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0. Introduction

In this article we study the Fuchsian differential equat@norder 2 with mono-
dromy group a triangle group and having three regular ngraiggnt singularities and
several apparent singularities. To each such differerdtlation there corresponds
a differential operatorL € C(z)[d/dz]. We will give an integral representation of its
solution and discuss the algebraicity of the value of thewszh mapD £ ) forz € Q
in the caseL € Q(z)[d/dz].

In Sections 1 and 2 we reconstruct a classical argument derRji4] and
thereby obtain a differential equatian: ) = 0 of the shap&)(vhen we have three
regular singularitiesz =,0,bo and n apparent singularities at t5...,1,, with
the Riemann scheme

0 1n- -1t o©
(0.2) 000---04 |.
vovy 2 -+ 2 u”

In general we get’2 differential equatiodss i{ ) = 0 belonginghe same Riemann
scheme. This is deduced from the non-logarithmicity céodifor (1.3).

In each differential equation the solutioff z () that is holopioc at z =0
with f(0) =1 is expressed as a linear combination of Gaussriggoeetric functions,
as follows

colt)F(u' " 1= n —vg;2) +- -+ ey(VF (W, 1" 1= v5;2), Y eit) =1
i=0

where the coefficients; ¢ ( )'s ar€’ 2 -valued analytic functiofs = (¢4, ..., 1,,).

In Section 3 we restrict our study to the case whege, 1/, 1" € Q with some
non-integral condition given by (3.1). We assunier € Q(z)[d/dz], in particular
the apparent singularities, ..., r, are algebraic numbers. The above solutifre ()
can be regarded as a periqg1 n(t, z) of an abelian differential of the second kind
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on the hypergeometric curv& k,(z ) along a 1l-cyele where
X(k, Z): yk — Z,tk(a—r)(u _ 1)k(r+h—l)(u _ Z)ka

we changed the signatures of the exponents wittb (c Ve, 1—n — 1) andk
is the least common denominator @fb, ¢ . We note here that therdiftial 7(z, z)
depends o (and ), but the curnek,{ ) and the 1-cygle v1(z) do not depend
ont.

Putting ¢ = ¢2™/k the first homology groupHi(X(k,z),Z) can be regarded as
a Z[¢]-module. By using another generator cyeje not belonging toZ[(]y1, we get
the second solutionfv2 n(t,z) of L(t)Ju = 0. Our Schwarz map is therefore given
by D) = [, n(t.2) / [, . 2).

We consider the Prym variet§f k(z ) of the covering Riemann sefX , z),
that is the abelian variety induced from the differentiafs tbe first kind that is
not coming from an intermediate covering betweEnk,z( ) d&td The dimension
of T(k, z) is p(k) = #(Z/kZ)* and the extended endomorphism algebra Enkl(z ( ® ))
Q contains the fieldQ(().

By inspection ofy(z,z) and T &, z ), we get the following:

(1) For anyz € U=C—{0,1} the cohomology groupH3r(X(k,z)), the space of
differentials of the second kind modulo exact differergjdhas a naturaf-action. We
always have a 2-dimensional eigenspace for every eigemwdfif/* with [ € (Z/kZ)*.

(2) The relation between and ¢ () ( Q.,n) is stated in Theorem 3.1 and Propo-
sition 3.2 in an explicit way.

In Section 4 we discuss the algebraicity of the valde; ( )#ar Q in the same
situation as in Section 3, with special interest for the caser; (j =1 ...,n).
If D(z) €Q, thenT ¢, z) is of CM type, namely it is isogenous to a product afge
abelian varieties with complex multiplication. By inspect of the monodromy group
we obtain the following detailed result.

In the case that the monodromy group is finite, namely thetisolus an algebraic
function, we always havé z(d Q. MoreoverT , z ) does not depend @n and it is
a fixed abelian variety of CM type.

If the monodromy group is infinite, the familyT'(k,z) : z € U} corresponds to
a 1-dimensional variety in the moduli space of abelian tEms$e In the case of
a non-arithmetic monodromy group, the André-Oort conjeet predicts that we
have only finite numbers off k(z )'s with complex multiplicatioim this family.
Much progress on this prediction is given by Edixhoven ande&a [8]. Cohen
and Waistholz [6] showed how their result can be applied tdoua problems con-
cerned with hypergeometric functions, filling a serious gaphe third author’s pa-
per [20]. It is therefore highly likely that we have only fiely many algebraic points
with D(z) € Q.

In the case of an arithmetic monodromy group, we have infiniteany 7 (, z)'s
of CM type. For the Gauss hypergeometric function, the Schwmage is alge-
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braic if and only if the corresponding Prym variey k,{ ) is of CMpe pro-
vided the corresponding corresponding differential fosnhiblomorphic satisfying a
necessary additional condition, see [19, Corollary 5 .(ifhis is however not the
case for our differential equatiol. r ) = 0. We have very raraly algebraic
point z with D(z) in Q. In fact, for fixedz =7 € U N Q, arbitraryn ¢
Z-o and arbitraryr =f,---,t,) € (6)" we have infinetly many Schwarz images
{Dij(r):n€Zso, t€(Q)", j=1...,2"}. There are at most two algebraic val-
ues among them. This is the main result in this section.

The full statement is given in Theorem 4.1 and Theorem 4.2. the proofs
of this section, we need applications of Wustholz' Analy8ubgroup Theorem [24].
As an Appendix, we include a proof, kindly provided to us byulgaB. Cohen, of
the relevant linear independence result, originally ameced in [23], for period inte-
grals of the second kind.

For a transcendental valu® z (), a method of Hirata-Kohno [@i¥s even
its transcendence measure. If we wish to extend our studyheochse where we
have regular singularities at more than three points (naméth non-triangle mono-
dromy group), we encounter a problem stated in the work of. kRudnovsky and
G.V. Chudnovsky [2]: in which cases do we have a monodromyugrdefinable
over Q? In our triangle case the monodromy group is always realineGL(2, Q).
This is a subject outside the immediate context of our pregemnk.

1. Preliminaries about accessory parameters

We consider a Fuchsian differential equation

dz?

d? d
{ +p(Z)d—Z+q(Z)}u(Z)=0 (), q@) € C(2)

of order 2 withn + 3 regular singularities, ..., t,+3. We have at most a simple pole
for p(z) and a double pole foy z( ) at % i( =,1..,n + 3). The characteristic
equation at; =; is given by

f@)=t(t —1)+pit +q; =0

with p; = lim,_,(z — t:)p), ¢ = lim._,(z — #)?q(z). In the case;; =0, we use
pi = 2—lim,_op(1/2)/z, ¢ = lim,_0q(1/z)/z? for the coefficients. Two roots of
the characteristic equation give the exponents! atz =1;. The sum of all exponents
satisfies Fuchs’ relation

n+3

(1.1) D (eitef —1)=-2.
i=1

The table of exponents is called the Riemann scheme. If = ORikenann scheme
determines a Fuchsian differential equation in a unique.végwever in the case
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where we haven > 0O there appear severakcessory parameter® the correspond-
ing differential equation, so the differential equationrist uniquely determined by
the Riemann scheme. We shall restrict our study to the casangfle apparent singu-
larities forz =1, ...,t, and ordinary singularities at =0, &. In other words, we
assume that we have the Riemann scheme of the form

0 1#xn-1t
1.2 0 00--- 0y
vouvy 2 - 2 1"

Corresponding to this Riemann scheme we have the Fuchsfaredtial equation
Lu =0 with

d? 11—y 1-11 ~— 1 d 1 LA
13) L =—+ + _ Rl I i ’
(2.3) dz? ( z z—1 Zz—t,-)dz Z(z—l)(l”b Zz—t,-)

i=1 i=1

where Ay, ..., A, are the accessory parameters.

