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Let L(x, D) :HZT} P;(D)(a;;(x)Q;(D)) be a pseudo differential operator and

denote by B the sesquilinear form

B(u, v): = 31 { a,,(x) OADW(mPA(D)o(x)dx

R
defined on CF(Q), where QCR" is an open set. Furthermore let H3'(Q)C
L*Q) be a Hilbert space which contains C7(Q) as a dense subspace. In addi-
tion, suppose that B is bounded on H%'(Q), i.e. that

[B(u, v)| <cllullpll?llp,

holds for all u, v€H%'(Q) (or, equivalently, for all u, v C5(Q)). It is well-
known that the representation problem:

Find all ue H%'(Q) such that for a given f € L} Q)

B, ) = | f@)p(®)dx
Q

holds for all p=C7(Q)
is a resaonable generalization of the Dirichlet problem. (This formulation of the
Dirichlet problem is essentially the same as that given by H. Kumano-go and
C. Tsutsumi in [13].)

Assume that H3'(Q) is compactly embedded into L*Q). Then one can
prove Fredholm’s alternative to hold for the representation problem, provided
that B satisfies a Girding-type inequality, i.e.

Re B(u, 1) >cyllull%, 1 —c,lull}

for all ue H%'(Q) (or, equivalently, for all ue C§(Q)).
In this paper we will consider a class of anisotropic pseudo differential
operators in generalized divergence form with non-smooth symbols. With
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these operators we can associate a continuous sesquilinear form defined on a
certain anisotropic Sobolev space. We will prove a Garding-type inequality
for this sesquilinear form.

The symbol class under consideration is not contained in any of the classi-
cal classes and it is impossible to apply some symbolic calculus to the operators
in this paper. Our proof of Garding’s inequality follows essentially the original
proof of L. Girding [5]. However, as in the case of differential operators we
have to distinguish two cases depending on whether a partition of the unity may
be used or not (see [10] and [12]). Moreover we have to handle the non-local
character of the pseudo differential operators involved.

In [11] we pointed out that pseudo differential operators with negative defi-
nite functions as symbols arise very naturally in the theory of Dirichlet spaces.
The symbol class considered in this paper is large enough to include the negative
definite functions occuring in the theory of Dirichlet spaces.

The reader is referred to [8], chap. XXII, where lower bounds (Gérding’s
inequality) for pseudo differential operators with C>-coefficients are treated,
especially the results of A. Melin are discussed and compared with a sharp form
of Girding’s inequality.

Our notations are essentially standard, see [6]—[8] (or [11]). Whenever we
use Plancherel’s theorem, we normalize the Lebsegue measure in such a way
that constants do not appear in the formula. For any distribution u we denote
by # or Fu its Fourier transform (provided that it is defined).

1. Auxiliary Propositions

Denote by A™ the n-dimensional Lebesgue measure and let P: R"— R
be a continuous function satisfying the following conditions:
P.1.: For all EeR" we have P(£)>0 and A" {£€R", P(£)=0} =0.
P.2.: There exists a constant ¢>0 and a real number >0 such that

(1.1) P(E)< (14 |E|3)" holds for all £€R".

The set of all functions satisfying P.1 and P.2 is denoted by P. Let PEP and
sER, s=>0. We define the norm [|+]|5, by

(12) llpllz.. = | (1+P@) | Foe) 172

R

for pCF(R"). The completion of C5(R") with respect to the norm (1.2) is
the Hilbert-space H3(R"). In particular, let A: R"— R be the function defined
by A(E)=|E|. For some t=R, t>0, the corresponding norm [|+|[5, is the
usual Sobolev-space norm and denoted by ||+|,. Moreover, instead of H {(R")
we write H°(R"). For any open set QCR" the space C7(Q) consists of all
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elements g C5(R") with compact support supp pC £, i.e. functions of Cg(Q)
are difined on the whole space R". By definition H%°(Q) is the completion of
C7(Q2) with respect to the norm (1.2). Again, the space H2*(Q) is denoted
by H®*(Q).

Obviuosly we have

Proposition 1.1. Let P,, P,& P and suppose that for two constants c=>0 and
p=0 the estimate

(1.3) P\(E)<cPy§)

holds for all EER", |E| >p. Then for each s>0 the space H3,(R") is continuously
embedded in the space H3 (R").

Corollary 1.1. Let P, and P, satisfy the assumption of Proposition 1.1.
Then for any open set QC R" and s>0 the space H3;(Q) is continuously embedded
in the space H%(Q).

The following proposition determines the dual space of the space H 5(R").

