

Title	Development of PSMA-Targeted Alpha Therapy Using [211At]PSMA-5
Author(s)	Watabe, Tadashi; Naka, Sadahiro; Shirakami, Yoshifumi et al.
Citation	Seminars in Nuclear Medicine. 2025, 55(6), p. 947-954
Version Type	VoR
URL	https://hdl.handle.net/11094/103291
rights	This article is licensed under a Creative Commons Attribution 4.0 International License.
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

Development of PSMA-Targeted Alpha Therapy Using [211 At]PSMA-5

Tadashi Watabe,^{†,§} Sadahiro Naka,[∥] Yoshifumi Shirakami,[§] Kazuko Kaneda,[§] Masashi Murakami,[§] Atsushi Toyoshima,[§] Jens Cardinale,[¶] and Frederik L. Giesel^{§,¶}

Astatine (²¹¹At) is an alpha-emitting nuclide with a 7.2-hour half-life that can be produced using a 30-MeV cyclotron. In recent years, the number of production sites worldwide has been increasing, attracting growing attention to ²¹¹At. We have developed a novel ²¹¹At-labeled PSMA-targeted agent (I²¹¹AtlPSMA-5). After conducting preclinical evaluations of its antitumor efficacy and safety, we initiated a first-in-human, investigator-initiated clinical trial in patients with metastatic castration-resistant prostate cancer. To date, the drug has been administered to a total of nine patients, and we have reported high accumulation of I²¹¹AtlPSMA-5 in recurrent and metastatic lesions. While further efforts are required for the social implementation of ²¹¹At-based targeted alpha therapy, including the establishment of a supply chain and the accumulation of additional clinical evidence, PSMA-targeted alpha therapy using ²¹¹At represents a promising treatment modality owing to its cyclotron-based production, sustainability, and clean decay characteristics.

Semin Nucl Med 55:947-954 © 2025 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/)

Introduction

Prostate-specific membrane antigen (PSMA) is a type II transmembrane glycoprotein that is highly expressed on the surface of prostate cancer cells. While physiological expression is observed in certain normal tissues, including the salivary glands, kidneys, and small intestine, its expression is markedly upregulated in prostate cancer—particularly in advanced and metastatic castration-resistant prostate cancer (mCRPC)— and also correlates with tumor malignancy.

PSMA-targeted positron emission tomography (PET) using radiolabeled ligands (e.g., [⁶⁸Ga]Ga-PSMA-11, [¹⁸F]PSMA-1007) has become a powerful tool for detecting recurrent and metastatic prostate cancer with high sensitivity and

specificity. Furthermore, therapeutic applications have been developed using beta-emitters such as [177Lu]PSMA-617 and alpha-emitters such as [225Ac]PSMA-617. [177Lu]PSMA-617 (Pluvicto®) has already been approved and is used for the treatment of mCRPC worldwide. 4-6 It has significantly extended overall survival in patients with mCRPC previously treated with androgen receptor pathway inhibitors (ARPI) and taxane therapy compared to the standard of care in the VISION trial. Additionally, [177Lu]PSMA-617 has been shown to prolong radiographic progression-free survival in taxane-naïve patients with mCRPC compared to ARPI switches, as reported in the PSMAfore trial.8 However, some patients remain refractory or exhibit early recurrence after [¹⁷⁷Lu]PSMA-617 therapy. PSMA-targeted alpha therapy using ²²⁵Ac or ²¹²Pb has been developed and evaluated in clinical trials. ⁹⁻¹⁷ However, the supply chain of these alpha emitters remains limited, particularly for ²²⁵Ac, and poses a challenge for future global market distribution. Furthermore, there are also concerns about nephrotoxicity due to the redistribution of daughter nuclides.

Recently, there has been increasing interest in the cyclotron-produced alpha emitter, Astatine (²¹¹At). It can be produced using a 30 MeV cyclotron bombarding a ⁴He beam

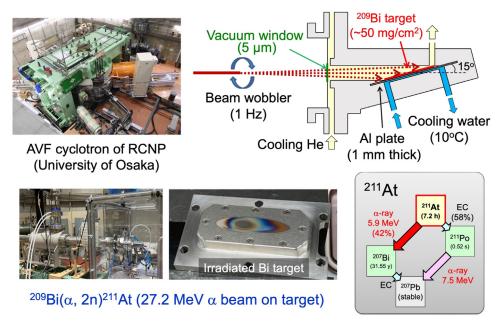
[†]Department of Radiology, Graduate School of Medicine, University of Osaka, Suita, Japan.

[§]Institute for Radiation Sciences, University of Osaka, Suita, Japan.

Department of Pharmacy, University of Osaka Hospital, Suita, Japan.

Department of Nuclear Medicine, Medical Faculty and University Hospital
Duesseldorf, Heinrich-Heine-University Duesseldorf, Düsseldorf,
Germany.

