison
geometry and geometric analysis (see, e.g., [26,48]). Cavalletti-Mondino’s localization
(also called needle decomposition) [11], together with a detailed one-dimensional analysis,
plays a crucial role in our rigidity result. We can even consider the stability problem
in a similar way (see Section 6). We refer to [27,55] for stability results concerning
Griinbaum’s inequality in the Euclidean setting, in terms of the volume of the symmetric
difference from a cone.

The main ingredients of the proofs of our results are Gigli’s splitting theorem for
RCD(0, N)-spaces and Cavalletti-Mondino’s localization for essentially non-branching
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CD(K, N)-spaces as we mentioned above. In fact, the formulation of our results using
a straight line is strongly inspired by the splitting theorem. Both these ingredients are
valid only for NV € (1,00) in this generality.

Nonetheless, in the smooth setting of weighted Riemannian manifolds, the isometric
splitting is known by Lichnerowicz, Fang—Li—Zhang [21,32] (N = oo) and Wylie [57]
(N € (—o00,1)), and the localization is also available by Klartag [29]. Thus, we have the
following counterparts to Theorem 1.1 and Corollary 1.3.

Theorem 1.5 (Main theorem; N = oo, N < —1). Let (M,g,m), m = e~¥voly, be a
complete weighted Riemannian manifold of Ricy > 0 for N = co or N € (—o0,—1),
where 1 € C%(M) is bounded from above, and = pm € PY(M) with p: M — [0, 00).

(i) Suppose that N = oo and logp: M — R U {—co} is concave. Then, for any
barycenter xo € M of p and any straight line v: R — M, the associated Buse-
mann function by: M — R satisfies

u({z € M by (2) < by (20)}) > o™, (17)
u({x €M |by(z) = bv(xo)}) >e .

(ii) Suppose that N € (—oo,—1) and p'/B=N) is concave on p~1((0,00)) for some
B € (N,—1). Then, for xo € M and b, as above, we have

B
(o € 01 by () < by o)) = (52 ) (1)

3 B
pu({z € M| by(z) > by(20)}) 2 <m :
We remark that the upper boundedness of 1 is assumed for applying the splitting
theorem (see Remark 5.2).

Corollary 1.6. Let (M, g, m) be as in Theorem 1.5, and & C M be a convez set such that
m(Q) € (0,00) and m(Q)~Lxqm € PY(M). Then, for any barycenter xo € M of Q and
any straight line v: R — M, the associated Busemann function by: M — R satisfies
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w({o € 21 byf) 2 byea))) 2 (g ) omO)

for N € (—oo0,—1).

The rest of the article is organized as follows. In Section 2, we review some necessary
properties of RCD(0, V)-spaces. We also illustrate our results in Euclidean spaces, recov-
ering known results and obtaining new ones. Section 3 is devoted to the one-dimensional
analysis, which plays a central role in the following discussions. In Section 4, we prove
Theorem 1.1 and also study the rigidity problem. By a similar analysis, in Section 5, we
prove Theorem 1.5 as well as the corresponding rigidity result. We give some stability
results in Section 6, and close the article with several further problems in Section 7.

2. Preliminaries
2.1. Properties of RCD(0, N)-spaces

The next lemma may be a well known fact (cf. [58, Theorem 7]), but we could not
find in the literature.

Lemma 2.1. Let (X,dx,m) be a CD(0, N)-space with N € (1,00). If m(X) < oo, then
the diameter of X is finite.

Proof. The proof is based on the following Bishop—Gromov volume comparison theorem
[53, Theorem 2.3]:

m(B(z, R))
m(B(z,7))

IN

N
<?> forallz € X, 0 <r <R, (2.1)

where B(x,r) denotes the open ball with center x and radius r. Fix zg € X and assume
on the contrary that there is a sequence (zx)r>1 in X such that dx(zo,zr) > k for all
k > 1. Then we infer from (2.1) that, for k > 2,

dx (zo,zx) +1
dx (zo,zr) — 1

N
m(B(mk,dX(xo,xk) + 1)) < < ) m(B(xk,dX(xo,a:k) — 1))
Thus, we deduce that

m(B(a:o, 1)) < (B(a:k,dx(xo,mk) + 1)) - m(B(xk,dX(xo,:ck) - 1))

(__1>N _ 1} (B (ax, dx (o, 71) 1))
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=0
as k — oo. This implies m(B(xg,1)) = 0, a contradiction. 0O

In particular, every convex set @ C X with m(Q) € (0,00) (as in Corollary 1.3)
is bounded, since (Q2,dx|q,m|q) is again a CD(0, N)-space. The above lemma can be
applied to the space (X,dx, u) in Theorem 1.1(i) thanks to the following fact.

Lemma 2.2. Let (X,dx,m) be an RCD(0,N)-space with N € (1,00), and p = pm
be a measure with p: X — [0,00) such that u(X) > 0 and p/P=N) is concave on
p~((0,00)) for some 8> N. Then, (supp(u), dx|supp(u): ) is an RCD(0, 8)-space.

Proof. We give an outline of the proof for completeness (we refer to [53, Theorem 1.7(ii)]
for the smooth case). Note that it is sufficient to show that (supp(u),dx |supp(u)#)
satisfies CD(0, /3). Since (X,dx) is non-branching by [18, Theorem 1.3], in view of [53,
Proposition 4.2], (X,dx,m) being a CD(0, N)-space is equivalent to the concavity of
A — O (n(X) 7YY for almost every geodesic n: [0, 1] — X along which an L?-optimal
transport (vx)aefo,1] is done, where vy = (\m.

When we consider 1 = pm instead of m, the corresponding density function of vy
becomes (xp~ !, provided supp(vy) C supp(u). Indeed, if supp(rp) Usupp(v1) C supp(p),
then supp(vy) C supp(u) by the convexity of supp(u). We deduce from the concavity of
pt/(B=N) and the Holder inequality that

G 10 ™ = () ) (ol )

> ((1 ~ NG @m0) Y +xa (n(l))fl/N)N/ﬂ

. ((1 ~ Np(n(0)) /T Ap(n(l))l/(ﬁ_m)(ﬁw)/ﬁ

> (1= N op™10(0) 77 + M) (1) 7.

Therefore, A — [(p~'](n(A))~Y/? is concave, and (supp(u), dx |supp(u)s ) 15 an
RCD(0, 8)-space. O

Next we summarize some key ingredients for the proof of Theorem 1.1, based on
Gigli’s splitting theorem and an observation related to the lemma above. We remark
that, though Lemma 2.2 could be also extended to include the cases of 5 = oo and
B < —1 as in the next proposition, we restricted ourselves to § > IN for simplicity.

Proposition 2.3. Let (X,dx,m) be an RCD(0, N)-space for some N € (1,00) and
v: R — X be a straight line. Then, there exists an RCD(0, N — 1)-space (Y,dy,n)
and an isometry T: (X,dx) — (R x Y, d) such that
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e d((s,y),(t,2)) = (s —t|*+ dy(y,z)2)1/2 foralls,t eR andy,z€Y;

o IIr(T'(x)) = by(z) for allz € X, where IIg: R x Y — R s the projection;

o T#m = dx ® n, where T#m denotes the push-forward of m by T and dx is the
Lebesgue measure on R.

