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ABSTRACT

Background: More than 1000 genes have been identified as predominantly expressed in the human testis. Advances in gene
editing technologies have enabled the rapid and efficient generation of genetically engineered mice. This approach facilitates the
screening of genes essential for spermatogenesis by analyzing knockout mouse models.

Objectives: This study aimed to elucidate the essential genes in male reproductive function by generating knockout mouse
models.

Materials and Methods: We selected 11 target genes that may have potential roles in the male reproductive system based on
a public database. Knockout mouse lines of these target genes were generated using the CRISPR/Cas9 system to elucidate their
functions in male reproduction. Also, we conducted natural mating tests to elucidate fecundity and analyzed the phenotype of the
knockout males.

Results: Natural mating tests revealed that all 11 gene-deficient mouse lines maintained normal male fertility. The phenotypic
analysis, including testis appearance and weight, histology of testis and epididymis, and sperm motility and morphology, showed
no apparent abnormalities.

Discussion and Conclusion: These results suggest that each gene is not essential for male reproductive function.

spermatozoa.l> Disruption at any stage of the spermatogenesis
process can result in male infertility. To ensure continuous sperm

1 | Introduction

Spermatogenesis is an extremely complex physiological process
involving the sequential differentiation of various spermatogenic
cells within the seminiferous tubules. This process includes three
successive stages: spermatogonial stem cells proliferate through
mitosis, spermatocytes undergo meiosis, and spermatids undergo
morphological differentiation and elongation to form mature

production, precise coordination and regulation of the sequential
stages of spermatogenesis are essential.*

Spatial human proteome analysis has identified over 1000 genes
predominantly expressed in the testis.> These testis-enriched
genes may play significant roles in spermatogenesis and sperm
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function in humans. Since genes are highly conserved between
humans and mice,® generating knockout (KO) mouse models
for these genes and analyzing their phenotype is suitable for
offering clear evidence whether or not a gene of interest is crucial
for male fertility. These results provide valuable insight into the
potential physiological roles and functions of orthologous genes
in humans. Our laboratory employed the CRISPR/Cas9 system
to generate KO mouse models lacking testis-enriched genes and
revealed that many of these genes are indispensable for male
infertility. For instance, TSKS,” SPATA33,® and CCDC188° have
been identified as critical proteins for spermiogenesis, while
NICOL! and NELL2! play essential roles in epididymal sperm
maturation. Additionally, IZUMO1"> and TMEMS1" have been
demonstrated to be required for spermatozoa-egg interaction.
On the other hand, our previous studies also identified that
many testis-enriched genes were individually dispensable for
male fertility.'*"® These results suggest that not all of these
testis-enriched genes are essential for male fertility, and other
testis-enriched genes may compensate for their functions in male
reproduction. Due to the absence of an in vitro system capable
of producing fully functional spermatozoa so far,?® generating
KO mouse models using the CRISPR/Cas9 system is the gold
standard for discovering essential genes for male fertility, and it
provides valuable insights into their physiological functions.

In this study, we selected ten testis-enriched genes
(1700016 H13Rik, 1700031M16Rik, Atpévle2, Ccdcl85, Ccdc8l,
Or2ag2b, P3r3urf, Pbp2, Prdx6b, and Zfp474) and one non-
testis-enriched gene (Adamtsl5). We then generated these
gene KO mouse models one by one using the CRISPR/Cas9
genome editing system to investigate their functions in the
male reproductive system. Phenotypic analyses of these KO
mouse models demonstrated that these 11 genes are individually
dispensable for male fertility in mice.

2 | Materials and Methods
2.1 | Animals

All animal experiments were approved by the Animal Care and
Use Committee of the Research Institute for Microbial Diseases,
the University of Osaka. Animals were housed in a temperature-
controlled environment with 12 h light cycles and free access to
food and water. B6D2F1 (C57BL/6 x DBA2) and ICR mice were
used as embryo donors and foster mothers, respectively. These
animals were purchased from CLEA Japan, Inc. (Tokyo, Japan)
or Japan SLC (Shizuoka, Japan).