Proposition 1.2. Let s>0 and PEP. Then the dual space of H3»(R") is
the completion of L*(R") with respect to the norm

- [(f, #)o]
(1.4) £z, 0=t=uélll};,(R") T
Moreover, for f € LA(R") we have
(L5) £l = | (1-+P2@) | FAee) 172
o

Since L*(R") is dense in [H3»(R")]* with respect to the norm ||+||p,-,, we have
[H3R")*=H7(R").

In the case of the usual Sobolev space, i.e. P=A, the result can be found
in [14], p. 31. The proof of Proposition 1.2 follows essentially the lines of the
considerations in [2], p. 201-203, where the assertion is proved for periodic fun-
ctions but general elements PE P, and it is left to the reader.

Let us recall Proposition 1.4 from [3]:

Proposition 1.3. (Poincaré’s inequality) Let PP and suppose that the
embedding of H%*(Q) into LX(Q) is compact, where QC R" is an open set. Then the
estimate

(16) [ uge) 17ax<c {1 P2g) 11 Fuce) 12

R
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holds for all us H%*(Q).

DEriniTION 1.1, A continuous function a: R"— R is said to belong to the
class 3(P, 5), PEP, s€R, if there exists a constant ¢,>0 such that

(L.7) la(8)| <c(1+PXE))*"”
holds for all £ R".
Let a€Z(P, s). On C7(R") we define the operator a(D) by
(1.8) a(Dyu(x) = S - Da(E)(E)dE
Rﬂ

Propostion 1.4. Let acZ(P, s) and define a(D) as in (1.8). Then a(D) is a
continuous operator from CF(R") into C=(R"). Moreover, for each tER the
operator a(D) has a continuous extension (again denoted by a(D)) from H% *(R")
into H5(R"), provided s>0.

Proof. Let (u,)yey be a sequence of elements u,&Cg(R") converging in
the topology of C5(R") to an element uC7(R"). Then (u,),ey converges to u
in each of the spaces HYR"), t>0. Now, for €N} and any compact set
K CR" we have
sup | D(a(D)(u,—u))(x) | <sup | Dx(a(D)(u, —u))(x)|

reRr"

and it follows with some appropriate constant r&R, r >0, (see P.2) that

| D¥(a(D) (4, —w) (%) | = lj Di(e*Pa(§) () —#(€))dE |

— 1| eae ()~ a@)e =
<c | (L [E1D)!V2(14 | E| %) dy(8)—4(E) | dE

(L4 | &%)~ D1 - | g |2)Aetr a2 4 () —d(E) | dE
R
Scﬂ”u\l_u”ld‘+r+n—l )

hence the operator (D) is continuous from CF(R") into C=(R"). Now let
t€R, and ucC3(R"). We find

lla(D)ull?.. (1+P2(E))‘la(«§)ﬁ(5) |*dg

a&.’;

<c S (L+-PHE)Y(1+PE) | 4(E) dE = clfull3 v

"
R
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which implies the second statement of the proposition.

DerINITION 1.2. We say that a continuous function a: R"— R belongs to
the class Zy(P, s), P€P, s>0, if

lim la(§)| —
ig1>e (1 P%(E))*?
holds.
Obviously we have Z4(P, s)CZ(P, ).
Proposition 1.5. A. Let ac3(P, s), then for all us C3(R") we have

(1.9) lla(D)ull§<cll(14-P(D))**ull3
Zc[lIP*(D)ull§+IlllE] -
B. Let acZ(P, s), then for each €>0 there exists a constant ¢(€)=0 such
that
(1.10) lla(Dyul|§ <&[IP*(D)ulli+c(€)llulls
holds for all ue C§(R").

Proof. A. LetusCg(R"), we find

la(yulli = {1a(e) 1?1 4(8) 12 e

R

< | (1+P@) 1a@) 1,

which implies the first inequality. The second inequality is an immediate con-
sequence of the estimate

(1.11) c< PO o
(1+P%#))

which holds for all s>0 and all E€R".

B. Since aeZ(P, s), it follows that for each >0 there exists a constant
p(€)=0 such that
(1.12) la(8) 12 <e(1+P(E)y
holds for all EeR”, |E| >p(€). Using (1.12) we find

[l P1a@) = | 1a@ria@ide+ | la@)iae)de

R 1El=pC®> 1€1<PC®)

<¢ S (1+P*(&))° | 4(&)1*dE+ S la(€) |21 4(8) 1 dE

[E1=PCE) 1E1<pC®)

b
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2 s/2,,112 2 2
<El(1+PDY)ulld-+ max |a(®)|ulls

which implies (1.10).

For later purposes we need an estimate for the commutator of an operator
a(D) with a smooth function ¢.