Address reprint requests to. Tadashi Watabe, University of Osaka, 2-2 Yamadaoka, Suita, Osaka, 565-0871, JAPAN E-mail: watabe.tadashi.med@osaka-u.ac.jp


onto a natural bismuth (209 Bi) target. $^{18-22}$ As 209 Bi is abundant on earth, production of 211 At is scalable without depending on the import of raw materials, and a stable and sustainable supply can be achieved by establishing a cyclotron-based manufacturing base. Although the establishment of a supply chain network is essential for 211 At, as its physical half-life is 7.2 hours, the simple decay chain of 211 At offers advantages by eliminating the need for long-term radioactivity management and concerns related to the redistribution of daughter nuclides in the body.

Previous clinical applications of ²¹¹At have been conducted via local administration, such as intracavity administration in brain tumor patients at Duke University with a ²¹¹At-labeled ch81C6 antibody and intraperitoneal administration in Sweden for peritoneal dissemination of ovarian cancer using a ²¹¹At-labeled MX35 F(ab')2 antibody. ^{23,24} Additionally, clinical trials using ²¹¹At-labeled anti-CD38/ CD45 antibodies in leukemia patients are being conducted at the Fred Hutchinson Cancer Center (Seattle, United States). although these have involved the somewhat unusual approach of marrow ablation prior to transplantation, and systemic administration for solid tumors has not yet been evaluated. At the University of Osaka in Japan, ²¹¹At has been developed for systemic administration as a treatment of thyroid cancer, as it exhibits biodistribution patterns similar to iodine and accumulates via the sodium/iodide symporter. We have completed a first-in-human, investigator-initiated phase I trial evaluating a single intravenous administration of [²¹¹At]NaAt in patients with ¹³¹I-refractory thyroid cancer. We have confirmed that it can be safely administered, and some patients exhibited a >50% reduction in thyroglobulin levels along with decreased uptake on ¹³¹I imaging, suggesting its therapeutic potential. An investigator-initiated clinical trial using [211At]MABG is also being conducted at Fukushima Medical University, Japan.²⁵ Thus, the clinical application of astatine has been increasing in Japan in recent years.

Following [²¹¹At]NaAt for thyroid cancer, we have also developed a novel ²¹¹At-labeled PSMA-targeted compound ([²¹¹At]PSMA-5) that demonstrated high tumor uptake and strong therapeutic efficacy in a mouse xenograft model of prostate cancer. ²⁶ We have already started an investigator-initiated, first-in-human clinical trial for patients with mCRPC. In this review, we summarize the development of [²¹¹At]PSMA-5 and its future landscape.

Production and Supply Chain of ²¹¹At in Japan

²¹¹At is produced via the nuclear reaction ²⁰⁹Bi $(\alpha,2n)^{211}$ At by irradiating a bismuth target with alpha particles (Fig. 1). This requires a medium-energy cyclotron capable of accelerating alpha beams to an energy in the range of 28-29 MeV. In Japan, there are five facilities with cyclotrons capable of producing ²¹¹At: the Research Center for Nuclear Physics (RCNP) of the University of Osaka, Fukushima Medical University, the RIKEN Nishina Center for Accelerator-Based Science, and the National Institutes for Quantum Science and Technology (QST) in Chiba and Gunma prefectures. Because of its short physical half-life of 7.2 hours, the supply of ²¹¹At requires systematic coordination to enable timely distribution to universities and research institutions. Transportation can be conducted either in the form of solid ²⁰⁹Bi targets irradiated with ⁴He beams or as solutions obtained following chemical separation. To address these logistical challenges, a short-lived radionuclide supply platform was

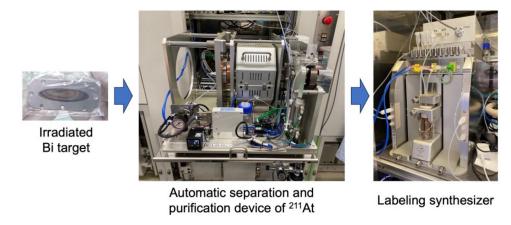
Figure 1 Production scheme of ²¹¹At using AVF cyclotron at the research center for nuclear physics, the University Osaka, with a ²⁰⁹Bi target irradiated by a 27.2 MeV alpha beam, and the decay scheme of ²¹¹At.

established in Japan, and nationwide distribution of astatine has been continuously implemented since 2016. For clinical trials at the University of Osaka Hospital, ²¹¹At is supplied from two primary sources: RIKEN and RCNP. At present, material is transported in the form of bismuth targets, which are subsequently processed into aqueous astatine solutions using an automated separation and purification system at the GMP-compliant investigational new drug manufacturing facility of the University of Osaka Hospital (Fig. 2). Although RIKEN is located approximately 500 km from the University of Osaka and transportation requires about seven hours, shipments have thus far been completed without any significant complications.