2.2 | Digital Polymerase Chain Reaction

The mRNA expression patterns of target mouse genes and
their orthologous human genes by tissue or by cell type
were determined using MRGDV2 (https://orit.research.bcm.edu/
MRGDv2) .2

2.3 | Generation of KO Mice

All KO mouse lines in this study were generated with the
CRISPR/Cas9 system as previously performed.”? We designed

guide RNAs (gRNAs) to remove all or most of the coding
sequence. CRISPRdirect software® was used to avoid off-target
possibilities. Synthesized crRNAs (Merck, Darmstadt, Germany),
tracrRNA (Merck), and CAS9 protein (Thermo Fisher Scientific,
Waltham, MA, USA) were incubated to make the CAS9 ribonu-
cleoprotein (RNP) complex. The obtained RNP complex was
electroporated into fertilized eggs using a NEPA21 electroporator
(NEPA GENE, Chiba, Japan). Fertilized eggs that had been elec-
troporated were transplanted into the oviducts of pseudopregnant
females. The obtained pups were genotyped by polymerase chain
reaction (PCR) and then subjected to Sanger sequencing to verify
the deleted sequence.

2.4 | Genotyping Analysis

Genotyping PCR was performed using KOD FX Neo (Toyobo,
Osaka, Japan). The primers used in this study are listed in Table
S1.

2.5 | InVivo Male Fertility Test

To confirm the fertility of KO male mice, natural mating tests
were conducted. Three male mice were individually caged with
three B6D2F1 females for two months. Male mice were removed
after the mating period, and females were kept for another three
weeks to count the final litters. Both plug and pup numbers were
checked at approximately 10 AM every weekday to determine the
number of copulations and litter size.

2.6 | Morphological and Histological Analysis

Male mice were euthanized, and the cauda epididymides were
dissected. Spermatozoa were collected from the cauda epididymis
and suspended in Toyoda, Yokoyama, Hoshi (TYH) medium.**
A sperm suspension was mounted on MAS-coated glass slides
(Matsunami Glass, Osaka, Japan), and a cover slip (Matsunami)
was added. Sperm morphology was observed using a BX53
microscope (Olympus, Tokyo, Japan).

Morphological and histological analyses of the testis and epi-
didymis were conducted as previously described.”® Male mice
were euthanized, and the testes and epididymides were dis-
sected. After measuring the testicular weight, the testes and
epididymides were fixed with Bouin’s fixative (Polysciences, War-
rington, PA, USA). Fixed testes and epididymides were embedded
in paraffin, sectioned, rehydrated, and treated with 1% periodic
acid for 10 min, followed by treatment with Schiff’s reagent
(Merck) for 20 min. The sections were stained with Mayer’s
hematoxylin solution (Fujifilm Wako, Osaka, Japan) prior to
imaging and observed using a BX53 microscope. The number
of germ cells (spermatogonia, spermatocytes, round spermatids,
and elongated spermatids) was counted at stage VII seminiferous
tubule.
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2.7 | Sperm Motility Analysis

Sperm motility analysis was conducted as described previously.®
Cauda epididymal spermatozoa were suspended and incubated
in TYH medium, which can induce sperm capacitation.?* Sperm
motility was then measured using the CEROS II sperm analy-
sis system (software version 1.5; Hamilton Thorne Biosciences,
Beverly, MA, USA). The motility of epididymal spermatozoa was
recorded after 10 min and 2 h of incubation in TYH medium.

2.8 | Statistical Analyses

Statistical analyses were performed using a two-tailed Student’s
t-test or One-way ANOVA (* p < 0.05, ** p < 0.01) by GraphPad
Prism 9.5.1 (GraphPad, San Diego, CA, USA). Data represent the
means + standard deviation (SD).

