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We generalize Grünbaum’s classical inequality in convex ge
ometry to curved spaces with nonnegative Ricci curvature, 
precisely, to RCD(0, N)-spaces with N ∈ (1,∞) as well 
as weighted Riemannian manifolds of RicN ≥ 0 for N ∈
(−∞,−1)∪{∞}. Our formulation makes use of the isometric 
splitting theorem; given a convex set Ω and the Busemann 
function associated with any straight line, the volume of the 
intersection of Ω and any sublevel set of the Busemann func
tion that contains a barycenter of Ω is bounded from below 
in terms of N . We also extend this inequality beyond uni
form distributions on convex sets. Moreover, we establish some 
rigidity results by using the localization method, and the sta
bility problem is also studied.
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1. Introduction

1.1. Background

In the Euclidean space Rn, it is a well known fact that, given any probability mea
sure, there exists a point such that any closed halfspace including this point has mass 
at least 1/(n + 1) [28, Theorem 1], [19, Lemma 6.3]. This bound is tight since there 
are probability measures (e.g., the uniform distribution on the vertex set of a simplex) 
such that every point is in a closed halfspace with mass at most 1/(n + 1). Hence, 
this result becomes very little informative when the dimension n is very large because 
it does not allow to discriminate between points in general. Nonetheless, the bound 
can be improved, provided that the measure satisfies some geometric properties. For 
instance, for the uniform distribution on a bounded convex set Ω ⊂ Rn, Grünbaum’s 
inequality [28, Theorem 2] states that any closed halfspace including the barycenter 
(centroid) of Ω must have volume at least (n/(n+ 1))n. Grünbaum’s inequality remains 
informative in any dimension since (n/(n+ 1))n ≥ e−1, and it has been extended to log
concave distributions (among which uniform distributions on convex sets) [34, Lemma 
5.12]. Namely, for any log-concave probability measure on Rn, any closed halfspace con
taining the barycenter must have mass at least e−1, independently of the dimension 
n. By virtue of the Prékopa–Leindler inequality, it is in fact sufficient to consider the 
one-dimensional case in order to prove the inequality for log-concave measures [34]. Fur
thermore, as we will see in this work, a family of functional inequalities that generalize 
the Prékopa–Leindler inequality, namely the Borell–Brascamp--Lieb inequalities, allows 
to generalize the bound even further, to broader classes of distributions. We refer to 
[1,40,41,51] for some other generalizations of Grünbaum’s inequality in the Euclidean 
setting.

The problem described here is directly related to a notion that is central in descriptive 
statistics, called Tukey’s depth. Given a probability distribution μ on Rn, Tukey’s depth 
of a point x ∈ Rn relative to μ is defined as Dμ(x) := infH μ(H), where the infimum is 
taken over all closed halfspaces H ⊂ Rn containing x. Then, the inequalities discussed 
above can be summarized as follows:

• For any distribution μ on Rn, there exists a point x ∈ Rn with Dμ(x) ≥ 1/(n + 1); 
moreover, there exists μ for which supx∈Rn Dμ(x) = 1/(n + 1).

• If μ is the uniform distribution on a convex set Ω in Rn, then there exists x ∈ Rn

with Dμ(x) ≥ (n/(n + 1))n and x can be chosen to be the barycenter of Ω.
• If μ is a log-concave distribution on Rn, then there exists x ∈ Rn with Dμ(x) ≥ e−1

and one can choose x to be the barycenter of μ.

The function Dμ is called a depth function [59] because it provides a measure of centrality 
relative to μ. Roughly speaking, Dμ(x) is the amount of mass that can be separated from 
x by a hyperplane. Therefore, the aforementioned results indicate that under a shape 



V.-E. Brunel et al. / Journal of Functional Analysis 290 (2026) 111210 3

constraint on the measure μ, even in large dimensions, there exist deep points. Deep 
points are relevant in various applications: In statistics, a deepest point (called Tukey 
median) provides a notion of center of a distribution that is robust to perturbations of 
that distribution [42, Section 3.2.7], which is important when dealing with data from 
that distribution, that may have been corrupted. In numerical optimization, existence of 
deep points is essential for cutting plane methods [9] while Grünbaum’s inequality has 
also found applications in convex optimization methods [6]. On the computational side, 
finding deep points is relevant in algorithmic geometry [16].

In a non-Euclidean setup, a negative result was proved in [50], showing that the above 
inequalities cannot be extended to nonpositively curved spaces in general. Precisely, [50, 
Theorem 2] states that given any Hadamard manifold M , for any probability measure μ
on M that is absolutely continuous with respect to the Riemannian volume measure (note 
that this additional restriction is only technical), there exists x∗ ∈ M such that any closed 
halfspace H containing x∗ must satisfy μ(H) ≥ 1/(n+ 1), where n = dimM . Moreover, 
there are cases where μ is the uniform distribution on a convex set and the bound is tight. 
In this context, a closed halfspace is a subset of M of the form {y ∈ M | ⟨v, γ̇xy(0)⟩ ≥ 0}, 
for some x ∈ M and v ∈ TxM \ {0}, where γxy denotes the (unique) minimal geodesic 
from x to y.

In this article, we show that under a right framework, the above inequalities can be 
extended to non-Euclidean setups. We work on metric measure spaces whose generalized 
Ricci curvature, in a synthetic sense, is nonnegative. We appeal to Cheeger–Gromoll-type 
splitting theorems, which allow, as in the Euclidean case, to reduce the computations to 
a one-dimensional analysis.

1.2. Notations and definitions

We briefly recall some concepts necessary to explain our results.

1.2.1. Metric geometry
Let (X, dX) be a metric space. Given x, y ∈ X, a (minimal) geodesic from x to y means 

a path γ : [0, 1] −→ X such that γ(0) = x, γ(1) = y, and dX(γ(s), γ(t)) = |s− t|dX(x, y)
for all s, t ∈ [0, 1]. We call (X, dX) a geodesic space if any pair x, y ∈ X can be connected 
by a geodesic. A subset Ω ⊂ X is said to be (geodesically) convex if, for any x, y ∈ Ω, 
any geodesic between them is included in Ω. We say that a function f : X −→ R ∪ {∞}
is convex if it is convex along all geodesics, i.e., f(γ(t)) ≤ (1 − t)f(x) + tf(y) for all 
x, y ∈ X, all geodesics γ : [0, 1] −→ X from x to y and all t ∈ [0, 1]. In particular, 
supp(f) := f−1(R) is a convex set. We say that f is concave if −f is convex.

A straight line is a map γ : R −→ X that satisfies dX(γ(s), γ(t)) = |s − t| for all 
s, t ∈ R. Then, the Busemann function associated with γ is defined as

bγ(x) := lim 
t→∞

{︁
t− dX

(︁
x, γ(t)

)︁}︁
, x ∈ X. (1.1)



4 V.-E. Brunel et al. / Journal of Functional Analysis 290 (2026) 111210 

The function bγ is 1-Lipschitz and can be interpreted as a projection onto γ. For instance, 
in the Euclidean case, we have bγ(x) = ⟨v, x− x0⟩, where γ(t) = x0 + tv for some point 
x0 and unit vector v.

We denote by 𝒫(X) the set of Borel probability measures on X and, for p ∈ [1,∞), 
by 𝒫p(X) the subset consisting of probability measures with finite p-th moment, i.e., 
those for which the function dp

X(·, x0) is integrable for some (and hence, all) x0 ∈ X. For 
μ ∈ 𝒫2(X), a point x0 ∈ X attaining

inf 
z∈X

∫︂
X

d2
X(z, x) μ( dx)

is called a barycenter of μ. More generally, even when μ only has finite first moment, we 
can define its barycenter as a point achieving

inf 
z∈X

∫︂
X

{︁
d2
X(z, x) − d2

X(z0, x)
}︁
μ( dx),

where z0 ∈ X is an arbitrarily fixed point. In Euclidean spaces, we have the unique 
barycenter 

∫︁
Rn x μ( dx).

1.2.2. Curvature-dimension conditions
The curvature-dimension condition for metric measure spaces is a synthetic geometric 

notion of lower Ricci curvature bound described with the help of optimal transport 
theory. For brevity, we consider only the case of nonnegative curvature.

A metric measure space (X, dX ,𝔪) will mean a complete separable metric space 
(X, dX) equipped with a Borel measure 𝔪 with 𝔪(U) ∈ (0,∞) for each nonempty 
bounded open set U ⊂ X.

Given ν0, ν1 ∈ 𝒫2(X), the L2-Kantorovich--Wasserstein distance is defined by

W2(ν0, ν1) := inf
π

(︃ ∫︂
X×X

d2
X(x, y) π( dx dy)

)︃1/2

,

where π runs over all couplings of ν0 and ν1 (i.e., π ∈ 𝒫(X ×X) with marginals ν0 and 
ν1). A geodesic (νλ)λ∈[0,1] with respect to W2 is regarded as an optimal transport from 
ν0 to ν1.

For ν = ζ𝔪 ∈ 𝒫(X) absolutely continuous with respect to 𝔪, we define the relative 
entropy

S∞(ν) :=
∫︂
X

ζ log ζ d𝔪

(S∞(ν) := ∞ if 
∫︁
{ζ>1} ζ log ζ d𝔪 = ∞), and the Rényi entropy
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SN (ν) :=
{︄
− ∫︁

X
ζ(N−1)/N d𝔪 N ∈ (1,∞),∫︁

X
ζ(N−1)/N d𝔪 N ∈ (−∞, 0).

We say that a metric measure space (X, dX ,𝔪) satisfies the curvature-dimension con
dition CD(0, N) (or (X, dX ,𝔪) is a CD(0, N)-space) if the corresponding entropy SN

is convex with respect to W2 in the sense that, for any absolutely continuous measures 
ν0, ν1 ∈ 𝒫2(X), there exists a geodesic (νλ)λ∈[0,1] between them with respect to W2 such 
that

SN (νλ) ≤ (1 − λ)SN (ν0) + λSN (ν1) (1.2)

holds for all λ ∈ [0, 1].
Consider an n-dimensional Riemannian manifold (M, g) endowed with a measure 

𝔪 = e−ψ volg for a smooth function ψ ∈ C∞(M), where volg is the volume measure 
induced from g. The weighted Ricci curvature (a.k.a. Bakry–Émery--Ricci curvature) of 
the weighted Riemannian manifold (M, g,𝔪) is defined by

RicN (v) := Ricg(v) + Hessψ(v, v) − ⟨∇ψ, v⟩2
N − n 

(1.3)

for v ∈ TM and N ∈ (−∞, 0] ∪ (n,∞) (Ricg is the usual Ricci curvature of g). We also 
define Ric∞ and Ricn as the limits. By definition, we have the monotonicity

Ricn ≤ RicN ≤ Ric∞ ≤ RicN ′ ≤ Ric0 (1.4)

for n < N < ∞ and −∞ < N ′ < 0 (Ric∞ can be also regarded as Ric−∞). Thus, 
for example, RicN ′ ≥ 0 is a weaker condition than RicN ≥ 0. Note also that Ricn =
limN↓n RicN ≥ 0 can make sense only when ψ is constant.

A weighted Riemannian manifold (M, g,𝔪) is a CD(0, N)-space if and only if the 
weighted Ricci curvature RicN is nonnegative [14,15,33,45,46,49,52,53].

Moreover, the equivalence between RicN ≥ 0 and CD(0, N) also holds true for 
Finsler manifolds [43]. Then, to develop a genuinely Riemannian theory, the Rieman
nian curvature-dimension condition RCD(0, N) was introduced as the combination of 
CD(0, N) and the so-called infinitesimal Hilbertianity (or, equivalently, the linearity of 
heat flow) in [24] and further investigated in [2,20,25]. In RCD(0, N)-spaces, we can ob
tain much finer properties including a splitting theorem discussed below. We refer to [54] 
for a recent survey.