Moreover, let p = pm be a probability measure on X for some measurable function
p: X — [0,00) and put by#u = wdz.

() If p/B=N) is concave on p='((0,00)) for some B > N, then w'/(B=Y is concave
on w~((0,00)).
(ii) Iflogp: X — R U {—o0} is concave, then logw is concave.
(iii) If p/B=N): X — R U {0} is convex for some 3 < 1, then w'/P=1) is convex.

Proof. The first part of the proposition comes from [25, Theorem 1.4]. Then, using the
product structure X =R x Y, w is explicitly given by

w(t) = / p(t,y) n(dy).

(i) Though we give a direct proof, one can also reduce the concavity of w'/(#=1) to
Lemma 2.2, for it is equivalent to CD(0, §) of the interval (supp(w),|- |, wdx) (see the
beginning of Section 3). Take a < b and A € (0, 1), and define functions f,g,h: ¥ — R
by

h(y) =p((L=Na+by),  fy)=play),  g(y)=pby).
For any geodesic 7: [0,1] — Y in (Y, dy ), observe that the curve
A— (1=XNa+Ab,nN) ERxY =X
is also a geodesic. Thus, the assumed concavity of p'/(®=N) implies, in supp(u),
A) T = (1= N () T 4 g () O
Now, in order to apply the Borell-Brascamp—Lieb inequality on (Y, dy, n) in [3, Theorem
3.1], one needs to check that (Y, dy,n) is non-branching, which is the case thanks to

[18]. Hence, we obtain from the Borell-Brascamp-Lieb inequality BBL(0, N — 1) with
parameter p = 1/(8 — N) > 0 (as in [3, Definition 1.1]) that, since p/(1 + (N — 1)p) =

1/(8—1),
/hdn > ((1 - (/fdn>1/(/3—1) . )\</gdn> 1/(6—1)>B1.
Y Y

Y
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This yields the concavity of w!/(#=1),
(ii) We similarly find

log h(n(A)) = (1= A)log f(n(0)) + Alog g(n(1)).

Then, BBL(0, N —1) with p = 0 (in other words, the Prékopa—Leindler inequality) shows

the claim
1-\ A
/han(den) </gdn> .

Y Y
(iii) In this case, we have

h(n(N)) > ((1 — )\)f(n(o))l/(ﬂ—N) n )\g(n(l))l/(ﬂ_N))ﬁ—N’

then the claim follows from BBL(0, N — 1) withp=1/(8—N) > -1/(N—-1). O
2.2. Fuclidean case
In this subsection, we describe our results in the Euclidean setting. We first remark

that the curvature-dimension condition is intimately related to Borell’s s-concavity [7].
For s € RU{£o0}, A € (0,1) and a,b > 0, the s-mean is defined by

(1= Na*+ )\bs)l/s if s >0, orif s<0andab>0,
0 if s <0 and ab=0,
M(a,b; N) =< a' = if s =0,
min{a, b} if s = —o0,
max{a, b} if s = o0.

Let Q C R™ be a nonempty, open, convex set and p be a (nonnegative) measure on €.
Given s € RU {£o0}, we say that p is s-concave if, for any nonempty, Borel measurable
sets A, B C Q and A € (0,1),

p((1=NA+AB) > M (u(A), u(B); ),
where (1 = XN)A+AB:={(1-Nz+ Xy |x € A,y € B}. When s =0, p is also called
log-concave.

Then, Borell’s classical result [7, Theorem 3.2] shows the following.

Theorem 2.4 (Borell’s theorem). Let Q C R™ be a nonempty, open conver set and p be a
Radon measure on ). Denote by V the affine span of the support of u. Let s € RU{£o0}.
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e Ifs>1/n, then u is s-concave if and only if p = 0.

e If s =1/n, then p is s-concave if and only if it is proportional to the restriction of
the n-dimensional Lebesque measure L™ on ).

e If s € (0,1/n), then p is s-concave if and only if it has a density function p with
respect to L™ and pP is concave with p = s/(1 — sn) > 0.

o If s € [—00,0], then u is s-concave if and only if it has a density function p with
respect to the Lebesgue measure on V and p satisfies

p((1 =Nz + Ay) > My (p(x), p(y); M) (2.2)
for all z,y € V and XA € (0,1), where ¢ :== s/(1 — sdimV) < 0 (which should be
understood as —1/dimV if s = —oo and dimV # 0, and as —c0 if s = —oo0 and
dimV = 0).

We remark that supp(u) = Q when s € (0, 1/n], while supp() is a convex set in V' for
s € [—00,0]. Note that if 4 is s-concave for some s € RU{£oo}, then it is also t-concave
for all ¢t € [—o0, s].

Corollary 2.5. Let s € [—00,1/n] and p be an s-concave measure on R™ with supp(u) =
R™. Then, for any affine subspace V. C R™ and the orthogonal projection I1: R" — V|
[I#pu has a density function p with respect to the Lebesgue measure on V', which satisfies
(2.2).

Proof. It is readily seen that II#pu is s-concave as a measure on V, then we apply
Theorem 2.4. 0O

In particular, if dim V' = 1, then p satisfies (2.2) with ¢ = s/(1—s), which corresponds
to Proposition 2.3 in the Euclidean case (with s =1/5).

In view of Theorem 2.4, as a particular case of Theorem 1.1, we obtain the following
result. Note that s > —1 since 8 < —1.

Theorem 2.6. Let 2 C R™ be a nonempty, open, convex set and pu € P(2) be s-concave
for some s € (—=1,1/n]. Then, every closed halfspace H containing the barycenter of u
satisfies (H) > (1/(1 4 s))Y/*, understood as u(H) > e~ if s = 0.

Classical Griinbaum'’s inequality is recovered by Theorem 2.6 with s = 1/n. Moreover,
as mentioned in the introduction, the case of log-concave distributions (s = 0) was also
known.

Remark 2.7. The s-concavity is generalized to the Brunn—Minkowski inequality BM(0, N),
with N = 1/s. Precisely, the curvature-dimension condition CD(0, N) implies BM(0, N)
(see [53, Proposition 2.1] for N € (1,00), [56, Theorem 30.7] for N = oo, [45, Theo-
rem 4.8] for N < 0, and [46, (3.9)] for N = 0). Moreover, for weighted Riemannian
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manifolds and N € (1,00), the converse implication can be also found in [36, Theo-
rem 1.1].

3. One-dimensional analysis

In this section, as a key step for the proof of Theorem 1.1, we first state Griinbaum’s
inequality in the case of one-dimensional CD(0, N)-spaces.

3.1. One-dimensional CD(0, N)-spaces

We consider a one-dimensional space ((a,b),| - |,e™% dz), where —0o < a < b < oo,
| - | denotes the absolute value giving rise to the canonical distance on R, dz is the
Lebesgue measure on R, and ¢: (a,b) — R is a continuous function. In this case, being
a CD(0, N)-space is equivalent to

(¥)?
N-1

W — >0 (3.1)
in the weak sense (recall the definition of Ricy from (1.3)). By setting w = e~%, this is
equivalent to the concavity of w/ (V=1 if N e (1, 00), the concavity of logw if N = oo,
and to the convexity of w'/N=1 if N € (—o0,1).

