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A Generalization of a Theorem of I. Kaplansky

By Taira SHIROTA

I. Kaplanskyυ showed that a bicompact space X is determined by
the lattice of all continuous real functions on X. On the other hand
it is proved by I. Gelfand, A. N. Kolmogoroff, M. H. Stone, E. Hewitt
and others9' that the rings of continuous real functions on spaces X,
which are not always bicompact, determine spaces X.

In this note we discuss the characterization of some sublattices
of lattices of all regular open sets on locally bicompact spaces and
applying this characterization we show that locally bicompact spaces
and complete metric spaces are determined respectively by sublattices
of all continuous real functions on them. Furthermore we prove that
e-complete spaces3' and completely regular spaces are determined res-
pectively by the lattices and the topological lattices of all continuous
real functions on them.

§ 1. Lattices of regular open sets of locally bicompact spaces.

Definition 1. In a distributive lattice L with the smallest elements
0, we define a binary relation eo & for two elements a and b of L as
follows:

a ^ b if and only if a Λ c —> 6 A c = 0 .

Furthermore we say that a is equivalent to b if a p b and b ̂  a. Let
p(L) be the set of all equivalence classes and for two equivalence
classes [α] and [6] we define [α] ̂  [6] if a 5 b. Then p (L) is also a
distributive lattice.

Obviously L — p(L) if and only if L satisfies Wallman's disjunction
property4' and p(L) = p(p(L)).

Definition 2. We say that a distributive lattice L with the smallest
element 0 satisfying Wallman's disjunction property an R-fattice, if

1) I. Kaplansky [1].
2) I. Gelfand and A. M. Kolmogoroff [2], M. H. Stone [3], E. Hewitt [4], J. Nagata [5],

D. Gale [6] and M. E. Shanks [7].
3) T. Shirota [11]. We say that completely regular space is e-complete if the structure

with basis for uniformity made up of all countable normal coverings is complete.
4) H. Wallman [9].
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there exists a binary relation > in L which satisfies the following
condition :

i) if h ̂  / and />#, then hyg,
π) if / ι>f l f ι and /2>02, then A Λ / ^ ^ Λ ^ ,

iii) if />£, there exists an h such that />#>#,
iv) for all /> 0, there exist g1 and gz > 0 such that 'gl > / > g29 and
v) if h > / > g, there exists an h (/, 0) such that h(f,g)Vf = h and

Λ (Λ flf ) Λ ff = 0. Moreover if /^ > A and 0 > 0ι * then ^i (ff * 9ι) > A (A 0)
Then obviously if f y g and g^ h, then />Λ and if />#, then

Now we have the following theorems.

Theorem 1. 4 distributive lattice L with the smallest element 0 is
an R -lattice if and only if it is isomorphic to a sublattice of the lattice
of all regular open sets on a locally bicompact space X which is an open
basis and whose elements have bicompact closures.

Proof. (I) Let L be an R -lattice. Then we say that a subset /
of L satisfying the following conditions is an open maximal ideal of L :

1) Ojf/,
2) / e / and gel-^f^gel,
3) for any fel there exists gel such that />#,

and
4) it is maximal with respect to the properties 1), 2) and 3).
Moreover let X be the set of all open maximal ideals and let Z7(/)

be its subset j / | / 3 / j . Then we show that considering {Z7(/) | /6L}
as an open basis of X, X is a locally bicompact space.

First we remark that for any />0, t/(/) is not void, since by the
conditions i)-iv) of β-lattice and by the definition of the open maximal
ideal for any / > 0 there exists an / such that / 3 /. Furthermore X
is obviously a TVspace. Next we show that if />#, U (/) 5 U (gj1.5^
For if l€U(gy*9 then g^fiΦQ for any Λ£/, hence by i), ii), iii), and
4) /' ={h\h^glΛf1 for some A G / and for some 0ι>#} is equal to /,
but /£/', hence /£/, i.e., f/(/)3/. Accordingly X is a regular space.
Now we show that for any h U(h}a is bicompact. For this assume
that for some hλ U(hΎ}a is not bicompact. Then there exists a closed
filter \FΛ\ of U (hλγ such that UFΛ = φ. Let A0>*ι Then for
any /eZ7(/i0) there exists an FΛ such that FΛ$I. Hence there exists
an / G / such that U(f)rλFΛ = φ. Moreover let h[ and ^(ί = l, 2;
7 = 1, 2, 3) be elements of / such that h0yh[yhf