1.2.3. Splitting theorems
For a Riemannian manifold (M, g) of nonnegative Ricci curvature, Cheeger–Gromoll’s 

celebrated splitting theorem [13] asserts that, if there is a straight line γ : R −→ M , 
then M is isometric to a product space R × Σ, where Σ is a Riemannian manifold of 
nonnegative Ricci curvature, and the Busemann function bγ as in (1.1) coincides with 
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the projection to R. The splitting theorem was generalized to RCD(0, N)-spaces by Gigli 
[25, Theorem 1.4], [23]. In short, it states that if (X, dX ,𝔪) is an RCD(0, N)-space for 
some N ∈ (1,∞) including a straight line γ : R −→ X, then X is isometric to a product 
space R×Y where (Y,dY , 𝔫) is an RCD(0, N−1)-space when N ≥ 2, and Y is a singleton 
when N ∈ (1, 2). (We will not consider the case of N = 1, since RCD(0, N) with N > 1
is weaker than RCD(0, 1).)

In general, such an isometric splitting is false for CD(0, N)-spaces, unless the infinites
imal Hilbertianity is assumed (see (B) in Section 7). This is why, in our main results, we 
consider only RCD-spaces, although some intermediate results may be stated in more 
generality for CD-spaces.

1.3. Main results

Theorem 1.1 (Main theorem; N > 1). Let (X, dX ,𝔪) be an RCD(0, N)-space with N ∈
(1,∞), μ = ρ𝔪 ∈ 𝒫1(X) with a measurable function ρ : X −→ [0,∞), and x0 ∈ X be 
any barycenter of μ. Suppose that there is a straight line γ : R −→ X.

(i) If ρ1/(β−N) is concave on ρ−1((0,∞)) for some β > N , then the Busemann func
tion bγ : X −→ R satisfies

μ
(︁{x ∈ X | bγ(x) ≤ bγ(x0)}

)︁ ≥ (︃
β

β + 1

)︃β

, (1.5)

μ
(︁{x ∈ X | bγ(x) ≥ bγ(x0)}

)︁ ≥ (︃
β

β + 1

)︃β

. (1.6)

(ii) If log ρ : X −→ R ∪ {−∞} is concave, then bγ satisfies

μ
(︁{x ∈ X | bγ(x) ≤ bγ(x0)}

)︁ ≥ e−1,

μ
(︁{x ∈ X | bγ(x) ≥ bγ(x0)}

)︁ ≥ e−1.

(iii) If ρ1/(β−N) : X −→ R ∪ {∞} is convex for some β < −1, then we have

μ
(︁{x ∈ X | bγ(x) ≤ bγ(x0)}

)︁ ≥ (︃
β

β + 1

)︃β

,

μ
(︁{x ∈ X | bγ(x) ≥ bγ(x0)}

)︁ ≥ (︃
β

β + 1

)︃β

.

Remark 1.2. Under the hypothesis in (i), it follows from Lemma 2.2 that (X, dX , μ) is an 
RCD(0, β)-space. Then, by virtue of Lemma 2.1, the support of μ is necessarily bounded. 
In particular, μ is of finite second moment.
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The condition on ρ in (i) means that, for any geodesic γ : [0, 1] −→ X with ρ(γ(0)) > 0
and ρ(γ(1)) > 0, ρ1/(β−N)◦γ is concave. This is equivalent to the concavity of ρ̃ by setting 
ρ̃(x) := ρ(x)1/(β−N) if ρ(x) > 0 and ρ̃(x) := −∞ if ρ(x) = 0. Note that, on the one hand, 
supp(μ) is convex in all the cases (i)--(iii). On the other hand, given a convex set Ω ⊂ X

with 𝔪(Ω) ∈ (0,∞), the uniform distribution μΩ := 𝔪(Ω)−1χΩ 𝔪 on Ω satisfies the 
hypothesis of (i) for any β > N , where χΩ is the indicator function of Ω (with value 1
on Ω and 0 on X \ Ω). Hence, taking the limit as β ↓ N yields the following corollary, 
as a direct extension of Grünbaum’s inequality. By a barycenter of Ω, we will mean a 
barycenter of μΩ.

Corollary 1.3. Let Ω be a convex set in an RCD(0, N)-space (X, dX ,𝔪) with N ∈ (1,∞)
such that 𝔪(Ω) ∈ (0,∞), and let x0 ∈ X be a barycenter of Ω. Then, for any straight 
line γ : R −→ X, the associated Busemann function bγ : X −→ R satisfies

𝔪
(︁{x ∈ Ω | bγ(x) ≤ bγ(x0)}

)︁ ≥ (︃
N

N + 1

)︃N

·𝔪(Ω),

𝔪
(︁{x ∈ Ω | bγ(x) ≥ bγ(x0)}

)︁ ≥ (︃
N

N + 1

)︃N

·𝔪(Ω).

We remark that a barycenter of Ω may not be unique in this generality. For instance, 
consider the cylinder X = R × S1 endowed with the 2-dimensional Hausdorff measure, 
which is an RCD(0, 2)-space. Then, for Ω = [−1, 1] × S1, we find that any point on the 
circle {0}×S1 is a barycenter of Ω. It seems unclear (to the authors) if every barycenter 
of Ω lives in Ω.

Remark 1.4. A subset of the form b−1
γ ((−∞, r]), for some straight line γ and r ∈ R, 

is called a (closed) horoball. Thus, Corollary 1.3 can be rephrased by saying that every 
horoball (or the closure of the complement of a horoball) including x0 has mass at least 
(N/(N + 1))N · 𝔪(Ω). In Euclidean spaces, horoballs are simply closed halfspaces. In 
general, horoballs are not geodesically convex, unless X is nonpositively curved. See, for 
example, [31] concerning convex optimization on Hadamard spaces by means of horoballs.

We also study when equality holds in (1.5). Roughly speaking, equality holds only 
when μ has a cone structure (see Theorem 4.3 for the precise statement). This kind of 
rigidity for geometric and analytic inequalities is one of the major problems in comparison 
geometry and geometric analysis (see, e.g., [26,48]). Cavalletti–Mondino’s localization 
(also called needle decomposition) [11], together with a detailed one-dimensional analysis, 
plays a crucial role in our rigidity result. We can even consider the stability problem 
in a similar way (see Section 6). We refer to [27,55] for stability results concerning 
Grünbaum’s inequality in the Euclidean setting, in terms of the volume of the symmetric 
difference from a cone.

The main ingredients of the proofs of our results are Gigli’s splitting theorem for 
RCD(0, N)-spaces and Cavalletti–Mondino’s localization for essentially non-branching 



8 V.-E. Brunel et al. / Journal of Functional Analysis 290 (2026) 111210 

CD(K,N)-spaces as we mentioned above. In fact, the formulation of our results using 
a straight line is strongly inspired by the splitting theorem. Both these ingredients are 
valid only for N ∈ (1,∞) in this generality.

Nonetheless, in the smooth setting of weighted Riemannian manifolds, the isometric 
splitting is known by Lichnerowicz, Fang–Li--Zhang [21,32] (N = ∞) and Wylie [57] 
(N ∈ (−∞, 1)), and the localization is also available by Klartag [29]. Thus, we have the 
following counterparts to Theorem 1.1 and Corollary 1.3.

Theorem 1.5 (Main theorem; N = ∞, N < −1). Let (M, g,𝔪), 𝔪 = e−ψ volg, be a 
complete weighted Riemannian manifold of RicN ≥ 0 for N = ∞ or N ∈ (−∞,−1), 
where ψ ∈ C2(M) is bounded from above, and μ = ρ𝔪 ∈ 𝒫1(M) with ρ : M −→ [0,∞).

(i) Suppose that N = ∞ and log ρ : M −→ R ∪ {−∞} is concave. Then, for any 
barycenter x0 ∈ M of μ and any straight line γ : R −→ M , the associated Buse
mann function bγ : M −→ R satisfies

μ
(︁{x ∈ M | bγ(x) ≤ bγ(x0)}

)︁ ≥ e−1, (1.7)

μ
(︁{x ∈ M | bγ(x) ≥ bγ(x0)}

)︁ ≥ e−1.

(ii) Suppose that N ∈ (−∞,−1) and ρ1/(β−N) is concave on ρ−1((0,∞)) for some 
β ∈ (N,−1). Then, for x0 ∈ M and bγ as above, we have

μ
(︁{x ∈ M | bγ(x) ≤ bγ(x0)}

)︁ ≥ (︃
β

β + 1

)︃β

, (1.8)

μ
(︁{x ∈ M | bγ(x) ≥ bγ(x0)}

)︁ ≥ (︃
β

β + 1

)︃β

.

We remark that the upper boundedness of ψ is assumed for applying the splitting 
theorem (see Remark 5.2).

Corollary 1.6. Let (M, g,𝔪) be as in Theorem 1.5, and Ω ⊂ M be a convex set such that 
𝔪(Ω) ∈ (0,∞) and 𝔪(Ω)−1χΩ 𝔪 ∈ 𝒫1(M). Then, for any barycenter x0 ∈ M of Ω and 
any straight line γ : R −→ M , the associated Busemann function bγ : M −→ R satisfies

𝔪
(︁{x ∈ Ω | bγ(x) ≤ bγ(x0)}

)︁ ≥ e−1 ·𝔪(Ω),

𝔪
(︁{x ∈ Ω | bγ(x) ≥ bγ(x0)}

)︁ ≥ e−1 ·𝔪(Ω)

when N = ∞, and

𝔪
(︁{x ∈ Ω | bγ(x) ≤ bγ(x0)}

)︁ ≥ (︃
N

N + 1

)︃N

·𝔪(Ω),
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𝔪
(︁{x ∈ Ω | bγ(x) ≥ bγ(x0)}

)︁ ≥ (︃
N

N + 1

)︃N

·𝔪(Ω)

for N ∈ (−∞,−1).

The rest of the article is organized as follows. In Section 2, we review some necessary 
properties of RCD(0, N)-spaces. We also illustrate our results in Euclidean spaces, recov
ering known results and obtaining new ones. Section 3 is devoted to the one-dimensional 
analysis, which plays a central role in the following discussions. In Section 4, we prove 
Theorem 1.1 and also study the rigidity problem. By a similar analysis, in Section 5, we 
prove Theorem 1.5 as well as the corresponding rigidity result. We give some stability 
results in Section 6, and close the article with several further problems in Section 7.

2. Preliminaries

2.1. Properties of RCD(0, N)-spaces

The next lemma may be a well known fact (cf. [58, Theorem 7]), but we could not 
find in the literature.

Lemma 2.1. Let (X, dX ,𝔪) be a CD(0, N)-space with N ∈ (1,∞). If 𝔪(X) < ∞, then 
the diameter of X is finite.

Proof. The proof is based on the following Bishop–Gromov volume comparison theorem 
[53, Theorem 2.3]:

𝔪(B(x,R))
𝔪(B(x, r)) ≤

(︃
R

r

)︃N

for all x ∈ X, 0 < r < R, (2.1)

where B(x, r) denotes the open ball with center x and radius r. Fix x0 ∈ X and assume 
on the contrary that there is a sequence (xk)k≥1 in X such that dX(x0, xk) ≥ k for all 
k ≥ 1. Then we infer from (2.1) that, for k ≥ 2,

𝔪
(︂
B
(︁
xk,dX(x0, xk) + 1

)︁)︂ ≤
(︃

dX(x0, xk) + 1
dX(x0, xk) − 1 

)︃N

𝔪
(︂
B
(︁
xk,dX(x0, xk) − 1

)︁)︂
.