3 | Results
3.1 | Expression Patterns of 11 Genes in Mice and
Humans

To investigate the tissue expression profiles of the 11 genes
in this study, we conducted digital PCR using the database.?!
1700016H13Rik, 1700031M16Rik, Atp6vie2, Ccdcl85, Ccdc8l,
Or2ag2b, P3r3urf, Pbp2, Prdx6b, and Zfp474 are testis-enriched
genes; however, AdamtsI5 is expressed in adipose, colon, and
lung (Figure 1A). Then, we checked the expression patterns
of their human orthologs. Since Or2ag2b (paralog of Or2ag2),
Prdx6b (paralog of Prdx6), and Pbp2 are not conserved in
humans, the expression patterns of eight human ortholog genes
were confirmed with digital PCR. Our results indicate that
C4orf36 (ortholog of 1700016HI3Rik), CIl2orf54 (ortholog of
1700031M16Rik), ATP6VIE2, CCDC185, CCDC81, P3R3URF, and
ZNF474 (ortholog of Zfp474) are predominantly expressed in
the testis and/or germ cells, while ADAMTSI5 is expressed in
various tissues and cell types (Figure 1B). Based on these results,
we selected these 10 testis-enriched genes (1700016HI3Rik,
1700031M16Rik, Atpé6vle2, Ccdcl85, Ccdc81, Or2ag2b, P3r3urf,
Pbp2, Prdx6b, and Zfp474) and one non-testis-enriched gene
(Adamtsi5) as target genes to generate KO mouse lines.

3.2 | Generation of KO Mice

To explore the in vivo function of these target genes in male repro-
duction, 11 KO mouse lines were generated individually using the
CRISPR/Cas9 system. The guide RNA/Cas9 RNP complex was
electroporated into two-pronuclear stage embryos. Each gene-KO
mouse line was successfully established by deleting most or all
of the protein-coding region. The efficiency of embryo transfer
ranged from 3.6% to 36.3%, and CRISPR/Cas9 efficiency varied
from 10.0% to 69.2%. Details of gene editing efficiency using the
zygote electroporation method and mutation patterns of each
gene-KO mouse line are summarized in Table S2.

3.3 | Fertility Tests for KO Male Mice

To evaluate fecundity, each KO male mouse was housed with
three wild-type (WT) female mice for eight weeks. Male mice
were removed from females and kept for another three weeks.
For comparison, three WT males were tested in parallel as
positive controls. The average litter size of each KO male was
approximately 7.6-9.8 pups per litter, which was comparable
to the WT controls (9.1 + 2.8 pups per litter) (Table 1). These
results indicate that all KO mouse lines examined in this study
maintained normal fertility.

3.4 | Phenotypic Analysis of Atp6vie2, Ccdc81, and
Prdx6b KO Mouse Lines

We performed phenotypic analyses to investigate whether these
male mice have abnormalities in spermatogenesis and sperm
functions. The analyses of Atp6vle2, Ccdc81, and Prdx6b KO males
will be described herein. In contrast, those of 1700016 H13Rik,
1700031M16Rik, Adamts15, Ccdcl85, Or2ag2b, P3r3urf, Pbp2, and
Zfp474 KO males are presented in Figures S1-S8.

To generate the Atp6vie2 KO mouse line, two gRNAs were
designed to remove most of the protein-coding region (Figure 2A).
Using the primers presented in Figure 2A, genomic PCR was
performed (Figure 2B). Sanger sequence confirmed the KO mouse
line has a 787-bp deletion (Figure 2C). Atp6vie2 KO mice are
viable and do not show any overt abnormalities. Morphological
and histological analysis of the testes of Atp6vie2 KO mice
revealed that there were no significant differences in gross
appearance (Figure 2D), testicular weights (Figure 2E), testicular
histology (Figure 2F), or germ cell number (Figure S9A-D)
between control and Atpévie2 KO mice. Similarly, histological
analyses of the caput and cauda epididymides showed no sig-
nificant differences between control and KO (Figure 2F). To
examine the effects of ATP6V1E2 absence on sperm development,
we observed sperm morphology and found no overt differences
(Figure 2G). Furthermore, sperm motility was evaluated using
computer-assisted sperm analysis (CASA), which indicated that
sperm motility, progressive sperm rate, and the other motility
parameters in Atp6vie2 KO mice were comparable to those of
control mice (Figure 2H and Table S4).