DrrINITION 1.3, Let a€3(P, 1) and o= C=(R"). We denote by [a(D), @]
=—[@, a(D)] the operator defined on C5(R") by

(113) [a(D), lu(#): = a(D)(gu)(x)—p(x)a(D)u(x) .

Proposition 1.6. Let ac=(P, 1) and assume for p=C=(R")N L™(R") that
(1.14) [[a(D), @lulli<c,l|P(D)ull§+c,llullE
holds for all u C5(R"). Then we have with suitable constants c¢{ and c;
(1.15) lla(D)(@u)lI§ < cfl| P(D)ulls+callull -

Proof. Let ueCg(R"), then it follows that

lla(D)(pu)lls = llpa(D)u+[a(D), p]ulls
< 2[llpa(Dyulls+lI[a(D), @lulli] ,

which proves the proposition.

Finally, let us remark that in general for PEP, p = Cy(R") and us H3(R"),
s>0, it does not follow that pue H 3(R") and that the estimate

llptdlp,s <c(e)llullp,s

holds. 'This estimate does not hold even in the case where P is a polynomial.
For example take P(§, n)=&%? (€, n)€R?, and apply Theorem 2 in [1], p. 212.

2. Pseudo Differential Operators in Generalized Divergence Form

We want to consider pseudo differential operators in generalized divergence
form and related sesquilinear forms. Let L(x, D) be given by

1) Ls, D) = 3} P{D)a (=)Q,D)

where my&N. We pose the following conditions on L(x, D).
Let P &P be fixed, then we assume:

Ll1.: P, Q,e3(P,1) forall 1<, j<my;

L2.: a,L*(R") forall 1<s,j<m,.

First we prove
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Proposition 2.1. Let L(x, D) be a pseudo-differential operator in generalized
divergence form (2.1) satisfying condition L1—L.2. Then L(x, D) is continuous
from H3(R") into H7'(R").

Proof. For ucCF(R") we have

IL(-, Dyl - = [ (14+-P@) 1 (L(-, Dyuy (&)1 .

7”

R

Now we find
(L(-» D))" (€) = [, 3] PADY@if )Q,D)(®)
= 33 PE)(@(QADW)(®)
and it follws that
|(L(-, D) (§) <41 33 PiE)aif -)QADY)"(®)
Hence, using L.1 we get

| a+P@) 1L, D @) 12

R

< [(1+-PE) 1+ PN 35 1010,y ) 1% d

R

= 4c[ {3 1(a()QDWY @) I d
B'I
and by Plancherel’s theorem we have

[ a+Pren i@, D e

<4c 33 |0, ()0 D)) dv
¢ | B 100u)1rax = ¢ | 33 10,0008 1248

ji=1
R R

<
<é [ (1P (g 1%dg = cllul.a
)

which proves the proposition.

We want to define a sesquilinear form determined by a pseudo differential
operator in generalized divergence form satisfying L.1—L.2. First let @, &
C5(R"). We set
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(22) B(p, ¥): = (L(*, D)p, ¥)o -

Using Plancherel’s theorem we find the following representation of B (see [11],
section 5, for the calculation):

(23) Blp, ¥) = 3 (@ )QAD)p, PADI)

Proposition 2.2. Let L(x, D) be a pseudo differential operator in generalized
divergence form satisfying L.1—L.2 and let B be the sesquilinear form corresponding
to L(x, D). Then B is continuous on Hp(R"), i.e. there exists a constant ¢=>0
such that for all u, ve H »(R") we have the estimate

(24) | B(u, v)| <cllullpll2lle, -
Proof. Since CF(R") is dense in H}(R") it is sufficient to prove (2.4) for
all @, y=C7(R"). By (2.3) we have

)
| B(g, )] =2 [(@i;(+)Qi(D)p, Pi(D)yr)ol
using L..2 and the Cauchy-Schwarz inequality it follows that

|B@, ¥) | <¢' 3310, llIPDWl
and by L.1 and Proposition 1.4 it follows that
| B(@, ¥) | Zcll@llpllvllp,
holds for all @, Y= CF(R"), which implies the assertion of the proposition.
From Proposition 2.2 we get immediately

Corollary 2.1. 'The sesquilinear form B is continuous on H%'(Q) for any
open set QC R".