Thus, we deduce that

𝔪
(︁
B(x0, 1)

)︁ ≤ 𝔪
(︂
B
(︁
xk,dX(x0, xk) + 1

)︁)︂−𝔪
(︂
B
(︁
xk,dX(x0, xk) − 1

)︁)︂

≤
{︃(︃

dX(x0, xk) + 1
dX(x0, xk) − 1 

)︃N

− 1
}︃
·𝔪

(︂
B
(︁
xk,dX(x0, xk) − 1

)︁)︂

≤
{︃(︃

dX(x0, xk) + 1
dX(x0, xk) − 1 

)︃N

− 1
}︃
·𝔪(X)
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→ 0

as k → ∞. This implies 𝔪(B(x0, 1)) = 0, a contradiction. □
In particular, every convex set Ω ⊂ X with 𝔪(Ω) ∈ (0,∞) (as in Corollary 1.3) 

is bounded, since (Ω,dX |Ω,𝔪|Ω) is again a CD(0, N)-space. The above lemma can be 
applied to the space (X, dX , μ) in Theorem 1.1(i) thanks to the following fact.

Lemma 2.2. Let (X, dX ,𝔪) be an RCD(0, N)-space with N ∈ (1,∞), and μ = ρ𝔪

be a measure with ρ : X −→ [0,∞) such that μ(X) > 0 and ρ1/(β−N) is concave on 
ρ−1((0,∞)) for some β > N . Then, (supp(μ),dX |supp(μ), μ) is an RCD(0, β)-space.

Proof. We give an outline of the proof for completeness (we refer to [53, Theorem 1.7(ii)] 
for the smooth case). Note that it is sufficient to show that (supp(μ),dX |supp(μ), μ)
satisfies CD(0, β). Since (X, dX) is non-branching by [18, Theorem 1.3], in view of [53, 
Proposition 4.2], (X, dX ,𝔪) being a CD(0, N)-space is equivalent to the concavity of 
λ ↦−→ ζλ(η(λ))−1/N for almost every geodesic η : [0, 1] −→ X along which an L2-optimal 
transport (νλ)λ∈[0,1] is done, where νλ = ζλ𝔪.

When we consider μ = ρ𝔪 instead of 𝔪, the corresponding density function of νλ
becomes ζλρ−1, provided supp(νλ) ⊂ supp(μ). Indeed, if supp(ν0)∪ supp(ν1) ⊂ supp(μ), 
then supp(νλ) ⊂ supp(μ) by the convexity of supp(μ). We deduce from the concavity of 
ρ1/(β−N) and the Hölder inequality that

[ζλρ−1]
(︁
η(λ)

)︁−1/β =
(︂
ζλ
(︁
η(λ)

)︁−1/N
)︂N/β(︂

ρ
(︁
η(λ)

)︁1/(β−N)
)︂(β−N)/β

≥
(︂
(1 − λ)ζ0

(︁
η(0)

)︁−1/N + λζ1
(︁
η(1)

)︁−1/N
)︂N/β

×
(︂
(1 − λ)ρ

(︁
η(0)

)︁1/(β−N) + λρ
(︁
η(1)

)︁1/(β−N)
)︂(β−N)/β

≥ (1 − λ)[ζ0ρ−1]
(︁
η(0)

)︁−1/β + λ[ζ1ρ−1]
(︁
η(1)

)︁−1/β
.

Therefore, λ ↦−→ [ζλρ−1](η(λ))−1/β is concave, and (supp(μ),dX |supp(μ), μ) is an 
RCD(0, β)-space. □

Next we summarize some key ingredients for the proof of Theorem 1.1, based on 
Gigli’s splitting theorem and an observation related to the lemma above. We remark 
that, though Lemma 2.2 could be also extended to include the cases of β = ∞ and 
β < −1 as in the next proposition, we restricted ourselves to β > N for simplicity.

Proposition 2.3. Let (X, dX ,𝔪) be an RCD(0, N)-space for some N ∈ (1,∞) and 
γ : R −→ X be a straight line. Then, there exists an RCD(0, N − 1)-space (Y,dY , 𝔫)
and an isometry T : (X, dX) −→ (R× Y, d) such that
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• d((s, y), (t, z)) =
(︁|s− t|2 + dY (y, z)2

)︁1/2 for all s, t ∈ R and y, z ∈ Y ;
• ΠR(T (x)) = bγ(x) for all x ∈ X, where ΠR : R× Y −→ R is the projection;
• T#𝔪 = dx ⊗ 𝔫, where T#𝔪 denotes the push-forward of 𝔪 by T and dx is the 

Lebesgue measure on R.

Moreover, let μ = ρ𝔪 be a probability measure on X for some measurable function 
ρ : X −→ [0,∞) and put bγ#μ = w dx.

(i) If ρ1/(β−N) is concave on ρ−1((0,∞)) for some β > N , then w1/(β−1) is concave 
on w−1((0,∞)).

(ii) If log ρ : X −→ R ∪ {−∞} is concave, then logw is concave.
(iii) If ρ1/(β−N) : X −→ R ∪ {∞} is convex for some β < 1, then w1/(β−1) is convex.

Proof. The first part of the proposition comes from [25, Theorem 1.4]. Then, using the 
product structure X = R× Y , w is explicitly given by

w(t) =
∫︂
Y

ρ(t, y) 𝔫( dy).

(i) Though we give a direct proof, one can also reduce the concavity of w1/(β−1) to 
Lemma 2.2, for it is equivalent to CD(0, β) of the interval (supp(w), | · |, w dx) (see the 
beginning of Section 3). Take a < b and λ ∈ (0, 1), and define functions f, g, h : Y −→ R

by

h(y) := ρ
(︁
(1 − λ)a + λb, y

)︁
, f(y) := ρ(a, y), g(y) := ρ(b, y).

For any geodesic η : [0, 1] −→ Y in (Y,dY ), observe that the curve

λ ↦−→ 
(︁
(1 − λ)a + λb, η(λ)

)︁ ∈ R× Y = X

is also a geodesic. Thus, the assumed concavity of ρ1/(β−N) implies, in supp(μ),

h
(︁
η(λ)

)︁1/(β−N) ≥ (1 − λ)f
(︁
η(0)

)︁1/(β−N) + λg
(︁
η(1)

)︁1/(β−N)
.

Now, in order to apply the Borell–Brascamp--Lieb inequality on (Y,dY , 𝔫) in [3, Theorem 
3.1], one needs to check that (Y,dY , 𝔫) is non-branching, which is the case thanks to 
[18]. Hence, we obtain from the Borell–Brascamp--Lieb inequality BBL(0, N − 1) with 
parameter p = 1/(β −N) > 0 (as in [3, Definition 1.1]) that, since p/(1 + (N − 1)p) =
1/(β − 1),

∫︂
Y

h d𝔫 ≥
(︄

(1 − λ)
(︃∫︂
Y

f d𝔫
)︃1/(β−1)

+ λ

(︃∫︂
Y

g d𝔫
)︃1/(β−1)

)︄β−1

.
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This yields the concavity of w1/(β−1).
(ii) We similarly find

log h
(︁
η(λ)

)︁ ≥ (1 − λ) log f
(︁
η(0)

)︁
+ λ log g

(︁
η(1)

)︁
.

Then, BBL(0, N−1) with p = 0 (in other words, the Prékopa–Leindler inequality) shows 
the claim

∫︂
Y

h d𝔫 ≥
(︃∫︂
Y

f d𝔫
)︃1−λ(︃∫︂

Y

g d𝔫
)︃λ

.

(iii) In this case, we have

h
(︁
η(λ)

)︁ ≥ (︂
(1 − λ)f

(︁
η(0)

)︁1/(β−N) + λg
(︁
η(1)

)︁1/(β−N)
)︂β−N

,

then the claim follows from BBL(0, N − 1) with p = 1/(β −N) > −1/(N − 1). □
2.2. Euclidean case

In this subsection, we describe our results in the Euclidean setting. We first remark 
that the curvature-dimension condition is intimately related to Borell’s s-concavity [7]. 
For s ∈ R ∪ {±∞}, λ ∈ (0, 1) and a, b ≥ 0, the s-mean is defined by

ℳs(a, b;λ) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(︁
(1 − λ)as + λbs

)︁1/s if s > 0, or if s < 0 and ab > 0,
0 if s < 0 and ab = 0,
a1−λbλ if s = 0,
min{a, b} if s = −∞,

max{a, b} if s = ∞.

Let Ω ⊂ Rn be a nonempty, open, convex set and μ be a (nonnegative) measure on Ω. 
Given s ∈ R∪{±∞}, we say that μ is s-concave if, for any nonempty, Borel measurable 
sets A,B ⊂ Ω and λ ∈ (0, 1),

μ
(︁
(1 − λ)A + λB

)︁ ≥ ℳs

(︁
μ(A), μ(B);λ

)︁
,

where (1 − λ)A + λB := {(1 − λ)x + λy | x ∈ A, y ∈ B}. When s = 0, μ is also called 
log-concave.

Then, Borell’s classical result [7, Theorem 3.2] shows the following.

Theorem 2.4 (Borell’s theorem). Let Ω ⊂ Rn be a nonempty, open convex set and μ be a 
Radon measure on Ω. Denote by V the a�ine span of the support of μ. Let s ∈ R∪{±∞}.
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• If s > 1/n, then μ is s-concave if and only if μ = 0.
• If s = 1/n, then μ is s-concave if and only if it is proportional to the restriction of 

the n-dimensional Lebesgue measure ℒn on Ω.
• If s ∈ (0, 1/n), then μ is s-concave if and only if it has a density function ρ with 

respect to ℒn and ρp is concave with p = s/(1 − sn) > 0.
• If s ∈ [−∞, 0], then μ is s-concave if and only if it has a density function ρ with 

respect to the Lebesgue measure on V and ρ satisfies

ρ
(︁
(1 − λ)x + λy

)︁ ≥ ℳq

(︁
ρ(x), ρ(y);λ

)︁
(2.2)

for all x, y ∈ V and λ ∈ (0, 1), where q := s/(1 − sdimV ) < 0 (which should be 
understood as −1/ dimV if s = −∞ and dimV ̸= 0, and as −∞ if s = −∞ and 
dimV = 0).

We remark that supp(μ) = Ω when s ∈ (0, 1/n], while supp(μ) is a convex set in V for 
s ∈ [−∞, 0]. Note that if μ is s-concave for some s ∈ R∪{±∞}, then it is also t-concave 
for all t ∈ [−∞, s].

Corollary 2.5. Let s ∈ [−∞, 1/n] and μ be an s-concave measure on Rn with supp(μ) =
Rn. Then, for any a�ine subspace V ⊂ Rn and the orthogonal projection Π : Rn −→ V , 
Π#μ has a density function ρ with respect to the Lebesgue measure on V , which satisfies 
(2.2).

Proof. It is readily seen that Π#μ is s-concave as a measure on V , then we apply 
Theorem 2.4. □

In particular, if dimV = 1, then ρ satisfies (2.2) with q = s/(1−s), which corresponds 
to Proposition 2.3 in the Euclidean case (with s = 1/β).

In view of Theorem 2.4, as a particular case of Theorem 1.1, we obtain the following 
result. Note that s > −1 since β < −1.

Theorem 2.6. Let Ω ⊂ Rn be a nonempty, open, convex set and μ ∈ 𝒫1(Ω) be s-concave 
for some s ∈ (−1, 1/n]. Then, every closed halfspace H containing the barycenter of μ
satisfies μ(H) ≥ (1/(1 + s))1/s, understood as μ(H) ≥ e−1 if s = 0.

Classical Grünbaum’s inequality is recovered by Theorem 2.6 with s = 1/n. Moreover, 
as mentioned in the introduction, the case of log-concave distributions (s = 0) was also 
known.