Ccdc81 KO mice were generated by designing two gRNAs to
remove the whole open reading frame of Ccdc8I. After electro-
poration and subsequent mating, we obtained a mutant mouse
line harboring a 37,018-bp deletion (Figure 3A-C). Ccdc81 KO
mice were viable, and no overt abnormalities were found. Ccdc81
KO testis showed a normal gross appearance, and testis weights
relative to body weights were comparable to those of control
mice (Figure 3D,E). Histological analyses showed no abnormality
in the histology of testes and epididymides, and the number of
germ cells in Ccdc81 KO male mice (Figure 3F and Figure S9A-
D). Moreover, normal sperm morphology could be observed in
Ccdc81 KO male mice (Figure 3G). Analysis of sperm motility
using CASA demonstrated no significant differences between
control and KO male mice (Figure 3H and Table S4).

Similarly, Prdx6b was knocked out by targeting its coding region
with two gRNAs. Mutant offspring bearing an 846-bp deletion
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FIGURE 1 | Expression patterns of target genes in various tissues. (A, B) Digital PCR depicting the transcripts per million (TPM) value per
tissue per gene from published mouse and human RNA-seq datasets.?#4-40 Indifferentiation 4 (ID4) plays an important role in the regulation of self-
renewal by spermatogonial stem cells.*’ Spg (ID4+ high) indicates spermatogonia with a high expression level of ID4, and Spg (ID4+ low) indicates

spermatogonia with a low expression level of ID4. SpCytes indicate spermatocytes. (A) Gene expression patterns in mouse tissues. Actb was used as a

loading control. (B) Gene expression patterns in human tissues. ACTB was used as a loading control.

were obtained, and their genotyping was identified by genomic
PCR (Figure 4A-C). Phenotypic analyses demonstrated that
Prdx6b KO males exhibited normal testicular appearance and
weight (Figure 4D,E), normal testicular and epididymal histology
(Figure 4F), comparable germ cell number (Figure SOA-D), and
normal sperm morphology (Figure 4G) and motility (Figure 4H
and Table S4).

4 | Discussion

Within the seminiferous tubules of the testes, spermatozoa
develop through a highly organized process known as

spermatogenesis. Due to the challenges in replicating
spermiogenesis in vitro so far,® the functional analysis
of genes involved in mammalian spermiogenesis has
primarily relied on KO mouse models.” In this study,
we examined the physiological functions of potential
target proteins involved in male fertility using KO mouse
models.

Through in silico analysis, 1700016HI3Rik, 1700031MI6Rik,
Atp6vle2, Ccdcl85, Ccdc81, Or2ag2b, P3r3urf, Pbp2, Prdx6b
and Zfp474 were identified as testis-enriched genes in mice
(Figure 1A). Even though Adamtsl5 exhibited high expression
levels in lung, colon, and adipose tissue (Figure 1A), a previous

Andrology, 2025

85U8017 SUOLILLIOD BATE8.D 3(dfedl|dde 8y} Aq peusenob 8. e s9oile O ‘@SN Jo se|ni Joj AfIq1 8UIUO A8]IM UO (SUORIPUOD-PU-SWB)ALI0D" AB 1M Ae.q1|Bu[UO//SANY) SUONIPUOD PUe SWLB | 8L 88S *[G202/TT/LT] uo Akeiqiauluo A8|IM BXes0 JO AIsieAlun 8y L AQ #4T0."IpUe/TTTT OT/I0p/wod"As | Akeiqijeul|uo//sdny wo.j pepeojumod ‘0 ‘22622702



TABLE 1 | Male fertility of 11 mutant mouse lines.