When we assume that © = wdz is a probability measure, on the one hand, for

1/(N=1) that p can only be supported on

N € (1,00), observe from the concavity of w
some bounded interval, thereby a > —oo and b < co. On the other hand, for N = co
(resp. N € (—o00,1)), the concavity of logw (resp. convexity of w/(N=1) does not imply
such boundedness, by letting logw = —oo (resp. wlt/(N-1) = o0) outside the support of
7

For N € (1,00), the space ([0,00),]- |, NV~ dz) is a model CD(0, N)-space, that is,
it enjoys equality in (3.1). Moreover, normalized as a probability space,

([0,1],] - |, Na " da) (3.2)

is a model space that also reaches the equality case in Grinbaum’s inequality. Indeed,
its barycenter is given by

and we have

N/(N+1)

N

N
NN tde = ——) .
R <N+1>
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In the original Griinbaum’s inequality, this model corresponds to the projection of the
uniform distribution over a finite cone along its axis.

3.2. Case of N € (1,00)

We first consider the case of N € (1,00). The following two lemmas can be found in
[39, Chapter 3|; however, we give precise proofs for completeness.

Lemma 3.1 (Grinbaum’s inequality on intervals; N > 1). Let a,b € R witha < 0 < b
and w: (a,b) — [0,00) be a nonnegative function such that w/WN=1 s concave for
some N > 1 and

Then, we have

7 N \V / N \V
a/w(x) dz > (N——i-1> , O/w(a:) dz > (N—+1> . (3.3)

Proof. Let R(z) := [ w(s)ds be the cumulative distribution function, which satisfies
0<R<1, R(a) =0and R(b) =1 by definition. Note also that
b b
b
/R(x) dz = [mR(m)} - /xw(m) dz =b. (3.4)
a

a

Since wl/ V-

1) is concave, the Borell-Brascamp-Lieb inequality [7,8] with parameter
1/(N — 1) implies that R'" is concave. Here we also give a detailed proof of that
concavity for later use in the rigidity problem. Fix z,y € (a,b) and A € (0,1). For

t € (0,1), we take o(t) € (a,x) and 7(¢t) € (a,y) satisfying

o(t) (1)
1 1
R@) / w(s)ds = ) / w(s)ds =t.

a a

By differentiating in ¢, we have

w(o(t)o'(t) _ w(r(t)7'(t)
R(z) R(y)

We put 6(t) := (1 — N)o(t) + Ar(t) and observe

~1. (3.5)
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(1=XN)z+Ay

R((1 =Nz + Ay) = / w(s)ds:/lw o(t
0

a

It follows from the concavity of w'/N=1 (3.5) and the Holder inequality that

/ w(B(0)0' (1) dt > / (1= M) ()Y
0 0

Rx) . Ry
. (“ O Aw<7<t>>> at

/ (@)Y + AR(y)VM)N at
0
((

Hence, RN is concave as we claimed.
The concavity of RN implies

R(x)YN < R(OOMN + (RYNY(0)x  for all z € (a,b),

which can be rewritten as

N ’
N) , C::R(O):w(0)>0.

R(z) < R(0) (1 +x

In particular, since R(a) =0, a > —N/c holds.
Now, if b > 1/¢, then we obtain from (3.4) that

/R dx—i—/R

1/c

1/c N
< / R(O)(Higc) do+b— =
- N c

—N/c

1/c
N ¢ N+1 1
R(0) C(N+1)< +N:c) ] y -
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where in the inequality we used (3.7), a > —N/¢, and R < 1. This exactly gives R(0) >
(N/(N +1))™ which concludes the proof. In the other case of b < 1/¢, we deduce from
(3.7) that

e\ c \V
1< 14— 1+ —
_R(O)( + Nb> <R(O)< + Nx)
for « € (b,1/c). Therefore, we similarly observe

b 1/c

b= /R(a:) do < / R(O)(l + %x)Ndx - (% - b) (3.9)
a _NJe
= R((:O) <¥)N +b— %

This completes the proof of the first inequality in (3.3). The second one is obtained in
the same way or by reversing the interval (a,b). O

We can show that only the cone-like model space (3.2) achieves equality in (3.3) (up
to translation and dilation).

Lemma 3.2 (Rigidity on intervals; N > 1). If equality holds in the former inequality in
(3.3), then, for some ¢ >0, we have a = —N/c, b= 1/c¢, and

w(z) :C(NLH>N<1+ %x)N_l. (3.10)

Similarly, if equality holds in the latter inequality in (3.3), then, for some ¢ > 0, we have

a=-1/c, b= N/c, and
N \N e \ N1

Proof. We deduce from the proof of Lemma 3.1 (having equality in the inequalities (3.8)
and (3.9)) that @ = —N/c and b = 1/c¢ necessarily hold. Moreover, we have equality in
(3.7) for all = € (a,b). Together with R(1/c) = 1, we obtain

R(z) = (%)N (1 n %x)N

as well as
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The case of the latter inequality in (3.3) is seen by reversing the interval (a,b). O
One can regard (3.10) that w has the cone structure with the apex a = —N/c.
Remark 3.3.

(a) Note that, in the proof of Lemma 3.1, the concavity of RN (more precisely, the
inequality (3.7)) is the essential ingredient. This leads to a slight generalization of
one-dimensional Griinbaum’s inequality assuming only (3.7). In higher dimensions,
however, we do not know a suitable condition guaranteeing (3.7) on almost every
needle.

(b) In the proof of Lemma 3.2, testing equality in (3.7) was sufficient to obtain
(3.10). In particular, we did not need a characterization of equality in the Borell-
Brascamp-Lieb inequality.

3.3. Case of N € (—o0, —1) U {0}

Next, we consider N = oo and N < —1, in a similar way to N > 1.
Lemma 3.4 (Grinbaum’s inequality on intervals; N < —1, N = 00). Let —oco < a <
0 <b< o and w: (a,b) — [0,00) be a nonnegative integrable function satisfying

ffw(a:) dz =1 and f; zw(z)dz = 0.

(1) If w/N=1 s convex for some N < —1, then we have

w(z)dz > <NJL)N (3.11)

0

[u@ = (NNH)N

a

o _

(ii) If logw is concave, then we have

0

/w(x) dz > e, /bw@;) dr > e, (3.12)

a

Without loss of generality, we will assume that w > 0 on (a,b). Recall that, as we
mentioned at the beginning of this section, the interval (a,b) can be unbounded.

Proof. First of all, if b = oo, then we cut off and normalize w as

k —1
wy 1= (/w(s) ds) ow\(ak,k)

(&2
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for (large) k € N, where a;, € (a,0) is chosen so as to satisfy that the barycenter of
wg dx is 0. Then, Xy, := ((ak, k), | - |, wr dz) again satisfies the assumptions, and (3.11)
or (3.12) for the original space can be obtained as the limit of those for X} as k — oo.
Hence, without loss of generality, we will assume b < oo and, by the same reasoning,
a> —oo.

