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Akinori Tani, Shigeaki Yamazaki, and Yuki Yamada*

Novel electrolytes for advanced lithium-ion batteries (LIBs) with higher energy
density and safety are being extensively explored. A major challenge in
developing new electrolytes is achieving reversible Li+ intercalation into
graphite negative electrodes. In commercial LIBs, this reaction is reversible in
ethylene carbonate (EC) electrolytes, whereas unfavorable Li+–solvent
cointercalation occurs in many other electrolytes. Recently, EC-free Li+

intercalation has been achieved in some types of advanced electrolytes,
including (localized) highly concentrated electrolytes and weakly coordinating
electrolytes. However, an essential factor that dominates whether Li+

intercalation or Li+–solvent cointercalation occurs has yet to be identified.
Herein, the electrolyte Li+ chemical potential is reported as a quantitative
descriptor of the Li+ intercalation behavior. Solvent cointercalation is generally
inhibited above a certain threshold of the electrolyte Li+ chemical potential.
This work provides a novel guideline for designing advanced LIB electrolytes.

1. Introduction

Lithium-ion batteries (LIBs) have been adopted as the main
power supplies in electronic devices over the past few decades.
Recently, there has been a growing demand for both higher per-
formance and higher safety toward large-scale applications.[1]

Currently, the performance and safety are limited by state-of-
the-art ethylene carbonate (EC) electrolytes.[2–5] EC is known as
an essential solvent for forming a stable solid electrolyte inter-
phase (SEI) on graphite negative electrodes, which effectively
suppresses side reactions (e.g., electrolyte reduction) and enables
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reversible Li+ intercalation during charge
and discharge.[6] To overcome the limits
of LIBs, various alternative solvents with
higher oxidation stability, stronger Lewis
basicity, lower melting point, and/or non-
flammability have been examined.[7–9] In
most cases, a solvent molecule is unfortu-
nately cointercalated into graphite in the
form of solvated Li+, which is a destruc-
tive side reaction that leads to lower ca-
pacities and/or poor cycling stability.[10]

To prevent unfavorable solvent coin-
tercalation, several strategies have been
proposed, for example, employing
highly concentrated electrolytes, local-
ized highly concentrated electrolytes,[11–17]

and weakly coordinating electrolytes
(Figure 1).[18–24] Specifically, lithium
bis(fluorosulfonyl)imide (LiFSI) is widely
used in these electrolytes, in which the

formation of unique FSI anion-derived SEIs on graphite, induced
by preferential anion coordination to Li+, is believed to suppress
solvent cointercalation.[13,25,26] However, no quantitative relation-
ship has been identified between the SEI chemistry and sup-
pressed solvent cointercalation. Some publications have noted
other dominant factors in addition to the SEI, such as the solva-
tion structure[27,28] and free solvent activity.[29] Nevertheless, no
quantitative factor that can accurately describe the relationship
between the intrinsic properties of electrolytes and Li+ intercala-
tion reactions has been discovered. As a result, the exploration
of new electrolytes still depends on trial and error without a firm
scientific foundation.
Herein, we report the Li+ chemical potential (µLi+) in elec-

trolytes as a quantitative factor that strongly correlates with the
Li+ intercalation behavior of graphite negative electrodes. By def-
inition, µLi+ is the partial molar Gibbs free energy of Li+, which
quantitatively describes the thermodynamic stability of Li+ in the
electrolyte. Specifically, higher (lower) µLi+ means unstable (sta-
ble) Li+ in the solvation environment. In our previous work, we
reported that µLi+ is commonly increased (thus, Li+ is destabi-
lized) in (localized) highly concentrated electrolytes and weakly
coordinating electrolytes.[30] Based on this intuition, here, we
scrutinized the correlation between µLi+ and the Li+ intercalation
behavior in various electrolytes (Figure 1), and discovered thresh-
old µLi+ above which Li+ intercalation is achieved without solvent
cointercalation.
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Figure 1. Schematics of graphite negative electrode reactions in various
electrolytes depending on the electrolyte Li+ chemical potential µLi+. Left:
Li+-solvent cointercalation proceeds in electrolytes with a low µLi+. Right:
Li+ successfully intercalates into graphite in electrolytes with high µLi+.
Graphite electrode reactions more strongly correlate with µL i+ than the
nature of SEI.