Radiosynthesis of [²¹¹At] PSMA-5

 211 At-labeled PSMA-5 was synthesized by the substitution reaction of 211 At with the dihydroxyboryl groups introduced into the corresponding precursor molecules, as described in a previous paper. 27 A representative labeling protocol consists of the addition of $0.03-0.30\,\mathrm{mL}$ of $0.1\,\mathrm{mol/L}$ potassium iodide, $0.03-0.70\,\mathrm{mL}$ of 7% sodium bicarbonate, an appropriate amount of aqueous 211 At, and purified water to $1-10\,\mu\mathrm{g}$ of precursor, with the total reaction volume adjusted to $0.1-1.0\,\mathrm{mL}$. The mixture is then heated at 80-95 °C for 45 minutes. Following the reaction, the solution is purified using a solid-phase extraction cartridge to yield $[^{211}\mathrm{At}]\mathrm{PSMA-5}$.

The molecular structures of [211At]PSMA-5 and other candidate compounds ([211At]PSMA-1 and -6) are shown in Figure 3. The 211At-labeled PSMA ligands were designed based on the molecular structure of PSMA-1007, which exhibits excellent pharmacokinetic properties and has already obtained marketing authorization in 13 European countries and Korea, with plans to expand worldwide, including Japan. They are peptide-like molecules consisting of a pharmacophore (Glu-Ureido-Lys), a radionuclide labeling site (Aryl boronic acid), and a linker region. PSMA-1, -5, and -6 differ in the amino acid composition of their


respective linkers, which are Gly-Lys, (R)-Glu-(R)-Glu, and Glu-Glu, respectively. To enhance metabolic stability, non-natural amino acid residues in the R-form were strategically incorporated into PSMA-5. This modification was intended to suppress enzymatic degradation by endogenous proteases following systemic administration. In contrast, the Gly-Lys motif introduced into the linker region of PSMA-1 was selected as a substrate for carboxypeptidase M, thereby promoting rapid renal clearance of the compound. Among the synthesized analogs, PSMA-6 retains the highest degree of structural similarity to PSMA-1007, thereby serving as a representative scaffold for comparative evaluation. PSMA-5 was identified as the lead development candidate from among the PSMA derivatives, following evaluation of the preclinical study results outlined below.

The radiochemical yields of [²¹¹At]PSMA-5 were no less than 60% (radioactivity decay corrected), and the radiochemical purity of the products was greater than 96% SPE purification, both in preclinical studies and in the ongoing clinical trial.

Preclinical Evaluation of I²¹¹Atl PSMA-5: Efficacy

We performed preclinical evaluation using human prostate cancer cell lines with high expression of PSMA (LNCaP). We conducted comparative experiments between [²¹¹At]PSMA-5 and [²²⁵Ac]PSMA-617 using CCK-8 assay. LNCaP cell viability was assessed after exposure to increasing concentrations of [²¹¹At]PSMA-5 or [²²⁵Ac]PSMA-617 to compare their cytotoxic effects. ²⁹ Viability data were evaluated by converting radioactivity concentration (kBq/L) into absorbed dose (Gy/mL) using the energy per decay (S-value). [²¹¹At]PSMA-5 showed greater cytotoxicity than [²²⁵Ac]PSMA-617 (Fig. 4 A).

Biodistribution was assessed using two methods: imaging and dissection with a gamma counter to measure the distribution in the body. ²⁶ ²¹¹At undergoes α -decay to its daughter nuclide polonium-211 (²¹¹Po), and characteristic X-rays (76.9 and 79.3 keV) are emitted during this decay process. These X-rays fall within an energy range that can be detected

Figure 2 Automatic separation and purification of ²¹¹At from a ²⁰⁹Bi target, and subsequent labeling using a synthesizer.

Figure 3 Molecular structures of [18F]PSMA-1007, [211At]PSMA-1, [211At]PSMA-5, and [211At]PSMA-6.

by gamma imaging cameras and enables single-photon emission computed tomography (SPECT) imaging. As a result, although ²¹¹At itself is primarily an alpha-emitter, the accompanying X-ray emissions from its daughter ²¹¹Po provide visualization of the in vivo distribution of 211At-labeled radiopharmaceuticals, thereby supporting both dosimetry assessment and treatment monitoring in targeted alpha therapy. The planar images of [211At]PSMA-5 are shown in Figure 4B. High uptake was observed in the tumor xenografts and kidneys at 3 and 24 h post-injection. In the kidneys, PSMA expression in the proximal tubules leads to physiological accumulation, and mice in particular often show high accumulation of PSMA-targeted drugs. Regarding tumor and kidney accumulation, the results of the dissection method are shown in Figure 4C. In comparison among [211At]PSMA-1, [211At]PSMA-5, and [211At]PSMA-6, [211At]PSMA-5 demonstrated the highest accumulation both at 3 and 24hrs post administration with increasing accumulating trend, whereas, kidney uptake was moderate with decreasing trend, which resulting in the highest in terms of tumor to kidney ratio among the three compounds. ²⁶ Furthermore, [²¹¹At]PSMA-5 showed higher therapeutic efficacy compared to [211At] PSMA-1 without significant body weight loss (Fig. 4 D). Therefore, we selected [211At]PSMA-5 for clinical translation.