As in the proof of Lemma 3.1, we set R(z) := [ w(s)ds, fix z,y € (a,b) and A € (0,1),
and define the functions o, 7, 6.

(i) In place of (3.6), we deduce from the convexity of w'/(N=1 and the Hélder in-
equality of the form

(1= Naras + ABifs < ((1 B )\)agN—l)/N I )\ﬁEN—l)/N)N/(Nq)

1-N 1—=N\1/(1=N) (3.13)
X (1=Nag™™ +A3,77)

for aq, ag, B1, P2 > 0 (valid for N < 0) that

by taking oy = R(z)Y/PN-D ay, = (R(z)/w(e®)))O=N) in (3.13). Thus, RN is
convex, which yields

0)
UN > RN (14 < =20, 14
R(x)"* > R(0) ( + Nx), c R(0) >0 (3.14)
When b > 1/¢, we obtain from (3.4) that
/ e c N 1
b= /R(m) do < /R(O)(l + Nx) do+b—— (3.15)
1/c
N A 1
— 1 — —
R(0) c(N+1)< +Nx> +b
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c N c’

<@(M>N+b_l

which yields the former inequality in (3.11). If b < 1/c, then we infer from

N

1< R(O)(l + %b)N < R(0) <1 + %x)

for x € (b,1/c) that

b/bR(a:)d:c < 1//CR(0)<1+;x)Ndx <i b)
. ;((:o) <¥SNM_%

This completes the proof of the former inequality of (3.11). The latter inequality is seen
by reversing the interval (a,b).

(ii) Since the concavity of logw implies the convexity of w/WN=1 for all N €
(=00, —1), we can derive (3.12) from (3.11) by letting N — —co. O

We proceed to the equality case, which is more involved than Lemma 3.2 due to the
unboundedness of the interval.

Lemma 3.5 (Rigidity on intervals; N < —1, N = c0).

(i) If equality holds in the former inequality in (3.11), then, for some ¢ > 0, we have

a=—00,b=1/c, and
N N-1
N c
=c| —— 1+ — . .1
w(z) C(N+1> ( + Na?) (3.16)
Similarly, if equality holds in the latter inequality in (3.11), then, for some ¢ > 0,
we have a = —1/¢, b = 00, and

v o( ) (1 50)

(ii) If equality holds in the former inequality in (3.12), then we have a = —oo0, b =
1/c, and w(x) = ce“~1 for some ¢ > 0. Similarly, if equality holds in the latter
inequality in (3.12), then we have a = —1/¢, b = oo, and w(z) = ce~“*~* for some
c>0.
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Proof. We will consider only the former inequalities in (3.11) and (3.12), since the latter
inequalities can be handled by reversing the interval.

(i) We first assume b < oo. In this case, we deduce from the proof of Lemma 3.4 that
a = —00, b =1/c, and that equality holds in (3.14). Combining these with R(1/c) =1

implies
N \V e \V
R<~’”>(zv+1> (”N"”) ’

and hence

w(z) = R'(z) = c<NL+1>N (1 + %x) o

Next, we show that equality never holds when b = oo. Assume in contrary that
equality holds in the former inequality in (3.11). For (large) k € N, we take aj € (a,0)
and wy, as in the proof of Lemma 3.4, and put

x

Ry (z) = /wk(s) ds, cp = = —

ag ar

Observe from

lim ¢ = —+——— =:c¢c

k—roo [%w(s)ds

a

that k& > 1/¢x for large k. Then, in the estimate (3.15) in the proof of Lemma 3.4,

k k
1
k—c——/Rk(x)dx: /(I—Rk(x))dx
k
l/ck 1/Ck

necessarily tends to 0 as k — oo. This implies that fal/c w(s)ds = 1, which is a contra-
diction since we assumed w > 0 on (a, b).

(ii) Let us begin with a direct proof of (3.12) under b < co. We use the same notations
as in the proof of Lemma 3.4. It follows from the concavity of logw that

R((1 =Nz +Xy) = [ w(6(t))6'(t)dt

v

o O~ _
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- [ (Y om0 s

Together with the concavity of log and Jensen’s inequality, we obtain the concavity of
log R:

g
>

g

log R((1 — X)z + Ay) > (1 — A)log [1~z(gc)/1<7““(7(’5))>A dt]
)

s j( o]
0

>(1-)) (log R(z) + / Alog[zggi] dt)
0

1

+ )\(log R(y) + /(1 — \)log B((‘;gm dt)

= (1 —X)log R(x) + Alog R(y).

Therefore,

log R(z) < log R(0) + cz, c:= % > 0.

When b > 1/¢, we have

1/c
1 1
b< /R(O)e“dm—i—b—zﬁ%o)e—&—b—g,

which yields (3.12). In the case of b < 1/c, since 1 < R(0)e®® < R(0)e®® for z > b, we
similarly find

1/c

b< /R(O)e”dx— <1—b> Swe—kb—l.
c c c

a

If equality holds, then we have a = —oo, b = 1/¢, and logw is an affine function. Put
w(r) = ae’® (a,d > 0) and observe that

R(b):%e‘s/czl, c=—= =04



V.-E. Brunel et al. / Journal of Functional Analysis 290 (2026) 111210 23

cr—1

Therefore, we obtain § = ¢, a = ce™!, and w(x) = ce . One can also show that

equality never holds when b = oo in a similar way to (i). O

Remark 3.6. Note that w in (3.16) satisfies w(z)dz € P?((—o0,1/c)) for N < —2, but
w(z)dz € P((—o00,1/c)) \ P3((—00,1/c)) for N € [-2,-1).

4. Griinbaum’s inequality for NV € (1, o0)

We give two proofs of Theorem 1.1, one via localization and one without. We will
need both for our rigidity result (Theorem 4.3).

Let (X,dx,m), u = pm, g € X and v: R — X be as in Theorem 1.1. Recall from
Proposition 2.3 that T'(z) = (b, (z),IIy(z)), where IIy: X — Y is the projection to
Y, is an isometry from X to R x Y, namely

d%{(xl, .732) = (bfy(xl) — bfy(l‘z))z =+ d%/ (Hy(Il),Hy(ZCQ)) (41)

for all 1,22 € X. In what follows, via the isometry T', we identify (X,dx, m) with the
product of (R, |- |, dz) and (Y,dy,n) (m is identified with dz ® n).

By translating -y, we can assume that b, (zo) = 0 without loss of generality. Then, we
have the following key observation.

Lemma 4.1. We have

/bvduzo.
X

Proof. Let 7: R — X be the geodesic given by n(t) := (¢, Iy (z0)). Note that n(0) =
zo (= (by(x0),y(x0))) by our choice by(xg) = 0. Then we deduce from (4.1) that,
provided that u € P?(X),

3| [ 00 u(dxﬂ
4
d

t=0

{/ —i—d2 (ITy (o), My (x)) } p(dz)
2/b7

Since xg is a barycenter of pu, the left hand side coincides with 0. If p is only of finite

o~

t=0

first moment, then we differentiate

/{d2 —d% (20,2 z)} p(dw)
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with an arbitrarily fixed point 2y € X, and obtain the same conclusion. This completes
the proof. O

4.1. First proof without localization

The first proof of Theorem 1.1 is based on Proposition 2.3, which ensures that b, #u
has a density w with respect to the Lebesgue measure on R, and w!/(F=1) (8 > N),
logw (B = o), or —w(#=1) (3 < —1) is concave. Moreover, by Lemma 4.1 above, 0 is
its barycenter. Hence, our one-dimensional analysis in the previous section (Lemmas 3.1,
3.4 with N = j3) yields the result.