2. Results and Discussion

2.1. Variation in µLi
+ Depending on Electrolyte Structure

Various organic electrolytes were prepared by mixing LiFSI and
organic solvents with different solvation abilities (Figure S1, Sup-
porting Information). The µLi+ values were evaluated by measur-
ing the lithium electrode potential (ELi) with reference to the re-
dox potential of ferrocene/ferrocenium (Fc/Fc+) as an internal
standard[31] (Figure S2, Supporting Information) according to the
following equation (Note S1, Supporting Information)[30]:

𝜇Li+ = FELi + constant (1)

where F denotes the Faraday constant. The evaluated ELi and µLi+
values in various electrolytes are shown in Tables S1–S3 (Sup-
porting Information). Herein, µLi+ is shown as a relative value to
that in LiFSI/1,2-dimethoxyethane (DME) (1/10 by mol).
Overall, µLi+ increases (thus, Li+ is destabilized) under the con-

ditions of i) a weaker solvation ability of solvents and ii) a higher
salt concentration (including a localized high-concentration
state) as demonstrated in Figure 2. Figure 2a shows the Ra-
man spectra of FSI− vibration in LiFSI electrolytes with vari-
ous solvents (1/10 by mol). The peak position represents the
ion pairing states of Li+ and FSI−, namely solvent separate
ion pair (SSIP), contact ion pair (CIP), and aggregate (AGG-
I and AGG-II).[30,32] The ion pairing becomes more extensive
in the order of diglyme (G2) < DME < 1,2-diethoxyethane
(DEE) < 1,1,1-trifluoro-2-(2-methoxyehoxy) ethane (F3MEE) <
2-[2-(2,2-difluoroethoxy)ethoxy]-1,1,1-trifluoroethane (F5DEE) <
1,2-bis(2,2,2-trifluoroehoxy) ethane (F6DEE), suggesting that the
solvation abilities are in the order of G2 >DME >DEE > F3MEE
> F5DEE > F6DEE, which is consistent with theoretical calcu-
lations (Table S4, Figure S3, Supporting Information) and pre-
vious literature.[33] Notably, this order is the same as that for
µLi+, namely G2 (−7.72 kJ mol−1) < DME (0 kJ mol−1) < DEE
(5.31 kJ mol−1) < F3MEE (18.7 kJ mol−1) < F5DEE (37.1 kJ
mol−1) < F6DEE (41.5 kJ mol−1) (Table S1, Supporting Infor-
mation). Hence, weaker solvation (i.e., more extensive ion pair-
ing) increases the µLi+. The same tendency of ion pairing was
observed when salt concentrations were increased (Figure 2b;
Figure S4, Supporting Information), which also increased the
µLi+, namely LiFSI/DME 1/10 (0 kJ mol−1) < 1/3 (10.6 kJ mol−1)
< 1/2.5 (14.5 kJ mol−1) < 1/2 (22.2 kJ mol−1). To corroborate the

importance of ion pairing, the µLi+ values in various LiFSI elec-
trolytes with different solvents and salt concentrations are plotted
versus the Raman peak positions of FSI− vibration (Figure 2c).
As a result, there is a linear correlation between the µLi+ values
and the Raman peak positions, suggesting that the increase in
µLi+ is commonly related to extensive ion pairing of Li+ and FSI−.
In summary, µLi+ in electrolytes is predominantly determined by
the interaction between Li+ and anion. Hence, the coordination
number (i.e., the extent of ion pairing) and the Lewis basicity of
the anion are the important factors to control the µLi+.

2.2. Correlation between µLi
+ and Graphite Negative Electrode

Reactions

Here, we focus on the reactions of graphite in LiFSI electrolytes
(LiFSI/solvent = 1/10 by mol) with different solvation abilities
and µLi+ values, namely, DME (0 kJ mol−1), F3MEE (18.7 kJ
mol−1), and F6DEE (41.5 kJ mol−1) (Figure 3).
As shown in the charge‒discharge voltage curves of the