Remark 2.7. The s-concavity is generalized to the Brunn–Minkowski inequality BM(0, N ), 
with N = 1/s. Precisely, the curvature-dimension condition CD(0, N) implies BM(0, N)
(see [53, Proposition 2.1] for N ∈ (1,∞), [56, Theorem 30.7] for N = ∞, [45, Theo
rem 4.8] for N < 0, and [46, (3.9)] for N = 0). Moreover, for weighted Riemannian 
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manifolds and N ∈ (1,∞), the converse implication can be also found in [36, Theo
rem 1.1].

3. One-dimensional analysis

In this section, as a key step for the proof of Theorem 1.1, we first state Grünbaum’s 
inequality in the case of one-dimensional CD(0, N)-spaces.

3.1. One-dimensional CD(0, N)-spaces

We consider a one-dimensional space ((a, b), | · |, e−ψ dx), where −∞ ≤ a < b ≤ ∞, 
| · | denotes the absolute value giving rise to the canonical distance on R, dx is the 
Lebesgue measure on R, and ψ : (a, b) −→ R is a continuous function. In this case, being 
a CD(0, N)-space is equivalent to

ψ′′ − (ψ′)2

N − 1 ≥ 0 (3.1)

in the weak sense (recall the definition of RicN from (1.3)). By setting w = e−ψ, this is 
equivalent to the concavity of w1/(N−1) if N ∈ (1,∞), the concavity of logw if N = ∞, 
and to the convexity of w1/(N−1) if N ∈ (−∞, 1).

When we assume that μ = w dx is a probability measure, on the one hand, for 
N ∈ (1,∞), observe from the concavity of w1/(N−1) that μ can only be supported on 
some bounded interval, thereby a > −∞ and b < ∞. On the other hand, for N = ∞
(resp. N ∈ (−∞, 1)), the concavity of logw (resp. convexity of w1/(N−1)) does not imply 
such boundedness, by letting logw = −∞ (resp. w1/(N−1) = ∞) outside the support of 
μ.

For N ∈ (1,∞), the space ([0,∞), | · |, NxN−1 dx) is a model CD(0, N)-space, that is, 
it enjoys equality in (3.1). Moreover, normalized as a probability space,

([0, 1], | · |, NxN−1 dx) (3.2)

is a model space that also reaches the equality case in Grünbaum’s inequality. Indeed, 
its barycenter is given by

1 ∫︂
0 

x ·NxN−1 dx = N

N + 1 ,

and we have

N/(N+1)∫︂
0 

NxN−1 dx =
(︃

N

N + 1

)︃N

.
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In the original Grünbaum’s inequality, this model corresponds to the projection of the 
uniform distribution over a finite cone along its axis.

3.2. Case of N ∈ (1,∞)

We first consider the case of N ∈ (1,∞). The following two lemmas can be found in 
[39, Chapter 3]; however, we give precise proofs for completeness.

Lemma 3.1 (Grünbaum’s inequality on intervals; N > 1). Let a, b ∈ R with a < 0 < b

and w : (a, b) −→ [0,∞) be a nonnegative function such that w1/(N−1) is concave for 
some N > 1 and

b ∫︂
a 

w(x) dx = 1, 
b ∫︂

a 

xw(x) dx = 0.

Then, we have

0 ∫︂
a 

w(x) dx ≥
(︃

N

N + 1

)︃N

, 

b ∫︂
0 

w(x) dx ≥
(︃

N

N + 1

)︃N

. (3.3)

Proof. Let R(x) :=
∫︁ x

a
w(s) ds be the cumulative distribution function, which satisfies 

0 ≤ R ≤ 1, R(a) = 0 and R(b) = 1 by definition. Note also that

b ∫︂
a 

R(x) dx =
[︂
xR(x)

]︂b
a
−

b ∫︂
a 

xw(x) dx = b. (3.4)

Since w1/(N−1) is concave, the Borell–Brascamp--Lieb inequality [7,8] with parameter 
1/(N − 1) implies that R1/N is concave. Here we also give a detailed proof of that 
concavity for later use in the rigidity problem. Fix x, y ∈ (a, b) and λ ∈ (0, 1). For 
t ∈ (0, 1), we take σ(t) ∈ (a, x) and τ(t) ∈ (a, y) satisfying

1 
R(x)

σ(t)∫︂
a 

w(s) ds = 1 
R(y)

τ(t)∫︂
a 

w(s) ds = t.

By differentiating in t, we have

w(σ(t))σ′(t)
R(x) = w(τ(t))τ ′(t)

R(y) = 1. (3.5)

We put θ(t) := (1 − λ)σ(t) + λτ(t) and observe
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R
(︁
(1 − λ)x + λy

)︁
=

(1−λ)x+λy∫︂
a 

w(s) ds =
1 ∫︂

0 

w
(︁
θ(t)

)︁
θ′(t) dt.

It follows from the concavity of w1/(N−1), (3.5) and the Hölder inequality that

1 ∫︂
0 

w
(︁
θ(t)

)︁
θ′(t) dt ≥

1 ∫︂
0 

(︂
(1 − λ)w

(︁
σ(t)

)︁1/(N−1) + λw
(︁
τ(t)

)︁1/(N−1)
)︂N−1

×
(︃

(1 − λ) R(x) 
w(σ(t)) + λ

R(y) 
w(τ(t))

)︃
dt

≥
1 ∫︂

0 

(︁
(1 − λ)R(x)1/N + λR(y)1/N

)︁N dt

=
(︁
(1 − λ)R(x)1/N + λR(y)1/N

)︁N
.

(3.6)

Hence, R1/N is concave as we claimed.
The concavity of R1/N implies

R(x)1/N ≤ R(0)1/N + (R1/N )′(0)x for all x ∈ (a, b),

which can be rewritten as

R(x) ≤ R(0)
(︃

1 + c 
N

x

)︃N

, c := R′(0)
R(0) = w(0) 

R(0) > 0. (3.7)

In particular, since R(a) = 0, a ≥ −N/c holds.
Now, if b ≥ 1/c, then we obtain from (3.4) that

b =
1/c∫︂
a 

R(x) dx +
b ∫︂

1/c

R(x) dx

≤
1/c ∫︂

−N/c

R(0)
(︃

1 + c 
N

x

)︃N

dx + b− 1
c 

(3.8)

= R(0)
[︄

N

c(N + 1)

(︃
1 + c 

N
x

)︃N+1
]︄1/c

−N/c

+ b− 1
c 

= R(0)
c 

(︃
N + 1
N

)︃N

+ b− 1
c 
,
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where in the inequality we used (3.7), a ≥ −N/c, and R ≤ 1. This exactly gives R(0) ≥
(N/(N + 1))N which concludes the proof. In the other case of b < 1/c, we deduce from 
(3.7) that

1 ≤ R(0)
(︃

1 + c 
N

b

)︃N

< R(0)
(︃

1 + c 
N

x

)︃N

for x ∈ (b, 1/c). Therefore, we similarly observe

b =
b ∫︂

a 

R(x) dx ≤
1/c ∫︂

−N/c

R(0)
(︃

1 + c 
N

x

)︃N

dx−
(︃

1
c 
− b

)︃
(3.9)

= R(0)
c 

(︃
N + 1
N

)︃N

+ b− 1
c 
.

This completes the proof of the first inequality in (3.3). The second one is obtained in 
the same way or by reversing the interval (a, b). □

We can show that only the cone-like model space (3.2) achieves equality in (3.3) (up 
to translation and dilation).

Lemma 3.2 (Rigidity on intervals; N > 1). If equality holds in the former inequality in 
(3.3), then, for some c > 0, we have a = −N/c, b = 1/c, and

w(x) = c

(︃
N

N + 1

)︃N(︃
1 + c 

N
x

)︃N−1

. (3.10)

Similarly, if equality holds in the latter inequality in (3.3), then, for some c > 0, we have 
a = −1/c, b = N/c, and

w(x) = c

(︃
N

N + 1

)︃N(︃
1 − c 

N
x

)︃N−1

.

Proof. We deduce from the proof of Lemma 3.1 (having equality in the inequalities (3.8)
and (3.9)) that a = −N/c and b = 1/c necessarily hold. Moreover, we have equality in 
(3.7) for all x ∈ (a, b). Together with R(1/c) = 1, we obtain

R(x) =
(︃

N

N + 1

)︃N(︃
1 + c 

N
x

)︃N

,

as well as

w(x) = R′(x) = c

(︃
N

N + 1

)︃N(︃
1 + c 

N
x

)︃N−1

.
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The case of the latter inequality in (3.3) is seen by reversing the interval (a, b). □
One can regard (3.10) that w has the cone structure with the apex a = −N/c.

Remark 3.3. 

(a) Note that, in the proof of Lemma 3.1, the concavity of R1/N (more precisely, the 
inequality (3.7)) is the essential ingredient. This leads to a slight generalization of 
one-dimensional Grünbaum’s inequality assuming only (3.7). In higher dimensions, 
however, we do not know a suitable condition guaranteeing (3.7) on almost every 
needle.

(b) In the proof of Lemma 3.2, testing equality in (3.7) was sufficient to obtain 
(3.10). In particular, we did not need a characterization of equality in the Borell--
Brascamp--Lieb inequality.

3.3. Case of N ∈ (−∞,−1) ∪ {∞}

Next, we consider N = ∞ and N < −1, in a similar way to N > 1.

Lemma 3.4 (Grünbaum’s inequality on intervals; N < −1, N = ∞). Let −∞ ≤ a <

0 < b ≤ ∞ and w : (a, b) −→ [0,∞) be a nonnegative integrable function satisfying ∫︁ b

a
w(x) dx = 1 and 

∫︁ b

a
xw(x) dx = 0.

(i) If w1/(N−1) is convex for some N < −1, then we have

0 ∫︂
a 

w(x) dx ≥
(︃

N

N + 1

)︃N

, 

b ∫︂
0 

w(x) dx ≥
(︃

N

N + 1

)︃N

. (3.11)

(ii) If logw is concave, then we have

0 ∫︂
a 

w(x) dx ≥ e−1, 

b ∫︂
0 

w(x) dx ≥ e−1. (3.12)

Without loss of generality, we will assume that w > 0 on (a, b). Recall that, as we 
mentioned at the beginning of this section, the interval (a, b) can be unbounded.

Proof. First of all, if b = ∞, then we cut off and normalize w as

wk :=
(︃ k∫︂
ak

w(s) ds
)︃−1

· w|(ak,k)
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for (large) k ∈ N, where ak ∈ (a, 0) is chosen so as to satisfy that the barycenter of 
wk dx is 0. Then, Xk := ((ak, k), | · |, wk dx) again satisfies the assumptions, and (3.11)
or (3.12) for the original space can be obtained as the limit of those for Xk as k → ∞. 
Hence, without loss of generality, we will assume b < ∞ and, by the same reasoning, 
a > −∞.