zyhl9 h!2yg1 and

5) ^— the closure of A. Λc^= the complement of A.
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Then ϋ(glγf^PΛ=φ and h ( ( g 2 9 g3}jM(gl9 g2). Hence
U(hί(gl, <;2))

α w ffteJ 3 U(hίγ ;> Fβ, that is, J7(A{(ίa, <73)) 5 FΛ. Furthermore
let hr and 0' be the elements of / stίch that h0 > hf > A{ and
£3><7' Then h'(g39 g'^hl(g29 g3} and h'(g39 g'^g'=0. Now we set
Γ = \h\U(hf)^FΛ for some F Λ e { F Λ j and for some Λ'<A}. Then
/' satisfies the conditions 1), 2) and 3). If I0 is the open maximal ideal
containing Γ, then for all /eZ7(A 0 ) there exists # such that #e/ ,
g Λh = Q for some Λ € / 0 . In particular for J0 there exist # and A such
that g,h£l0 and g^h = Q, which is a contradiction.

(II) We prove that Ϊ7(/) is a regular open set of X. For this we
have only to show that U(f)aca ^ U(f)e, i.e., that if / £ £/(/), U(g}^U(fγ
for all #£/. Let /£/, then /># for all 0<Ξ/. By the disjunction
property there exists h ^> 0 such that / /\ h = 0 and g^> h. Evidently
t7(/)AI7(Λ) = ψ and Z7(flF)^)l7(Λ). Accordingly ί7(/)α^) C7(^). Further-
more we show that the correspondence / <-> Z7(/) is one to one and
isomorphic. For this we have to show that C/(/)Λ V(g') = Z7(/Λ^) and
U ( f t V U ( g } = U ( f v g ) in the lattice of all regular open subsets of X.
But by the definition of U(f) the first relation and [7(/)V U(g}^U(f^g}
is evident. Accordingly we have only to prove that ί/(/ v #)d
(ί/(/)Vyί/(^))"cΛ i.e., that U(fVgK U(fT \J U(gγ, but it is evident..
Furthermore by the disjunction axiom this correspondence is one-to-one.

(III) Conversely let L be a sublattice with the smallest element
φ of the lattice of all regular open sets on a locally bicompact space
X which is an open basis and whose elements have bicompact closures
and let Ul > U2 if Ul ^> U2

a. Obviously the binary relation > satisfies
the conditions of Definition 2. The proof of Theorem 1 is thus complete.

Theorem 2. Let L be an R-lattίce. Then there exists uniquely a
locally bicompact space X which satisfies the property in Theorem 1 and
where U(f)^>U(gT if and only if />#.

Proof. We first prove that if />#, then U(f)^ U(g)a. Let / >#.
Then by iv) there exists an h0 such that hQ > / and h0 > g. Now if
there exist /x and /2 such that / 2 < A < / and Λ0(/ l f f2)/\9 = 0, then

we have /*0(/ι,/2)
v/ι ^oΛ(Λ> / 2 )Λ/ 2 =0, and /i A 0=(/i v *o(/i ./2)) '