Gene Average Number Number of Number Number Mating period
symbol Official full name Genotype litter size of males deliveries of pups of plugs (week)
wild type - - 91+2.8 3 26 237 27 843
RIKEN cDNA —6243/-6243 8.8 +2.0 5 32 283 41 8+3
1700016H13Rik  1700016H13 gene
RIKEN cDNA —18,283/-18,283 8.9 +2.9 3 19 170 25 8+3
1700031M16Rik  1700031M16 gene
Adamtsl5 ADAM —20,198/-20,198 9.2 +3.1 3 18 166 23 8+3
metallopeptidase with
thrombospondin type 1
motif 15
Atpévle2 ATPase, H+ —787/-787 9.1+33 3 21 191 26 8+3
transporting, lysosomal
V1 subunit E2
Ccdcl85 coiled-coil domain —1708/-1708 82+28 3 20 164 22 8+3
containing 185
Ccdc81 coiled-coil domain ~ —37,018/-37,018 9.0 + 2.7 3 20 179 28 8+3
containing 81
Or2ag2b olfactory receptor —1095/-1095 9.4 +3.0 3 23 217 23 8+3
family 2 subfamily AG
member 2B
P3r3urf Pik3r3 upstream —91/-91 7.6 +2.4 3 22 168 26 8+3
reading frame
Pbp2 —455/-455 93+24 3 22 205 28 8+3
phosphatidylethanolamine
binding protein 2
Prdx6b peroxiredoxin 6B —846/-846 9.6 £3.0 3 22 211 27 8+3
Zfp474 zinc finger protein 474  —-1004/-1004 9.8 +2.2 3 23 226 26 8+3

study has reported that the protein levels of ADAMTSI and
ADAMTSS5 were lower in the semen of infertile patients.?® Given
that ADAMTSI15 belongs to the same protein family and shares
a similar domain structure with ADAMTSI and ADAMTS5,%%°
we hypothesized that it may play a role in the male reproductive
system. In this paper, we selected these 11 genes to generate
KO mouse models to assess their potential involvement in male
fertility. However, all KO male mice showed normal fecundity,
indicating that these 11 genes are individually dispensable for
male fertility (Table 1).

Based on previous studies, no information is available regarding
the roles of 1700016 H13Rik, 1700031M16Rik, Adamts15, Ccdcl85,
Or2ag2b, P3r3urf, Pbp2, and Zfp474 in the male reproductive
system. This study revealed that these genes were not essential for
male fecundity in mice. Besides, the functions of the remaining
genes will be discussed below.

ATPase, H+ transporting, lysosomal V1 subunit E2 (ATP6V1E2) is
a component of a spermatozoa-specific V-ATPase protein, which
is expressed in secretory acrosomes.’*? In rats, ATP6VIE2 plays
a critical role in acrosome acidification, which is essential for
fertilization.® Similarly, sperm localization analysis of human
samples indicated that ATP6VIE2 localized to the acrosome

vesicle and was strongly correlated with fertilization rates.*
However, our findings reveal that Atp6vie2 KO male mice are
fertile (Table 1). These results may indicate that ATP6VIE2 might
function differently among species and/or that other proteins may
compensate for the functions of ATP6VIE2 in mice.

Coiled-coil domain containing 81 (CCDC81) is a member of
the CCDC family, characterized by proteins with coiled-coil
domains that contain two to six helices.*> Based on the mass
spectrometry of sperm centrioles, CCDC81 has been identified as
a centrosome-associated protein.*® Additionally, CCDC81 protein
has been found to associate with centrosome organization in
protein-protein interaction and may function as a potential cargo-
binding protein in coordination with Dynein-VIL> Therefore, it
was hypothesized that Cecdc81 KO spermatozoa may show low
sperm motility with defects in the sperm neck region, but there
were no significant differences in fertility and sperm motility
between Ccdc81 KO mice and control mice (Table 1, Figure 3H,
and Table S4).