As in the proof of Lemma 3.1, we set R(x) :=
∫︁ x

a
w(s) ds, fix x, y ∈ (a, b) and λ ∈ (0, 1), 

and define the functions σ, τ, θ.
(i) In place of (3.6), we deduce from the convexity of w1/(N−1) and the Hölder in

equality of the form

(1 − λ)α1α2 + λβ1β2 ≤ (︁
(1 − λ)α(N−1)/N

1 + λβ
(N−1)/N
1

)︁N/(N−1)

× (︁
(1 − λ)α1−N

2 + λβ1−N
2

)︁1/(1−N)
(3.13)

for α1, α2, β1, β2 ≥ 0 (valid for N < 0) that

R
(︁
(1 − λ)x + λy

)︁
=

1 ∫︂
0 

w
(︁
θ(t)

)︁
θ′(t) dt

≥
1 ∫︂

0 

(︂
(1 − λ)w

(︁
σ(t)

)︁1/(N−1) + λw
(︁
τ(t)

)︁1/(N−1)
)︂N−1

×
(︃

(1 − λ) R(x) 
w(σ(t)) + λ

R(y) 
w(τ(t))

)︃
dt

≥
1 ∫︂

0 

(︁
(1 − λ)R(x)1/N + λR(y)1/N

)︁N dt

=
(︁
(1 − λ)R(x)1/N + λR(y)1/N

)︁N
by taking α1 = R(x)1/(N−1), α2 = (R(x)/w(σ(t)))1/(1−N) in (3.13). Thus, R1/N is 
convex, which yields

R(x)1/N ≥ R(0)1/N
(︃

1 + c 
N

x

)︃
, c := w(0) 

R(0) > 0. (3.14)

When b ≥ 1/c, we obtain from (3.4) that

b =
b ∫︂

a 

R(x) dx ≤
1/c∫︂
a 

R(0)
(︃

1 + c 
N

x

)︃N

dx + b− 1
c 

(3.15)

= R(0)
[︄

N

c(N + 1)

(︃
1 + c 

N
x

)︃N+1
]︄1/c

a

+ b− 1
c 
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≤ R(0)
c 

(︃
N + 1
N

)︃N

+ b− 1
c 
,

which yields the former inequality in (3.11). If b < 1/c, then we infer from

1 ≤ R(0)
(︃

1 + c 
N

b

)︃N

< R(0)
(︃

1 + c 
N

x

)︃N

for x ∈ (b, 1/c) that

b =
b ∫︂

a 

R(x) dx ≤
1/c∫︂
a 

R(0)
(︃

1 + c 
N

x

)︃N

dx−
(︃

1
c 
− b

)︃

≤ R(0)
c 

(︃
N + 1
N

)︃N

+ b− 1
c 
.

This completes the proof of the former inequality of (3.11). The latter inequality is seen 
by reversing the interval (a, b).

(ii) Since the concavity of logw implies the convexity of w1/(N−1) for all N ∈
(−∞,−1), we can derive (3.12) from (3.11) by letting N → −∞. □

We proceed to the equality case, which is more involved than Lemma 3.2 due to the 
unboundedness of the interval.

Lemma 3.5 (Rigidity on intervals; N < −1, N = ∞). 

(i) If equality holds in the former inequality in (3.11), then, for some c > 0, we have 
a = −∞, b = 1/c, and

w(x) = c

(︃
N

N + 1

)︃N(︃
1 + c 

N
x

)︃N−1

. (3.16)

Similarly, if equality holds in the latter inequality in (3.11), then, for some c > 0, 
we have a = −1/c, b = ∞, and

w(x) = c

(︃
N

N + 1

)︃N(︃
1 − c 

N
x

)︃N−1

.

(ii) If equality holds in the former inequality in (3.12), then we have a = −∞, b =
1/c, and w(x) = cecx−1 for some c > 0. Similarly, if equality holds in the latter 
inequality in (3.12), then we have a = −1/c, b = ∞, and w(x) = ce−cx−1 for some 
c > 0.



V.-E. Brunel et al. / Journal of Functional Analysis 290 (2026) 111210 21

Proof. We will consider only the former inequalities in (3.11) and (3.12), since the latter 
inequalities can be handled by reversing the interval.

(i) We first assume b < ∞. In this case, we deduce from the proof of Lemma 3.4 that 
a = −∞, b = 1/c, and that equality holds in (3.14). Combining these with R(1/c) = 1
implies

R(x) =
(︃

N

N + 1

)︃N(︃
1 + c 

N
x

)︃N

,

and hence

w(x) = R′(x) = c

(︃
N

N + 1

)︃N(︃
1 + c 

N
x

)︃N−1

.

Next, we show that equality never holds when b = ∞. Assume in contrary that 
equality holds in the former inequality in (3.11). For (large) k ∈ N, we take ak ∈ (a, 0)
and wk as in the proof of Lemma 3.4, and put

Rk(x) :=
x ∫︂

ak

wk(s) ds, ck := R′
k(0)

Rk(0) = wk(0) ∫︁ 0
ak

wk(s) ds
.

Observe from

lim 
k→∞

ck = w(0) ∫︁ 0
a
w(s) ds

=: c

that k ≥ 1/ck for large k. Then, in the estimate (3.15) in the proof of Lemma 3.4,

k − 1 
ck

−
k∫︂

1/ck

Rk(x) dx =
k∫︂

1/ck

(︁
1 −Rk(x)

)︁
dx

necessarily tends to 0 as k → ∞. This implies that 
∫︁ 1/c
a

w(s) ds = 1, which is a contra
diction since we assumed w > 0 on (a, b).

(ii) Let us begin with a direct proof of (3.12) under b < ∞. We use the same notations 
as in the proof of Lemma 3.4. It follows from the concavity of logw that

R
(︁
(1 − λ)x + λy

)︁
=

1 ∫︂
0 

w
(︁
θ(t)

)︁
θ′(t) dt

≥
1 ∫︂

0 

w
(︁
σ(t)

)︁1−λ
w
(︁
τ(t)

)︁λ(︃(1 − λ) R(x) 
w(σ(t)) + λ

R(y) 
w(τ(t))

)︃
dt
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=
1 ∫︂

0 

{︃
(1 − λ)R(x)

(︃
w(τ(t)) 
w(σ(t))

)︃λ

+ λR(y)
(︃
w(σ(t))
w(τ(t)) 

)︃1−λ}︃
dt.

Together with the concavity of log and Jensen’s inequality, we obtain the concavity of 
logR:

logR
(︁
(1 − λ)x + λy

)︁ ≥ (1 − λ) log
[︃
R(x)

1 ∫︂
0 

(︃
w(τ(t)) 
w(σ(t))

)︃λ

dt
]︃

+ λ log
[︃
R(y)

1 ∫︂
0 

(︃
w(σ(t))
w(τ(t)) 

)︃1−λ

dt
]︃

≥ (1 − λ)
(︃

logR(x) +
1 ∫︂

0 

λ log
[︃
w(τ(t)) 
w(σ(t))

]︃
dt
)︃

+ λ

(︃
logR(y) +

1 ∫︂
0 

(1 − λ) log
[︃
w(σ(t))
w(τ(t)) 

]︃
dt
)︃

= (1 − λ) logR(x) + λ logR(y).

Therefore,

logR(x) ≤ logR(0) + cx, c := w(0) 
R(0) > 0.

When b ≥ 1/c, we have

b ≤
1/c∫︂
a 

R(0)ecx dx + b− 1
c 
≤ R(0)

c 
e + b− 1

c 
,

which yields (3.12). In the case of b < 1/c, since 1 ≤ R(0)ecb ≤ R(0)ecx for x ≥ b, we 
similarly find

b ≤
1/c∫︂
a 

R(0)ecx dx−
(︃

1
c 
− b

)︃
≤ R(0)

c 
e + b− 1

c 
.

If equality holds, then we have a = −∞, b = 1/c, and logw is an a�ine function. Put 
w(x) = αeδx (α, δ > 0) and observe that

R(b) = α

δ
eδ/c = 1, c = w(0) 

R(0) = δ.
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Therefore, we obtain δ = c, α = ce−1, and w(x) = cecx−1. One can also show that 
equality never holds when b = ∞ in a similar way to (i). □
Remark 3.6. Note that w in (3.16) satisfies w(x) dx ∈ 𝒫2((−∞, 1/c)) for N < −2, but 
w(x) dx ∈ 𝒫1((−∞, 1/c)) \ 𝒫2((−∞, 1/c)) for N ∈ [−2,−1).

4. Grünbaum’s inequality for 𝑵 ∈ (1,∞)

We give two proofs of Theorem 1.1, one via localization and one without. We will 
need both for our rigidity result (Theorem 4.3).

Let (X, dX ,𝔪), μ = ρ𝔪, x0 ∈ X and γ : R −→ X be as in Theorem 1.1. Recall from 
Proposition 2.3 that T (x) = (bγ(x),ΠY (x)), where ΠY : X −→ Y is the projection to 
Y , is an isometry from X to R× Y , namely

d2
X(x1, x2) =

(︁
bγ(x1) − bγ(x2)

)︁2 + d2
Y

(︁
ΠY (x1),ΠY (x2)

)︁
(4.1)

for all x1, x2 ∈ X. In what follows, via the isometry T , we identify (X, dX ,𝔪) with the 
product of (R, | · |, dx) and (Y,dY , 𝔫) (𝔪 is identified with dx⊗ 𝔫).

By translating γ, we can assume that bγ(x0) = 0 without loss of generality. Then, we 
have the following key observation.

Lemma 4.1. We have ∫︂
X

bγ dμ = 0.

Proof. Let η : R −→ X be the geodesic given by η(t) := (t,ΠY (x0)). Note that η(0) =
x0 (= (bγ(x0),ΠY (x0))) by our choice bγ(x0) = 0. Then we deduce from (4.1) that, 
provided that μ ∈ 𝒫2(X),

d 
dt

[︃∫︂
X

d2
X

(︁
η(t), x

)︁
μ( dx)

]︃
t=0

= d 
dt

[︃∫︂
X

{︁(︁
t− bγ(x)

)︁2 + d2
Y

(︁
ΠY (x0),ΠY (x)

)︁}︁
μ( dx)

]︃
t=0

= −2
∫︂
X

bγ(x) μ( dx).

Since x0 is a barycenter of μ, the left hand side coincides with 0. If μ is only of finite 
first moment, then we differentiate

∫︂
X

{︁
d2
X

(︁
η(t), x

)︁− d2
X(z0, x)

}︁
μ( dx)
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with an arbitrarily fixed point z0 ∈ X, and obtain the same conclusion. This completes 
the proof. □
4.1. First proof without localization

The first proof of Theorem 1.1 is based on Proposition 2.3, which ensures that bγ#μ

has a density w with respect to the Lebesgue measure on R, and w1/(β−1) (β > N), 
logw (β = ∞), or −w1/(β−1) (β < −1) is concave. Moreover, by Lemma 4.1 above, 0 is 
its barycenter. Hence, our one-dimensional analysis in the previous section (Lemmas 3.1, 
3.4 with N = β) yields the result.

4.2. Second proof via localization

The second proof makes use of the localization (a.k.a. needle decomposition), and we 
additionally assume μ ∈ 𝒫2(X) (unless β > N). The localization technique provides a 
decomposition of a space into a family of geodesics (called needles) in such a way that 
those geodesics inherit some geometric information of the original space. Through this 
decomposition, one can reduce a problem into its one-dimensional counterpart. We refer 
to [11, Theorem 5.1] and [29] for the precise statement and more information.

Put Ω := supp(μ) = X \ ρ−1(0), which is convex (and bounded when β > N ; recall 
Remark 1.2). Thanks to Lemma 4.1, we can employ f := bγρ as a conditional function (as 
f in [11, Theorem 5.1]). We remark that fdX(x0, ·) ∈ L1(𝔪) (equivalently, bγdX(x0, ·) ∈
L1(μ)) since μ ∈ 𝒫2(X) and bγ is 1-Lipschitz.

We denote the resulting decomposition by {(Xq,𝔪q)}q∈Q, where 𝔪q is a probability 
measure on Xq ⊂ X. The set Xq is the image of a minimal geodesic (so-called a needle) 
and carries the natural distance structure as the restriction of dX . We also have a measure 
𝔮 on Q and 𝔮-almost every needle (Xq,𝔪q) satisfies CD(0, N) as well as

∫︂
Xq

bγρ d𝔪q = 0. (4.2)

To be precise, the decomposition is done except a set Z ⊂ X such that f = 0 𝔪-almost 
everywhere in Z. In the current setting, Z is μ-negligible since 𝔪(b−1

γ (0)) = 0. Then, for 
every ϕ ∈ L1(𝔪) with supp(ϕ) ⊂ Ω, we have

∫︂
Ω 

ϕ d𝔪 =
∫︂
Q 

∫︂
Xq

ϕ d𝔪q 𝔮( dq).