/\9=ho/\g=9 Since / > A and /*0>£N we have by iii) / ^ / Λ Λ 0 >
/ 1 Λ5 = g9 which implies / > f l f , contrary to our assumption. Thus, if
/ 2 < Λ < Λ then A o C Λ . / ^ Λ f f Φ O . Now let /' = [h\h^h0(fl9 /2)Λ^ for
some /2< A < Λ for some hQyfVg and for some 9^1 >^}. Then /' satisfies
the conditions 1), 2) and 3) because by ii) and v) if /ι>#ι and /2>#2»
then /!v /2 >flf x

 v ίf2. Let / be an open maximal ideal containing Γ. Then
I£ϋ(gγ-Ό(f). Since h0(f19f^6l and ̂ (A, / 2)Λ/ 2 =0, by 3) /^/.
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Moreover if e 6 7, then e Λ g Φ 0. For, if e Λ g = 0 for some e 6 /, there
exist by 3) e1 , e2 , h0 and h'Q such that e2 e / and 62 < ex < e < h0 < AS and
A,, >/ v g. Then A0 (e, «ι) Λ 0 = (*o fo eJv <ϊ)Λg =hoΛg =g and Aίfo, e2)
>A00, βx), hence AJ (ex , e2) > g . Accordingly hi(el , e2) e /, but e2 e I and

ΛJ(βι, e2) Λ e2 — 0, which is a contradiction.
Moreover the uniqueness of X is evident by the property : ί/(/) ^>

£W<-*/>0 (See the proof of Theorem 7). The proof of Theorem 2
is complete.

Definition 3. We denote the space X obtained in Theorem 2 by
X(L) and call it the representative space of L.

It is remarkable that a lattice L with the smallest element 0 is an
β-lattice with the largest element 1 if and only if X(L) is bicompact
and that in a Boolean algebra L if α>6 whenever a^>b then X(L} is
the representative Boolean space of L. We show in the next section
other applications of Theorem 2.

§ 2. Applications of Theorem 2.

Definition 4. Let L be a sublattice with the smallest element of
the lattice C (X) of all continuous real functions on a space X. Then
for two elements / and g of L we define /># if for any subset \hΛ]
of L with upper bounds in L such that hΛ(^g9 there exists an upper
bound h of {/**} such that hC^f. Moreover we define [/]>[#] in
p(L) if /><; in L.

Lemma 1. Lβί C+(gX) be a lattice of all (bounded^) uniformly con-
tinuous non-negative real functions on a uniform structure gX over a
completely regular space X. Then the correspondence : [/] <-> U [/]
= p(ffcac is a lattice ίsomorphίc mapping of p(C+(gX}} into the lattice
of all regular open sets of X and [/] > [<;] if and only if U [/]c and
U\_g~] are completely separated by a function of C+(gX\ where P(/)

Proof. We prove only the last statement of the lemma Let P(fYca

and P(g}a be completely separated by g19 i.e., gl(x}=l for any x£P(g}a

and tfiO') = 0 for any xeP(f)ac, and let \hΛ\ be a subset of L such that

/**O and hΛ^hλ for some hλ. Then (Σ P (A*))α C P (0)α Now let
h=g^hl9 then P(h)a(^P(glγ and P(g1T^P(fT, hence A C / and
A(α?) = flr1(a?) A1(α?) = Aj(a?) for any xeP(g)a, i.e., hΛ<h. Thus we see
that />#. Conversely let /># and for any #<GP(#) let hx£C+(gX) be
a function such that A^α?) = 1 and A^C^) = 0 for any ?/ not belonging
to some neighborhood of x which is contained in P(g). Then hx(^g
and we may assume that hx < 1. By the definition there exists an h
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such that h ̂  hx and h C A Hence h (P (#)α) 2> 1 and P (/)α ̂  P (Λ),
i.e., P(fΓr\P(K) = φ, accordingly A(P(/Γ) = 0.

Theorem 3. Let gX be a uniform structure over a completely regular
space X and let C+(gX}be a lattice of all (bounded^) uniformly continuous
non-negative real functions on gX. Then p(C+(gXJ) is an R-lattice and
its representatίv espace X ( p ( C + ( g X } J ) is homeomorphic to the completion

A

tgX, where tgX is the maximal totally bounded structure^ of totally
bounded structures less than the gX.