In general we have a logarithmic singularity at /= , so we haveteck a non-
logarithmicity condition for these accessory parameters.

For a Fuchsian differential equation of order 2, in a neighbod of a regular
singularity z =¢; , we can rewrite it in the form

2
{(z P e +q*(z)} u(z) =0

p*(2) = po+ pi(z — t;) + paz — 1;)% + - --
q*(Z) :qo+Q1(Z - tj)"‘Qz(Z — tj)2+ .

Consider a solution of the form
u(@) =(z— fj)s(co+61(2 —tj)+caz — fj)2+ o )

with an exponens at % .If is not a positive integer, we obtaifornal solution
u(z) =z —t)) (1 + 1 om(z — tj)’") at z =¢; by the recurrence relation

f(m—s)en, + Ry =0
with

R, = Z (iCiPI +Ciq/)'

i+l=m, i<m

If we have the exponert =2 the above recurrence conditioorbes

m(m - 2)Cm + Rm = 0
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When we haveR, # 0 our recurrence procedure stops rat = 2. In this case we
have a logarithmic singularity. Therefore we have a noratilgmic singularity, that

is an apparent singularity, if and only B, = cog2 + c1p1 + c1g1 = 0. We may assume

co = 1, thereforecs = Ry = coq1 = g1, and we haveR, = g, + qf + p1g1 = 0. For our
equationLu =0 withL in (1.3) we have

* 1—1/0 1—1/1
pra)=-1+ > (z—1;)+
lj lj— i#jtj_t'
A‘

q7°(R) = —L—=G—1)

-1

1 1 1
+—— LA =+ —— )+ |+ (z—1;)%+---,
ti(t; — 1) ’(tj tj—l) H ; P — 1 J

for everyt; (j =1...,n). We obtain the following result:

Lemma 1.1. The non-logarithmicity condition at = ¢; for Lu = 0 in (1.3) is
given by
(1.4)

Lt
AZ — oty — 1) +1at; +Z 4 = 1) — ) Aj+tt;—1) | o ”+Zt s =0.
iZj J ! iZj J 1

We also have:
Lemma 1.2. The system of quadratic equations

X2+ c1pX o+ c13X3+ e Xy = an

cnX1+ X5+ co3Xz+ -+, X, = a2

cniX1teppXot -t 1 Xy 1t X,% =y
(with all ¢;; # 0) has 2" solutions(X4, ..., X,) € C" counting multiplicities

Proof. Let V be the intersection of the abowe  quadratic hypéases in
the compactificationP” of the (Xi,..., X,)-spaceC”. It is apparent thatV has no
intersection with the hyperplane at infinity. As a conseageerV is a 0-dimensional
algebraic set. Bezout's theorem therefore gives the reduiumber of solutions as
the degree of the intersection of quadratic hypersurfaces. ]

According to this Lemma we obtain the following:
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Proposition 1.1. For any pairwise different apparent singularities, ..., 1,
€ P'—{0,1 00} we have2" possibilities for then -tuples of accessory parameters
(Aq, ..., Ap).

Remark 1.1. We can treat the case of general exponent differences issi-
bly exceeding 2 as some confluent case of our equation. If we égponents 0 antl
at z =t¢;, we get the differential equation putting—{ 1)/(z — ;) instead of ¥(z — 1)
in (1.3). For the case =,0 1 we get the equation by putting 1, v; + 1 instead
of vy, 11, respectively, with theA; ’'s being given as the limit valuestedmined
by (1.4). The case =0 can be reduced to the case =0 by the inversien 1/r.

2. Isomonodromy properties and reduction procedure

We consider first the differential equatidnu ¢ ( )) = 0 with thiéfetential opera-
tor (1.3) in the special case =1, i.e.

d? - 1-1 1 )d ( A ) 1
21) L¢, A)=L =S+ + _ a (s ,
@1 LEA) dz? ( 4 -1 z-t)az \"" 1) -1

satisfying the non-logarithmicity condition of Lemma 1.4rfA = A1, t =1;. It corre-
sponds to the Riemann scheme

0 o0 1t
(2.2) 0 0O
vo ' v 2

By Lemma 1.1, the accessory parameter runs over a 2 sheetethRh surface
R: A% — (ot — 1) + 1) A+ p/p"t(t — 1) = 0

over the space of with two ramification points in general. ey rtherefore consider
R as P! with a natural projectionr from R to ther spacé?.

We sometimes writd. = ¢( ) as well, keeping in mind that for mosher¢ are
two choices forL .

We have the following classical well-known fact:

Lemma 2.1 (Local lemma). Take (zo, Ag) € P* — {0, 1,00} x R and suppose

m(Ao) # zo. We consider the solutiong(z, A) ( = 0, 1) of Lu = O defined in some
neighbourhood ofzp, Ag) with the initial conditions

(fo(zo, . %, A)) = (1.0)

(fl(zo, A, %, A)) = 0. 1).
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Then we can find a neighbourhodd x W of (zo, Ag) where the solutionsf;(z, A)
(i =0, 1) are holomorphic in2 variables.

We have:

Lemma 2.2 (Semi-global lemma). Take any pointzg € P* — {0, 1, oo}. Then
we can find a neighbourhood  @f such that the solutiory;(z, A) in the previous
lemma atzq is holomorphic in2 variables inU x (R — 7 (z)).

Proof. Lete(r) be a neighbourhood afy and let f; ¢, A) be the solutions given
by convergent power series in  with 7®A) # zo. They give a holomorphic function
in some neighbourhood ofzo} x R — 77 1(z0). Take a simply connected open neigh-
bourhoodU ofzgp with U N {0, 1, 00} = 0. For everyA withr =rn(A) # zop we can
make an analytic continuation of this series solutiinz, A )to s aaholomorphic
function of one variable. According to Hartogs’ continuityeorem we have an exten-
sion of f; ¢, A) holomorphic inU x R — 7~ (zo). O

DeriniTion.  The above systend fo(z, A; zo0), fi(z, A;z0)} is said to beinitially
conditionedat zq.

Remark 2.1. As we see in the proof of the following propositiorf; z, 4 )
(i =0, 1) is meromorphic oV x R and has a polar divisor alony x 7—(zo).

In the following we will write sometimes; z(¢ ) and; z(¢ zg) instead off; £, A )
and f; ¢, A ;zo) for r = w(A). As functions ofr these functions are multivalued but can
be assumed to be locally single valued meromorphic at laatside the critical values
of x.

Proposition 2.1 (Isomonodromy property). Let o be an arc connectingy and r;
in the ¢+ space and avoiding the critical values of Let @ be one of the liftings of
to R. Letzo be a point different fromx. Let v be an arbitrary loop in thez -domain
P1—{0, 1, 0o} with the terminal pointzo. Then we can find a basiSs(z, A), ¥(z, A)}
(A € @) of L(A)u = 0in (2.1) so that the circuit matrix of the differential equation
induced from~y with respect to this basis does not depend A& @.