We deduce from (4.2) that, for 𝔮-almost every q ∈ Q, one of the following holds:

(1) 𝔪q(Xq ∩ Ω) = 0;
(2) 𝔪q(Xq ∩ Ω) > 0 and Xq ⊂ b−1

γ (0);
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(3) 𝔪q(Xq ∩ Ω) > 0, Xq ̸⊂ b−1
γ (0), and Xq ∩ b−1

γ (0) is a singleton which is the unique 
barycenter of μq := ρ𝔪q.

We remark that μq is not necessarily a probability measure and that the support of μq

is included in Ω. We infer from∫︂
Q 

𝔪q

(︁
b−1
γ (0) ∩ Ω

)︁
𝔮( dq) = 𝔪

(︁
b−1
γ (0) ∩ Ω

)︁
= 0

that the case (2) is 𝔮-negligible. In the case (3), we can identify Xq and the interval 
bγ(Xq) ⊂ R via bγ . In this identification, by Proposition 2.3 and writing μq = wq dx
(i.e., bγ#μq = wq dx), bγ is linear and w1/(β−1)

q |w−1
q ((0,∞)) (β > N), logwq (β = ∞), or 

−w
1/(β−1)
q (β < −1) is concave (the concavity can be seen more directly from the Hölder 

inequality as in Lemma 2.2; see also the proof of Theorem 4.3 below).
Therefore, applying Lemmas 3.1, 3.4 (with N = β) to each normalized needle 

(Xq, μq(Xq)−1μq) satisfying (3), we obtain

μq

(︁{x ∈ Xq | bγ(x) ≤ 0})︁ ≥ (︃
β

β + 1

)︃β

· μq(Xq), (4.3)

μq

(︁{x ∈ Xq | bγ(x) ≥ 0})︁ ≥ (︃
β

β + 1

)︃β

· μq(Xq)

when β > N or β < −1, and

μq

(︁{x ∈ Xq | bγ(x) ≤ 0})︁ ≥ e−1 · μq(Xq),

μq

(︁{x ∈ Xq | bγ(x) ≥ 0})︁ ≥ e−1 · μq(Xq)

when β = ∞. Integrating these inequalities in q with respect to 𝔮 completes the proof of 
Theorem 1.1, since 

∫︁
Q
μq(A) 𝔮( dq) = μ(A) for measurable sets A ⊂ X.

Remark 4.2. On the one hand, the second proof provides a more detailed control at the 
level of needles (under μ ∈ 𝒫2(X)). On the other hand, in the first proof, we have a 
direct connection between X and R via bγ . To consider the rigidity problem, we need 
both viewpoints to integrate the one-dimensional information on needles into a global 
picture of X.

4.3. Rigidity

Now, with the help of Lemma 3.2, we study when equality holds in the generalized 
Grünbaum’s inequality (1.5) with β > N . Put Ω := supp(μ) as in the previous subsection, 
and recall that bγ(x0) = 0.
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Theorem 4.3 (Rigidity; N > 1). In the situation of Theorem 1.1, let (Q, 𝔮), (Xq,𝔪q), 
and μq = ρ𝔪q = wq dx be the elements of the localization as in Subsection 4.2. Suppose 
β > N and that equality holds in (1.5). Then, there exists c > 0 such that, for 𝔮-almost 
every needle q ∈ Q, we have bγ(Xq ∩ Ω) = [−β/c, 1/c] and

1 
μq(Xq)

wq

(︁
bγ(x)

)︁
= c

(︃
β

β + 1

)︃β(︃
1 + c 

β
bγ(x)

)︃β−1

(4.4)

for all x ∈ Xq ∩ Ω. Moreover, regarding At := b−1
γ (t) ∩ Ω as a set in Y , we have

𝔫(At) =
(︃
β + ct

β + 1 

)︃N−1

𝔫(A1/c), [ρ𝔫](At) = cβ 
β + 1

(︃
β + ct

β + 1 

)︃β−1

(4.5)

for all t ∈ [−β/c, 1/c].

We have a similar rigidity when equality holds in (1.6): bγ(Xq ∩Ω) = [−1/c, β/c] and

1 
μq(Xq)

wq

(︁
bγ(x)

)︁
= c

(︃
β

β + 1

)︃β(︃
1 − c 

β
bγ(x)

)︃β−1

.

Proof. We shall analyze by combining both of the two proofs above. On the one hand, 
by the first proof in Subsection 4.1 and Lemma 3.2 (with N = β), we deduce that 
bγ#μ = w dx satisfies supp(w) = [−β/c, 1/c] and

w(x) = c

(︃
β

β + 1

)︃β(︃
1 + c 

β
x

)︃β−1

for some c > 0. On the other hand, in the second proof, 𝔮-almost every needle necessarily 
satisfies equality in (4.3), thereby, we obtain bγ(Xq ∩ Ω) = [−β/cq, 1/cq] and

1 
μq(Xq)

wq(x) = cq

(︃
β

β + 1

)︃β(︃
1 + cq

β
x

)︃β−1

for some cq > 0 and all x ∈ Xq ∩ Ω, where we identified Xq and bγ(Xq) via bγ as in 
the previous subsection. For 𝔮-almost every q ∈ Q, since [−β/cq, 1/cq] ⊂ [−β/c, 1/c], we 
have cq ≥ c. Since w(x) =

∫︁
Q
wq(x) 𝔮( dq), if cq > c for q in a set of positive 𝔮-measure, 

then we find

w(1/c)
w(0) <

(︃
1 + 1 

β

)︃β−1

,

a contradiction. This implies that cq = c holds for 𝔮-almost every q ∈ Q. Therefore, for 
𝔮-almost every q ∈ Q, we obtain bγ(Xq∩Ω) = [−β/c, 1/c] and (4.4). The latter equation 
in (4.5) is now straightforward by integrating (4.4) in q ∈ Q:
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[ρ𝔫](At) = w(t) =
∫︂
Q 

wq(t) 𝔮( dq)

= c

(︃
β

β + 1

)︃β(︃
1 + c 

β
t

)︃β−1 ∫︂
Q 

μq(Xq) 𝔮( dq)

= c

(︃
β

β + 1

)︃β(︃
1 + c 

β
t

)︃β−1

.

Next, we have a closer look on the concavity of w1/(β−1)
q . Letting 𝔪q = ζq dx, since 

(Xq,𝔪q) is a CD(0, N)-space, we know that ζ1/(N−1)
q is concave. Combining this with 

the concavity of ρ1/(β−N) along Xq and noting wq = ρζq, by a similar calculation to 
Lemma 2.2, we obtain

wq

(︁
(1 − λ)x + λy

)︁1/(β−1) ≥
(︂
(1 − λ)ρ(x)1/(β−N) + λρ(y)1/(β−N)

)︂(β−N)/(β−1)

×
(︂
(1 − λ)ζq(x)1/(N−1) + λζq(y)1/(N−1)

)︂(N−1)/(β−1)

≥ (1 − λ)[ρζq](x)1/(β−1) + λ[ρζq](y)1/(β−1)

= (1 − λ)wq(x)1/(β−1) + λwq(y)1/(β−1)

for all x, y ∈ Xq ∩ Ω and λ ∈ (0, 1). Comparing this with (4.4), we find that ρ1/(β−N)

and ζ1/(N−1)
q are both a�ine along Xq ∩Ω and, since w1/(β−1)

q is also a�ine, they vanish 
(only) at −β/c (precisely, ρ1/(β−N) and ζ1/(N−1)

q on [−β/c, 1/c] are the restrictions of 
such a�ine functions). Therefore, At satisfies

𝔫(At) =
∫︂
Q 

ζq(t) 𝔮( dq) =
(︃

t + (β/c) 
(1/c) + (β/c)

)︃N−1 ∫︂
Q 

ζq(1/c) 𝔮( dq)

=
(︃
ct + β

1 + β 

)︃N−1

𝔫(A1/c),

which is the former equation in (4.5). □
Remark 4.4. It seems plausible that, under the hypothesis in Theorem 4.3, N = n

necessarily holds and Ω is isometric to a convex cone in Rn with A−β/c as the apex 
and A1/c as the base. (We remark that, because of the assumed existence of a straight 
line in X, the model space ([0,∞), NxN−1 dx) in Subsection 3.1 is excluded.) Indeed, in 
the Euclidean case with the Lebesgue measure, it is known that equality in Grünbaum’s 
inequality is achieved only by cones [27]. Then, a key step is to show that A−β/c is a 
singleton. A rigidity result [4, Theorem 4.2] for the Brunn–Minkowski inequality seems 
to play a role, however, it is concerned with L2-optimal transports while the transport 
along needles is L1-optimal.
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5. Grünbaum’s inequality for 𝑵 ∈ (−∞,−1) ∪ {∞}

In this section, we prove Theorem 1.5 and the associated rigidity result (Theorem 5.4) 
concerning the cases of N = ∞ and N < −1, in a similar manner to the case of N > 1
above. Since the splitting theorem and localization for RCD(0,∞)-spaces are yet to be 
known, we restrict ourselves to weighted Riemannian manifolds.

Let (M, g,𝔪) be an n-dimensional, complete, weighted Riemannian manifold with 
Ric∞ ≥ 0 or RicN ≥ 0 for N < −1, where 𝔪 = e−ψ volg for some ψ ∈ C∞(M). By the 
monotonicity (1.4), Ric∞ ≥ 0 is a weaker condition than RicN ′ ≥ 0 with N ′ ≥ n, and 
RicN ≥ 0 is even weaker. In fact, under Ric∞ ≥ 0, the boundedness of the diameter 
as in Lemma 2.1 does not hold true. An archetypal example is the Gaussian space 
(R, | · |, e−x2/2 dx), which satisfies Ric∞ ≥ 1.

We begin with a generalization of Proposition 2.3.

Proposition 5.1. Let (M, g,𝔪) be an n-dimensional complete weighted Riemannian man
ifold of RicN ≥ 0 for N = ∞ or N < −1. Assume that ψ is bounded above and there 
is a straight line γ : R −→ M . Then, there exists an (n − 1)-dimensional weighted Rie
mannian manifold (Σ, gΣ, 𝔫) with RicN−1 ≥ 0 (Ric∞ ≥ 0 if N = ∞) and an isometry 
T : (M, g) −→ (R× Σ, g̃) such that

• g̃ is the product of the Euclidean metric on R and gΣ;
• ΠR(T (x)) = bγ(x) for all x ∈ M ;
• T#𝔪 = dx⊗ 𝔫.

Moreover, let μ = ρ𝔪 be a probability measure on M for some measurable function 
ρ : M −→ [0,∞) and put bγ#μ = w dx.

(i) If N < −1 and ρ1/(β−N) is concave on ρ−1((0,∞)) for some β ∈ (N,−1), then 
w1/(β−1) is convex.

(ii) If N = ∞ and log ρ is concave, then logw is concave.

Proof. The first part follows from [21, Theorem 1.1] for N = ∞ and [57, Corollary 1.3] 
for N < −1 (in fact, it is available for N < 1). We identify M with R× Σ, and then w
is given by

w(t) =
∫︂
Σ 

ρ(t, y) 𝔫( dy).

As in the proof of Proposition 2.3, we fix a < b and λ ∈ (0, 1), and define

h(y) := ρ
(︁
(1 − λ)a + λb, y

)︁
, f(y) := ρ(a, y), g(y) := ρ(b, y)

for y ∈ Σ. Recall also that, for any minimal geodesic η : [0, 1] −→ Σ,
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λ ↦−→ 
(︁
(1 − λ)a + λb, η(λ)

)︁ ∈ R× Σ = M

is a minimal geodesic.
(i) In this case, we make use of a generalization of the Borell–Brascamp--Lieb inequality 

in [3,14] to N < −1 (the estimate below also works for N < β < 1). We give an outline 
for thoroughness. Set

ν0 := f∫︁
Σ f d𝔫

𝔫, ν1 := g∫︁
Σ g d𝔫

𝔫.