Proof. By Lemma 1 p(C+(gX')') is an β-lattice with the largest
element. Hence by Theorem 2 there exists uniquely a bicompact space
such that it satisfies the properties of Theorem 2. Now we show that

tgX has these properties. Obviously for any equivalence class [/] of
p(C+(gXy), there exists an /0 such that /0 is bounded and
Accordingly we see easily that as β-lattices p(C+(gXy) =

= p(C+(igXy) where C+b(gX} is the lattice of all bounded functions in

C+(gX). Further by Lemma 1 tgX satisfies the properties of Theorem

2 with respect to L=p(C+(tgXy).

Theorem 4. Let X be a locally bicompact completely regular space
and let C+,κ (X} be the lattice of all continuous non-negative real functions
with a bicompact support on X. Then X(p(C+,κ(Xy)) ~X.

Proof. By an analogous way as in the proof of Theorem 3 we
see that p(C+,Λ(Xy) is an β-lattice and is isomorphic to a sublattice
of all regular open sets of X such that it is an open basis and its
elements have bicompact closures and such that /># if and only if
P(fTac^pW ΐ e U(f)^>U(gγ. Hence by Theorem 2 we have
Theorem 4.

Theorem 5. Let X be a locally bicompact completely regular space.
Then X is determined by the lattice cfc(Z) of all continuous real functions
with bicompact support on X.

Proof. For any feC(X) let Cf)lc(X} = lg\g£Ck(x} & g^f\. Then
the correspondence between Cf,k(X) and C+)k(X}: g<^>g — f is an
isomorphic mapping preserving the relations ^> and >.

Moreover by Theorem 4 X=X(p(C+)JC(X^). Hence X=X(p(Cf,JiX)y)9

in other words X can be expressed in terms of lattice structure of
Ck(X). Accordingly we have Theorem 5.

Corollary 1. Let X be a locally bicompact completely regular space.

6) T. Shirota [10].
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Then X is determined by the lattice C^X} of all continuous functions
which are zero at infinity on X.

Proof. Let C+too(X) be the sublattice of all non-negative functions
in Coo(X}. We show that C+ίoo(X} characterizes C+,fc(Z). Obviously
f eC+,JC(X') if and only if there exists a countable subset \gn\ of C+ff00(X)
such that i f .ΛC]/, then gn^h for some gn. Moreover C+900(X) is
isomorphic to Cf9βo(X), where Cff09(X)=(g\g£C09(X) & f ^g\, for
any feC^X). Accordingly Coo(X} characterizes C+too(X) and Theorem
5 implies our corollary.

Corollary 2. Let X be a locally bicompact and fully rwrmal space.
Then X is determined by the lattice C(X} of all continuous real functions
on X.

Proof. We have only to show that C+(X) characterizes C+t1e(X^
For this we remark that /^C+, f c(J?) if and only if there exists a
countable subset [fn\ of C+(X) such that i) f:>fn^>Q and such that
ii) for any countable subset [gn\ satisfying the condition: if gnC^fn

for any n there exists an upper bound of [ g n \ .

Lemma 2. Let gX and gfXr be complete metric spaces. Then gX

and g'X1 are unimorphic if and only if tgX and t'g'X' are homeomorphic.
V

Proof. By the analogous method to the one used by Cech7) we

easily see that if A is a closed Gδ-set of tgX—X9 the cardinal number

I A \ of A is not less than 2*°. Accordingly if tgX and t'g'X' are

homeomorphic, X and Xf are homeomorphic. Moreover if tgX and tg'X
are homeomorphic where any point of X corresponds to itself, gX and
gfX are unimorphic.

By Theorem 3 and by the above lemma we have

Theorem 6. Let X be a complete metric space. Then X is determined
by the lattice of all uniformly continuous real functions on X. Moreover
X is determined by the lattice of all bounded uniformly continuous real
functions on it.

Proof. Let CU(X) and Cύtίt(X) be the lattice of all uniformly
continuous real functions and of all bounded uniformly continuous real
functions on X respectively. Then CU(X} and CbtU(X) determine the
sublattice C+)U(X) and C+,ϋ)U(X) respectively, and moreover by Theorem

3 each of them characterizes tgX. Furthermore by the above lemma tgX
determines gX.