4.2. Second proof via localization

The second proof makes use of the localization (a.k.a. needle decomposition), and we
additionally assume p € P?(X) (unless 8 > N). The localization technique provides a
decomposition of a space into a family of geodesics (called needles) in such a way that
those geodesics inherit some geometric information of the original space. Through this
decomposition, one can reduce a problem into its one-dimensional counterpart. We refer
to [11, Theorem 5.1] and [29] for the precise statement and more information.

Put © := supp(p) = X \ p~1(0), which is convex (and bounded when § > N; recall
Remark 1.2). Thanks to Lemma 4.1, we can employ f := b, p as a conditional function (as
fin [11, Theorem 5.1]). We remark that fdx(zo,-) € L'(m) (equivalently, b,dx (z¢,") €
L*(p)) since u € P?(X) and b, is 1-Lipschitz.

We denote the resulting decomposition by {(X,, m,)}seq, where m, is a probability
measure on X, C X. The set X, is the image of a minimal geodesic (so-called a needle)
and carries the natural distance structure as the restriction of d x. We also have a measure
q on @ and g-almost every needle (X, m,) satisfies CD(0, N) as well as

/b,yp dm, = 0. (4.2)
Xq

To be precise, the decomposition is done except a set Z C X such that f = 0 m-almost
everywhere in Z. In the current setting, Z is p-negligible since m(b;l(O)) = 0. Then, for
every ¢ € L'(m) with supp(¢) C €2, we have

Q/¢dm=Q/l¢quq(dQ)-

We deduce from (4.2) that, for g-almost every ¢ € @, one of the following holds:

(1) my(X, ) = 0;
(2) mg(X,NQ) >0and X, C b;*(0);
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3) my(X,NN) >0, X b;1(0), and X, Nb;1(0) is a singleton which is the unique
q q q ¥ q ¥
barycenter of pq := pm,.

We remark that (i, is not necessarily a probability measure and that the support of p,
is included in 2. We infer from

/mq (b;1(0) N Q) q(dg) =m(b;'(0)NQ) =0
Q

that the case (2) is g-negligible. In the case (3), we can identify X, and the interval
b,(X,;) C R via b,. In this identification, by Proposition 2.3 and writing p, = wqdx
1/(8=1

21 (0o (B> N, loguw, (B = 0), o

—w;/ =1 (8 < —1) is concave (the concavity can be seen more directly from the Holder

(i.e., by#pq = wydzx), b, is linear and w

inequality as in Lemma 2.2; see also the proof of Theorem 4.3 below).
Therefore, applying Lemmas 3.1, 3.4 (with N = f) to each normalized needle
(Xg, phq(Xq) " 1q) satisfying (3), we obtain

a({2 € Xy | by (2) < 0}) > g X,), (4.3)

B
palle € %, 10,0) 2 01) > (554 ) a(x)
when 8 > N or § < —1, and

Hq ({x € X¢ | by(z) < 0}) >e! < (X)),
Hq ({x € Xq | by(z) = 0})

v
)]
L
=
S\
»
s

when [ = co. Integrating these inequalities in ¢ with respect to q completes the proof of
Theorem 1.1, since fQ tq(A) q(dg) = p(A) for measurable sets A C X.

Remark 4.2. On the one hand, the second proof provides a more detailed control at the
level of needles (under p € P?(X)). On the other hand, in the first proof, we have a
direct connection between X and R via b,. To consider the rigidity problem, we need
both viewpoints to integrate the one-dimensional information on needles into a global
picture of X.

4.3. Rigidity
Now, with the help of Lemma 3.2, we study when equality holds in the generalized

Griinbaum’s inequality (1.5) with 5 > N. Put Q := supp(u) as in the previous subsection,
and recall that b (z¢) = 0.
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Theorem 4.3 (Rigidity; N > 1). In the situation of Theorem 1.1, let (Q,q), (Xq,mq),
and (g = pmg = wy dx be the elements of the localization as in Subsection 4.2. Suppose
B > N and that equality holds in (1.5). Then, there exists ¢ > 0 such that, for q-almost
every needle ¢ € Q, we have by (X, N Q) = [—F/c,1/c] and

@) =e(527) (1 Spw) (4.4

forall x € X, N Q. Moreover, regarding A; := b;l(t) N as a set in'Y, we have

w0 = (22w, e =52 (55T s

forallt € [-B/c,1/c].
We have a similar rigidity when equality holds in (1.6): b, (X,NQ) = [-1/¢, 8/c] and

Proof. We shall analyze by combining both of the two proofs above. On the one hand,
by the first proof in Subsection 4.1 and Lemma 3.2 (with N = f), we deduce that
b, #u = wdz satisfies supp(w) = [—3/¢,1/c] and

oo e+

for some ¢ > 0. On the other hand, in the second proof, g-almost every needle necessarily
satisfies equality in (4.3), thereby, we obtain b, (X, N Q) = [-8/c,4, 1/¢c,] and

ﬁ%(x) P (%)ﬂ (1 N %xyl

for some ¢; > 0 and all z € X, N Q, where we identified X, and b,(X,) via b, as in
the previous subsection. For g-almost every ¢ € Q, since [—3/¢cq,1/¢q] C [—8/¢c,1/c], we
have ¢, > ¢. Since w(z) = fQ wy(x) q(dg), if ¢, > ¢ for ¢ in a set of positive g-measure,
then we find

()"

a contradiction. This implies that c, = c holds for g-almost every q € Q. Therefore, for
g-almost every ¢ € @, we obtain b, (X,NQ) = [-8/¢,1/c] and (4.4). The latter equation
in (4.5) is now straightforward by integrating (4.4) in ¢ € @:
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o) (40) = w(t) = [ w,(t)a(de)
Q

:c(%>ﬁ<1+%t>ﬁ1(!Mq(Xq)q(dQ)

B B B ¢ B-1
_c(—BH) (1+Et> .