In LNCaP cells, the IC₅₀ value of [211 At]PSMA-5 was 0.32 nM when PSMA-617 was used as a blocking agent. ²⁹ Following the intravenous administration of [211 At]PSMA-5, the compound exhibited a blood cell association rate of 29.3% and a plasma protein binding rate of 62.0% in mice. In cynomolgus monkeys, the respective values were 18.2%

and 77.0%. Notably, [²¹¹At]PSMA-5 remained chemically stable in the blood of both species, with no detectable radio-labeled metabolites observed in either plasma or urine samples, aside from trace amounts of free astatine (²¹¹At) resulting from dehalogenation. These findings suggest that [²¹¹At]PSMA-5 maintains high in vivo stability across rodent and non-human primate models, supporting its potential utility in targeted alpha therapy applications.

Preclinical Evaluation of I²¹¹Atl PSMA-5: Safety and Toxicity

After our decision to proceed with clinical translation, we had a consultation with PMDA (Pharmaceuticals and Medical Devices Agency), Japan's regulatory authority responsible for the scientific review of pharmaceuticals. As a result, the PMDA responded that if it was confirmed that there were no obvious safety issues in a single-dose general toxicity test, it would be possible to start the clinical trial. Subsequently, we conducted preclinical biodistribution and toxicity studies using [211At]PSMA-5, which was administered to both normal male ICR mice (n=85) and cynomolgus monkeys (n=2).30 We conducted biodistribution and toxicity evaluations to carefully initiate the first-in-human study, as species differences can occur with PSMA compounds (e.g., [18F] PSMA-1007 was excreted in the urine in mice, but was barely excreted in humans). The SPECT images of a cynomolgus monkey after administration of [211At]PSMA-5 are shown in Figure 5.

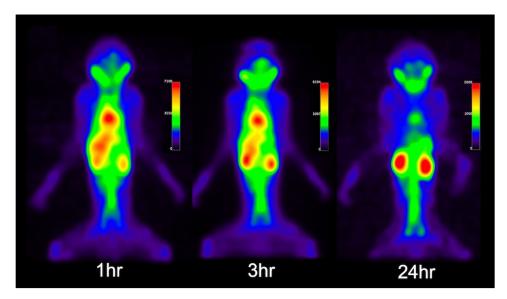


Figure 4 (A) Cell viability of LNCaP cells following treatment with [211 At]PSMA-5 or [225 Ac]PSMA-617. (B) Planar images of [211 At]PSMA5 in LNCaP xenograft mice. (C) Biodistribution of [211 At]PSMA-1, [211 At]PSMA-5, and [211 At]PSMA-6 in LNCaP xenograft model. (D) Tumor size in LNCaP xenograft mice after the single administration of [211 At]PSMA1 (0.4 MBq, n = 5), [211 At]PSMA5 (0.4 MBq, n = 12), or control (saline, n = 10).

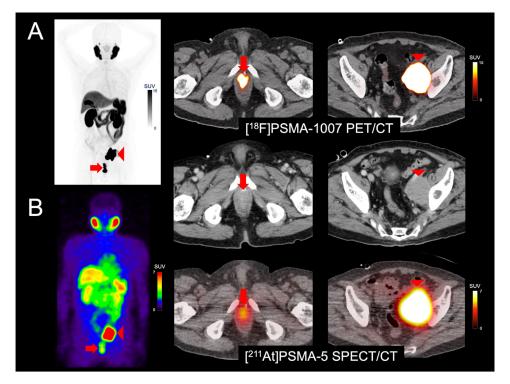
The mice were divided into four groups for the toxicity study: 5 MBq/kg, 12 MBq/kg, 35 MBq/kg, and vehicle control, with follow-ups at 1 day (n=10 per group) and 14 days (n=5 per group). Monkeys were observed 24 hours post-administration of [211At]PSMA-5 (9 MBq/ kg). Blood tests and histopathological examinations were performed at the end of the observation period. Blood tests in mice indicated no significant myelosuppression or renal dysfunction, whereas the monkeys displayed mild leukopenia 24 hours post-administration. Despite the high accumulation in the kidneys and moderate uptake in the thyroid in the late phase, histological analysis revealed no abnormalities. Although some transient changes were observed in the salivary glands of mice and intestinal tracts of both mice and monkeys, such as dose-dependent single-cell necrosis/apoptosis, as well as a decrease in bone marrow cells in the 35 MBq/kg group of mice, no irreversible toxicity was observed in mice 14 days after administration.³⁰ This study identified no severe toxicities associated with [211At]PSMA-5 (up to 35 MBq/kg), highlighting its novel and pivotal potential as a next-generation targeted alpha therapy for prostate cancer.