7) E. Cech, On bicompact space, Ann. of Math. 38 (1938).
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Remark. A. N. Milgram8) showed that a bicompact space X is
determined by the multiplicative semi -group C(X). Here we remark
that his theorem can also be obtained by our method.

Considering C(X} as a multiplicative semi -group, we define binary
relations )̂ and > and an equivalence relation — as follows :

f / A = 0 implies g h =0,
/ > g if there exists an h such that g h —- g and f

and
/ ~ f f if Off and O/

Furthermore we define an ordering relation on the system of equivalence
classes by letting [/] ;> [0] if / ^ ) f f , and we use pr(C(XJ) for the
ordered system. Then obviously p(C+(Xy) and pr(C(Xf) are lattice-
isomorphic and [/] > [#] if and only if ί/[l/|]c and £ / [ l f f l ] are
completely separated. Accordingly Theorems and Corollaries in § 2 are
valid for multiplicative semi-group C(X) and for its sub-groups. More-
over by the analogous methods to the one in § 3 and § 4 Theorem 7 and
Theorem 8 are valid for multiplicative semi-group C(X) and topological
semi-group C (X9 T) respectively.

§ 3. ^-complete spaces.9)

E. Hewitt obtained the result that Q -space X is determined by the
ring C(X) of all continuous real functions on X. Now we prove the
following

Theorem 7. An e-complete space X is determined by the lattice C(X)
of all continuous real functions on X.

For this the following definition and lemma are used.

Definition 4. Let X be a completely regular space. Then a sequence
\fn\n = 1, 2, 3, ...} of C+C-Y) is called a normal sequence if it satisfies
the following conditions :

i) if \en\ is a sequence such that enζ^fn for any n, there exists
an upper bound of \en\ in the lattice C+(X).

ii) there exists a sequence \gn] such that fnygn for any n and if
/ is not the zero function, then / Λ gn Φ 0 for some gn .

Moreover if {/„} is a normal sequence of C+(X\ then we say that
\Un]} in P'(C+(Xy) is a normal collection.

Lemma 3. // {[/WJ! is a normal collection, [V\_f^\\ is a normal
covering. Conversely for any normal countable covering U there exists a

8) A. N. Milgram [8].
9) E. Hewitt [4] and T. Shirota [11],
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normal sequence \fn] such that {Γ7[/„,]} is a refinement of tt. Hence
the set of all normal collections corresponds to a basis for the e-structure
eX of X.9)

Proof. We first show that {Γ7[/J} is a covering of X. Obviously
by i) (Σ P(9JT =X Moreover {P(gnY} is locally finite. For if there

exists appoint xeX such that for any neighborhood U(x\ U(x) inter-
sects an infinite number of [ P ( g n T ] , then, setting en: en(x) = Q for
xeP(fn}aca and en(x) = n for x£P(gn}

a, which is possible since /„>£„,
we see that for any U(x) there exists a y€U(x) such that \/en(y^n9

i.e., \/en(x) = oo, but enC/ which contradicts the assumption ii). Thus
we see that {P(gJ*} is a locally finite closed covering. Moreover
U[fn']=P(fnγ

cac'^>P(gnγ. Accordingly {#[/„]} is a normal covering.
Conversely let U be a normal countable covering, 53 a locally

finite refinement {FJ of U, %$1 a normal covering \Vn'\ such that
ΐTC V«. ^2 a star refinement of ̂  and finally let Fn = X-S(X- Vn

f, SB2).
Then TV ̂ )Fn, Vn'

e^S(Fn, SB2) = φ and Σ **„ = -̂ Let /„ be a non-
negative continuous function such that /„(#)= 0 for a; 3 F^c and /(α?) = 1

for xeFn. Furthermore let gn be (fn-1) VO. Then / w >g w . For, let

«„ be /w-^, then en(aO = l for xεP(gnγ and βn(a?)=0 for xeP(fJc\

Moreover P(g^^>Fn9 hence |gn} satisfies the condition i) and since

^P(/») C ^»'» we have P(fnT C T^»- Accordingly {P(fnT\ is a locally finite
refinement of U. Thus [fn] satisfies the conditions i) and ii) and {!/[/»]}
is a refinement of U.