Proof. Letfi ¢, A) =fi & Azo) (i = 0,1) be the initially conditioned system
at zo. Let fo(z, A) and fi(z, A) be the result of the continuation along We have
an expression

2.3) (;}o(z, A)) _ (POO(A) P01(A)> (fo(z, A))
' fi(z, A) p1o(A) p11(A) ) \ fi(z, A))"



632 H. SHicA, T. Tsutsul AND J. WOLFART

Here the matrix f;; ) is a circuit matrix ofy with respect to the basig fo(z, A),
fi(z, A)}. Becausef; 4, A ) is holomorphic ol x (R — 7~ *(z0)), pi;(A) is holomor-
phic on R — 77 Y(z0). If m(A) = zo, the function f; ¢, A zo) is not defined. We must
show that the matrix;; 4 )) in (2.3) is holomorphic dte 7~*(zo) also. The prob-
lem is local, so we consider a product neighbourhaoc W of (z,r) = (zo, zo). We
take another point; in U and makeg; {,¢t ) =f; {, A z1) = fi(z,t;z1) by the same
procedure. It is holomorphic oty x (W — {z1}). We have a relation

<f0) - <Coo(l) 001(l)> (go>
S c1o(t) c1a(t) g1)’

wherec;; ¢) is holomorphic oW — {zo, z1}. Put
<86(Z, f)) _ ((gl)z(Zo, 1) —(80): (2o, l)) (go(z, f))
g1(z. 1) —g1(z0, 1) go(zo, 1) gi(z. 1))’

_ go(zo, 1)  gi(zo, 1)
wi) = det[ (30)-(z0. 1) (1)-(z0.1) } '

and

Here we see that 7 (), the Wronskian at zg, is holomorphic and non-zero
on 0 < |t —zo| < & for some smallé > 0. But it has a zero at =z, because
z =z0 (=1) is a singularity of the equatioh ¢ ¢) =0. S6 z,¢ ) =/tk(r))g/(z, t) has
a polar divisor along =z as mentioned in the above remark.

Then we have again the same circuit matrix forwith respect to the system

{80, 81}

(2.4) (g’o(ZJ)) - (pn(t) Plz(f)) (86(& l))_
21z, 1) p21(t) p22(t) ) \g1(z. 1)
Becauseg/(z,t) is holomorphic in some neighbourhood ofo(zg), (2.4) means

that p;; ¢) is holomorphic at =zo. So it is holomorphic on the whole compact
Riemann surfac&k , hence the circuit matrix (2.3) is a comgtaatrix. U

Theorem 2.1 (Ritter [14]). We consider the differential equatiob(s)u = O for
the operator(2.1). Let o be an arc connecting =0 and ¢ = 1. Let z = zo be a point
different froma. Let fi(z, ) be the initially conditioned system ag.

Take an arbitrary pointr € o, and let ¢(z,¢t) be an arbitrary solution of
L(t)u =0. We putp(z,t) = cofo(z,t) + c1fi(z, 1). Seti(z) = ¢(z,i) = cofolz, i) +
c1fi(z,i) (i = 0,1). Then(z, 1) is expressed as &-linear combinationxg(t)yo +
x1(t)p1. Here, fi(z,0) and f;(z, 1) (j =0, 1) are solutions of the Gauss hypergeomet-
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ric differential equations corresponding to the Riemanhesnes

0 ~ 1 0o 1
0o w 0], ou O ,
vo+1p” 1n vo ' v+ 1

respectively.

Proof. Note that all the functions above are defined on somighbeurhood
U x W of {z0} x a. The matrix

Yo ¥ 1
foo fo for
1o f1 fu

is of rank two for any point4, ¢+ ¥ U x W, where we putf;; =fi 4,j ), &i,j <L
It induces the relation

o)=L 0((;,;)) e 1)+ 2 1((;,;)) o1 1),
with
_ Joo fo1 _ fo fo1 _ Jfoo fo
p(z, 1) —det[f10 f11:| . polz, 1) —det[fl fu} , Pl(Z,t)—det{flo fl} .

Let us fix ¢ for the moment. According to Proposition 2.1, thédsee minors of

(foo fo f01)
S0 f1 fu

behave in the same manner as multivalued functions. Thetifunco(z,r) has
the shapez*(z — 1)*H(z) with a holomorphic functionH z ) onC. The sit-
uation is the same forp z(r ) angi(z,t). The coefficientsxg = po(z,1)/p(z,1)
and x1 = p1(z, 1)/ p(z, t) are single valued and holomorphic on the affine space of
By Fuchs’ relationyg + p/ + " + v, = 0 they are holomorphic a¢ =o. Therefore
these three minors are holomorphic on the whole plRheThey must be constants
in z, and hencexp = xo(t) and x; = x1(¢t) depend only on the variable . ]

Now we return to the Riemann scheme

00 1ttt
(2.5) 04/ 00---0
vou’ v 20 2
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with the Fuchs relation
vo+p +p"+11=1—n.

We consider the corresponding Fuchsian differential dperél.3) and the differen-
tial equationLu = 0 having no logarithmic singularity. When &, (..,t,) move
on (PY)", the accessory parametess  #Ai(..., A,) constitute a compact covering
variety R over the compactified spacey”".

For the moment we fix the exponents amd- 1 apparent singularities, . . ., f,.
A solution f therefore becomes a function of amd According to Remark 1.1 we
may allowr; to be equal to,0,bo and also allow them to coincide.

Let « be an arc in the; space connecting O and 1 and passing through a point
t = p. Let z =z¢ be a point different fromx. By the same procedure as in Lemma 2.2
and Proposition 2.1 we find a system of solutiong(z, A1;zo)} (i = 0, 1) holomor-
phic on U x R(t;) with some neighbourhood afy where R ¢;) denotes the one di-
mensional covering variety over space obtained as a connected component of the re-
striction of R. In the same way as shown in Proposition 2.1 $yistem has a constant
circuit matrix for a fixed loop~y in the z spaceC — {0, 1,11, 12,...,1,}. We call it
the initially conditioned system af; with respect tor;.

Proposition 2.2 (Reduction procedure).We consider the situation stated above
Let@ be an arbitrary lifting ofa to R(t1) and letA, = = Y(p) N@. Let {fi(z, 1)} =
{fi(z, A1;z0)} (i = 0,1), A; € @ be the initially conditioned systenbet ¢(z, p) =
cofolz, p) + c1fi(z, p) be an arbitrary solution forL(p)u = L(p,t2,...,t,)u = 0.
Put ¢;(z) = cofo(z, i)+c1 f1(z, i) (i =0, 1). Thenp(z, p) is expressed as a linear combi-
nation

©(z, p) = x0(p)po(z) + x1(p)pa(2)-
Whereyo and ¢; are solutions of the differential equations for the Riemachemes
0 oo lt -ty

0O 4/ 00-.-0
vo+lpy” vy 2.0 2

and
00 1 -ty
o 0 0---0],
vo " vp+12-.. 2
respectively

Successive application of this reduction procedure gives
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Theorem 2.2 (Linear dependence).Let f(z,11,...,1,) be a solution ofLu = 0
with L in (1.3) satisfying the nonlogarithmicity condition ibemma 1.1.Suppose it is
holomorphic atz = 0. Then we have an expression

(2.6) f@,t)=x0(t)F(a,b,c;z)+x1(t)F(a,b,c+1;z)+---+x,(t)F(a,b,c+n;z)
in terms of Gauss hypergeometric functions whereb, ¢) = (¢/, 1/, 1 — n — vp).

3. Integral representation and algebro-geometric aspects

3.1. Associate hypergeometric functions. Throughout Sections 3 and 4 we
will assume that the angular parameters in the non-appasgrgularities satisfy
the condition

(3.1) Vos V1, Voo = — i € Q—2Z, votv tre & Z.

First we concentrate our attention on the equatian = 0 having apparent
singularity with L of (2.1). According to the Fuchs relatiorewnay put the Riemann
scheme in the form

01 00 t
0 1t 1
(3.2) 00 o0)=| 00 Ftotntr0
vo vy p’ 2

1
Vo V1 —5(V0+V1—Voo) 2

Now let us consider the integral representation of the mwiufor our differential equa-
tion. Recall that two Gauss’' hypergeometric functiaisz, i ¢ z Fla’,b’,c’;z) are
said to beassociateif

a=d, b=b, c=c modZ
or equivalently, if the respective angular parametersiati
W=V V1=V, Voo =V, ModZ and g+ vy +ve = vy +vy+1v,, mod Z.

