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A Generalization of a Theorem of 1. Kaplansky

By Taira SHIiroTA

I. Kaplansky? showed that a bicompact space X is determined by
the lattice of all continuous real functions on X. On the other hand
it is proved by I. Gelfand, A. N. Kolmogoroff, M. H. Stone, E. Hewitt
and others™ that the rings of continuous real functions on spaces X,
which are not always bicompact, determine spaces X.

In this note we discuss the characterization of some sublattices
of lattices of all regular open sets on locally bicompact spaces and
applying this characterization we show that locally bicompact spaces
and complete metric spaces are determined respectively by sublattices
of all continuous real functions on them. Furthermore we prove that
e-complete spaces® and completely regular spaces are determined res-
pectively by the lattices and the topological lattices of all continuous
real functions on them.

§1. Lattices of regular open sets of locally bicompact spaces.

Definition 1. In a distributive lattice L with the smallest elements
0, we define a binary relation @ >b for two elements ¢ and b of L as
follows :

a>b if and only if aAc—-bAc=0.

Furthermore we say that a is equivalent to b if a>b and b>a. Let
p(L) be the set of all equivalence classes and for two equivalence
classes [¢] and [b] we define [a] = [b] if a>b. Then p(L) is also a
distributive lattice.

Obviously L = p(L) if and only if L satisfies Wallman’s disjunction
property® and p(L) = p (p(L))-

Definition 2. We say that a distributive lattice L with the smallest
element 0 satisfying Wallman’s disjunction property an R-lattice, if

1) I. Kaplansky [1].

2) I Gelfand and A. N. Kolmogoroff [2], M. H. Stone [3], E. Hewitt [4], J. Nagata [5],
D. Gale [6] and M. E. Shanks [7].

3) T. Shirota [11]. We say that completely regular space is e-complete if the structure
with basis tor uniformity made up of all countable normal coverings is complete.

4) H. Wallman [9].
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there exists a binary relation » in L which satisfies the following
condition :
i) if A=fand f>g, then £>yg,
ii) if f1> 9, and f; > 9., then fi1Af, > 0172,
iii) if £>g, there exists an % such that f>%>g,
iv) for all f>>0, there exist g, and g, >0 such that g, » f > g,, and
v) if 2> f>g, there exists an & (f,g) such that z(f,g)Vf=~h and
h(f,9)ng =0. Moreover if s, >k and g >g,, then %,(g,9,)>k(f, 9).

Then obviously if f>g and g >k, then f>% and if f)>g, then

f=g.
Now we have the following theorems.

Theorem 1. A distributive lattice L with the smallest element 0 is
an R-lattice if and only if it is isomorphic to a sublattice of the lattice
of all regular open sets on o locally bicompact space X which is an open
basis and whose elements have bicompact closures.

Proof. (I) Let L be an R-lattice. Then we say that a subset I
of L satisfying the following conditions is an open maximal ideal of L:
1) 0¢1,
2) feland gel—sfage€l,
3) for any f €I there exists g€l such that f>g,
and
4) it is maximal with respect to the properties 1), 2) and 3).

Moreover let X be the set of all open maximal ideals and let U(f)
be its subset {I|I>f}. Then we show that considering {U (f)|f €L}
as an open basis of X, X is a locally bicompact space.

First we remark that for any f >0, U(f) is not void, since by the
conditions i)-iv) of R-lattice and by the definition of the open maximal
ideal for any f >0 there exists an I such that I>f. Furthermore X
is obviously a T,-space. Next we show that if f>g, U(f)>U(g)".»
For if 1€U(g)’, then g A f,==0 for any f, €I, hence by i), ii), iii), and
4) I' ={h|h=g, A f, for some f, €I and for some g, > g} is equal to I,
but fel’, hence fe€l, ie., U(f)>I. Accordingly X is a regular space.
Now we show that for any % U(k)* is bicompact. For this assume
that for some %, U(#,)* is not bicompact. Then there exists a closed
filter {F,} of U(hk,)* such that IIF,=¢. Let A, >A,. Then for
any I€U(h,) there exists an F, such that F,%I. Hence there exists
an fel such that U(f)~F,=¢. Moreover let 4] and g,(i=1,2;
7=1,2,3) be elements of I such that %,>A >k, >h,, h,>g, and