Clinical Evaluation of [211At] PSMA-5

We also prepared an appropriate-use manual of [211At] PSMA-5 which was approved by the Ministry of Health, Labour and Welfare³¹ and conducted a second PMDA consultation regarding the starting dose and inclusion criteria for the clinical trial. Subsequently, we obtained the approval from the Institutional Review Board, submitted the clinical trial notification to PMDA, and commenced the first-in-Phase I investigator-initiated clinical trial (NCT06441994) at the University of Osaka Hospital. It is designed to evaluate the safety, tolerability, pharmacokinetics, dosimetry, and preliminary efficacy of [211At]PSMA-5 (PSW-1025). This trial represents the world's first clinical application of ²¹¹At in prostate cancer and is expected to provide critical data for the development of PSMA-directed targeted alpha therapy. Recruitment began in May 2024, with a planned enrollment of 15 patients and study completion estimated in March 2027. Eligibility criteria include patients with mCRPC showing disease progression, defined by either a rising prostate-specific antigen (PSA) level or radiographic

Figure 5 SPECT images (maximum intensity projection) of the monkey after administration of [²¹¹At]PSMA-5 (9 MBq/kg).

progression. All patients must have previously received androgen receptor pathway inhibitors (enzalutamide, apalutamide) or a CYP17 inhibitor (abiraterone). Prior taxanebased chemotherapy is required unless patients are deemed ineligible. Key exclusions are recent systemic therapy within 4 weeks, radionuclide therapy (223Ra or 177Lu-PSMA-617) within 6 months, uncontrolled infections or comorbidities, and concurrent investigational drugs. The trial employs a dose-escalation scheme to determine the recommended Phase II dose. Patients are enrolled in sequential cohorts, with escalating doses of [211At]PSMA-5 administered intravenously. Safety is closely monitored, and dose-limiting toxicities (DLTs) are assessed during the initial treatment cycles. Primary endpoints are safety and tolerability, including the incidence of DLTs and treatment-related adverse events. Secondary endpoints include pharmacokinetic measurements, biodistribution and dosimetry, and preliminary evidence of therapeutic efficacy. Efficacy is assessed by PSA response rates (≥50% decline from baseline), imaging-based evaluation using CT and RECIST criteria, and response on [¹⁸F]PSMA-1007 PET. This clinical trial is expected to establish the feasibility of [211At]PSMA-5 as a novel PSMA-targeted alpha therapy for patients with advanced-stage prostate cancer. The results will provide essential safety, dosimetry, and efficacy data to inform subsequent Phase II studies and accelerate the clinical development of radiopharmaceuticals using ²¹¹At.


This study was funded by a Japanese government grant (AMED translational research grant, Seeds-F), initiated at the preclinical evaluation stage in 2022. In 2023, the project successfully passed the grant stage-gate with the highest evaluation, leading to the first-in-human administration just three years after the initial mouse experiment. This achievement was made possible not only by the experience gained from the earlier successful clinical translation of [211At]NaAt, but also through close collaboration among the astatine production teams at the Research Center for

Nuclear Physics and RIKEN, research collaborators at the Institute for Radiation Sciences, and the staff of the Departments of Medical Innovation and Nuclear Medicine at the University of Osaka Hospital—particularly Mr. Naka, Radiopharmacist of the Investigational New Drug Manufacturing Division.

The first-in-human SPECT/CT image of [211At]PSMA-5 in a patient was already reported. 32 [211At]PSMA-5 was administered to a patient with mCRPC refractory to standard treatment including androgen receptor signaling inhibitors, docetaxel, and cabazitaxel. SPECT/CT imaging was performed 3 hours post-administration using a VERITON-CT (Spectrum Dynamics Medical) equipped with a full-ring cadmium zinc telluride (CZT) detector, targeting the 79 keV Xrays from the daughter nuclide of ²¹¹Po (Fig. 6). Both [¹⁸F] PSMA-1007 PET/CT and [²¹¹At]PSMA-5 SPECT/CT showed high accumulation in the local recurrence in the prostate area and in the left external iliac lymph node metastasis. Similar physiological accumulation was observed between the two modalities in the salivary glands, liver, spleen, small intestine, and kidneys without detectable urine excretion. Currently, we have reached the third dose level, with [211At]PSMA-5 administered to a total of nine patients, and promising therapeutic effects are beginning to be observed in individuals with advanced mCRPC.