graphite|Li cells, voltage plateaus were observed in the range of
0.5–1.3 V in strongly solvating DME with low µLi+ (0 kJ mol−1).
This reaction corresponds to Li+–solvent cointercalation forming
Li–solvent–graphite intercalation compounds (GICs) with an in-
terlayer distance of 1.11 nm,[34] which is remarkably expanded
from the value of 0.335 nm for pure graphite, as confirmed by
X-ray diffraction (XRD) patterns (Figure S5, Supporting Infor-
mation). In contrast, in weakly solvating F6DEE with high µLi+
(41.5 kJ mol−1), voltage plateaus were observed in the range of
0–0.25 V, with a reversible capacity of over 350 mAh g−1. This
reaction corresponds to Li+ intercalation forming Li-GIC LiC6
(theoretical capacity: 372 mAh g−1) with a less expanded inter-
layer distance of 0.37 nm[12] (Figure S5, Supporting Information).
In moderately solvating F3MEE with intermediate µLi+ (18.7 kJ
mol−1), we observed Li+ intercalation, but the reversible capac-
ity was much lower because of the incomplete inhibition of Li+–
solvent cointercalation. Hence, unfavorable Li+–solvent cointer-
calation could be suppressed when the electrolyte has certain
high µLi+.
In addition, we studied the reactions of graphite in various sol-

vents over a wide range of µLi+ values (Figure 4a; Figures S6–S17,
Supporting Information). We found a threshold of µLi+ at 10–
25 kJ mol−1 that dominantly determined whether Li+ intercala-
tion or Li+–solvent cointercalation occurred.
Having discovered threshold µLi+ for different solvation abili-

ties, we next studied LiFSI/DEE electrolytes at different salt con-
centrations (Figure 3; Figure S7, Supporting Information). µLi+
increased with increasing salt concentration (Table S2, Support-
ing Information). As shown in Figure 3, in dilute LiFSI/DEE
(1/10 by mol) with low µLi+ (5.31 kJ mol−1), Li+–solvent cointer-
calation occurred at 0.5–1.3 V. At an intermediate concentration
(1/1.8 bymol) with intermediate µLi+ (19.3 kJmol−1), we observed
both Li+ intercalation (0–0.25 V) and Li+–solvent cointercalation
(sloping curve in 0.5–1.3 V). In contrast, at a high concentra-
tion (1/1.5 by mol) with high µLi+ (25.1 kJ mol−1), we observed
Li+ intercalation with a reversible capacity of over 350 mAh g−1.
These different reactions are proven by the XRD patterns (Figure
S18, Supporting Information) and the colors (Figure S19, Sup-
porting Information) of the graphite electrodes. Formation of
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Figure 2. a) Raman spectra of LiFSI/solvent (1/10 by mol) solutions with different solvents (G2, DME, DEE, F3MEE, F5DEE, and F6DEE). b) Raman
spectra of LiFSI/DME solutions at different salt/solvent molar ratios (1/10, 1/3, 1/2.5, and 1/2). The Raman band between 680 and 780 cm−1 is derived
from the vibration of FSI−. The peak position represents the ion pairing states of Li+ and FSI−, namely SSIP, CIP, AGG-I, and AGG-II.[30,32] The peak at
a higher wavenumber indicates more extensive ion pairs. c) Electrolyte Li+ chemical potential µLi+ (vs LiFSI/DME, 1/10) of various electrolytes plotted
against the Raman peak positions of the FSI− vibration. For DME and DEE, data with various salt concentrations are plotted.

different GICs was also demonstrated for dilute to concentrated
LiFSI/DME (Figures S20 and S21, Supporting Information). No-
tably, the threshold µLi+ that dominates the graphite reactions in
LiFSI/DEE and LiFSI/DME at various concentrations is 10–25 kJ
mol−1, which is the same as that for different solvation abilities.
It should be noted that the graphite reactions cannot be defined

by the salt concentration. For example, the threshold concentra-
tions for reversible Li+ intercalation are remarkably different for
LiFSI/DEE (1/1.6 by mol, Figure S7d, Supporting Information)
and LiFSI/F3MEE (1/4.4 by mol, Figure S9c, Supporting Infor-
mation), but their µLi+ values are similar (23.2 and 24.1 kJ mol−1,
respectively). This result indicates that µLi+ can be a descriptor of
graphite reactions. This µLi+ threshold can also be applied to lo-
calized highly concentrated electrolytes, LiFSI/DME:toluene
and LiFSI/DME:1,1,2,2-tetrafluoroethyl 2,2,3,3-tetraf-
luoropropyl ether (TTE) (Figures S16 and S17, Supporting
Information).
To generalize the relationship between µLi+ and graphite neg-