5) A"= the closure of A. AC°= the complement of A.
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£>91>9:>9s. Then U(g\)'AF.=¢ and hki(g:, 95) >hi (91, 9:)- Hence
U(Ri (91, 920" Y U(91)" D U(RL)' O F, that is, U(ki(g:, 95)) > F,. Furthermore
let # and ¢’ be the elements of I such that %, > %' > k| and
9:>9'. Then k'(g;, 9")>hi(9:, 95) and K'(g;, 9')n9' =0. Now we set
I' ={h|UK)DF, for some F,€{F,} and for some A'{A}. Then
I' satisfies the conditions 1), 2) and 3). If I, is the open maximal ideal
containing I', then for all I<€U(k,) there exists g such that gel,
gAh =0 for some ~€l,. In particular for I, there exist g and % such
that g,2¢€I, and g o 2 =0, which is a contradiction.

(II) We prove that U(f) is a regular open set of X. For this we
have only to show that U(f)* D U(f), i.e., that if I¢U(f), U(g)LU(f)"
for all gel. Let f¢1, then f }>g for all ge€l. By the disjunction
property there exists 2°>>0 such that f /\ 2 =0 and g >%. Evidently
U(f)AUh)=¢ and U(9) DU(A). Accordingly U(f)* D U(g). Further-
more we show that the correspondence f <« U(f) is one to one and
isomorphic. For this we have to show that U(f) A U(g) =U(f A9) and
U(HVU(g)=U(fVg) in the lattice of all regular open subsets of X.
But by the definition of U(f) the first relation and U(f)VU(9)<U(fVyg)
is evident. Accordingly we have only to prove that U(fV g)_
UH\JUg)yes, ie., that U(fVg)CU(f)*\JU(g), but it is evident..
Furthermore by the disjunction axiom this correspondence is one-to-one.

(III) Conversely let L be a sublattice with the smallest element
¢ of the lattice of all regular open sets on a locally bicompact space
X which is an open basis and whose elements have bicompact closures
and let U, » U, if U, DU,". Obviously the binary relation » satisfies
the conditions of Definition 2. The proof of Theorem 1 is thus complete.

Theorem 2. Let L be an R-lattice. Then there exists uniquely o
locally bicompact space X which satisfies the property in Theorem 1 and
where U(f) DU(g) if and only if >g.

Proof. We first prove that if f } g, then U(f) DU(g). Let f pg.
Then by iv) there exists an %, such that %, f and 4,>»g. Now if
there exist f, and f, such that f,<f,<f and 7%y (f,, f2)An9 =0, then
we have h,(fy, f2)V fr="ho, Bo(f1, f2) A fa =0, and f1 A9 =(f1V By(f1, f2))
Ag=hyAg=g. Since f>f, and %,» g. we have by iii) f=fak >
fing =g, which implies f» g, contrary to our assumption. Thus, if
fo K f1 < f, then hy(f1, f)Ag==0. Now let I' = {&|h = hy(f1, f2) A g1 for
some f, < £, < f, for some A, >fV g and for some g, »g}. Then I' satisfies
the conditions 1), 2) and 3) because by ii) and v) if f,» g, and f, >9.,
then 7,V £, >0,V g,. Let I be an open maximal ideal containing I'. Then
Ic€U(g)—U(f). Since hy(fy, f2)€I and hy(f1, f2)Af.=0, by 3) I 3.
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Moreover if e€l, then epg-+0. For, if e g =0 for some ec I, there
exist by 3) e, €,, h, and %} such that e,€I and e, < e;< e 4, < hy and
hy>fVg. Then h,(e, e)pg = (hy(e,e,)Ve)png =hy,ng =9 and ki(e,, e;)
Shy(e, €,), hence kj(e,, e;)>g. Accordingly #i(e,,e,)€l, but e, €I and
hl(e,, e,) e, = 0, which is a contradiction.

Moreover the uniqueness of X is evident by the property: U(f) D
U(g) < f>g (See the proof of Theorem 7). The proof of Theorem 2
is complete.

Definition 3. We denote the space X obtained in Theorem 2 by
X (L) and call it the representative space of L.

It is remarkable that a lattice L with the smallest element 0 is an
R-lattice with the largest element 1 if and only if X (L) is bicompact
and that in a Boolean algebra L if ¢ »b whenever a >b then X(L) is
the representative Boolean space of L. We show in the mext section
other applications of Theorem 2.

§2. Applications of Theorem 2.