For a fixed hypergeometric functiof a,(b,c z; ) the functions in tle¢ ef all asso-
ciate functions generate a 2-dimensional vector space thneffield of rational func-
tions C(z), and the operato# /dz acts on it as a linear transformation. In our case all
the parametera b ¢ are iQ. Therefore the vector space can be considered over
the field Q(z) as well.

Recall the integral representation of the hypergeometniction:

1 o
F(a, b, C, Z) = m /l ua—r(u _ 1)r—b—1(u . Z)_a du
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= 7B(b ﬁ_b)/u"*c(u — 1) Yu—2)"du
) ¥

for the Pochhammer cycle going around 1po and some constant in a certain cy-
clotomic field. Take two associate hypergeometric Riemahemses

0 1 o0

1
Ry: 0 O —§(V0+V1+Voo)

+luy —%(1/0+V1—1/00)
0 1 o0

0O O —}(V + 1+ rs)
RZ: 2 0 1 o)

1
unt+l —5(1/0+V1—1/00)
and define
1
MO:E(l_(VO+1)+V1_Vw)a
1
p =51+ 00+ 1) -1 —ve),
1
e = 5(1—(V0+1)—V1+Voo),
1
Hoo :§(1+(V0+1)+V1+Voo)-

For the hypergeometric differential equations correspando these Riemann schemes
we have the integral representation of the solutions

/n, /77’
Y Y
u—1

du
n=n()=—, ' =9'(z) = —mn,
y u

with

respectively. Here; and y’ are differentials of the first or the second kind on the hy-
pergeometric curveX k(z ), a projective nonsingular model of

¥ = — 1) — )

where k denotes the least common denominatoru@f p1, p.. The multiplicative
group (¢x) acts onX k,z ) by

s u) = (G ).
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The homology group Hi(X(k,z),Z) is a Z[(] module. Let Hix(X(k,z)) be
the C-vector space of all differentials of the second kind ¥rk, z(  )dulo exact dif-
ferentials. It splits into eigenspaces via the actionfof For each eigenvalue of prim-
itive k-th roots of unity, the corresponding eigen space isagbk 2-dimensional, see
e.g. [21]. For everyz ¢ C — {0,1}, setVc(z) = Cn @ Cy/. It is the eigenspace
for ¢, and it contains all differentials belonging to the hypenmgetric functions asso-
ciate to f7 n(z). (Often we will omit the parameter when it is clear that wensider
the equations depending an .)

Let v1, 72 be Z[{]-linearly independent inHy(X(k, z), Z). According to Theo-
rem 2.2 we obtain a basis of solutions of the differential agiqun corresponding to
the Riemann scheme (3.2) by the periog§n1, fw 1 with m1 = ejn(z) + o’ (z). We
define the developing map by

f’Yl m

f’)’z 771.

As an arithmetic side-remark for use in the next section watpout that under this
normalization the value® (0} (1)) o) are algebraic oro. This can be seen by
a study of the monodromy group: arguments already used by Ridin [9] show that

it acts on the homology group of the curve hence gives anradiothe valuesD z( )
by fractional linear transformations with coefficients ihet cyclotomic field Q({).
Since D (0), D (1),D ) are fixed points under this group, the claim follows. An-
other important point is the interpretation of the funcﬂoﬁ% 71 as periods on cer-
tain abelian varieties. For all proper divisads /of there msabvious morphism of
the curveX f, z ) ontoX d, z ) inducing an epimorphism

(3.3) D)=

JacX &,z )— JacX d,z)

Let T(k,z) be the connected component of O in the intersection lbfkernels
of these epimorphisms, namely it is the Prym variety for teecing Riemann sur-
face X &, z) — P! with ramifications. Then it is known by [20], [21] th&k k,(z ) is
an abelian variety of dimensiop(k) where ¢ denotes Euler's function. The abelian
variety T (, z) has generalized complex multiplication by theloyomic field, so

Q&) CEnth T'(k, z) = Q ®z EndT k, z)

We consder the action af, on the vector spacéf(T'(k,z), Q) of the differentials
of the first kind. Let W, be the eigenspace for the eigenvaffieof this action.
We have

ra=dimW, = =1+ (u;n),
j
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where (s) denotes the fractional past — [s] of s, see e.g. [19] (on p. 23 use for-

mula (4) with N = 2). In particularW; can be identified with the subspace of holo-
morphic differentials inVc. In the same way we tacitly identify also the differentials
of the second kined iV with differentials in H3x(T (k, z)).

3.2. Description of the apparent singularity. As a first application of the in-
tegral representation, we obtain the explicit relationwsein the coefficients; and
the apparent singularities in Theorem 2.2. At first we cagsithe case with one
apparent singularity . Recall the classical relations betw: ,b ,c¢ , the angular pa-
rameters and the exponents

vo+l=1-c=1—po—p,=p1+pe—1
(3.4) vi=c—a—b=1—p1—p; = po+ oo — 1
Voo =b—a =izt poc —1=1— po— 11

Theorem 3.1. We consider the equatiohu = 0 with the Riemann schemn(8.2).
Define

glx,z2)=(c—a—b)z+c(z — D,

h(x,z):wz_c

(z— D,
wherex is the ratiox;/xo of the coefficients

f(z,t) =xoF(a,b,c;z) +x1F(a,b,c+1;z7)
in Theorem 2.2for one apparent singularity cas@hen we have

(3.5) h(x,t) =xg(x,t).

By using D ¢ ) in (3.3) the apparent singularity property is megsed by the condition
that (@/dz)D vanishes inz = , in other words that the Wronskian

/772/771—/771/772:0
! Y2 Y1 Y2

where the differential

i
n1(z)
u—7z

d d
n2(z) = m2 1= ——m(2) = ——(wn +vn') =
dz dz
is again a differential of the second kind lying in the samgemspaceVc(z) as n.
For genericz this 2-dimensional spate is generated by); and, because any two
different associate hypergeometric functions generatevéittor space of all associate
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hypergeometric functions having dimension 2 over the fig(d) of rational functions.
This property remains true for the corresponding difféestin the C-vector space
Vc(z) if we replacez by any special number € C — {0, 1} with some possible
exceptions corresponding to the fact that @i&)-coordinates inVc(z) with respect

to the basisni(z), 72(z) may become singular fof * . This happens precisely for
apparent singularitiesD’(r) = 0 as above implies that the same linear dependence
of periods

'f’)’l 2 = f’h mn
f’)’z "2 f’)’z m

is valid for ), as formn; at least if not all periods ofy; vanish. That this is impossible
may be seen by considering the global behaviourfof as a function of: : Other-
wise, 0 would be a fixed point of all monodromy substitutioS&ce v1, 2 gener-
ate the homologyH1(7 (k, 1), Q) = Q ®z H1(T'(k,t),Z) as a vector space oved((x)

and sinceny, 72 belong to the sam€({;)-eigenspace, there is a consta@ht such that

/771 = C/nz for all v € Hi(T'(k, t), Z).
v Y

Thenn; — Cn, would be a second kind differential with vanishing periodstbe en-
tire homology, hence)yy, — Cn, = 0 € Hpr(T (k, t)). SO we may characterize the ap-
parent singularity by the fact that in this point the diffetials n; and n, become lin-
early dependent. If we express both @&)-linear combinations of a given basis, e.g.
n andn’, by means of Gaussktlationes inter functiones contiguathis gives an alge-
braic relation between £ and/w with coefficients inQ.

Proposition 3.1. For any ¢t € C — {0, 1}, in the family of2-dimensionalQ(¢y)-
eigenspace¥c(z) C HAr(T (k, 7)) there are at most twd-dimensional families of sub-
spacesCni(z) = C(wn(z) + vi’(z)) containing for the special point = both

Hz m
u-—t

m and 2 =

hence giving a developing map  with'(t) = 0. Thesel-dimensional eigenspaces
have generating differentialg;1(z), n12(z) which are forz = ¢ defined over a quadratic
extension ofQ(z).