ative electrode reactions, we studied 39 electrolyte formulations
with different solvents and salt concentrations (Figures S6–S17,
Supporting Information). To judge which reaction (Li+ intercala-
tion or Li+–solvent cointercalation) predominantly occurred, we
extracted the reversible capacities in a voltage range of 0–0.25 V
for graphite|Li cells, which are fully attributed to Li+ intercalation.
Figure 4b shows the relationship between µLi+ and the Li+ inter-
calation capacity in various electrolytes. In low-µLi+ electrolytes
(µLi+ < 10 kJ mol−1), the Li+ intercalation capacities are gener-
ally small because of the predominant Li+–solvent cointercala-
tion. In high-µLi+ electrolytes (µLi+ > 25 kJ mol−1), the Li+ inter-
calation capacities are generally high (> 300 mAh g−1) because
of suppressed Li+–solvent cointercalation. For the intermediate-
µLi+ electrolytes (10 kJ mol−1 < µLi+ < 25 kJ mol−1), the Li+ in-
tercalation capacities significantly vary, suggesting that such µLi+
values are in the boundary region. This result demonstrates that

graphite negative electrode reactions are strongly correlated with
the µLi+ values in electrolytes.

2.3. Determining Factors for Graphite Negative Electrode
Reactions

Finally, we discuss successful Li+ intercalation in high-µLi+ elec-
trolytes. First, to judge whether this effect is kinetic or thermo-
dynamic, we studied graphite reactions in boundary-µLi+ elec-
trolytes (LiFSI/DME (1/4 and 1/3 bymol)) at various C-rates from
C/10 to 10C (Figure S22, Supporting Information). The solvent
cointercalation over 0.5 V still occurred at higher C-rates, indicat-
ing that the solvent cointercalation is not prevented in a kinetic
way via an energy barrier. There would be non-kinetic factors re-
lated to the thermodynamic quantity, µLi+.
On this basis, we suppose that Li+ intercalation in high-µLi+

electrolytes is enabled by two mechanisms depending on µLi+:
i) formation of FSI anion-derived SEI and ii) destabilization
of solvated Li+. The SEI is known to be essential for graphite
negative electrodes. High-µLi+ electrolytes commonly have ex-
tensive ion pairing (Figure 2; Figure S4, Supporting Informa-
tion), which promotes an FSI anion-derived SEI formation on
graphite.[13] Similar tendency was also reported for Li metal and
Si-based negative electrodes.[35,36] This unique SEI contributes, to
some extent, to reversible Li+ intercalation by blocking solvated
Li+ from intercalation. However, we found that the SEI chem-
istry did not remarkably change in the boundary µLi+ region. As
shown in Figure S23 (Supporting Information), both LiFSI/DME
(1/2 and 1/3 by mol) resulted in similar FSI anion-derived SEI
but showed remarkably different graphite reactions. In addition,
solvent cointercalation could not be suppressed in LiFSI/DME
(1/3 by mol) even after forming SEI in LiFSI/DME (1/2 by
mol) with higher µLi+ (Figure S24, Supporting Information).
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Figure 3. Charge–discharge curves of natural graphite|Li half cells and Li+ intercalationmechanisms in LiFSI/DME (1/10 by mol), LiFSI/F3MEE (1/10 by
mol), LiFSI/F6DEE (1/10 by mol) and LiFSI/DEE (1/10, 1/1.8 and 1/1.5 by mol) at a C/10 rate (37.2 mA g−1) depending on the electrolyte Li+ chemical
potential µLi+ (vs LiFSI/DME, 1/10).

Similarly, EC-derived SEI was reported to be unable to inhibit
solvent cointercalation.[27,37] On the other hand, solvent cointer-
calation was suppressed in salt-concentrated propylene carbon-
ate (PC) electrolytes (high µLi+) with less SEI-forming LiClO4 or
LiPF6.