In the next section we will use the following formula

Proposition 2.3. Let Q;(D) and P,D), 1<i, j <my, be operators satisfying
L.1 and let a;;&C. Furthermore assume that for a real valued function @&
C=(R") we have for all uc C3(R")

(2.5) I[OD), @lull§<c(IlP(D)ull§+lullf)
and
- (26) [I[P«D), @lulls<c(l|P(D)ullz+]lull3) -

Given an open set QC R", then we have for all us H%'(Q)
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[ @ 0XDYP0EPDu)w
= [ @; CDY P EP(D) () d

- | @), s PD), plua)ds

R"-supp ¢

Proof. For ucH%'(Q) it follows that

| 2 QDG D)) )
= ST 0D @) @P(D)(gn)(x)dx

R—Rn | 2 QDY D))
= Sf; 0,(D) () (%)PA(D) ) (x)dx

- S a;; [[0;(D), @) u(x)—o(x)Q,(Dyu(x)] [[P{D), lu(x)

R"-supp ¢

—@(x)Py(D)u(x)]dx
= { @, OADYPI@PAD)pu)(wdx

- | @D, dlu@ PD), pluwas,

R"-supp ¢

where the last line follows from the fact that

0= | o)a; ODWEPD), ol

R"-supp ¢

= | owe; 0/D), pluEPDIUw)dx

R"-supp ¢

= | #wa,; 0DuwP D

R"-supp ¢

3. A Garding Inequality

Let L(x, D) be a pseudo differential operator in generalized divergence
form satisfying L.1—L.2. In the last section we proved that there exists a
continuous sesquilinear form B on H}(R") (or H%'(Q)) generated by L(x, D).
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The purpose of this section is to prove a (generalized) Garding inequality for
B under suitable additional assumptions on L(x, D). As already mentioned in
the introduction we have to distinguish two cases.

First let us assume the following conditions:

L.3.: There is a point x,&R" such that with two constants ¢,>>0 and p,>0
the estimate

(3D Re 33 a;(w)PA(E)Q1(6) 2 o)

holds for all £ R" with |&| > p,.
L4.: Let ¢, be the constant in (3.1) then we suppose for some o, 0<o<1,

¢
(-2 e, g e | <o G,

to be satisfied, where ¢ is a constant such that
1Q(D)ullo=<é[||P(D)sllo+l2llo]
and
[|1P;(D)yulle<E[||P(D)ullo+ 2]}

holds for all ueC§F(R") and 1<i, j<m, (Note, that by Proposition 1.5
such a constant does exist!)

Now we can proev

Theorem 3.1. Let L(x, D) be a pseudo differential operator in genmeralized
divergence form satisfying L.1—L.4. Then we have

(3.3) Re B(u, u) = (1—a)co||P(D)ul|5—c(o)||4|[3
for all us C5(R").
Proof. Using (2.3) we find

Re B(u, 4) = Re 33 { 2, O;DWu()P.(Dyu(x)dx = .
We estimate J: "

Re 31 { a;(x) OADW(x)P/D)u(x) dv

R

—Re 3} { 2,3 QDY) P(Dyu(x)d
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+Re 33 | @) —afww) QXD P(Dyu(x)d
> | Re 3% a,(x)QAIP(8) | Fu(t) It

R

-3 j |asw0)— )| | QD)) | | P(D)yu(z) | d

> | P) | Fu(g) 1%a

R

—sup [ 2 Nai(%0) [ 1 Q€)1 PiE) | +co| P(E) 1Tl

1E1<Pg

~ 3 sup | a;(%)—a; (%o) || QA D)u()llol| Pi(D)ee()ll

i,j=1 x

2 6| P(D)ulli—acol [IP(D)ulli—cillullt ,

where we used in the last line assumption L.4 and Proposition 1.5. The con-
stant ¢, depends on o, m, and é. Hence we have

(34) Ji=e(1—a)||P(D)ul[§—cylull5 -

In order to solve a generalized Dirichlet problem we give a formulation of
Theorem 3.1 in the case of an open set QCR". For this it is suitable to
assume instead of L.4 the following condition

L.A4'.: Let c, be the constant in (3.1), then we suppose for some o &(0, 1)

(3.5) max sup |a,(x)— a,,(xo)|<a'(c——52,

where ¢ is the same constant as in L.4.

Corollary 3.1. Assume that L(x, D) is a pseudo differential operator satisfying
L1—L.3 and LA4'. Furthermore assume a;;(x)=a;;(x,) for all x€R"—Q, where
% EQ is the point mentioned in L.3. Then there exists a constant ¢(a)=0 such
that

(3.6) Re B(u, u) >(1—0a)||P(D)ull§—c(a)lull3

holds for all uc C3(Q).
(Remember that elements of C5(Q) are defined on R"!)

The proof of Corollary 3.1 is just the same as that of Theorem 3.1, but by
our assumptions we have now
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Re 2=

LE%)

(@i5(%)—a(%0)) Q(D)u(x)P{(D)u(x) dx

”

(a:(x)—ai;(%0)) Q(Dyu(x)P;(D)u(x)dxx .