Next, we have a closer look on the concavity of w;/ (B=1), Letting my; = (,dz, since
(Xq4,my) is a CD(0, N)-space, we know that C;/(N_l) is concave. Combining this with

the concavity of p'/(#=N) along X, and noting wy = p(,, by a similar calculation to
Lemma 2.2, we obtain

- (B-N)/(B-1)
we((1 = N+ ay) /P70 > ((1 ~ Np(z)V BN Ap(y)l/wm)

(N-1)/(8-1)
X (1= X)Gg(@) VN xGy ()N )

> (1= )Gl ()71 + Apg] ()P
(1- )\)wq(x)l/(ﬂil) + /\wq(y)l/(ﬂil)

for all 2,y € X, NQ and A € (0,1). Comparing this with (4.4), we find that p'/(3=N)
and C;/(N_l) are both affine along X, N and, since w;/(ﬂ_l) is also affine, they vanish
(only) at —3/c (precisely, p*/(#=N) and (;/(N_l) on [—f/c,1/c] are the restrictions of

such affine functions). Therefore, A; satisfies

N—-1
n(A,) = / Gy a(dg) = (%) / ¢(1/¢) a(dg)
Q Q

_ (ctJrﬂ

N—-1
1_’_5) n(Al/c)v

which is the former equation in (4.5). O

Remark 4.4. It seems plausible that, under the hypothesis in Theorem 4.3, N = n
necessarily holds and (2 is isometric to a convex cone in R™ with A_g/,. as the apex
and A/ as the base. (We remark that, because of the assumed existence of a straight
line in X, the model space ([0, 00), Nz¥~1dz) in Subsection 3.1 is excluded.) Indeed, in
the Euclidean case with the Lebesgue measure, it is known that equality in Griitnbaum’s
inequality is achieved only by cones [27]. Then, a key step is to show that A_z/, is a
singleton. A rigidity result [4, Theorem 4.2] for the Brunn-Minkowski inequality seems
to play a role, however, it is concerned with L2-optimal transports while the transport
along needles is L'-optimal.
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5. Griinbaum’s inequality for N € (—oo, —1) U {oco}

In this section, we prove Theorem 1.5 and the associated rigidity result (Theorem 5.4)
concerning the cases of N = oo and N < —1, in a similar manner to the case of N > 1
above. Since the splitting theorem and localization for RCD(0, oo)-spaces are yet to be
known, we restrict ourselves to weighted Riemannian manifolds.

Let (M, g,m) be an n-dimensional, complete, weighted Riemannian manifold with
Ricoo > 0 or Ricy > 0 for N < —1, where m = e~¥ vol, for some 1) € C*°(M). By the
monotonicity (1.4), Rice, > 0 is a weaker condition than Ricys > 0 with N’ > n, and
Ricy > 0 is even weaker. In fact, under Ric,, > 0, the boundedness of the diameter
as in Lemma 2.1 does not hold true. An archetypal example is the Gaussian space
(R,] - |,e*"’”2/2 dz), which satisfies Ricoo > 1.

We begin with a generalization of Proposition 2.3.

Proposition 5.1. Let (M, g,m) be an n-dimensional complete weighted Riemannian man-
ifold of Ricy > 0 for N = oo or N < —1. Assume that 1 is bounded above and there
is a straight line v: R — M. Then, there exists an (n — 1)-dimensional weighted Rie-
mannian manifold (X, gs,n) with Ricy—1 > 0 (Ricee > 0 if N = c0) and an isometry
T: (M,g9) — (R x X,g) such that

e § is the product of the Euclidean metric on R and gx;
o IIg(T'(x)) = by(z) for allz € M;
o TH#Hm = dzx®n.

Moreover, let = pm be a probability measure on M for some measurable function
p: M — [0,00) and put by#p = wdz.

(i) If N < —1 and p"/B=N) is concave on p~*((0,00)) for some 3 € (N,—1), then
wB=1 s conver.
(ii) If N = oo and log p is concave, then logw is concave.

Proof. The first part follows from [21, Theorem 1.1] for N = oo and [57, Corollary 1.3]
for N < —1 (in fact, it is available for N < 1). We identify M with R x X, and then w
is given by

w(t) = / p(t,y) n(dy).

b

As in the proof of Proposition 2.3, we fix a < b and A € (0,1), and define

for y € ¥. Recall also that, for any minimal geodesic n: [0,1] — X,
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A (1= ANa+Mb,n(N) eERXx T =M

is a minimal geodesic.

(i) In this case, we make use of a generalization of the Borell-Brascamp-Lieb inequality
in [3,14] to N < —1 (the estimate below also works for N < 8 < 1). We give an outline
for thoroughness. Set

/ 9
fzfdnn7 N fzgdnn'

Yy =

Then, there is a unique L?-Wasserstein geodesic (V)\))\G[OJ] from 1y to v1, and we can
write vy = (yn. On the one hand, it follows from Ricy_; > 0 of (3, gs,n) that

1/(1=N) 1/(1-N)
s ) )
z b>

for vp-almost every y € ¥ (by [45, (4.7), (4.9)]), where T\ denotes the (unique) optimal
transport map from vy to vy (thereby Th#1y = vy). On the other hand, the assumed
concavity of pt/B=N) yields

B(Ta() T = (1= N F) Y g (T () Y.

Thus, we have

o[ R
Jranz [ Gan= [ s an
by b by
> /((1 CNFYEN) 4 ag(Ty) BB
b
f 1/(1-N) o(Th) 1/(1—N)y N—1
X{(I_A)<f2fdn) +)\<fzgdn> } o
1/(6-1) 1/(8-1)y A1
z{(l)\)( fdn) +)\( gdn) }
/ /

by integrating the Holder inequality

{ (fzfd )1/(1—1\7) +)\<%)1/(1—N)}1—N
<

(1= A fY BN g ag(1y) /(BN

1/(8-1) 1/(8-1)y 18
x{(l—A)(E/fdn) —I—A(E/gdn) } .
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Since 8 — 1 < 0, this yields the convexity of w!/(3=1),

(ii) In this case, we can apply the Prékopa—Leindler inequality from [15, Theorem 1.4]
(with A = 0). From the concavity of log p, for any minimal geodesic n: [0,1] — X, we
obtain

A

1A
h(n(N) = f(n(0)) “g(n(1))".
Hence, the Prékopa-Leindler inequality on (X, gs;,n) (under Rico, > 0) implies
A

Z/hdn> (E/fdn>1_/\<z/gdn> ,

which shows the concavity of logw. O

Remark 5.2. The assumption sup,,; 1 < oo is indeed necessary for the splitting. One
can easily find a counter-example by considering the squared distance function ¢ =
cd?(zg, ) for some large ¢ in hyperbolic spaces. It is also possible to slightly weaken the
boundedness into the so-called ¢-completeness condition thanks to [57, Corollary 6.7].

Thus, the one-dimensional analysis in Section 3 leads us to generalizations of Griin-
baum’s inequality, as stated in Theorem 1.5. Again, we give two proofs of Theorem 1.5,
one via localization and one without.

5.1. Proof without localization

It follows from Proposition 5.1(ii) that, in the situation of Theorem 1.5(i), (supp(w),
wdz) is a CD(0,00)-space. Then Lemma 3.4(ii) yields the claim. Similarly, Theo-
rem 1.5(ii) follows from Proposition 5.1(i) and Lemma 3.4(i).
5.2. Proof via localization

The localization as described in Subsection 4.2 has been known by Klartag [29, The-
orem 1.2] in this smooth setting. Then, with Lemma 3.4, we can prove Theorem 1.5 in

the same way as Subsection 4.2, under the additional assumption u € P?(M).

Remark 5.3. As is natural from the monotonicity (1.4) of the weighted Ricci curvature,

N O\Y ) N AN
—_ <e "< | ———
N+1 - TAN+1

for N € (—o0,—1) and N’ € (1, 0). Note also that limy4_1(N/(N + 1)) = 0, thereby,
our generalized Griinbaum’s inequality may not have a version for, say N € [—1,0].

we have
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5.3. Rigidity

The rigidity result (Theorem 4.3) can also be generalized to the current setting. Recall
that Q = supp(p) and b, (z) = 0.