Future Landscape

Interest in ²¹¹At is currently increasing worldwide, with new startup companies emerging in rapid succession and strong academic initiatives in several regions, such as NOAR Europe and Accelerate.EU. Alpha Fusion, a spin-out from the University of Osaka, is expanding rapidly, engaging in preclinical development, supply chain establishment, and preparations for upcoming clinical trials with [²¹¹At]NaAt. Alpha Fusion has also initiated collaboration with Curadh to prepare for

Figure 6 (A) [¹⁸F]PSMA-1007 PET/CT and (B) [²¹¹At]PSMA-5 SPECT/CT: maximum intensity projection (left) and fusion images (right). Contrast-enhanced CT images are shown in the middle. Both images showed high accumulation in the soft tissue mass in the prostate area (SUVmax=60.7 on [¹⁸F]PSMA-1007 PET and 4.9 on [²¹¹At]PSMA-5 SPECT) (arrows) and in the enlarged left external iliac lymph node metastasis (SUVmax=143.7 and 17.6, respectively) (arrow heads).

the launch of clinical trials in the United States. Nevertheless, in order to achieve the global spread of ²¹¹At-based targeted alpha therapy, including [²¹¹At]PSMA-5, the establishment of a robust international supply chain network is essential. In Europe, the number of supply bases of ²¹¹At has expanded from two to six, and in the United States, companies such as Ionetix and NUSANO are preparing to commence production and distribution of this radionuclide. ³³

Regarding the collaboration between academia and industry, the World Astatine Community (WAC) and Japan Astatine Community (JAC) were established in 2023 as an international network of researchers, clinicians, and industry partners dedicated to advancing the production, preclinical evaluation, and clinical application of ²¹¹At. Established to facilitate collaboration across disciplines and countries, the WAC and JAC serves as a global platform for sharing knowledge, harmonizing radiochemistry and radiobiology methodologies, and addressing key challenges in the clinical translation of ²¹¹At-based radiopharmaceuticals.

Although clinical data on ²¹¹At remain limited, clinical trials with [²¹¹At]PSMA-5 are currently underway, and other ²¹¹At-labeled PSMA-targeted compounds, such as [²¹¹At] YF2 and [²¹¹At]At-NpG-PSMA, are also being investigated or prepared for clinical evaluation. ^{34,35} PSMA-targeted alpha therapy using ²¹¹At is expected to expand globally as a cyclotron-based, sustainable, and clean form of targeted alpha therapy, representing a promising next-generation theranostics.

Declaration of competing interest

TW, YS, KK, and AT; JC and FLG have patent applications for [²¹¹At]PSMA-5 or [¹⁸F]PSMA-1007, respectively. FLG is a scientific adviser to Alpha Fusion. The remaining authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

CRediT authorship contribution statement

Tadashi Watabe: Formal analysis, Funding acquisition, Investigation, Methodology, Writing — original draft. Sadahiro Naka: Methodology, Writing — original draft. Yoshifumi Shirakami: Conceptualization, Investigation, Methodology, Writing — review & editing. Kazuko Kaneda: Writing — review & editing. Masashi Murakami: Investigation, Methodology. Atsushi Toyoshima: Conceptualization, Investigation. Jens Cardinale: Conceptualization, Methodology. Frederik L. Giesel: Conceptualization, Supervision.

Acknowledgment

This study was funded by an AMED translational research grant (Seeds-F) (Grant Number: JP23ym0126091).