1

LEY

P N ey

=Re.2=

1

In order to handle the second case, we need the follwoing

Lemma 3.1. Let QCR" be an open bounded set and assume QC B,(0)=
{xeR", |x|<r} for some r>0. Furthermore let {Q;, 1<i<N—1} be an open
covering of B,(0). Then there exist functions ,cC5(Q;), 1 <i<N—1, and a
function @y C=(R") with the following properties :

) 0<p(x)<1  for 1<i<N;

i) pn(x)>0 for xeR"—B,(0);

i) supp oy CR"—B,(0);

) @?eC=(R") for 1<i<N;

N
) @ix)=1 for x=R".
k=1
We call (@;),<i<y 2 partition of unity subordinated to the covering {Q;, 1<

i<N}UR"—B,0). The proof of Lemma 3.1 is an obvious modification of
Lemma 9.16 in [17].

Instead of L.3 and L.4 let us now assume

L.5.: Let QcB,(0) be a bounded open set in R”. Assume that there are two
constants ¢,>>0 and p,>0 such that

Re 33 a,(9IPAE)OAE) 2 coPE)

holds for all x€ B,,(0) and all £ R", |E| > p,.
L.6.: For 1<i, j <m, suppose that
la;j(%)—a;(y) | <g(|x—y])
holds for all x, yEB,,(0), where g: R*— R* is a function satisfying
lim g (£)=0.
>0

L.7.: Let p=C=(R") such that D°peC7(R") for all aeN%, a+0. Itis
assumed that for any >0, we can find a constant ¢(»)>0 such that for
all ke C5(Q), where Q is the set considered in L.5, we have the estimates

(3.7) I[P(D), @lull§ <nl|P(Dyul(§+c(n)llell§ ,
(3.8) I[OAD), @lulld<nllP(D)ulls+c(n)llull? , 1<j<m,,
and

(3.9) [I[P«D), plull§<n||PD)ull§+c)|lulls, 1<i<m,.
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Theorem 3.2. Let QC CR" be an open set and let L(x, D) be a pseudo
differential operator in generalized divergence form satisfying L.1—L.2 and L.5—
L.7. Then for each EE(0, c,/2) we have
(3.10) Re B(u, u) > (1/2)(co—&)|1P(D)ul [§—c(€) I3
for all ue C5(Q).

Proof. Again, by (2.3) we have

o —_—
Re B(u, 4) = Re 33 | a,(x) O,(Dyu(x)P(Dyu()dx = J, .
=,
We have to prove
Ji=(1/2)(co—E)IP(D)yull§—c’[|ll5 -
Now, let {Q;, 1<k<N—1} a finite open covering of B,,(0), note that QC B,(0),
such that

(3.11) 151.11,%’.0 inyax | a; i(%)— a,,(y)|<2 e

where ¢’ is a constant such that for 1<z, j<m,

[1Q(Dyull3 < c'[I|P(D)yul|3+|lul|3]
and

1P:(D)ul (5 < "[||P(D)sel 1§+ 124]15]

hold. (Note that such a covering always exists by L.6.) Furthermore, let
(@r)1<r<ny De a partition of unity subordinated to the covering {Q,, 1<k<N—1}
U R"—B,(0) having the properties stated in Lemma 3.1 (in the following we set
Qy: =R"—B,(0)). It follows that

)

Re 33 { a,(x) OADWP(D)u(x)d

i,j=1

—Re$ S | i), ODUEHPDu(x)dx

—Re31 3 | 4 @QDmE—[0/D), pilu}

supp ¢

{P«(D)(pwe)(%)—[Py(D), ps]u(x)} dx
= A1+A2+A3+A42A1_ IAz I - IA3| - [A4| s

where
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=Re3} 3 [ a0 ODNpa)®PD)pu)(d

4= -Re3 3 | @00 ODNPOEPD), pilux)ds
A= —ReE 3 | @@ [04D), o) PADY )i

and

a=Rex 33 | @, 00D, @PD), plux)ds

supp ¥

Let us estimate 4,, A; and A,. First we find

41<3 3 [ 10, 1QADY a1 | [PAD), @il d

<c$ 3 I0,DN@IIPAD), pilull
<c3) 3 10D @wE+cr)IPAD), glull,

where 7>>0 is an arbitrarily chosen non-negative number. By Proposition

1.6 we find

(3.12) 1O /(D) (@ue)l[s < c’[IIP(D)ul 5+l [5]
and by assumption L.7 for each >0 the estimate (3.13) follows:
(3.13) [P:(D), @alulls <nlIP(D)ul(s+cu(a)llull -

Thus we obtain
| 4| <cmiN[rc'(||P(Dyull3+|1ul[8)+ () (x| P(D)ul [+ (o) 1ul15)]
=cmiN (e +c()n)|P(D)ul [+ (r¢’ +e()e(n)) 1ull§ -

