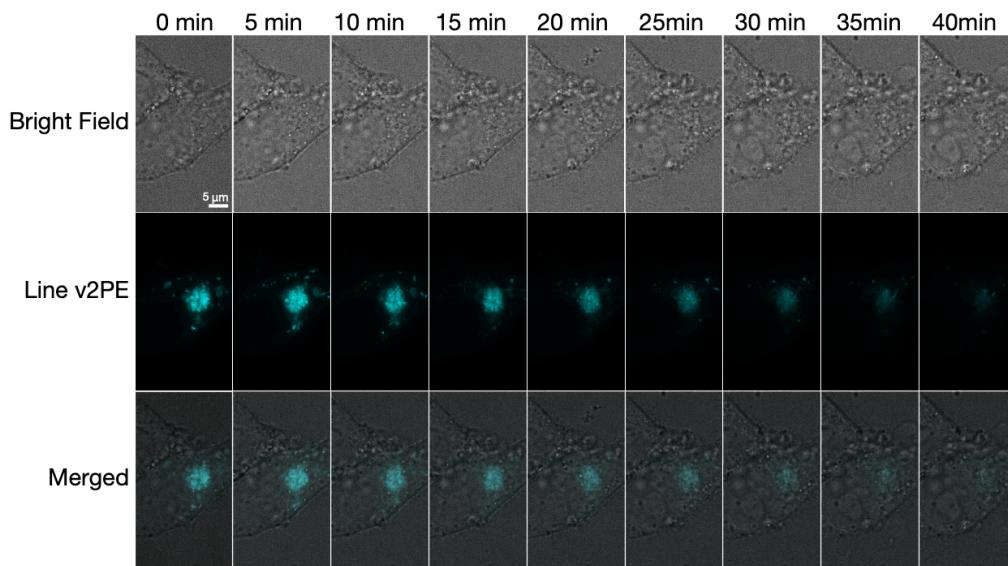


Title	Hyperspectral two-photon excitation microscopy using visible wavelength
Author(s)	Kubo, Toshiki; Temma, Kenta; Smith, Nicholas I. et al.
Citation	Optics Letters. 2020, 46(1), p. 37-40
Version Type	AM
URL	https://hdl.handle.net/11094/103309
rights	© Optical Society of America 2021 Optica Publishing Group. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modifications of the content of this paper are prohibited.
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka


Hyperspectral two-photon excitation microscopy using visible wavelength: supplemental document

This document provides supplementary information for “Hyperspectral two-photon excitation microscopy using visible wavelength”. Some experimental data to investigate the photodamage in visible-wavelength two-photon excitation (v2PE) imaging using slit-scanning confocal microscope is presented.

1. Photodamage in hyperspectral imaging using v2PE

To evaluate the damage on cells in our method, we performed time-lapse observation of living HeLa cells expressing mTFP1 in Golgi apparatus by using a line-illumination v2PE microscope. We imaged the same cells every 5 minutes by a bright-field microscope and the v2PE microscope.

Figure S1 shows the result of the time-lapse imaging. We did not observe an apparent morphological change in the images obtained at minute 0 to 30. However, in the image after 30 minutes, we confirmed a bubble formation that indicated photodamage. The distribution of the Golgi apparatus visualized by mTFP1 did not show a significant change during the observation, but photobleaching occurred gradually with the observation time.

Fig. S1. Time-lapse images of living HeLa cells expressing mTFP1 in Golgi apparatus. The wavelength of the excitation pulsed laser was 530 nm, and the intensity was 170 kW/cm² at the object plane. The exposure time was 7.5 ms per line. A silicone-immersion objective lens with an NA of 1.3 was used for the observations. The images were taken every 5 min at an imaging rate of 3.8 s per image.