We give a proof in the spirit of classical function theory.rSmler a linear combina-
tion

fe(@)=F(a,b,c;z)+xF(a,b,c+1;z)
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and its first derivative with respect to  which can be writt¢®],(p. 10) as

@F(a+1,b+],c +1;z)+ﬂF(a+l,b+lc +22)
c c+1

_ b(c—-1)
T (c—1-b)z

+ P (pla b+ 1e+ 1)~ Fla b, i)
(c—D)z

observing that — b ¢ Z by our assumptions on the angular parameters: recall the for
mulas (3.4). Rewrite the expression f@f(z) as aQ(x, z)-linear combination

fiz)

(Fla,b+1,¢c;z)— F(a,b,c —1;z2))

1
———(g(x,2)F(a,b,c;z) + h(x,z)F(a,b,c+1;z))
72(z—1)
of F(a,b,c;z) and F @, b,c +1z) using Gauss’ relations ([7], p. 103, formaui@0),
(41), (42)). The resulting coefficienigg h  are @x, z], linear in x andz . A straight-
forward but lengthy calculation gives them in explicit foras

gx,z)=(c—a—b)z+c(z— 1),

h(x,z) = ol Gt _C)C(C_b)z —c

(z—1)x
(recall that by our assumptions on the angular parameters-vy=# 0).

Now consider analytic continuations of all functions inved here along some
nontrivial loop starting and ending at , avoiding the sirgities 0, 1,00, and de-
note the resulting new branches by adding a tilde. Since X x,z){(x, z) remain
unchanged, we obtain the matrix equation

(fx(z)]:”x(z)): 1 ( 1 x )( F(a,b,c;z) ~Iv(a,b,c;z)>
fiz) fi) 2(z — 1) \ g(x,2) h(x,z) ) \ F(a,b,c+1;z) F(a,b,c+1;z) )"

For almost all loops, the first row on the left side forms theneuator and the denom-
inator of a corresponding developing m@p . As in our argusie@ancerning the in-
tegral representation)’(r) = 0 is equivalent to the determinant condition

ROF@) = F@) f) =0,

Since the matrix on the right side is nonsingular for aimdstiamps, the matrix
in the middle has to be singular, hence

h(x,t) =xg(x,1)

gives an algebraic relation between and with coefficientQjmjuadratic inx and
linear in¢, proving both Theorem and Proposition. U
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3.3. More apparent singularities. Recall that by Proposition 1.1 of Section 1
there are generically "2 different Fuchsian differentialuatipns of second order
with angular parameters

V0, V1, Vo EQ—Z, o1 trve ¢Z

in the regular singularities,0, o and apparent singularities i, ..., #, (which may
be supposed to be simple if they are pairwise different). As may expect, to these
correspond 2 basis functions given by period integrals ofilfas of differentials
in Ve(z) C His(X(k, 2)).

Proposition 3.2. For a Zariski dense subset af -tuplés,...,t,) € C" the 2"
second order Fuchsian differential equations= 0 with regular singularitiesO, 1, oo,
angular parameters

Vo, V1, Voo €EQ—2Z, ot v ¢Z

and apparent singularities, . . ., f, are solved by linear combinations of associate hy-
pergeometric functions

n

f(x1, ... x052) = F(a,b,c;z)+ZxJF(a,b,c+j;z)
j=1

where F(a, b, c; z7) belongs to the angular parametetg + n, v1, vo,. The correspond-
ing integral representations are given by period integrafs2” families of differentials
n(2), j=1,...,2", for eachz generating" 1-dimensional subspaces &t, and the
apparent singularities are characterized by the propeftgttin the points: the dif-
ferentials

d
m;(z) and d—zmj(Z)
are multiples of each other

The main part of this statement is only a reformulation of pgesition 1.1
and Theorem 2.2 in the language of differentials of the sgédand used for the proof
of Proposition 3.1. One may try to give a direct proof basedtlom same idea as
the proof of Proposition 3.1, with the only difference théke tlinear combination
f(x1,...,x,;z) has to be rewritten first as a linear combination of the fivad con-
tiguous functions by successive application of some Gaelsdion ([7, p. 103, (30)]).
The result is

Zlinr('x’é’ tee ’x’H Z)F(av bv C;Z) +Z17"S(x17 A 7xl1a Z)F(av bv C + 11Z)
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where the coefficients,s are polynomials defined o@dinear in x1,...,x, and
of degree< n — 1 in z. Differentiation with respect ta leads as beforento date
nant conditions for =,...,1,

FlOens oo ) FOcn oo X 1) — F (s ooy X £) f(X1s oo Xy £) = 0,

where the derivative—with a similar application of Gaussntguity relations as
before—can be written as

"1 —2) g(xn, .. X, D) F(a, by i) + 2 (1= 2) Th(xy, .. X, 2)F(a, b, + 152)

with polynomials g, # defined ove@ linear in xq,...,x, and of degree< n in z.
Finally one obtains: algebraic equations

S(x1, .o X, )R, o X ) = (2, o X, 2)8(X, L xas ty), L,

all quadratic inxy,...,x,. Using the above argument we obtain the relation for
the casen =2 in explicit form.

Proposition 3.3. For the solution
f(x,y;z)=F(a,b,c;z)+xF(a,b,c+1;z)+yF(@,b,c +2;7)
of Lf =0 in the case of two apparent singularitieg t,, we have

(3.6) sC,yit e, yit)—r(y;t)g(x, y;t;) =0
with

r(yiz)=—(c@+c)y(1+z))+(1—a+c)(1-b+c)z
s(x,y;z)=(@Q—a+c)A—-b+c)xz—(QL+c)ylc—(1—a—b+2c)z)
g(x,y;2) == (z(c(L+x (-1+z))— (a +D)z))
c(-1+2)((L+cPy(—1+z)+(-1+a—c)(-1+b—c)z)

B l—a+c)(L—b+c)
hx,y;2) == (2 (A +c)y (-1+z)—(—1+a +b—c)2))

L2 (c®(L+x (~1+2z)) +abz — (a +b)cz)

C
(c+(-1+a+b)z—2cz) (— (L +cPy(=1+2)) +(-1+a—c)(L—b+c)z)
B (—1+a—c)(L—b+c)
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leading to the following relation between y, r =11, t2:

0= (62(1 +x)y+23(1+x)y +c* @ +x)y)
+[c3 (1+x)((—2+a +b)x — 4y) +c* (1 +x) (—x — 2y) +abcy
+c2((-1—a(=1+b)+b)x + (1—a) (-1 +b)x®+ (=2 +ab — 2x)y)]t
+[(—l +a)a (1+b)b +c*(L+x)(L+x +y)
+c3(1+x)(~2(-1+a +b)+(2—a —b)x +2y)
+c2{1+a? —3b+b*+a(—3+4b)+(2+a®+4a (-1 +b) — 4b +b?) x
+(=1+a)(=1+b)x*+(1—ab+x)y}
+o(—(A-b)b(L+x))—a?(-1—x+b(2+x))
—a (L+x +b*(2+x)+b (-2 (2+x) +y)))]?

As a consequence we know that the equation (3.6) is of deglieer 2and gives four
solutions f, y ) for any fixed pairr{, t) as predicted by Proposition 1.1 and Theo-
rem 2.2.