[38] Hence, although the SEI is essential for suppressing
electrolyte decomposition, it may not be the only dominant fac-
tor. On the other hand, LiFSI/DME (1/2 and 1/3 by mol) elec-
trolytes show a large difference of ≈10 kJ mol−1 in µLi+, suggest-
ing that the Li+ solvation is remarkably destabilized at higher
concentration. We suppose that destabilized Li+ solvation (i.e.,

high µLi+) also decreases the thermodynamic stability of result-
ing Li-solvent-GICs, which is responsible for suppressing sol-
vent cointercalation. Previous reports show that the thermody-
namic stability (i.e., formation potential) of Na-solvent-GICs can
be tuned by the solvation structure of Na+.[39,40] A destabilized
Na+ solvation (i.e., a weak solvation environment) leads to less
shielding of the repulsion between the solvated Na+ in the in-
terlayer of graphite, thus destabilizing the Na-solvent-GICs (its
formation potential becomes lower).[39,40] Lower formation po-
tential of Li-solvent-GICs was also observed in higher Li salt

Adv. Mater. 2025, e14060 e14060 (4 of 7) © 2025 The Author(s). Advanced Materials published by Wiley-VCH GmbH
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Figure 4. a) Li+ intercalation behavior of graphite electrodes in LiFSI/solvent (1/10 by mol) electrolytes with diverse solvents and b) reversible Li+

intercalation capacities of graphite|Li half cells in a voltage range of 0–0.25 V in diverse electrolytes depending on the Li metal electrode potential ELi
and electrolyte Li+ chemical potentials µLi+ (vs LiFSI/DME, 1/10).

concentration electrolytes.[29] On this basis, Li-solvent-GICs are
generally destabilized in high-µLi+ electrolytes with destabilized
Li+ solvation, which inhibits solvent cointercalation and instead
favors Li+ intercalation after desolvation. Hence, the µLi+ values
in electrolytes strongly correlate with the thermodynamic reactiv-
ity of the graphite electrodes.

3. Conclusion

We discovered that µLi+ is a quantitative descriptor of the Li+

intercalation behavior of graphite negative electrodes. Unfavor-
able Li+–solvent cointercalation is commonly suppressed when
µLi+ is increased (thus, Li+ is destabilized in the electrolyte) to
above a certain threshold. This threshold is generally applica-
ble to various types of LiFSI-based electrolytes (e.g., highly con-
centrated electrolytes, localized highly concentrated electrolytes,
and weakly coordinating electrolytes) to form inorganic-rich SEI.
On the basis of this insight, new electrolytes can be rationally
designed, with a focus on µLi+ to ensure the reversible reac-
tion of graphite negative electrodes. The µLi+ threshold may be
shifted when the nature of SEI is significantly changed with SEI
forming additives, extremely unstable solvent/salt for reduction,
passivating binders, and functional surface coatings. High-µLi+
electrolytes upshift ELi and thus are also promising for allevi-
ating electrolyte reductive decomposition on Li metal and in-
creasing its Coulombic efficiency.[30] This work does not deny
the contribution of FSI anion-derived SEI to inhibiting solvent
cointercalation but shows that destabilized Li+ solvation (higher
µLi+) is more important. We propose µLi+ as a comprehensive
descriptor including the contributions of both SEI and destabi-
lized Li+ solvation to inhibiting solvent cointercalation. We rec-
ognize that the concept of Li bonds also well describes some
battery reactions.[41] The µLi+ proposed here comprehensively
describes the strength of Li bonds or the energetics of Li+ in
a real solvation structure, thus further deepening the under-
standing of Li-bond chemistry. A class of high-µLi+ electrolytes is
worth exploring as alternatives for commercial EC electrolytes to-
ward next-generation LIBs with higher energy density and higher
safety.

4. Experimental Section
Materials: DME, DEE, dimethyl sulfoxide (DMSO), PC, dimethyl car-

bonate (DMC), trimethyl phosphate (TMP), EC:DMC (3:7 by volume),
TTE solvents were purchased from Kishida Chemical Co. and G2 solvent
was purchased from Kanto Chemical Co. as battery grade. Super dehy-
drated toluene was purchased from Fujifilm Wako Pure Chemical Corp.
F6DEE, F5DEE, 1,2-bis(2,2-difluoroehoxy) ethane (F4DEE), F3MEE sol-
vents (Daikin Industries, Ltd) and LiFSI salt (Nippon Shokubai Co., Ltd)
were provided. All the chemicals were used without further purifying treat-
ments. The LiFSI salt was dissolved in electrolyte solvents to prepare
electrolyte solutions in an Ar-filled glove box. The electrolyte containing
1 mmol dm−3 (mm) Fc (Sigma–Aldrich) was also prepared for measuring
ELi with reference to Fc/Fc+. Natural graphite powders were provided by
SEC Carbon, Ltd. For fabricating graphite composite electrodes, the natu-
ral graphite powders and 12 wt.% polyvinylidene difluoride (PVdF, Kureha
Corp.) solutionweremixed inN-methylpyrrolidone (NMP,Nacalai Tesque,
Inc.). The slurry was uniformly coated on a copper current collector (18 μm
thickness) with a coating thickness of 100 μm, and further vacuum-dried
at 120 °C. The resulting electrode sheets were punched out for obtaining
disk electrodes with the size of 15.95 mmϕ.