References

- Hofman MS, Lawrentschuk N, Francis RJ, et al: Prostate-specific membrane antigen PET-CT in patients with high-risk prostate cancer before curative-intent surgery or radiotherapy (proPSMA): a prospective, randomised, multicentre study. Lancet 395(10231):1208-1216, 2020
- Chow KM, So WZ, Lee HJ, et al: Head-to-head Comparison of the Diagnostic Accuracy of Prostate-specific Membrane Antigen Positron Emission Tomography and Conventional Imaging Modalities for Initial Staging of Intermediate- to High-risk Prostate Cancer: A Systematic Review and Meta-analysis. Eur Urol 84(1):36-48, 2023
- Mattana F, Muraglia L, Barone A, et al: Prostate-Specific Membrane Antigen-Targeted Therapy in Prostate Cancer: History, Combination Therapies, Trials, and Future Perspective. Cancers (Basel) 16(9):1643, 2024
- Kratochwil C, Fendler WP, Eiber M, et al: Joint EANM/SNMMI procedure guideline for the use of 177Lu-labeled PSMA-targeted radioligand-therapy (177Lu-PSMA-RLT). Eur J Nucl Med Mol Imaging 50(9):2830-2845, 2023
- Hofman MS, Emmett L, Sandhu S, et al: [177Lu]Lu-PSMA-617 versus cabazitaxel in patients with metastatic castration-resistant prostate cancer (TheraP): a randomised, open-label, phase 2 trial. Lancet 397 (10276):797-804, 2021
- Keam SJ: Lutetium Lu 177 Vipivotide Tetraxetan: First Approval. Mol Diagn Ther 26(4):467-475, 2022
- Sarror O, de Bono J, Chi KN, et al: Lutetium-177-PSMA-617 for metastatic castration-resistant prostate cancer. N Engl J Med 385:1091-1103, 2021
- Sartor O, Morris MJ, Chi KN, et al: PSMAfore: A phase 3 study to compare ¹⁷⁷Lu-PSMA-617 treatment with a change in androgen receptor pathway inhibitor in taxane-naïve patients with metastatic castration-resistant prostate cancer. J Clin Oncol 40(6):TPS211, 2022
- 9. Kratochwil C, Bruchertseifer F, Giesel FL, et al: 225Ac-PSMA-617 for PSMA-targeted α -radiation therapy of metastatic castration-resistant prostate cancer. J Nucl Med 57:1941-1944, 2016
- Sathekge MM, Lawal IO, Bal C, et al: Actinium-225-PSMA radioligand therapy of metastatic castration-resistant prostate cancer (WARMTH Act): a multicentre, retrospective study. Lancet Oncol 25(2):175-183, 2024
- 11. Feuerecker B, Tauber R, Knorr K, et al: Activity and Adverse Events of Actinium-225-PSMA-617 in Advanced Metastatic Castration-resistant Prostate Cancer After Failure of Lutetium-177-PSMA. Eur Urol 79 (3):343-350, 2021
- Zacherl MJ, Gildehaus FJ, Mittlmeier L, et al: First Clinical Results for PSMA-Targeted α-Therapy Using 225Ac-PSMA-I&T in AdvancedmCRPC Patients. J Nucl Med 62(5):669-674, 2021
- Parida GK, Panda RA, Bishnoi K, et al: Efficacy and Safety of Actinium-225 Prostate-Specific Membrane Antigen Radioligand Therapy in Metastatic Prostate Cancer: A Systematic Review and Metanalysis. Med Princ Pract 32(3):178-191, 2023
- Kratochwil C, Haberkorn U, Giesel FL: 225Ac-PSMA-617 for Therapy of Prostate Cancer. Semin Nucl Med 50(2):133-140, 2020
- Ndlovu H, Mokoala KMG, Lawal I, et al: Prostate-specific Membrane Antigen: Alpha-labeled Radiopharmaceuticals. PET Clin 19(3):371-388, 2024
- Sathekge M, Bruchertseifer F, Knoesen O, et al: 225Ac-PSMA-617 in chemotherapy-naive patients with advanced prostate cancer: a pilot study. Eur J Nucl Med Mol Imaging 46(1):129-138, 2019
- 17. Berner K, Hernes E, Kvassheim M, Revheim ME, Bastiansen J, Selboe S, Bakken CL, Grønningsæter SR, Bruland ØS, Larsen RH, Bouzelmat L, Jardine VL, Stokke C: First-in-Human Phase 0 Study of AB001, a Prostate-Specific Membrane Antigen-Targeted ²¹²Pb Radioligand, in Patients with Metastatic Castration-Resistant Prostate Cancer. J Nucl Med 66 (5):732-738, 2025 May 1
- 18. Watabe T, Kaneda-Nakashima K, Liu Y, et al: Enhancement of 211 At uptake via the sodium iodide symporter by the addition of ascorbic acid in targeted α -therapy of thyroid cancer. J Nucl Med 60:1301-1307, 2019
- Zalutsky MR, Pruszynski M: Astatine-211: production and availability. Curr Radiopharm 4(3):177-185, 2011 Jul
- Rabiei M, Asadi M, Yousefnia H: Astatine-211 Radiopharmaceuticals; Status, Trends, and the Future. Curr Radiopharm. 17(1):7-13, 2024

 Feng Y, Zalutsky MR: Production, purification and availability of 211At: Near term steps towards global access. Nucl Med Biol 100-101:12-23, 2021