Now, given £>0 and choose » such that ¢(t)p=r, then it follows with r=
&(8cmiN(c'+1))™! that

(3.14) | 4,1 < (6/8)|IP(DYul -+, (€)lull
Analogously we find
4,1 <c 3} 3 0,D), ol PADY i)l
< S AIPAD)pa)li+r)IQAD), gkl
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which gives again for any €>0
(3.15) | A | <(&/B)IP(D)ullz+cy(€) s -

Moreover, it follows that

41<E 3 [ 10y 1104D), ilux)| 1IPAD), @il d

=1 1,j=1 R"
<c 3 3 110AD), odullIIPAD), gl

Since by our assumption L.7 for each »>>0 we have the estimates

I[QAD), @&Julls <nl|P(D)ul|3+cu(n)llulls
and

I[P:(D), @elulls <7l|P(D)ul[§+ciu(n)|lull3
we find

| 4| <emiN[7||P(DYul[s+c'(n)l1ullf] ,

which gives with =E&(8cmiN)™

(3.16) | A, <(&/8)IIP(Dyul|z+cs()Illls -
So far we have proved
(3.17) Re '"2 [ 2 01DV P DY)

> A,—(3¢/8)||P(D)ulls—c'(E)llulls ,

where c'(e)zé ¢(€).
i=1
Now let us consider 4;. For 1<k<N we have by Proposition 2.3 with x,EQ,

| @ 0D @) ®P(D) @) )

supp ¢

= S a;(%x) Q (D) (@s)(%)Pi(D)(su)(x)dx

supp ¥,

- g (ai5(%) —ai(x)) QA D)(pse)(x) P« D)(psst)(x)dx

supp ¥

— [ @) 0D P @ P D)) )

R

- S a; (%) [Q(D), pi]u(x)[P«D), piJu(x)dx

R"-supp ¢
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- S (@:5(%1) —a:(x)) Q;(D)(@s) (%) Pi(D) (i) (¥)dax

supp @

> | am)AOP(®) | Fipa)(®) 148

R’l

—¢i;|[Q4(D), @alullol|[P«(D), @ilulle
— sup |a;;(x) —a:;(x) [ [|1QD)(@sh) ol P(D)(@ste)llo -

xEsupp ¥

Now we get

(3.18) 4=Re3y 3t | a,m)0,BPE) | Flpw)(®) a8

R

—Re 3} 33 6, lI[0,D), @iulllIIPAD), gilull

—Re g}l DI la; j(20)—a:(%) || Q(D)(@sto) ol IPD)(@ate)llo -

By L.5 we find

m

Re St 51 {2 (m)0/(B)P.8) | Flpa)(®) "t 2 3} IIPD) @)l

k=1 4,5
”

R

Moreover, using L.7 it follows that for any €>0
N M
Re 33 33 cill[Qi(D), @ululloll[Pi(D), @ulullo<(&/ 16)[|P(D)ull§+c'(€)llulls

holds.
In order to estimate the last term in (3.17), note that supp #Nsupp py=¢
and therefore R(D)(@y%)=0 for any pseudo differential operator. Further by
our assumptions on the support of @,, 1<kE<N—1, we have
sup | a;;(x)—a; (%) | <co(2mie’)™,

pp Py

zE8U

which implies that

N Mo

> 2 sup laij(xk)—aij(x)|”Qj(D)(¢ku)|Io”Pi(D)(fpku)”o

k=1 i,j=1 x&supp ¥,
N-1 ™o

=3 31 sup_|a;(x)—a;(x) [ |Q4D)(@a)llol|PD)(@ss)llo

k=1 i,j=1 xEsupp ¢},

< (@/2) S IPD) )i+ lull

= (/2) 3 IPDY@adlli-+ el
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where we have used the estimates for Q (D) and P;(D) given subsequent to (3.11),
noting that pueC7(Q) for 1<k<N-—1. Now, we have proved

A4, 2(c/2) é |P(D)(ge)[5—(/16) || P(DYulIs— [uls -

Finally consider the term ||[P(D)(@u)ll;. By (3.7) we find for any >0

IPOY@aills = | POyt PD), pilu(a) d

R

2S P¥(x) | P(D)u(x) | 2dx—2 S | (%) | | P(D)u(x) | | [P(D), @ilu() | dx

—I[PD), @elulls
=l P(D)ulls —((€/8Neo) | P(D)ul[5+ ¢'(€)u]15)

and we obtain
A, >(co/2) g‘l [l@eP(D)ul[§—(&o/8Neo) [|P(D)ul [§—c'(€) ||l |E]
—(&/16)||P(D)ul|i—2|lu|S
= ((cof2)—(&/8)IP(D)ul [§—c|lull5 .