4. Apparent singularities and transcendence

4.1. Schwarz maps with algebraic values at algebraic argunms. Now we
describe the arithmetic implications of the other sectiamms Fuchsian differential
equations having three singularities 0, & with angular parameterso, v1, Voo €
Q—Z and n apparent singularities # 0, Loo, j = L1 ...,n. If z is algebraic,
the curveX g, z ), the Jacobian and its Prym park, z( ), all difféaedstof the second
kind 7, 7/, used in the previous section become defined @gand then these differ-
entials generate a 2-dimensior@ivector space/g with V¢ = CogVa- If we consider
apparent singularities,, ..., , lying in Q, also all differentialsy;(z), j = 1,...,2"
constructed in Proposition 3.2 and Theorem 2.2 liegnfor all algebraicz , in partic-
ular for thes; themselves. Recall further that for al£ O, 1 the cyclesys, 7, become
cycles onT k,z ) generating the homologyyi (T (k, z), Q) = Q ®z H1(T(k,z),Z) as
a vector space ove®((x).

Proposition 4.1. Supposer € Q, # 0,1 and that T'(k, 7) is a simple abelian
variety with Q(¢x) = Ency T'(k, 7). Then all periods

/ . v € Hi(T(k. 7). 2)
Yy

of a fixed nonzera) € Vg C Hs(T(k, 7)) generate aQ-vector spacell of dimen-
sion 2.

The action of the endomorphisms d (7 (k, 7), Z) and n; shows dina;l‘[ < 2
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The proof that we have in fact = 2 relies on a result going backMistholz [23].
A proof worked out by Paula B. Cohen, see Theorem 6.1, is geaviin the Ap-
pendix. To apply Theorem 6.1, také = A4, A5, n1 = p(k), completen; by other
Q(¢)-eigendifferentialsny, . . ., n2, to @ basis of H3g(T'(k, 7)). Then Theorem 6.1
gives

dimg Vi = 2+ 4p(k).

Since the periods of every; generate an at most 2-dimensioi@ivector space, this
upper bound 2 has to be attained for evapy in particular ding IT = 2. U

On the other hand, this vector space is generatedf%wl, fw m. If their
quotient D ¢) is an algebraic number, th®-vector spacell generated by all pe-
riods fv m1 has dimension 1, therefor# k,(r) cannot be a simple abelian variety
with Q(¢x) = Endy T'(k, z). More precisely, we can show

Proposition 4.2. If rand D(r) =6 € Q are algebraic, the abelian variety(k, 7)
is of CM type i.e. isogenous to a product of simple abelian varieties with demp
multiplication More precisely
1. T, ) is isogenous to the product of two abelian varietiesA’, both of complex
dimension(1/2)¢(k) and with endomorphism algebi@(¢y),

2. or T(k,7) has complex multiplication by a quadratic extensiin Q{f;) and is
isogenous to a pure poweB™  of a simple abelian variBty  with glesn multiplica-
tion.

Proof. An argument going back to Bertrand ([1], Section laiEple 3) gives
two possibilities forT £, 7) (see also [19], Proposition 5 and its proof):

If there are zero-divisors of Eg€l'(k, 7)) commuting with Q(¢(x), their kernels
give proper abelian subvarieties  stable under the actio®(@f). Such anA has
complex dimension< [Q(¢) : Q], hence = (¥2)[Q(¢) : Q] by well known divisibil-
ity relations between dimensions of abelian varieties dair tendomorphism algebras.
Then A has complex multiplication b®({;), and its cofactor inl" A, ) does as well.

Otherwise, the endomorphisms &f k, ) commuting withQ(¢{;) form a field K ,
either Q(¢y) itself or a quadratic extension of it, aril k, ) is isogenous to a pure
power B™ of a simple abelian variety. Under the isomorphism

HBR(T (k, 7)) = (HBR(B)™,

m corresponds to amn -tupleny ..., n7") of differentials in Hjg(B), all defined
over Q. The components; lie all in the same (EngB)-eigenspace, otherwise the pe-
riods of f7 n, v € Hi(T(k,7),Z), could not lie in the 1-dimensionaQ-vector

space Il . Using this reasoning, the sarfie contains all perid)dallon{, and
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by dimél'l = 1 again, this is possible only for abelian varieties withmgbex multi-
plication. By Satz 4 of [20], this implies Q({:)] = 2. [l

4.2. Implications of complex multiplication. Our hypergeometric functions are
algebraic if and only if all associate functions are algabiaand only if their mono-
dromy groups are finite—some degenerate cases like polalerfuccurring for certain
integer parameters 4 ) are excluded by our assumptions omrpelar parameters.
Then clearlyD is an algebraic function as well and the algebapparent singular-
ity + = 7 will have an algebraic imag® 7] = §. We will see that this corresponds
precisely to a special situation of the first case discusaedroposition 4.2.

Proposition 4.3. Let 7 be algebraic # O, 1. The following two conditions are
equivalent.
1. The abelian varietyl'(k, 7) is isogenous taA @& A’ where both abelian varieties
A, A’ have complex multiplication b@(¢;) with the same CM type
2. The monodromy group af = 0 is finite

Proof. The first condition implies that the CM type df k,{) (see the end
of Subsection 3.1) satisfies

r, =0 or 2 for alln € (Z/kZ)*,

and this property is valid for all’ k(z ), not only fof’ k(7). But then it is well
known by results of Shimura (see [20], Section 7) that Blk,z( r¢ #&ogenous
to a squareA? of a fixed abelian variety with complex multiplication. Tieésre
the monodromy group is finite. The converse direction fooiw the same way by
the fact that in the case of a finite monodromy group, the farafl all T'(k, z) has
complex dimension zero, see again [20], Section 7, or [5]afanore general version.
]

For the other cases we obtain the following result.

Proposition 4.4. Suppose that the monodromy group bfi = 0 is infinite
and let 7 70,1 0o be an algebraic point withD(r) € Q such thatT(k, 7) is of
CM type. Then théZ-dimensionaIQ(Ck)-eigenspaceva C Hi(T(k, 7)) has only two
1-dimensional subspaces whose generating differentiglsi = 1, 2, satisfy

by 1 €0, i=12
f72773i

Proof. 1. Suppose the claim of the Proposition is not trueenThve show
first that the periods ofall 73 € Vo lie in a 1-dimensionalQ-vector spacell .
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Let n31,m32 € Vg C Hpr(T(k, 7)) be linearly independent and lefs + ovs,
o € Q — {0} be a third differential all with algebraic period quotientriting

TMij 1:/ mj, j=12
o

we can suppose

11 _ T2 _ m1t oM
— =0, — =0, ———— =9
21 22 21+ 022

all to be algebraic. Then

01721 + 002722
R R

Tt 022
follows and the algebraicity ofrp1/7,,, hence ding IT = 1.

2. By Waistholz' analytic subgroup theorem [24], appliec viheorem 6.1 in
a similar way as in the proof of Proposition 4.1, and by statidacts about com-
plex multiplication ([12], Chapter I), two differentialsf dhe second kindnszi, 732
defined overQ on two simple abelian varietieB;, B, defined overQ lead to the same
1-dimensionaiQ-vector spacdl generated by their respective periods if ayg ib

e B; and B, are isogenous,

e both have complex multiplication by the same figld and witbmsrphic CM
types,

e both 73; and nz; are eigendifferentials for the complex representationLofn o
the respective spaces of differentials,

o for some isogeny: By — Bo, the pullbackns, o ¢ is a Q-multiple of 7z;.
Since IT1 does not change under isogenies, we may even assummeutwlbss of
generality that. is an isomorphism, thaB; and B, have the same CM type and
that 731 = 1320 L.

3. Now consider the decomposition df k,¢) given in Proposition 4.2. In
the first case considered there, the intersection&pfvith Hgr(A) and Hig(A') are
both 1-dimensionalQ((;)-eigenspaces for the same eigenvalues, and by our assump-
tion, their periods generate the same 1-dimensi@rakctor spacdl . IA andi’ are
simple, we see by the above that they are isogenous of the €Mngype. Therefore,
Proposition 4.3 applies and gives a contradiction to theirapion about the mono-
dromy group. If A or A’ are not simple, they are isogenous to powers of simple
abelian varietiesB, B’ with complex multiplication (see [12] or the details giver-b
low for the second case), and we can extend the same argumeseetthatB and’
are isogenous and Proposition 4.3 applies again.