Theorem 5.4 (Rigidity; N < —2, N = oo). In the situation of Theorem 1.5, assume
u € PA2M) and let (Q,q), (Mg, m,), and p, = pm, = w,dz be the elements of the
localization as in Subsection 4.2.

(i) Suppose N = oo and that equality holds in (1.7). Then there exists ¢ > 0 such that,
for q-almost every needle ¢ € Q, we have b, (M, N Q) = (—o0,1/c] and

,uq(ll\@)wq(bV(x)) = cexp(cby(z) — 1)

for all x € My N Q. Moreover, regarding A := b;l(t) NQ as a set in X, we have
[on](Ay) = cet~!

for allt € (—o0,1/¢].

(ii) Suppose N < 8 < —2 and that equality holds in (1.8). Then there exists ¢ > 0 such
that, for q-almost every needle g € Q, we have b, (MyN Q) = (—o0,1/c] and

for all x € M, N Q. Moreover, we have

for allt € (—o0,1/¢].

We have similar rigidity results for the latter inequalities in Theorem 1.5(i), (ii).
Proof. In both cases, by using Lemma 3.5, we can follow the lines of the proof of The-
orem 4.3 to show the first assertion on wy(z), and integrating it in ¢ € @ implies the
second assertion. We remark that, in (ii), § < —2 is assumed to ensure that wy(x)dz
has finite second moment; recall Remark 3.6. O

6. Stability estimates

This section is devoted to the stability problem for our Griinbaum’s inequality. As a
generalization of the rigidity, the stability is concerned with what happens when equality
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nearly holds. Similarly to the previous sections, we first analyze the one-dimensional case,
and use it to study the general case via the localization. The localization has played a
vital role in some stability results, e.g., [10,37,38] on isoperimetric inequalities, [5,12] on
the spectral gap (Poincaré inequality). A stability result in the Euclidean setting can be
found in [27] (see also [55] for a recent improved estimate).

6.1. Case of N € (1,00)
We first consider (3.3) with NV > 1. Let us begin with the following observation. For

((a,b),]-|,w(z)dz) as in Lemma 3.1, an immediate application of [22, Theorem 6] (with
f=w, ¢(x) =2 and n = N) implies

1/(2w(0)) b )
2w(0) / r?de < /xzw(x) dz < N !
- ~ 2(N 4+ 1)(N +2) w(0)?’
0 a

which can be rewritten as

b
2V + DIV +2) /zzw(:c) dr < —— < 12/x2w(x) dz. (6.1)

Observe that, in the rigidity case (3.10), we have

1/c

L _ 1Nl ” /z2w(az)dx*i7N
w(0)2 2\ N ’ O 2N+2

—N/c

Remark 6.1. The right inequality in (6.1) is sharp (regardless of N). Indeed, for the
uniform distribution w = 1/(2\/3) on [— V3, \/—] we have f fx w(z)dr = 1 and
equality holds in the right inequality.

Lemma 6.2. Let ((a,b), |- |, w(z)dz) be as in Lemma 3.1, and put ¢ := w(0)/R(0). If

R(0) < (1+ e)(NLH)N (6.2)

holds for some € > 0, then we have

/|R F|dzx <%(1+5)(1— 14+e) /N </bx2w )1/2, (6.3)

where
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N \V c \V
on [-N/e,1/c], F(z):=0 on (—o0,—N/c) and F(x):=1 on (1/c,00).

Note that F' is the cumulative distribution function for the rigidity case (3.10).

Proof. Consider a probability density

u(z) = cR(0) (1 + %m) o

on (—N/c,b), whose cumulative distribution function is given by

N
U(z) = R(0) (1 + %x) :
Note that R(z) < U(z) by (3.7), which implies b < b. Moreover, we find from U(b) = 1
that

N
c

b=—(R(0)"/N —1),

and then the first inequality in (3.3) yields b<1 /c. One can compute that the barycenter
¢ € (=N/c,b) of u(x) dz is given by

£= /b U (x)de = b — /b U(z)dx.
i/

—NJe _

Then, recalling a > —N/c from the proof of Lemma 3.1 and b < b, we obtain

/|R—U|dm
R

<

a

b
/ Udzx + (U—R)dx+b/(1—R)dx

—NJe a

b

/ Udx —

—N/c

Rdz+b—b=—¢.

Se—
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Next, observe from (3.3) that U(x) > F(z), and f_lfvc/c F(z)dz = 1/c¢ holds similarly

o (3.4). Combining these, we obtain

b 1/c
/\UfF\dz: /(UfF)der/(lfF)dx
R —N/c b
b 1/c
= / Udz — / Fdx+1—6:—g.
—N/c —N/c ‘

Now, if w almost attains the Griinbaum bound in the sense of the hypothesis (6.2),
then we have

(N+1)(1+e) YN = N),

and hence

(L+e)~ N —1).

Thus, we deduce from the right inequality in (6.1) and the hypothesis (6.2) that

2N R(0)
w(0)

/|R—F|dx§ —2¢ < (1—(1+e)~N)
R

N+1 b 1/2
< 4V3(1 + e)%(l —(L+¢e)7/M) (/me(x) da:) .

This completes the proof. 0O
In view of Subsection 4.1, we obtain the following corollary.

Corollary 6.3. In the situation of Theorem 1.1(i) with b, (x¢) =0, suppose that

B
p({z € X [ by(x) <0}) < (1+¢) (%)

holds for some € > 0. Then w(x)dx = b #p satisfies (6.3) with 8 in place of N.

We next consider another immediate consequence of Lemma 6.2 via the localization.
We use the same notations as in Subsection 4.2: (@, q), (X4, mg), and pg = pmy = wy dz
induced from the localization built from b p.
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Proposition 6.4. In the situation of Theorem 1.1(i) with b, (zo) = 0, suppose that

B
p({z € X [ by(z) <0}) < (1+¢) (%)

holds for some € > 0. Then, for each § > 0, there exists Q' C Q such that
pl U X = 0 (6.4)
)T 1+6
qeQ’

holds and every q € Q' satisfies

/|Rq*Fq|dx

R
(6.5)
4\/§Bﬁ+1 / N—1 ( 1 Yz
<X 14Nl -(1+e)B —/de ) ,
(ﬁ+1)ﬂ( )( ( ) ) ,LLq(Xq)X v :uq
where we set
g i=e+0+&d, Cq = —g— wq(0) , (6.6)
f—oo wQ(x)dx

and R, and F, are the cumulative distribution functions for py(X,)™t - pg and
BN (1, e\ g1
= 14 2 £ =
cq(ﬁ"'l +/3x on Cq’Cq ’

Recall that letting b, (z9) = 0 loses no generality, and that X, is identified with
b,(X,) C R via b,.

respectively.