Definition 4. Let L be a sublattice with the smallest element of
the lattice C(X) of all continuous real functions on a space X. Then
for two elements f and g of L we define f>» g if for any subset {4,}
of L with upper bounds in L such that %, g, there exists an upper
bound % of {h,} such that # f. Moreover we define [f]>[¢] in
p(L) if f>g in L.

Lemma 1. Let C.(gX) be o lattice of all (bounded) uniformly con-
tinuous mon-negative real funclions on a wuniform structure gX over o
completely regular space X. Then the correspondence: [f] < U[f]
= P(f)* is a latlice isomorphic mapping of p(C.(gX)) into the lattice
of all regular open sets of X and [f]>Lg] if and only if U[f]° and
Ulg] are completely separated by a function of C.(9X), where P(f)
= {x|f (x) > 0}.

Proof. We prove only the last statement of the lemma. Let P(f)"*
and P(g)* be completely separated by g¢,, i.e., g,(¢)=1 for any « € P(g)*
and ¢,(x) =0 for any z € P(f)*, and let {A,} be a subset of L such that
hy g and h, < h, for some k,. Then (3P (h,))  P(g). Now let
h =g, h,, then P(h) P(g,)* and P(g,)*_ P(f)", hence A f and
h(x) = g,(2)- by (2) = h,(x) for any x € P(g)*, i.e., h, <h. Thus we see
that f>g. Conversely let f>¢ and for any z € P(g) let %,€C.(9X) be
a function such that %,(z) =1 and %,(y) =0 for any y not belonging
to some neighborhood of = which is contained in P(g). Then %, g
and we may assume that %4, <1. By the definition there exists an %
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such that 2= 7%, and A f. Hence A (P(9)) =1 and P(f) DP(h),
ie., P(f)y°~P(h)=¢, accordingly % (P (f)°)=0.

Theorem 3. Let gX be a uniform structure over a completely regular
space X and let C,(gX)be a lattice of all (bounded) uniformly continuous
non-negative real functions on gX. Then p(C.(9X)) is an R-lattice and
its representativ espece X (p (C.(9X))) is hgmeomorphic to the completion
tgX, where tgX is the maximal totally bounded structure® of totally
bounded structures less than the gX.

Proof. By Lemma 1 p(C,(¢9X)) is an R-lattice with the largest
element. Hence by Theorem 2 there exists uniquely a bicompact space
- such that it satisfies the properties of Theorem 2. Now we show that

tgX has these properties. Obviously for any equivalence class [f] of
p(C,(gX)), there exists an f, such that f, is bounded and f,€[f]-
Accordingly we see easily that as R-lattices »(C.(gX)) = (C,,(gX))
= p(C,({gX)) where C,,(¢gX) is the lattice of all bounded functions in
C.(gX). Further by Lemma 1 tgX satisfies the properties of Theorem
2 with respect to L = (C, ({gX)).

Theorem 4. Let X be a locally bicompact completely regular space
and let C., (X) be the lattice of all continuous non-negative real functions
with a bicompact support on X. Then X (p(C,, (X)) = X.

Proof. By an analogous way as in the proof of Theorem 3 we
see that p(C,, (X)) is an R-lattice and is isomorphic to a sublattice
of all regular open sets of X such that it is an open basis and its
elements have bicompact closures and such that f>g¢ if and only if
P(fye >SP(g) ie. U(f)>U(g). Hence by Theorem 2 we have
Theorem 4.

Theorem 5. Let X be a locally bicompact completely regular space.
Then X is determined by the lattice ¢, (X) of all continuous real functions
with bicompact support on X.

Proof. For any feC(X) let C,,(X)={glgeC,(z) & g=f}. Then
the correspondence between C,,(X) and C,,,(X): geog—f is an
isomorphic mapping preserving the relations > and >.

Moreover by Theorem 4 X=X (p(C,,,(X))). Hence X=X (p(C,,(X))),
in other words X can be expressed in terms of lattice structure of
C.(X). Accordingly we have Theorem 5.

Corollary 1. Let X be o locally bicompact completely regular space.

6) T. Shirota [10].
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Then X is determined by the lattice C_(X) of all continuous functions
which are zero ot infinity on X.

Proof. Let C,,_(X) be the sublattice of all non-negative functions
in C_(X). We show that C,,_(X) characterizes C,,,(X). Obviously
f€C,,,(X) if and only if there exists a countable subset {g,} of C,,,(X)
such that if 2 f, then g,> % for some g,. Moreover C,, (X) is
isomorphic to C, ,(X), where C, (X)=/{glgcC (X)) & f <g}, for
any f€C_(X). Accordingly C_(X) characterizes C,,_(X) and Theorem
5 implies our corollary.