In the second case of Proposition 4.2 recall that the simpi¢of B of T &, 7)
is determined as follows. Leb be the CM type Bfk, £), i.e. a system ofp(k) =
(1/2)[K : Q] representativesr of the embeddingk — C modulo complex conju-
gation, and letH be the maximal subgroup of ®&lQ leaving ® invariant. TherB
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has complex multiplication by the fixed field df K[ L ]#{| = m), and its
CM type H\® consists of the different restrictions of the € ® to the subfieldL .
On B™ our 2-dimensional eigenspa@% for the action ofQ(¢x) has a 1-dimensional
Q-vector spacell of periods only if G&I/Q((:) C H, i.e. if it fixes the CM type
of T'(k, 7). But then againT K, ) is isogenous to somei?® where A has complex
multiplication by Q(¢x) with CM type (GalK /Q(¢))\®, and Proposition 4.3 gives
a contradiction to our assumptions. U

Now we specializer to be an apparent singularity. Putting together the lastethr
Propositions we can conclude

Theorem 4.1. For a second order Fuchsian differential equatidn: = 0 with
regular singularitiesO, 1, co, angular parameters

Vo, V1, Voo €EQ—2Z, ot 1 £ ¢ Z,

one algebraic apparent singularity # 0, 1 and with infinite monodromy groyphe de-
veloping mapD has algebraic values in the singularities ifl anly if

e the abelian varietyT (k, 7) is of CM type and

e on T'(k, 1), a differential n11(7) or n12(7) constructed inProposition 3.1is a mul-
tiple of i3 or n3, found in Proposition 4.4.

If the numbern of apparent singularities Js1, we have generically”2 different
families of 1-dimensional spaceSn;;(z) leading to developing maps. Together with
the Proposition 4.4 we obtain

Theorem 4.2. Letn be an integer> 1. For all second order Fuchsian differen-
tial equationsLZu = 0 with regular singularitiesO, 1, co, angular parameters

Vo, V1, Voo €EQ—Z, votitve ¢Z

and algebraic apparent singularities,, ..., 7, the developing map®; i,=1,...,2",
have the following properties

e For all 7; the valueD;(7;) is algebraic only if the Prym variet¥ (k, 7;) is of CM
type

e If moreover the monodromy group is infinit®r all componentsr; in a Zariski
dense subset of algebraic -tuplés, ..., 7,) € Q" the valueD; (7;) can be algebraic
for at most two of theD;, i = 1,...,2".

5. Some graphics of Schwarz maps

We give some graphics of the Schwarz maps for our differeetimations with
one apparent singularity given by (2.1). We consider onky tiase with rational pa-
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rametersa ,b ,¢ and a real apparent singularity . According tj jAe determine
the Schwarz map of a Gauss hypergeometric differential tequéor F (a, b, c;z). Set

q
(5.1) Fpe(a, b, c;z) = Fpq(2) =/ p)dt p,q €{0,1,00,z}, p#gq
P

(5.2) p) =u = (L —u) "z —u)™

for a variablez with(z) > 0. The path of the integral is a side or an extended side
of the triangle 01 on the complex plane. 9, z () can be defined sisgle valued
function on the upper half pland.

The arguments ofp(u) along these paths are determined according to the follow-
ing table

[ [ agu | arg@—u) [ argk—u) |

1oo 0 —T n—m
0z 13 O—-n—m £
0 T 0 0—¢
L || 0—¢ n—m 7
01 0 0 E—n
700 3 n—m—&-m7 +m

with 0< ¢ =argz <7, O<np=argt — 1) < 7.

Theorem 5.1 (Linear relations).

For— Fo, +F1; =0
Floo_Flz_onozo
FOOO+FOZ+627riaFZOO =0

FOl + eZﬂ'i(r—h)FlOO + eZTri(r—a)FooO =0.

Theorem 5.2 (Connection formula).

2ri(c—b) ,2mia _ ,2ri(c—a) -1
e e e
(Ficos Foz) < 1 1 ) = (Fxc0, F1) ( 1 egm-,,) ;

1 _627'ri(r—b) -1 1
(Floo’ FOZ) ( 1 6271’1'((—[() = (FOL ono) .

1 _eZﬂi(‘

Theorem 5.3 (Expression via the Kummer solutions).

,T(H)T(c - b)

Fioo(2) = — wi(—cthb—a
10(2) € T'(c)

F(a,b,c;z)
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I'a—c+1)r'(1—a)

Fo.(2) = rZ-0 A Fla—c+1lb—c+12—c2)

Fooo(z) = e”i(afc)%F(a, ba+b—c+1;1-7)

Fi.(z) = —e"””%(l — ) PF(c—a,c—bc—a—b+1;1—7)
Foi(z) = [a ;(Z i];))i(i)_ b)z*“F (a, a—c+la—-b+1; %)

Feso(2) = —e”"(—””—“)%z—% (b, b—c+lb—a+l; %) .

Remark 5.1. These three theorems are stated in [11] as Theorem, 4 Aeb-
rem 4.4.2 and formulas (4.4.10), (4.4.11) (there—as weebeli-with typing errors;
these are corrected above since we need them for the drawéigw).

The Schwarz map foF a( b, c z; ) is defined by

Fo:(a, b, c;z2)
@ - 2
O(Z) Floo(aa b7 C;Z)

on {|z] <1} NH and it has an analytic continuation ¢h

By using the connection formula we can get the image of thd liea by
the Schwarz mapbo(z).

In the following, the letterk has no longer the same meaningrasSections 3
and 4. According to Theorem 2.2 the integrals

(5.3) kFo.(a, b, c; 2)+(1—k) Fo,(a, b, c+1;z), kF1s0(a, b, ¢;2)+(1—k)Fioo(a, b, c+1;z7)

are the basis solutions of some differential equation fal)(2So we define our
Q-Schwarz map (Ritter's terminology [14]) by

kFo,(a,b,c;z)+ (1 — k)Fo.(a,b,c+1;z)
kFio(a,b,c;z)+ (1 — k)Fiso(a, b, c+ 1;z)

®(a,b,c;k,z) =
We obtain the following as a direct consequence of Theorein 3.

Proposition 5.1. The apparent singularity fo2.1) is given as a function of:

(k=1 —c+(2c—Db)k)
T @k—1)0b—c+(2c—a—bk)

We show the images of the real line @ /@ 3/8, 3/4;k,z) and @ (18, 3/8,
—1/4;k, z) by plotting the discrete values af for sevekal ’s in théeimal 0< k <
1. In many cases the coordinates frame is pressed down, tieohial and the ver-
tical line segments are always the intervaisl| 1] and 1 — i, —1]. In these cases
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we have the angular parameters411/4, 1/4). We used “Mathematica” to generate
the figures.

Animation of the Q-Schwarz magp  for the combination of hygemetric func-

tions
133 13 3
kF (g,é,z) +(1—k)F (g, é,l"’z)

The apparent singularity is given by the function iof

3%k — 1)(3 — 1)
(% — 1)(8& — 3)’

The graphics are the images of the real line correspondirggveral values ot indi-
cated, and the images of singular points are occasionaligated by hand writings.

k=0 k=029 0<r <1
D(0) = oo ~ D(0) =00

WD)

k=02 t>1 k=03, 0<r<1

D) = oo

- D(1)

k=028 1>1 k=1/3,t=0
. D(0) = 00 = D(t)
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k=0351<0 k=1/2, 1 =00

i L D) =D
j,;>mmhm AR

v S

D(1)
D) =oc0"
k=037 1<0 k=06 1<0
; D(0) = oo i
. i D(t)
rﬁ};.@.(?o) N
£D(1) D(z) P
S - iV
k=3/8 t=o00 k=07 1<0
D(0) = 00
i D(r)
| | ...... \
S B ! N
D) R, Do) = D) L

k=038 t >1 k=08 <0
t D(0) = oo 7 . D=
: ()

[y B

D(1) D)™ D(co)

651
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Animation of the Q-Schwarz map for

13 -1 13 -1
kF (5,5,7) +(1—k)F (é, é,l"’T)

The apparent singularity is given by the function fof

(k — 1)(7k — 5)
(% — 1)(8& — 5)’

its graphic is given below. These graphics are the contionadf the previous ones
connected af (18, 3/8, 3/4).