Using (3.14), (3.15) and (3.16) the last estimate yields

Re St { a,/(0) QDWOPD(e)x= (/2) —(1/2E) DYl b—clull

R

which proves the theorem.

4. On the Commutator [Q(D), ¢]

In the last section we proved in Theorem 3.2 a generalized Garding in-
equality for pseudo differential operators

L(x, D) =i:zi‘,lP i(D)a;;(x) QD)

satisfying L..1—L.2 and L.5—L.7. In particular the estimates (3.7)—(3.9) have
been of greater importance. In this section we want to give a sufficient condi-
tion in order that for a symbol Q& X(P, 1) we have the estimate

TO(D), @]l <&llP(D)ells+c(€)l1ulls

for a suitable class of functions = C~(R"), see L.7. 'The proof of the follow-
ing theorem requires some lemmas:
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Lemma 4.1. ([16], Lemma 2.24) Let K =LR"), then we have for all
u, ve L R")

(1) 1| | &E—nutmo@indel <IIKllacalleliliol
R'R
Lemma 4.2. A. ([16], Lemma 2.2.1) For any g=R and all £, neR"
the ingeuality
(42) A+ IE1) A+ 27 <2114 | E—7[*)'

holds.
B. ([16], Lemma 2.2.2) For §<[0, 1], g R and any &, n<R" we have the

inequality
(4.3) (14 1E46(n—8) ) <c[(14 |2]%)'+ (14 1£]%)'] .

Now we can prove

Theorem 4.1. Let o= C=(R") such that for 1<i<n we have ;,p=C7(R").
Furthermore, let Q3(P, 1) N C (R") and assume

(4.4) |grad Q(&) | <c(1+| &%)

for some q= R, ¢>0, and all EER". In addition suppose

(4.5) fim AHIE” o

g | P(E)]
te. (14| |3)*€Zy(P, 1). Then for each €>0 the estimate
(4.6) I[O(D), @lulli<&lIP(Dyulls+c(€)llullz
holds for all us H3(R").

Proof. By our assumptions we have 8,p=C7(R"), 1<i<n, which implies
@ipr-s,0=M, MER, where B,(0)CR" contains l;J supp 9;. Hence, we find
p—M C5(R") and supp (p— M) B,(0). For a;; us Cy(R") we have

O(D)(pu)(x)—p(x)AD)u()
= O(D)(((p—M)+M)u)(x)—((p(%)—M)+M)Q(D)u(x)
= QD)(p—M)u)(%)—(p(x)—M)Q(D)u(x) -

Therefore the theorem is proved, if we have shown (4.6) for any function
Y eC7(R"). Now, using



GARDING INEQUALITY

V(D) = (@) | ero@uE)

7

0D ) = | e=00(E)(wu) €0

7n

R
and

(Q(D)u)(§) = Q(&)A(E)

we find
(1Q(D), ¥]u)' (&) = (QD)bu) (&)~ (FOD)"(®)
= QW) | (PE—nQDW) (1)

R

= | ro@dE—mte—dE Q@)

= [$E—n0®) i .

Furthermore, for any v & L*R") we have

S { S (xﬁs—n)(Q(E)—Q(v))%)ﬁ(E)dn}dE

= ey 9(E)—0) 2\a/2/)(
—S{ ,wa 2 GOCOD 1+ 1y denpigrana

Consider the expression

ME—n) LE—=0(n)
Y(E—m) L)

In order to apply Lemma 4.1 we want to show

e Q&) —0(n) 1
(YE—m) (1+ 7|22 -<—c(1+lg_v[2)(n+1)/z'

Using the mean value theorem we find

O(&)—0O(n) = (grad Q(E+-0(n—E&), E—n)o

which implies

PE=m)(QE) Q) = R FE—m)E—7) - O ir=trotr-t -

= SO E=) 2 Ot -

875
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Since by our assumption Dare C7(R"), 1<i<n, we find (see [18], p. 146),

1

Dl NE— IS S
(D) (& ﬂ)lsc(l—}-lf——nlz)mﬂ

for any m>0. This implies together with (4.4)

gy 2E)—0() 1 (1+ [ELO(n—E) |2
v(E=) (l—Hnlz)“’ZSc(l—f-lf—nlz)’”’2 1+ [n|?)e” .