Evaluation of µLi+: To quantify µLi+ in an electrolyte, ELi was measured
with reference to the redox potential of Fc/Fc+. The electrochemical cell
used in this experiment was composed of three electrodes (Figure S2g,
Supporting Information): a Pt plate working electrode (Nilaco Corp.) and
Li metal reference and counter electrodes (Honjo Metal Co., Ltd.) with
electrolytes containing 1 mm Fc. Cyclic voltammetry was conducted us-
ing a Solartron 1470E+1400 (Solartron Analytical) to measure the redox
potential of Fc/Fc+ with reference to Li reference electrode, from the mid-
point of the oxidation/reduction peaks. Here, supposing that the redox
potential of Fc/Fc+ was constant,[31] ELi was defined as Li electrode po-
tential with reference to the Fc/Fc+ redox potential. As shown in Note S1
(Supporting Information), µLi+ in an electrolyte can be derived from the
ELi evaluated in the same electrolyte.

𝜇Li+ = FELi + constant (2)

Here, µLi+ was defined to be zero in a standard electrolyte, LiFSI/DME
(1/10 by mol), and µLi+ in various electrolytes was obtained as relative
values with reference to that in LiFSI/DME (1/10 by mol).

Charge–Discharge Measurements: The charge–discharge performance
of natural graphite electrodes was evaluated at 25 °C with a 2032-type
coin cell employing a Li metal counter electrode and a glass fiber sep-
arator (GC-50, Advantec). The coin cell parts from Hohsen Corp. and a
charge–discharge unit (TOSCAT) from Toyo System Co., Ltd., were used.
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Charge–discharge voltage range was set at 0.01–2.5 V. Charge–discharge
current of the ones corresponding to the values between C/100 and 10C
was applied without using a constant-voltage mode. xC rate was de-
cided based on the current of 372x mA g−1 for the weight of natural
graphite. All the electrochemical measurements were conducted under
an Ar atmosphere. Charge–discharge measurements with electrolyte re-
placement were conducted by disassembling the graphite|Li coin cells with
LiFSI/DME (1/2 by mol) after 3 cycle charge–discharge at C/10, carefully
washing graphite electrodes usingDME, reassembling the graphite|Li coin
cells with washed graphite electrodes and LiFSI/DME (1/3 by mol) and fi-
nally being subjected to 3 cycle charge–discharge again.

Materials Characterization: Raman spectroscopy (NRS-5100 spec-
trometer, JASCO) with a laser excitation wavelength of 532 nm was used
for analyzing the liquid structure of the electrolytes. The resolution of the
spectrometer was 0.8 cm−1. The electrolytes were introduced into quartz
cells with sealing in an Ar-filled glove box for avoiding the contact with air,
and the electrolytes were exposed to the laser through a quartz window.
The measured Raman shifts were calibrated with a standard ethanol peak.
To confirm the structural changes of the graphite electrodes after discharg-
ing, XRD was carried out ex situ under an Ar atmosphere with a SmartLab
(RIGAKU) powder diffractometer (CuK𝛼 radiation). The surface compo-
sition of graphite electrodes after charge–discharge measurements was
investigated using X-ray photoelectron spectroscopy (JPS-9010MC, JEOL)
with Al K𝛼 X-ray source. Graphite samples were rinsed with electrolyte sol-
vents three times in an Ar-filled glove box. Thereafter, the samples were
transferred into the chamber using a transfer vessel without exposure to
air.

Theoretical Calculations: The geometries of solvents, Li+, and solvated
Li+ for the ground states were optimized at the B3LYP/6–311G+ (d, p) level
using density functional theory (DFT) calculation. The energy of molecules
was calculated at the B3LYP/6–311G+ (d, p) level. Gaussian16 at the Uni-
versity of Osaka was used for the DFT calculations.
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