- McIntosh LA, Burns JD, Tereshatov EE, et al: Production, isolation, and shipment of clinically relevant quantities of astatine-211: A simple and efficient approach to increasing supply. Nucl Med Biol 126-127:108387, 2023
- 23. Zalutsky MR, Reardon DA, Akabani G, Coleman RE, Friedman AH, Friedman HS, McLendon RE, Wong TZ, Bigner DD: Clinical experience with alpha-particle emitting 211At: treatment of recurrent brain tumor patients with 211At-labeled chimeric antitenascin monoclonal antibody 81C6. J Nucl Med 49(1):30-38, 2008
- Andersson H, Cederkrantz E, Bäck T, Divgi C, Elgqvist J, Himmelman J, Horvath G, Jacobsson L, Jensen H, Lindegren S, Palm S, Hultborn R: Intraperitoneal alpha-particle radioimmunotherapy of ovarian cancer patients: pharmacokinetics and dosimetry of (211)At-MX35 F(ab')2–a phase 1 study. J Nucl Med 50(7):1153-1160, 2009
- 25. Kobayakawa M, Shiga T, Takahashi K, Sugawara S, Nomura K, Hanada K, Ishizuka N, Ito H: Evaluation of pharmacokinetics, safety, and efficacy of [211At] meta-astatobenzylguanidine ([211At] MABG) in patients with pheochromocytoma or paraganglioma (PPGL): A study protocol. PLoS One 19(5):e0303623, 2024. May 28
- 26. Watabe T, Kaneda-Nakashima K, Shirakami Y, et al: Targeted α-therapy using a statine (²¹¹At)-labeled PSMA1, 5, and 6: A preclinical evaluation as a novel compound. Eur J Nucl Med Mol Imaging 50:849-858, 2023
- 27. Shirakami Y, Watabe T, Obata H, Kaneda K, Ooe K, Liu Y, et al: Synthesis of [(211)At]4-astato-L-phenylalanine by dihydroxyboryl-astatine substitution reaction in aqueous solution. Sci Rep 11(1):12982, 2021
- 28. Cardinale J, Roscher M, Schäfer M, Geerlings M, Benešová M, Bauder-Wüst U, Remde Y, Eder M, Nováková Z, Motlová L, Barinka C, Giesel FL, Kopka K: Development of PSMA-1007-Related Series of ¹⁸F-Labeled Glu-Ureido-Type PSMA Inhibitors. J Med Chem 63(19):10897-10907, 2020 Oct 8
- Kaneda-Nakashima K, Shirakami Y, Kadonaga Y, Watabe T, Ooe K, Yin X, Haba H, Shirasaki K, Kikunaga H, Tsukada K, Toyoshima A, Cardinale J, Giesel FL, Fukase K: Comparison of Nuclear Medicine Therapeutics Targeting PSMA among Alpha-Emitting Nuclides. Int J Mol Sci 25 (2):933, 2024. Jan 11
- 30. Watabe T, Kaneda-Nakashima K, Kadonaga Y, Ooe K, Sampunta T, Hirose N, Yin X, Haba H, Kon Y, Toyoshima A, Cardinale J, Giesel FL, Fukase K, Tomiyama N, Shirakami Y: Preclinical Evaluation of Biodistribution and Toxicity of [²¹¹At]PSMA-5 in Mice and Primates for the Targeted Alpha Therapy against Prostate Cancer. Int J Mol Sci 25 (11):5667, 2024.. May 23
- 31. Watabe T, Namba M, Yanagida S, Nakamura Y, Yamada T, Tatsuno S, Ri A, Yoshida S, Uyama K, Kinuya S, Tomiyama N, Hosono M: Manual on the proper use of the ²¹¹At-labeled PSMA ligand ([²¹¹At]PSMA-5) for clinical trials of targeted alpha therapy (1st edition). Ann Nucl Med 38 (5):329-336, 2024
- 32. Watabe T, Hatano K, Naka S, Sasaki H, Kamiya T, Shirakami Y, Toyoshima A, Cardinale J, Giesel FL, Isohashi K, Nonomura N, Tomiyama N: First-in-human SPECT/CT imaging of [211At]PSMA-5: targeted alpha therapy in a patient with refractory prostate cancer. Eur J Nucl Med Mol Imaging 52(7):2253-2255, 2025
- 33. Tosato M, Favaretto C, Kleynhans J, Burgoyne AR, Gestin JF, van der Meulen NP, Jalilian A, Köster U, Asti M, Radchenko V: Alpha Atlas: Mapping global production of α-emitting radionuclides for targeted alpha therapy. Nucl Med Biol 142-143:108990. https://doi.org/10.1016/j.nucmedbio.2024.108990, 2025. Mar-AprEpub 2024 Dec 20. Erratum in: Nucl Med Biol. 2025 Mar-Apr;142-143:109009
- 34. Feng Y, Meshaw RL, Finch SW, Zheng Y, Minn I, Vaidyanathan G, Pomper MG, Zalutsky MR: A third generation PSMA-targeted agent [²¹¹At] YF2: Synthesis and in vivo evaluation. Nucl Med Biol 134-135:108916, 2024. Jul-Aug
- 35. Yaginuma K, Takahashi K, Hoshi S, Joho T, Shimoyama S, Hasegawa N, Hasegawa K, Zhao S, Ukon N, Makabe S, Meguro S, Onagi A, Matsuoka K, Ogawa S, Uemura M, Yamashita T, Suzuki H, Uehara T, Kojima Y: Novel astatine (²¹¹At)-labelled prostate-specific membrane antigen ligand with a neopentyl-glycol structure: evaluation of stability, efficacy, and safety using a prostate cancer xenograft model. Eur J Nucl Med Mol Imaging 52(2):469-481, 2025