Proof. In the second proof of Theorem 1.1 in Subsection 4.2, we obtained (1.5) by
integrating (4.3). Then the set Q' C Q, consisting of ¢ with

3 B
palfe € X, [5,(2) <01 < 140)1+) (527 ) (o)

satisfies (6.4). Indeed, if not, then integrating

3 B
palle € X, 15,(0) <01 > (148149 527 ) ()
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for ¢ € Q\ Q' yields

B
p({z € X | by(z) <0}) > (1+0)(1+¢) <Bi>
Q

>(1+5)(1+e)<ﬂi1)ﬁ(1£5)
B

ool

which contradicts the hypothesis. Then (6.5) follows from Lemma 6.2 with N = § and
w=wg/pe(Xy). O

+
[t

[ matx)ataa)
\@

’

6.2. Case of N € (=00, —1) U {0}

We saw in Subsection 6.1 that a key ingredient to derive a stability estimate is the right
inequality in (6.1), which gives a lower bound of w(0) in terms of the second moment for
centered distributions. For NV = oo, log-concave probability densities have finite moment
of any order (by the fact that they have sub-exponential tails; see, e.g., [30, Section 2.2])
and (6.1) is still available. For N < —1, however, one-dimensional CD(0, N)-probability
densities may not have finite second moment (recall Remark 3.6). Moreover, even if the
second moment is finite, (6.1) for negative N seems not known. Thus, in the following
counterpart of Lemma 6.2, we can use (6.1) only when N = occ.

Lemma 6.5. Let ((a,b), |- |, w(z)dz) be as in Lemma 3.4, and put ¢ := w(0)/R(0).

(i) Suppose that w'/N=1 is convex for some N < —1. If

R(0) < (1+ 5)(NL+1>N (6.7)

holds for some ¢ > 0, then we have

oN (N \V
~Flde< () (1 1—(1+e)~ N .

/|R dx_w(o)(N+1> (I+e)(1—(1+e)~ 1), (6.8)

R
where

N \V c \V
Fla)=(-—") (1+<
(@) <N+1) <+N$>

on (—o00,1/c] and F(x) := 1 on (1/¢c,00), which is the cumulative distribution

function for the rigidity case of Lemma 3.5(i).
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(ii) Suppose that logw is concave. If

R(0) < (1+¢e)e

holds for some € > 0, then we have

/|R—F|dx < 4_‘6/3(1+€) log(1+€)(/bx2w(x)d$>l/2
R

a

37

(6.9)

where F(x) := e~ on (—o0,1/c] and F(z) :=1 on (1/c,00), which is the cumu-

lative distribution function for the rigidity case of Lemma 3.5(ii).

Proof. (i) The proof goes as in Lemma 6.2. Consider a probability density

c \ V!

u(z) = cR(0) (1 + Nm)

on (—oo, B), whose cumulative distribution function is given by

e \N

U(z) = R(0) (1 + N:r) .

We infer from (3.14) that R(z) < U(z), and hence b < b. We also find

B:

N roy v )

from U(b) = 1, and (3.11) ensures b < 1/c. The barycenter & € (—00,b) of u(z)dz is

given in the same way as in the proof of Lemma 6.2 by

b

b
£= sz_1<b—%)<0, §= /xU’(w)dm:B—/U(gg)dx_

Combining the latter with fab R(z)dz = b, we deduce that

a

b b
/|R U|dm—/de—|— (U-R)d /1— x =€

— 0o a

Next, we observe from (3.11) that U(z) > F(x), and fig F(z)dx = 1/c similarly to

(3.4). Hence, we find
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b 1/c
R/U—Fdxz_é(U—F)dx—i—b/(l—F)da::—g.

If w satisfies (6.7), then we have

b>—(N+1)(1+e) N =N), ¢>=(1+e)/N-1).

o

C

Therefore, we conclude that

N
) (L+e)(1—(1+e)~YN).

/lR—F|dx§—2§§ 2N( N
R

w(0) \N +1

(ii) By the monotonicity on the dimensional parameter N (cf. (1.4)), w'/(N=1 is
convex for all N < —1. Therefore, by letting N — —oo in (6.8), we obtain

]IZ|R — Fldz < 28((;2) log(1 +¢),

from which (6.9) immediately follows with the help of (6.1). O

Besides a corollary analogous to Corollary 6.3, one can show the following in the same
way as Proposition 6.4.

Proposition 6.6.

(i) In the situation of Theorem 1.5(ii) with b (x¢) = 0, suppose that

B
(e € 0 by(e) <01 < (14252 )

holds for some € > 0. Then, for each § > 0, there exists Q' C Q such that (6.4)
holds (with My in place of X,) and every g € Q' satisfies

2/Bﬁ+1 / n—1 ,Uq(Mq)
ﬂz|Rq—Fq|dl‘§m(1+€)(1—(1—|—g) /ﬁ)m’

where we set €' and ¢q as in (6.6), and Ry and Fy are the cumulative distribution
functions for p,(My)™' - pu, and

B B-1 1
() (o) (]

respectively.
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(ii) In the situation of Theorem 1.5(i) with by(z) =0, suppose that

p({z € M |by(z) <0}) < (1+e)e!

holds for some € > 0. Then, for each 6 > 0, there exists Q' C Q such that (6.4)
holds (with My in place of X4) and every q € Q' satisfies

43 1 1/2
R, — F,|de < Y2 (1 + &) log(1 + &' (7/b2du> ,
R/|q e < S50 tenlt ) (s [0

where we set € and cq as in (6.6), and Ry and F, are the cumulative distribution
functions for pg(My)~t - g, and cge®a™ 1 on (—o00,1/cy], respectively.

7. Further problems

We close the article with some further comments and problems.

(A)

The results in Section 5 could be generalized to RCD(0, V)-spaces with N = oo or
N € (—o00,—1). We remark that the curvature-dimension condition for N < 0 was
defined in [45] (see also [46] for the case of N = 0). However, both the splitting
theorem and localization are not known even for N = oo, thereby we need to
generalize them or consider a different method.

For CD(0, N)-spaces with N € (1,00), though the localization is known by [11]
under the essentially non-branching condition, the isometric splitting does not hold
in general. Indeed, n-dimensional normed spaces endowed with the Lebesgue mea-
sure satisfy CD(0,n) but do not isometrically split off the real line. Furthermore,
without the essentially non-branching condition, even the topological splitting may
fail; we refer to [35] for a counter-example.

Finsler manifolds provide examples of CD-spaces with possibly asymmetric dis-
tance structures (see [43,47]). In this setting, the localization is known by [11,46].
Moreover, a weak splitting theorem can be found in [44]; for example, there is a
one-parameter family of isometric translations (generated by Vb,) in the Berwald
case. Since this splitting is not isometric, we do not have an exact formula as in
(4.1) (consider the case of normed spaces), and it is unclear if Lemma 4.1 can be
generalized.

Our rigidity results (Theorems 4.3, 5.4) show that equality in generalized Griin-
baum’s inequalities is attained only when the measure p possesses a cone structure.
As we discussed in Remark 4.4, we expect that the set supp(u) is also a cone, as
in the Euclidean setting. To achieve this goal, we would need a more geometric
argument, possibly with the help of [4,17].
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(E) Once the rigidity as above is established, it is natural to expect a corresponding
stability estimate (in a more geometric way than Section 6), bounding the volume
of the symmetric difference from a cone in a certain sense, akin to [27,55].
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