Corollary 2. Let X be. a locally bicompact and fully normal space.
Then X is determined by the lattice C(X) of all continuous real functions
on X.

Proof. We have only to show that C,(X) characterizes C,,, (X)
For this we remark that f¢C,,(X) if and only if there exists a
countable subset {f,} of C,(X) such that i) f=7,>0 and such that
ii) for any countable subset {g,} satisfying the condition: if g, f,
for any #» there exists an upper bound of {g,}.

Lemma 2. Let gX and ¢'X' be complete melric épaces. Then gX
and ¢g'X' are unimorphic if and only if tgX and t'g'X" are homeomorphic.

Proof. By the analogous method to the one used by (Viech7> we
easily see that if A is a closed G;-set of tgX—X, the cardinal number
|A| of A is not less than 2%. Accordingly if 1gX and t'¢’X' are
homeomorphic, X and X’ are homeomorphic. Moreover if tgX and #g’X
are homeomorphic where any point of X corresponds to itseld, gX and

¢'X are unimorphic.
By Theorem 3 and by the above lemma we have

Theorem 6. Let X be a complete metric space. Then X is delermined
by the latlice of all uniformly continuous rea! functions on X. Moreover
X is determined by the lattice of all bounded wuniformly conlinuous real
functions on it.

Proof. Let C,(X) and C,,(X) be the lattice of all uniformly
continuous real functions and of all bounded uniformly continuous real
functions on X respectively. Then C,(X) and C,,,(X) determine the
sublattice C,,,(X) and C,,,,,(X) respectively, and moreover by Theorem

3 each of them characterizes tgX. Furthermore by the above lemma tgX
determines gX.

7) E. Cech, On bicompact space, Ann. of Math. 38 (1938).
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Remark. A. N. Milgram® showed that a bicompact space X is
determined by the multiplicative semi-group C(X). Here we remark
that his theorem can also be obtained by our methoed.

Considering C (X) as a multiplicative semi-group, we define binary
relations > and » and an equivalence relation ~ as follows:

f>g if f-h =0 implies g-2 =0,
f > g if there exists an % such that g2 =g and f DA

f~gif fOgandg>f.

Furthermore we define an ordering relation on the system of equivalence
classes by letting [f]1=1]g] if f Dg, and we use p'(C(X)) for the
ordered system. Then obviously p(C.(X)) and p’(C (X)) are lattice-
isomorphic and [f]»[¢g] if and only if U[|f|] and U[|g]|] are
completely separated. Accordingly Theorems and Corollaries in §2 are
valid for multiplicative semi-group C(X) and for its sub-groups. More-
over by the analogous methods to the one in §3 and §4 Theorem 7 and
Theorem 8 are valid for multiplicative semi-group C(X) and topological
semi-group C (X, T) respectively.

and

§ 3. e-complete spaces.”

E. Hewitt obtained the result that @-space X is determined by the
ring C(X) of all continuous real functions on X. Now we prove the
following

Theorem 7. An e-complete space X is determined by the lattice C(X)
of all continuous real functions on X.
For this the following definition and lemma are used.

Definition 4. Let X be a completely regular space. Then a sequence
{f.lmn=1,2,3, ...} of C,(X) is called @ normal sequence if it satisfies

the following condltlons

i) if {e,} is a sequence such that e, C f, for any =, there ex1sts
an upper bound of {e,} in the lattice C,(X).

ii) there exists a sequence {g,} such that f,» g, for any » and if
f is not the zero function, then f A g,==0 for some g,. _

Moreover if {f,} is a normal sequence of C,(X), then we say that
A[f.]} in p(C.(X)) is a normal collection.

Lemma 3. If {[f.]} is & mormal collection, {U[f,]} is a normal
covering. Conversely for any normal countable covering 1l there exists a

8) A. N. Milgram [8].
9) E. Hewitt [4] and T. Shirota [11].
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normal sequence {f,} such that {U[f.]} is @ refinement of . Hence
the set of all normal collections corresponds to a basis for the e-structure
eX of X.»