Then, there is a unique L2-Wasserstein geodesic (νλ)λ∈[0,1] from ν0 to ν1, and we can 
write νλ = ζλ𝔫. On the one hand, it follows from RicN−1 ≥ 0 of (Σ, gΣ, 𝔫) that

ζλ
(︁
Tλ(y)

)︁1/(1−N) ≤ (1 − λ)
(︃

f(y) ∫︁
Σ f d𝔫

)︃1/(1−N)

+ λ

(︃
g(T1(y))∫︁

Σ g d𝔫 

)︃1/(1−N)

for ν0-almost every y ∈ Σ (by [45, (4.7), (4.9)]), where Tλ denotes the (unique) optimal 
transport map from ν0 to νλ (thereby Tλ#ν0 = νλ). On the other hand, the assumed 
concavity of ρ1/(β−N) yields

h
(︁
Tλ(y)

)︁1/(β−N) ≥ (1 − λ)f(y)1/(β−N) + λg
(︁
T1(y)

)︁1/(β−N)
.

Thus, we have
∫︂
Σ 

h d𝔫 ≥
∫︂
Σ 

h 
ζλ

dνλ =
∫︂
Σ 

h(Tλ) 
ζλ(Tλ) dν0

≥
∫︂
Σ 

(︁
(1 − λ)f1/(β−N) + λg(T1)1/(β−N))︁β−N

×
{︃

(1 − λ)
(︃

f∫︁
Σ f d𝔫

)︃1/(1−N)

+ λ

(︃
g(T1) ∫︁
Σ g d𝔫

)︃1/(1−N)}︃N−1

dν0

≥
{︃

(1 − λ)
(︃∫︂

Σ 

f d𝔫
)︃1/(β−1)

+ λ

(︃∫︂
Σ 

g d𝔫
)︃1/(β−1)}︃β−1

by integrating the Hölder inequality

{︃
(1 − λ)

(︃
f∫︁

Σ f d𝔫

)︃1/(1−N)

+ λ

(︃
g(T1) ∫︁
Σ g d𝔫

)︃1/(1−N)}︃1−N

≤ (︁
(1 − λ)f1/(β−N) + λg(T1)1/(β−N))︁β−N

×
{︃

(1 − λ)
(︃∫︂

Σ 

f d𝔫
)︃1/(β−1)

+ λ

(︃∫︂
Σ 

g d𝔫
)︃1/(β−1)}︃1−β

.
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Since β − 1 < 0, this yields the convexity of w1/(β−1).
(ii) In this case, we can apply the Prékopa–Leindler inequality from [15, Theorem 1.4] 

(with λ = 0). From the concavity of log ρ, for any minimal geodesic η : [0, 1] −→ Σ, we 
obtain

h
(︁
η(λ)

)︁ ≥ f
(︁
η(0)

)︁1−λ
g
(︁
η(1)

)︁λ
.

Hence, the Prékopa–Leindler inequality on (Σ, gΣ, 𝔫) (under Ric∞ ≥ 0) implies

∫︂
Σ 

h d𝔫 ≥
(︃∫︂

Σ 

f d𝔫
)︃1−λ(︃∫︂

Σ 

g d𝔫
)︃λ

,

which shows the concavity of logw. □
Remark 5.2. The assumption supM ψ < ∞ is indeed necessary for the splitting. One 
can easily find a counter-example by considering the squared distance function ψ =
cd2(x0, ·) for some large c in hyperbolic spaces. It is also possible to slightly weaken the 
boundedness into the so-called ψ-completeness condition thanks to [57, Corollary 6.7].

Thus, the one-dimensional analysis in Section 3 leads us to generalizations of Grün
baum’s inequality, as stated in Theorem 1.5. Again, we give two proofs of Theorem 1.5, 
one via localization and one without.

5.1. Proof without localization

It follows from Proposition 5.1(ii) that, in the situation of Theorem 1.5(i), (supp(w), 
w dx) is a CD(0,∞)-space. Then Lemma 3.4(ii) yields the claim. Similarly, Theo
rem 1.5(ii) follows from Proposition 5.1(i) and Lemma 3.4(i).

5.2. Proof via localization

The localization as described in Subsection 4.2 has been known by Klartag [29, The
orem 1.2] in this smooth setting. Then, with Lemma 3.4, we can prove Theorem 1.5 in 
the same way as Subsection 4.2, under the additional assumption μ ∈ 𝒫2(M).

Remark 5.3. As is natural from the monotonicity (1.4) of the weighted Ricci curvature, 
we have

(︃
N

N + 1

)︃N

≤ e−1 ≤
(︃

N ′

N ′ + 1

)︃N ′

for N ∈ (−∞,−1) and N ′ ∈ (1,∞). Note also that limN↑−1(N/(N + 1))N = 0, thereby, 
our generalized Grünbaum’s inequality may not have a version for, say N ∈ [−1, 0].
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5.3. Rigidity

The rigidity result (Theorem 4.3) can also be generalized to the current setting. Recall 
that Ω = supp(μ) and bγ(x0) = 0.

Theorem 5.4 (Rigidity; N < −2, N = ∞). In the situation of Theorem 1.5, assume 
μ ∈ 𝒫2(M) and let (Q, 𝔮), (Mq,𝔪q), and μq = ρ𝔪q = wq dx be the elements of the 
localization as in Subsection 4.2.

(i) Suppose N = ∞ and that equality holds in (1.7). Then there exists c > 0 such that, 
for 𝔮-almost every needle q ∈ Q, we have bγ(Mq ∩ Ω) = (−∞, 1/c] and

1 
μq(Mq)

wq

(︁
bγ(x)

)︁
= c exp

(︁
cbγ(x) − 1

)︁

for all x ∈ Mq ∩ Ω. Moreover, regarding At := b−1
γ (t) ∩ Ω as a set in Σ, we have

[ρ𝔫](At) = cect−1

for all t ∈ (−∞, 1/c].
(ii) Suppose N < β < −2 and that equality holds in (1.8). Then there exists c > 0 such 

that, for 𝔮-almost every needle q ∈ Q, we have bγ(Mq ∩ Ω) = (−∞, 1/c] and

1 
μq(Mq)

wq(x) = c

(︃
β

β + 1

)︃β(︃
1 + c 

β
bγ(x)

)︃β−1

for all x ∈ Mq ∩ Ω. Moreover, we have

[ρ𝔫](At) = cβ 
β + 1

(︃
β + ct

β + 1 

)︃β−1

for all t ∈ (−∞, 1/c].

We have similar rigidity results for the latter inequalities in Theorem 1.5(i), (ii).

Proof. In both cases, by using Lemma 3.5, we can follow the lines of the proof of The
orem 4.3 to show the first assertion on wq(x), and integrating it in q ∈ Q implies the 
second assertion. We remark that, in (ii), β < −2 is assumed to ensure that wq(x) dx
has finite second moment; recall Remark 3.6. □
6. Stability estimates

This section is devoted to the stability problem for our Grünbaum’s inequality. As a 
generalization of the rigidity, the stability is concerned with what happens when equality 
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nearly holds. Similarly to the previous sections, we first analyze the one-dimensional case, 
and use it to study the general case via the localization. The localization has played a 
vital role in some stability results, e.g., [10,37,38] on isoperimetric inequalities, [5,12] on 
the spectral gap (Poincaré inequality). A stability result in the Euclidean setting can be 
found in [27] (see also [55] for a recent improved estimate).

6.1. Case of N ∈ (1,∞)

We first consider (3.3) with N > 1. Let us begin with the following observation. For 
((a, b), | · |, w(x) dx) as in Lemma 3.1, an immediate application of [22, Theorem 6] (with 
f = w, ϕ(x) = x2 and n = N) implies

2w(0)
1/(2w(0))∫︂

0 

x2 dx ≤
b ∫︂

a 

x2w(x) dx ≤ N2

2(N + 1)(N + 2)
1 

w(0)2 ,

which can be rewritten as

2(N + 1)(N + 2)
N2

b ∫︂
a 

x2w(x) dx ≤ 1 
w(0)2 ≤ 12

b ∫︂
a 

x2w(x) dx. (6.1)

Observe that, in the rigidity case (3.10), we have

1 
w(0)2 = 1 

c2

(︃
N + 1
N

)︃2N

, 

1/c ∫︂
−N/c

x2w(x) dx = 1 
c2

N

N + 2 .

Remark 6.1. The right inequality in (6.1) is sharp (regardless of N). Indeed, for the 

uniform distribution w ≡ 1/(2
√

3) on [−√
3,
√

3], we have 
∫︁√

3
−√

3 x
2w(x) dx = 1 and 

equality holds in the right inequality.

Lemma 6.2. Let ((a, b), | · |, w(x) dx) be as in Lemma 3.1, and put c := w(0)/R(0). If

R(0) ≤ (1 + ε)
(︃

N

N + 1

)︃N

(6.2)

holds for some ε > 0, then we have

∫︂
R 

|R− F | dx ≤ 4
√

3NN+1

(N + 1)N (1 + ε)
(︁
1 − (1 + ε)−1/N)︁(︃ b ∫︂

a 

x2w(x) dx
)︃1/2

, (6.3)

where
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F (x) :=
(︃

N

N + 1

)︃N(︃
1 + c 

N
x

)︃N

on [−N/c, 1/c], F (x) := 0 on (−∞,−N/c) and F (x) := 1 on (1/c,∞).

Note that F is the cumulative distribution function for the rigidity case (3.10).

Proof. Consider a probability density

u(x) = cR(0)
(︃

1 + c 
N

x

)︃N−1

on (−N/c, b̄), whose cumulative distribution function is given by

U(x) = R(0)
(︃

1 + c 
N

x

)︃N

.

Note that R(x) ≤ U(x) by (3.7), which implies b̄ ≤ b. Moreover, we find from U(b̄) = 1
that

b̄ = N

c 

(︁
R(0)−1/N − 1

)︁
,

and then the first inequality in (3.3) yields ̄b ≤ 1/c. One can compute that the barycenter 
ξ ∈ (−N/c, b̄) of u(x) dx is given by

ξ = R(0)
(︃

1 + c 
N

b̄

)︃N(︃
b̄− 1

c 
N

N + 1

(︃
1 + c 

N
b̄

)︃)︃
= N

N + 1

(︃
b̄− 1

c 

)︃
≤ 0.

Similarly to 
∫︁ b

a
R(x) dx = b in (3.4), we also observe

ξ =
b̄∫︂

−N/c

xU ′(x) dx = b̄−
b̄∫︂

−N/c

U(x) dx.

Then, recalling a ≥ −N/c from the proof of Lemma 3.1 and b̄ ≤ b, we obtain

∫︂
R 

|R− U | dx =
a ∫︂

−N/c

U dx +
b̄∫︂

a 

(U −R) dx +
b ∫︂

b̄

(1 −R) dx

=
b̄∫︂

−N/c

U dx−
b ∫︂

a 

R dx + b− b̄ = −ξ.
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Next, observe from (3.3) that U(x) ≥ F (x), and 
∫︁ 1/c
−N/c

F (x) dx = 1/c holds similarly 
to (3.4). Combining these, we obtain

∫︂
R 

|U − F | dx =
b̄∫︂

−N/c

(U − F ) dx +
1/c∫︂
b̄

(1 − F ) dx

=
b̄∫︂

−N/c

U dx−
1/c ∫︂

−N/c

F dx + 1
c 
− b̄ = −ξ.

Now, if w almost attains the Grünbaum bound in the sense of the hypothesis (6.2), 
then we have

b̄ ≥ 1
c 

(︁
(N + 1)(1 + ε)−1/N −N

)︁
,

and hence

ξ ≥ N

c 

(︁
(1 + ε)−1/N − 1

)︁
.