Now, by (4.3) we have
(1+1E+0(n—8) ) <c[(1+ [7 )" +(1+ [£1)7]
and by (4.2) we obtain

g\ |2\ae/2 2\q/2
At O e S

Finally we get

e 0E)—0() -
V) T e | = (T gy AT IETPD)

Taking m=g-+n+1 it follows by Lemma 4.1 that

1

§{ ] Fe—now—ompieteina)
< Cé,,{ Ige,, ar [5—1’7 Iz)(n+1)/2
<cllullloll,

(1 1719 li(a) | 198) | dn} e

or
[([Q(D), ¥lu, v)o| <cllull,ll2llo,
which gives

I[O(D), vlulls <ellulls -

By (4.5) we conclude that (14| -|*)#2&3y(P, 1) and using Proposition 1.5.B it
follows that

[lael | == 1I(1—2)"*u||§ <[ P(D)ul[5+c(€)lull3
holds for any €>0. This implies the theorem.

5. The Dirichlet Problem

We want to solve a generalized Dirichlet problem and later an associated
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boundary value problem for a pseudo differential operator L(x, D) of the initial
form given in (2.1). First let us formulate the weak Dirichlet problem:

ProBLEM 5.1. Let QCR” be an open set and L(x, D) be a pseudo differen-
tial operator of form (2.1). Moreover let f €L*Q) be a given function. Find
all elements ue H¥*(Q) such that

(5.1) B(u, ) = (1, #)o

holds for all = C7(Q), where B is the sesquilinear form (2.3).

Note, that for a certain class of pseudo differential operators with smooth
symbols belonging to some class S; 5(Q2), Problem 5.1 is the formulation of the
weak Dirichlet problem given by H. Kumano-go and C. Tsutsumi in [13],
p. 165. For translation invariant pseudo differential operators the weak
Dirichlet-problem was handled in [3] and in a special case in [9]. In [11] we
handled Problem 5.1 for pseudo differential operators the symbols of which are
negative definite functions.

Theorem 5.1. Let QCR" be an open set, f € L*Q) and L(x, D) a pseudo
differential operator satisfying L.1—L.2. Moreover, assume that with two con-
stants ¢,>>0 and ¢, >0 the inequality

(5.2) Re B(u, u) 2 col[ull? —c,llll§

holds for all ue H%'(Q).

A. If ¢,;=0, then Problem 5.1 has a unique solution for all f € L*(Q).

B. If ¢,>0 and if the embedding of H%'(Q) into LX) is compact, then
for Problem 5.1 Fredholm’s alternative holds.

Proof. A. Since B is continuous on H%'(Q), the statement is nothing
but the statement of the Lax-Milgram theorem (see [18], p. 92).

B. This part of the theorem follows using the continuity of B on H%'(Q),
Garding’s inequality (5.2) and the compactness of the embedding of H %'(Q)
into L*Q) by the same arguments as Theorem 1.14.6 in [4].

By Corollary 3.1 and Theorem 3.2 we get

Corollary 5.1. Suppose that H%'(Q) is compactly embedded into L*Q)
and that the operator L(x, D) fulfills either L.3 and L4’ or L.5 to L.7. Then for
the weak Dirichlet problem Fredholm’s alternative holds.

Let us also mention

Corollary 5.2. Let PP and suppose that the embedding of H%'(Q) into
L) is compact. Then the weak Dirichlet problem posed for the operator P*D)
has a unique solution.
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This follows from Proposition 1.3 and the Lax-Milgram theorem. For
general PP we cannot decided whether or whether not the embedding of
H%'(Q) into L¥(Q), QC CR", is comapct. However there exist several sufficient
conditions, see [7], Theorem 10.1.10 and for polynomials [12], Theorem 4.
An obvious criterion is

Proposition 5.1. Suppose that H%'(Q) is continuosly embedded into the
space H**(Q) for some t>0. Then the embedding of H%'(Q) into L*Q) is
compact, provided N ™ ()<< oo.

The proof of Proposition 5.1 follows from the fact that for A™(Q)<co the
space H*(Q), t>0, is compactly embedded into L*(Q).

ReMARK. Note that all considerations in this paper remains true if L(x, D)
is substituted by the operator

K(x, D) = L(x, D)+ 3% RY(D)b$(x)S$ /(D)
v=1 /,k=1
where mu N for p=1, 2, 3, and we pose the following conditions on K(x, D).

Let P P be fixed, then we assume:

K.0.: L(x, D) satisfies the condition L.1 and L.2;

K1l.: R, SPe3(P, 1) for all 1<k<m, and 1<I<m,;

K2.: RP, RY, SV, SPezy(P, 1) for all 1<I<m,, 1<k<m, and 1<k,
l3<mj;

K3.: b, eL~(R") for all 1<k, I,<m, for v=1, 2, 3.

In that case L(x, D) becomes a generalized principal part of K(x, D).
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