The proof of Theorem 6. (I) We construct a space Xe(p(C+(X^
as follows:

The point of Xe is the c-open maximal ideal / of p (C+ (XJ)
satisfying following conditions:

1) it is an open maximal ideal of p(C+(Xy)
and

2) if {[/„]} is a normal collection, there exists an [/„] such that
it is contained in /.

Moreover let {ί7/[/]} = {{^l^3C/]} [/]£P(<7+CX ))} be an open basis
of Xe.

(II) Let X be an e-complete space, and let / be a c-open maximal
ideal of p(C+XJ). Then we show that there exists uniquely a point
peX such that the total intersection Π U Γ f Ί = [p\. First by the

[/]€/
open-maximality we see easily that both {C/[/] | [/] e 1} and {P(/)α | [/] G /}
satisfy the finite intersection property and by 2) and by Lemma 3 for
any normal countable covering 53 there exists an [/]€/ such that
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£ZS, moreover there exists a [0]6/ such that
Hence {t/[/]} and {P(/)α} is a Cauchy family of eX. Since Z is
e-complete there exists uniquely a point p e X such that Π U [/]
-ΠP(/)α- {p}. Conversely for any peX let /(p) ={[/]!#[/] 3?}.
Then we show that /(p) is a c-open maximal ideal. To see the
maximality, if there exists an open ideal / such that /2^(P) then we
can find a [/]£/ such that C/[/]^p Let 0 be such function that
[sGe/and [</]<[/]. Then P(f»P(gγ, hence P(gγ$p. Evidently
there exists an β such that e (p) = 1 and e (α?) = 0 for a? 6 C7 (p)c where
17 (p) is a neighborhood of p and U(p}rλP(gJl = φ. Accordingly
[e]e/(p)C^/, but [e] Λ Cflf] = [0], which is a contradiction. Thus we
see that the correspondence p<->'/(p) is a one-to-one mapping of X
onto Xe.

(III) We show that the above mapping is a homeomorphism of X
onto Xe. Obviously by definitions peZ7[/] if and only if /(p)a[/],
i.e., if and only if /(p) e Z7'[/]. Accordingly J£ and Xe are homeomorphic.

(IV) Thus we see that e-complete space in determined by C+C-Ϊ),
which in turn is characterized by C(X\ hence we obtain our Theorem.

§4. Completely regular spaces.

Let gX be a uniform structure over a completely regular space X
and let C(gX, T7) be a topological lattice with topology T of all (bounded)
uniformly continuous real functions on X.

Definition 5. We say that a topological lattice C (X, T7) is point-
admissible, if / (a?) e U f or a fixed point x£X and if for some open set U
of the space of reals there exists an open set N(f) of / such that
g(x*)£U for any geN(f).

Definition 6. A subset {f#\A} of G+(gX9T) is called a covering set
of C+(gX,T} if the sublattice generated by the set [ g \ g ( ^ f for
some / e { / j A Π is dense in C+(gX,T}. A subcollection {[/Jl-A} of
p(C+(gX, T7)) is called a covering collection if {/JA} is a covering set.

Lemma 4. Lβί ^JY" 6e α uniform structure and let {[/*]! A} be a
covering collection, where the topology T of C(gX9 T) is weaker than the
compact open topology KOT of C(gX} and it is point-admissible. Then
{^[ΛJI-4} is an open covering of X. Conversely for any open covering
U there exists a covering collection {U[_fΛ"]\A} such that it is a refinement
of 11.