Thus, we deduce from the right inequality in (6.1) and the hypothesis (6.2) that

∫︂
R 

|R− F | dx ≤ −2ξ ≤ 2NR(0)
w(0) 

(︁
1 − (1 + ε)−1/N)︁

≤ 4
√

3(1 + ε) NN+1

(N + 1)N
(︁
1 − (1 + ε)−1/N)︁(︃ b ∫︂

a 

x2w(x) dx
)︃1/2

.

This completes the proof. □
In view of Subsection 4.1, we obtain the following corollary.

Corollary 6.3. In the situation of Theorem 1.1(i) with bγ(x0) = 0, suppose that

μ
(︁{x ∈ X | bγ(x) ≤ 0})︁ ≤ (1 + ε)

(︃
β

β + 1

)︃β

holds for some ε > 0. Then w(x) dx = bγ#μ satisfies (6.3) with β in place of N .

We next consider another immediate consequence of Lemma 6.2 via the localization. 
We use the same notations as in Subsection 4.2: (Q, 𝔮), (Xq,𝔪q), and μq = ρ𝔪q = wq dx
induced from the localization built from bγρ.
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Proposition 6.4. In the situation of Theorem 1.1(i) with bγ(x0) = 0, suppose that

μ
(︁{x ∈ X | bγ(x) ≤ 0})︁ ≤ (1 + ε)

(︃
β

β + 1

)︃β

holds for some ε > 0. Then, for each δ > 0, there exists Q′ ⊂ Q such that

μ

(︄ ⋃︂
q∈Q′

Xq

)︄
≥ δ

1 + δ
(6.4)

holds and every q ∈ Q′ satisfies
∫︂
R 

|Rq − Fq| dx

≤ 4
√

3ββ+1

(β + 1)β (1 + ε′)
(︁
1 − (1 + ε′)−1/β)︁(︃ 1 

μq(Xq)

∫︂
Xq

b2
γ dμq

)︃1/2

,

(6.5)

where we set

ε′ := ε + δ + εδ, cq := wq(0) ∫︁ 0
−∞ wq(x) dx

, (6.6)

and Rq and Fq are the cumulative distribution functions for μq(Xq)−1 · μq and

cq

(︃
β

β + 1

)︃β(︃
1 + cq

β
x

)︃β−1

on
[︃
− β

cq
,

1 
cq

]︃
,

respectively.

Recall that letting bγ(x0) = 0 loses no generality, and that Xq is identified with 
bγ(Xq) ⊂ R via bγ .

Proof. In the second proof of Theorem 1.1 in Subsection 4.2, we obtained (1.5) by 
integrating (4.3). Then the set Q′ ⊂ Q, consisting of q with

μq

(︁{x ∈ Xq | bγ(x) ≤ 0})︁ ≤ (1 + δ)(1 + ε)
(︃

β

β + 1

)︃β

μq(Xq),

satisfies (6.4). Indeed, if not, then integrating

μq

(︁{x ∈ Xq | bγ(x) ≤ 0})︁ > (1 + δ)(1 + ε)
(︃

β

β + 1

)︃β

μq(Xq)
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for q ∈ Q \Q′ yields

μ
(︁{x ∈ X | bγ(x) ≤ 0})︁ > (1 + δ)(1 + ε)

(︃
β

β + 1

)︃β ∫︂
Q\Q′

μq(Xq) 𝔮( dq)

> (1 + δ)(1 + ε)
(︃

β

β + 1

)︃β(︃
1 − δ

1 + δ

)︃

= (1 + ε)
(︃

β

β + 1

)︃β

,

which contradicts the hypothesis. Then (6.5) follows from Lemma 6.2 with N = β and 
w = wq/μq(Xq). □
6.2. Case of N ∈ (−∞,−1) ∪ {∞}

We saw in Subsection 6.1 that a key ingredient to derive a stability estimate is the right 
inequality in (6.1), which gives a lower bound of w(0) in terms of the second moment for 
centered distributions. For N = ∞, log-concave probability densities have finite moment 
of any order (by the fact that they have sub-exponential tails; see, e.g., [30, Section 2.2]) 
and (6.1) is still available. For N < −1, however, one-dimensional CD(0, N)-probability 
densities may not have finite second moment (recall Remark 3.6). Moreover, even if the 
second moment is finite, (6.1) for negative N seems not known. Thus, in the following 
counterpart of Lemma 6.2, we can use (6.1) only when N = ∞.

Lemma 6.5. Let ((a, b), | · |, w(x) dx) be as in Lemma 3.4, and put c := w(0)/R(0).

(i) Suppose that w1/(N−1) is convex for some N < −1. If

R(0) ≤ (1 + ε)
(︃

N

N + 1

)︃N

(6.7)

holds for some ε > 0, then we have

∫︂
R 

|R− F | dx ≤ 2N 
w(0)

(︃
N

N + 1

)︃N

(1 + ε)
(︁
1 − (1 + ε)−1/N)︁

, (6.8)

where

F (x) :=
(︃

N

N + 1

)︃N(︃
1 + c 

N
x

)︃N

on (−∞, 1/c] and F (x) := 1 on (1/c,∞), which is the cumulative distribution 
function for the rigidity case of Lemma 3.5(i).
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(ii) Suppose that logw is concave. If

R(0) ≤ (1 + ε)e−1

holds for some ε > 0, then we have

∫︂
R 

|R− F | dx ≤ 4
√

3
e 

(1 + ε) log(1 + ε)
(︃ b ∫︂

a 

x2w(x) dx
)︃1/2

, (6.9)

where F (x) := ecx−1 on (−∞, 1/c] and F (x) := 1 on (1/c,∞), which is the cumu
lative distribution function for the rigidity case of Lemma 3.5(ii).

Proof. (i) The proof goes as in Lemma 6.2. Consider a probability density

u(x) = cR(0)
(︃

1 + c 
N

x

)︃N−1

on (−∞, b̄), whose cumulative distribution function is given by

U(x) = R(0)
(︃

1 + c 
N

x

)︃N

.

We infer from (3.14) that R(x) ≤ U(x), and hence b̄ ≤ b. We also find

b̄ = N

c 

(︁
R(0)−1/N − 1

)︁
from U(b̄) = 1, and (3.11) ensures b̄ ≤ 1/c. The barycenter ξ ∈ (−∞, b̄) of u(x) dx is 
given in the same way as in the proof of Lemma 6.2 by

ξ = N

N + 1

(︃
b̄− 1

c 

)︃
≤ 0, ξ =

b̄∫︂
−∞

xU ′(x) dx = b̄−
b̄∫︂

−∞
U(x) dx.

Combining the latter with 
∫︁ b

a
R(x) dx = b, we deduce that

∫︂
R 

|R− U | dx =
a ∫︂

−∞
U dx +

b̄∫︂
a 

(U −R) dx +
b ∫︂

b̄

(1 −R) dx = −ξ.

Next, we observe from (3.11) that U(x) ≥ F (x), and 
∫︁ 1/c
−∞ F (x) dx = 1/c similarly to 

(3.4). Hence, we find
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∫︂
R 

|U − F | dx =
b̄∫︂

−∞
(U − F ) dx +

1/c∫︂
b̄

(1 − F ) dx = −ξ.

If w satisfies (6.7), then we have

b̄ ≥ 1
c 

(︁
(N + 1)(1 + ε)−1/N −N

)︁
, ξ ≥ N

c 

(︁
(1 + ε)−1/N − 1

)︁
.

Therefore, we conclude that

∫︂
R 

|R− F | dx ≤ −2ξ ≤ 2N 
w(0)

(︃
N

N + 1

)︃N

(1 + ε)
(︁
1 − (1 + ε)−1/N)︁

.

(ii) By the monotonicity on the dimensional parameter N (cf. (1.4)), w1/(N−1) is 
convex for all N < −1. Therefore, by letting N → −∞ in (6.8), we obtain

∫︂
R 

|R− F | dx ≤ 2(1 + ε)
w(0)e 

log(1 + ε),

from which (6.9) immediately follows with the help of (6.1). □
Besides a corollary analogous to Corollary 6.3, one can show the following in the same 

way as Proposition 6.4.

Proposition 6.6. 

(i) In the situation of Theorem 1.5(ii) with bγ(x0) = 0, suppose that

μ
(︁{x ∈ M | bγ(x) ≤ 0})︁ ≤ (1 + ε)

(︃
β

β + 1

)︃β

holds for some ε > 0. Then, for each δ > 0, there exists Q′ ⊂ Q such that (6.4)
holds (with Mq in place of Xq) and every q ∈ Q′ satisfies

∫︂
R 

|Rq − Fq| dx ≤ 2ββ+1

(β + 1)β (1 + ε′)
(︁
1 − (1 + ε′)−1/β)︁μq(Mq)

wq(0) ,

where we set ε′ and cq as in (6.6), and Rq and Fq are the cumulative distribution 
functions for μq(Mq)−1 · μq and

cq

(︃
β

β + 1

)︃β(︃
1 + cq

β
x

)︃β−1

on
(︃
−∞,

1 
cq

]︃
,

respectively.
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(ii) In the situation of Theorem 1.5(i) with bγ(x0) = 0, suppose that

μ
(︁{x ∈ M | bγ(x) ≤ 0})︁ ≤ (1 + ε)e−1

holds for some ε > 0. Then, for each δ > 0, there exists Q′ ⊂ Q such that (6.4)
holds (with Mq in place of Xq) and every q ∈ Q′ satisfies

∫︂
R 

|Rq − Fq| dx ≤ 4
√

3
e 

(1 + ε′) log(1 + ε′)
(︃

1 
μq(Mq)

∫︂
Mq

b2
γ dμq

)︃1/2

,

where we set ε′ and cq as in (6.6), and Rq and Fq are the cumulative distribution 
functions for μq(Mq)−1 · μq and cqecqx−1 on (−∞, 1/cq], respectively.

7. Further problems

We close the article with some further comments and problems.

(A) The results in Section 5 could be generalized to RCD(0, N)-spaces with N = ∞ or 
N ∈ (−∞,−1). We remark that the curvature-dimension condition for N < 0 was 
defined in [45] (see also [46] for the case of N = 0). However, both the splitting 
theorem and localization are not known even for N = ∞, thereby we need to 
generalize them or consider a different method.

(B) For CD(0, N)-spaces with N ∈ (1,∞), though the localization is known by [11] 
under the essentially non-branching condition, the isometric splitting does not hold 
in general. Indeed, n-dimensional normed spaces endowed with the Lebesgue mea
sure satisfy CD(0, n) but do not isometrically split off the real line. Furthermore, 
without the essentially non-branching condition, even the topological splitting may 
fail; we refer to [35] for a counter-example.

(C) Finsler manifolds provide examples of CD-spaces with possibly asymmetric dis
tance structures (see [43,47]). In this setting, the localization is known by [11,46]. 
Moreover, a weak splitting theorem can be found in [44]; for example, there is a 
one-parameter family of isometric translations (generated by ∇bγ) in the Berwald 
case. Since this splitting is not isometric, we do not have an exact formula as in 
(4.1) (consider the case of normed spaces), and it is unclear if Lemma 4.1 can be 
generalized.

(D) Our rigidity results (Theorems 4.3, 5.4) show that equality in generalized Grün
baum’s inequalities is attained only when the measure μ possesses a cone structure. 
As we discussed in Remark 4.4, we expect that the set supp(μ) is also a cone, as 
in the Euclidean setting. To achieve this goal, we would need a more geometric 
argument, possibly with the help of [4,17].
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(E) Once the rigidity as above is established, it is natural to expect a corresponding 
stability estimate (in a more geometric way than Section 6), bounding the volume 
of the symmetric difference from a cone in a certain sense, akin to [27,55].
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