Proof. We first show that {U[f,]} is a covering of X. Obviously
by i) (2} P(g,)) = X. Moreover {P(g,)} is locally finite. For if there

exists a point # € X such that for any neighborhood U(x), U(%) inter-
sects an infinite number of {P(g,)*}, then, setting e,: e,(x)=0 for
z € P(fa) and e,(x) == for =€ P(g,)’, which is possible since 7, ¢,,
we see that for any U(x) there exists a y € U(x) such that \/e,(y)=n,
ie., \/e,(2) = oo, but e, f which contradicts the assumption ii). Thus
we see that {P(g,)"} is a locally finite closed covering. Moreover
ULf.]=P{)*°* >P(g,)" Accordingly {U[f,]} is a normal covering.

Conversely let 11 be a mnormal countable covering, B a locally
finite refinement {V,} of 1, L¥, a normal covering {V,’} such that
V,* V., B, a star refinement of B, and finally let F/,=X—-S(X—-V,/, B,).
Then V,) DF,,V,AS(F,,B,)=¢ and D) F,=X. Let f, be a non-
negative continuous function such that f,(x)=0 for 2>V, and f(x)=1
for x € F,. Furthermore let g, be (f,,,—%)\/o. Then f,>g,. For, let
e, be f,—g,, then e,(2) =% for € P(g,)" and e,(x) =0 for € P(f,)"

Moreover P(g,) DF,, hence {g,} satisfies the condition i) and since
P(f,)V,', we have P(f,)*C V,. Accordingly {P(f,)*} is a locally finite
refinement of U. Thus {f,} satisfies the conditions i) and ii) and {U[f»]}
is a refinement of 1.

The proof of Theorem 6. (I) We construct a space X,.(p(C.(X))
as follows:

The point of X, is the c-open maximal ideal I of »p(C, (X))
satisfying following conditions:

1) it is an open maximal ideal of p(C.(X))
and

2) if {[f.]} is a normal collection, there exists an [f,] such that
it is contained in I.

Moreover let {U'[f13={{I|I5[f]}|[f]1€p(C.(X))} be an open basis
of X,. _

(II) Let X be an e-complete space, and let I be a c-open maximal
ideal of p(C,X)). Then we show that there exists uniquely a point
p €X such that the total intersection[fI]I IU[f] = {p}. First by the

€

open-maximality we see easily that both {U[f]|[f] €1} and {P(f)*|[f] €I}
satisfy the finite intersection property and by 2) and by Lemma 3 for
any mormal countable covering ¥ there exists an [f]€l such that
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U[f]C U e B, moreover there exists a [g] €l such that P(g)* C U[f]-
Hence {U[f]} and {P(f)"} is a Cauchy family of eX. Since X is
e-complete there exists uniquely a point p€X such that ITU[f]
=TI P(f)*= {p}. Conversely for any peX let I(p)={[f]|U[f]>p}.
Then we show that I(p) is a c-open maximal ideal. To see the
maximality, if there exists an open ideal I such that I =21(p) then we
can find a [f]el such that U[f]#p. Let g be such function that
[g]€l and [¢g]<[f]- Then P(f) >P(g), hence P(g)*#p. Evidently
there exists an e such that e(p) =1 and e(x) =0 for €U (p)° where
U(p) is a neighborhood of p and U(p)~P(9) =¢. Accordingly
[el€eI(p)_ I, but [e]A[g]=[0], which is a contradiction. Thus we
see that the correspondence p « I(p) is a one-to-one mapping of X
onto X,.

(III) We show that the above mapping is a homeomorphism of X
onto X,. Obviously by definitions p € U[f] if and only if I(p)>[f],
ie., if and only if I(p)€ U'[f]. Accordingly X and X, are homeomorphic.

(IV) Thus we see that e-complete space in determined by C,(X),
which in turn is characterized by C(X), hence we obtain our Theorem.

§4. Completely regular spaces.

Let gX be a uniform structure over a completely regular space X
and let C(gX, T) be a topological lattice with topology T of all (bounded)
uniformly continuous real functions on X.

Definition 5. We say that a topological lattice C (X, T) is point-
admissible, if f (x)€ U for a fixed point @ € X and if for some open set U
of the space of reals there exists an open set N(f) of f such that
g(@)eU for any g€ N(f).

Definition 6. A subset {f,|A} of C.(¢9X,T) is called a covering set
of C,(9X,T) if the sublattice generated by the set {g|gf for
some fe€{f,|A}} is dense in C,(gX,T). A subcollection {[f.]|A} of
p(C.(9X, T)) is called a covering collection if {f.|A} is a covering set.