Proof. Let {[/Λ]|A| be a covering collection and assume that
there exists a point x € X such that x £ Σ Γ/[/μ] Then if / is a function
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in C+(gX,T) such that /(#)>0, there exists an open set N(f) such
that sr(a?)>0 for any g£N(f). But for any [/,] e j[/J |A}, /β(α?)=0,

w

hence V 0αί (^) = 0 for any finite number of at and for gx. C^ /α ,
accordingly, if A is generated by [g\gC^f* for some fΛ], then A(V) —0,
hence h£N(f), which is a contradiction.

Conversely let U be an open covering of X. Then for any x 6. X,
let fx be a continuous non-negative function such that fx (#) = 1 and
fx (?/) — 0 for any y e Z7 (#)c where Z7 (a;) is a neighborhood of x and
#O)αC ^ for some ^£tt Then obviously the set \fx\X\ is a covering
set in the compact open topology and hence in C(gX, T\ Furthermore

tf£tt, hence {Γ7[/J|X} is a refinement of U.

Theorem 8. Let X be a completely regular space and let C(X, T) be
point-admissible and weaker than C (X, KOT\ Then C (X, T) deter-
mines X.

Proof. First we define the ί-open maximal ideal / of p(C+(X, T))
as follows :

1) it is an open maximal ideal of p(C+(X,τy)
and

20 if {[/*]| A} is a covering collection, there exists an [/J such
that [/Je/.

Then we see that for any £-open maximal ideal / there exists
uniquely a point p of X such that p e U [/]([/] G/). For, obviously
ΠC7E/α] =HP(f*T and P(/^)α satisfies the finite intersection property.
Then, if Π P(/rt)

α = ψ, {P(/)αc| [/]€/} is an open covering, and hence
by Lemma 4 there exists a covering collection {[/J|A} such that
{#[/«]} is a refinement of {P(/)αβ}f but by 2') there exists a [/J such
that [/ J 6 /. Then 17 [/ J C P (/)αc for some [/] 6 /, hence φ = U [/ J

AP(/)rt = 17 [/J AZ7 [/], which is a contradiction. Furthermore the
intersection Π U\_fΛ~\ is obviously a point of -X".

The remainder of the proof is very nearly analogous to that of
Theorem 6, therefore it will be here omitted.

Corollary. Let gX be a totally bounded uniform structure or a
metric space and let C (gX, T) be a point-admissible topological lattice of
all (bounded} uniformly continuous real functions on X whose topology
is weaker than the compact-open topology of C(gX). Then C(gX, T}
determines X.

Proof. By the same method as in Theorem 7, C(gX, T) determines
the space X and by Theorem 3 and Lemma 2, it determines the com-
pletion gX, hence also gX.
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Remark. Let L be one of the lattices C+tk(X\ C+ttt(X), C+(X} and
C + ( X , f ) in Theorem 5, 6 7 and 8 respectively. Then we call a sub-
lattice U with the smallest element 0 to be characteristic if it satisfies
the following condition:

(1) When a subset A of X is completely separated from a subset
B of X by a function / in L, i.e., if /(α)=l for xeA and /(α) = 0
for x G β, then for any g € L there exists a function /z in U such that

A(α?) 2> g(x) for a? G A and h(x) = 0 for a? G 5 .

Evidently by the same way as in the proof of Theorem 5, 6, 7 and 8
we see that in the above theorems we can replace Ck(X\ CU(X\ C(X)
and C(X,T) by characteristic sublattices of C + f k ( X ) , C+,U(X\ C+(X)
and C+ (X, T) respectively.

Moreover in C+}Jc(X), C+,b,u(X) and Cb,+ (X,Γ) the condition with
respect to the characteristic sublattice is simplfied as follows:

(2) When a subset A of X is completely separated from a subset
B of X, then for any positive number r there exists a function / in
Lf such that f(x) ;> r for a? G A and /(#) = 0 for x € S.

Furthermore in C+t7c(X) we can reduce the condition (2) to the
following:

(3) For any neighborhood U(x) of any point x and for any positive
number r there exists a function / in Lf such that

> r and /(?/) = 0 for y G [/(#)*.

(Received August 1, 1952)
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