Graphic of ther as a function of : k=0.2
30 ~.\'
20 | ,...> .
k i D@
10 H
-0.2 0.2 0.4 0. 0.3 1 1.2 é
-10 <
-20 l~
=30
k=0 k=04
D()=0 I T
S D(r)
PN -
! '.---'3 D(oc0) L
D(1)
k=01 k=1/2, 1 =00
N LW
3 -~ N .,
~N H —
‘ l s P NP0 =D
0 !
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[——

k =0.62

B(t)

‘ B

k=0625=58, =00

oR

DO)=0:".

Vit

D(c0) = D(r)

k=0.627 t > 1

* . D(0)

e

py T PO

k=0.63

k =0.65

D(0)
e

PR

DpA) D)

Dlocy
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k=2/3 1=1
.. DO
[ L
o D(0)

b =p0)

k=07 0<r<1

DO
- peay P

D(t)

k=5/7,1=0

k=0751<0

D(r) .

S :D(0)

| T T
\;"'”‘j D) D(c0)

k=08 t<0
D) ip()

| Sy vy

D(oc0)

S D)

iD@:Dm

e
D(c0)

"\! D(1)

'mmzszm

......‘. D(1)

o A —
D(c0)
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6. Appendix. Linear independence of periods of the second kd

by Paula B. Cohen

In this appendix, we show that the arguments of [19], SecHoriogether with
those of Section 1 of [22] give rather directly a proof of Whdz’ announcement,
Theorem 5 of [23], in the case of abelian varieties defined @eNamely, we have:

Theorem 6.1. Let A be an abelian variety isogenous ov@rto the direct prod-
uct Aﬁl X e X A’,‘y of simple pairwise non-isogenous abelian varietigls, defined
over Q, with A, of dimensionn,, v = 1,..., N. Then theQ-vector spaceV, gen-
erated by1, 2ri together with all periods of differentiglsiefined overQ, of the first
and the second kind oA, has dimension

n2

N
(6.1) dimg Va =2+ 4; g Endh AL

Proof. We use the notations of [19], Section 1, and assumdadbkground nec-
essary to understand Section 1 of [22] and its notations. desreral information,
the reader can consult [17], [18] and [15]—see also [13],4B8H [4] for the elliptic
case. ThatV, has dimension ove® bounded above by the right-hand-side of (6.1)
is obvious once one observes that the induced action of(Bhcbn V, is by linear
transformations defined ove).

We now show that digy V, is bounded below by the right-hand-side of (6.1). As-
sume the contrary. As in [19], Section 2, let,...,w,, n = dimA, be aQ-basis
of H° (A, 96): the differentials, defined ove®, of the first kind onA . Choose
Y1, ...,¥m € Hi1(A, Z) such that the period vectors

[,

/QZ : , J=1 ..., m.
i

' fyj Wn

in the period latticeA ofA form a basis okg = A ®z Q over (L), whered
is the complex representation df = BGd) induced by the isomorphism of

with C"/A. Let ny,...,n, be aQ-basis of Hiz(A) modulo H° (A, 96)' In partic-

ular, then;, i =1,...,n, are defined ove®. Our hypothesis is, then, that there exists
a relation of the form

m n

62) ) {au [ eena |

Ui}+50'27fi+ao:0
j=1 =1

i
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with o, Bo, cvij, 3ij €Q, i =1,...,n, j =1,...,m, not all zero. Let,

n

770):26,']77], j:].,...,m.

i=1

By analogy with [22], the complex number,

m n m
S5 0 [ w=3 [ 0
j=1 i=1 Vi j=1 Y7
can be written asfvn for a certainny € Hiz(A™) andy € Hi(A™, Z), wheren cor-

responds to an element @i'(A™, Oan) = Ext'(A”, G,). Namely, if p; : A" — A
denotes the projection onto thye -th factorf j, =21,m, then

n=pin®+.. 4 prnm

and v =piyit---+prym.

Moreover , determines a commutative algebraic group variety — o@esuch that
on the tangent space at the ordginG ( T=G (=) x (C")" the vector,

(e

is in Kerexg; . The extensiortG  corresponds to the sum of thensiies G; =
p;G; € Ext'(A™, G,), whereG; is determined by, j=1....m

Assume for the moment thaty = 5o =0. Now T (G) =T G,) © T(A™). We letz
be the coordinate irf" ;) = C and w(f) ...,w,(/) be the coordinates " A( ) for
the j -th factor ofA™ ,j =1...,m. Let H be the hyperplane i G ¥ C x (C")"
given, with w() = [<wfj))_ L =L mby

F (z, w®, . w(’")) =F (w(l)) +---+F, (w(’")) +z=0

where ther; (w!?), j =1,...,m, are the linear forms,

(J) Z a; w(J)

Then, from (6.2) we have @v € H.

We may therefore apply the Wiistholz algebraic subgrouprérme as in Lemma 1
of [19] to deduce the existence of a proper connected algeltgbgroupW ofG
defined overQ, with v € T(W) C H.
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Now, if G, N W = G,, then exg YG,) C H, so that for every; € C the point
(z,0,...,0) € C x (CY)" is in H, WhICh contradicts the defining equation fér
Hence dimG, N W) = 0 and soW is isogenous to an abelian subvariéty of A™,

defined overQ with vg = (fm%""f,,, g) € T(Wp). If Wy were a proper abelian
subvariety of A" then, ag” Wp) is defined overQ, there would exist a non-trivial
Q-linear relation between the perloq% wi, i =1...,n, j =1...,m, and so by
Proposition 1 in [19] there would be a non-trivial dependemelatlon overd [ ) be-
tween the period vector(iw w, j=1...,m. Hence,Wy = A™ and soF; = --- =

F,, = 0.

These arguments show th&/ is isogenousAtb . In particula, element
of Ext(A™, G,) defined byG st trivial as this same isogeny provides a $pjtof
the associated exact sequence. Therefore0, so that we have finally,; = 8;; = 0,
i=1...,n, j=1...,m, which is the desired contradiction in the casg=5y=0

When we do not haveyy = 8o = 0, we can use the same arguments as in [22]
to conclude the proof. Let us briefly recall the line of thosguments. Whenyg = 0,
Bo # 0, one argues witlG’ = G,, x G instead ofG to obtain an algebraic subgrow
of G', defined overQ, with dim((G, x G,,) N W’) = 0. One then concludes as above.

When ag # 0 one argues witlG” = G, xG,, x G as in the proof of [22]. One can
now construct an algebraic subgroup’ of G”, defined overQ, with dim(G,,N"W") =
0. However, one does not necessarily have dép(k G,) N W) = 0 as dim(G, x
G,) N W) =1 can also occur. In the latter case, one argues as in thedgng para-
graphs (when we hado = 0) on the quotientc = G”/G, and W = W”/G,. One
deduces then thdb is a trivial extension ofA” byG,, so that3; =0,i =1...,n,
j=1...,m, thatW is isogenous teA™ , so that;; =0,i =1...,n, j=1...,m,
and thatgy = 0. It is then easy to show thaiy; = 0 exactly as in [22]. [l
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