Lemma 4. Let gX be a uniform . structure and let {[f,]|A} be a
covering collection, where the topology T of C(gX, T) is weaker than the
compact open topology KOT of C(9X) and it is point-admissible. Then
§U[f.]1A} is an open covering of X. Conversely for any open covering
U there exists a covering collection {U[f,]|A} such that it is o refinement
of U.

Proof. Let {[f,]|A} be a covering collection and assume that
there exists a point x € X such that « ¢33} U[f,]. Then if f is a function
xc A
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in C,(¢gX, T) such that f(2) >0, there exists an open set N(f) such
that g(m)>0 for any ge N(f). But for any [f.,]€{[f.]l4}, f.(2)=0,

hence \/ 9. (a)——O for any finite number of «, and for g, Cf. s

accordmgly, if 4 is generated by {g|g C f, for some f,}, then Z(2) = O
hence % ¢ N(f), which is a contradiction.

Conversely let 11 be an open covering of X. Then for any € X,
let f, be a continuous non-negative function such that f,(x)=1 and
f-(y) =0 for any ye€ U («) where U (x) is a neighborhcod of 2 and
U(x)*C U for some U€ll. Then obviously the set {f,| X} is a covering
set in the compact open topology and hence in C(gX,T). Furthermore
U[f,]C U@)*C Uel, hence {U[f,]|X} is a refinement of 1.

Theorem 8. Let X be a completely regular space and let C(X,T) be
point-admissible and weaker than C(X,KOT). Then C(X,T) deter-
mines X.

Proof. First we define the {-open maximal ideal I of »(C.(X,T))
as follows:

1) it is an open maximal ideal of »(C.(X,T))
and

2" if {[f.]|A} is a covering collection, there exists an [f,] such
that [f,]€ L.

Then we see that for any ¢-open maximal ideal I there exists
uniquely a point p of X such that pe U[f]([f]€I). For, obviously
IMU[f,] =M P(f.) and P(f.)" satisfies the finite intersection property.
Then, if IIP(f,)* =¢, {P(f)*|[f]€I} is an open covering, and hence
by Lemma 4 there exists a covering collection {[f,]|A} such that
{U[f.]} is a refinement of {P(f)*}, but by 2') there existsa [f,] such
that [f,]€I. Then U[f,] P(f)“ for some [f]€I, hence ¢ =U[f,]
AP =U[f.J~AUI[f], which is a contradiction. Furthermore the
intersection I1 U[f,] is obviously a point of X.

The remainder of the proof is very nearly analogous to that of
Theorem 6, therefore it will be here omitted.

Corollary. Let gX be a totally bounded wumniform structure or a
metric space and let C(gX, T) be a point-admissible topological lattice of
all (bounded) uniformly continuous real functions on X whose topology

is weaker than the compact-open topology of C(9X). Then C(gX,T)
determines X.

Proof. By the same method as in Theorem 7, C(gX, T) determines
the space X and by Theorem 3 and Lemma 2, it determines the com-
pletion gX, hence also gX.
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Remark. Let L be one of the lattices C,,.(X), C,,.(X), C.(X) and
C.(X, t) in Theorem 5,6 7 and 8 respectively. Then we call a sub-
lattice I/ with the smallest element 0 to be characteristic if it satisfies
the following condition : ‘

(1) When a subset A of X is completely separated from a subset
B of X by a function f in L, ie., if f(#) =1 for €A and f(2)=0
for x € B, then for any g € L there exists a function #Z in L’ such that

h(z) = g(x) for €A and A(x)=0 for z€B.

Evidently by the same way as in the proof of Theorem 5, 6, 7 and 8 .
we see that in the above theorems we can replace C,(X), C,(X), C(X)
and C(X,T) by characteristic sublattices of C,,.(X), C,,,(X), C.(X)
and C,(X, T) respectively.

Moreover in C.,; (X), C,,,,.(X) and C,,, (X, T) the condition with
respect to the characteristic sublattice is simplfied as follows:

(2) When a subset A of X is completely separéted from a subset
B of X, then for any positive number » there exists a function f in
L' such that f(x)=r for x€ 4 and f(x) =0 for x€B.

Furthermore in C,,,(X) we can reduce the condition (2) to the
following :

(3) For any neighborhood U(x) of any point « and for any positive
number » there exists a function f in L' such that

. f@=r and f(y)=0 for yeU(x).

(Received August 1, 1952)
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