Peroxiredoxin 6B (PRDX6B) is a member of the peroxiredoxins
(PRDXs) family. These family proteins were localized to various
spermatozoa compartments, including the head, mitochondrial
sheath, and flagellum.’®* Gong et al. reported that spermatozoa
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FIGURE 2 | Phenotypic analysis of Atp6vie2 knockout (KO) male mice. (A) KO strategy for generating Atp6vie2 KO mice. The upper and
bottom panels show diagrams for WT and KO alleles, respectively. Two gRNAs (blue arrows) were designed to remove almost the whole open reading
frame. Fw and Rv are primers for genotyping. Our study generated an Atp6vie2 KO mouse line with a 787-bp deletion. (B) Genotyping of Atp6vie2 KO
mutant mice. Fw/Rv primers shown in Figure 2A were used. (C) Sanger sequence of Atp6vie2 KO mutant mice. The dashed line marks the deletion
breakpoint. (D) Gross morphology of control and Atp6vie2 KO testes. Scale bar: 2.0 mm. (E) The average testis weight per body weight of control
and Atp6vie2 KO mice (ns indicates not significant, Student’s t-test, N = 3). (F) Hematoxylin and PAS-stained sections of the testes, caput, and cauda
epididymides. Scale bars: 50 um. (G) Morphology of spermatozoa from control and Atp6vIe2 KO mice obtained from the cauda epididymis. Scale bars:
50 um. (H) Motile sperm rate and progressive sperm rate from control and Atpévle2 KO mice. Motility was checked after 10 min and 2 h of incubation

in Toyoda, Yokoyama, Hoshi (TYH) media (ns indicates not significant, Student’s t-test, N = 3).

from infertile patients exhibited reduced levels of PRDX6, which
was associated with low motility, higher levels of lipid perox-
idation, and DNA damage.*® Additionally, other studies have
demonstrated that Prdx6 KO mice produce fewer offspring than
controls.*! In this paper, we investigated Prdx6b, a paralog gene
of Prdx6, which shows testis-enriched expression (Figure 1A).
Different from PRDX®6, fertility was not affected by the loss of
PRDX6B (Table 1), despite its mRNA expression in the testis

(Figure 1A). Because these paralogous proteins may have similar
functions, they may compensate for each other. Therefore, Prdx6
and Prdx6b double KO mice may show severe abnormalities
compared to Prdx6 single KO mice in the male reproductive
system.

While KO mouse lines in this study displayed no obvious
defects in fertility, we cannot exclude the possibility that these
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FIGURE 3 | Phenotypic analysis of Ccdc81 knockout (KO) male mice. (A) KO strategy for generating Cedc81 KO mice. The upper and bottom
panels show diagrams for WT and KO alleles, respectively. Two gRNAs (blue arrows) were designed to target exons 1 and 15. Fwl and Fw2 are forward
primers for genotyping. Rvl and Rv2 are reverse primers for genotyping. Our study generated a Ccdc81 KO mouse line with a 37,018-bp deletion. (B)
Genotyping of Ccdc81 KO mutant mice. Fwl/Rvl and Fw2/Rv2 primers shown in Figure 3A were used. (C) Sanger sequence of Ccdc81 KO mutant mice.
The dashed line marks the deletion breakpoint. (D) Gross morphology of control and Cedc81 KO testes. Scale bar: 2.0 mm. (E) The average testis weight
per body weight of control and Cedc81 KO mice (ns indicates not significant, Student’s t-test, N = 3). (F) Hematoxylin and PAS-stained sections of the
testes, caput, and cauda epididymides. Scale bars: 50 um. (G) Morphology of spermatozoa from control and Ccdc81 KO mice obtained from the cauda
epididymis. Scale bars: 50 um. (H) Motile sperm rate and progressive sperm rate from control and Ccdc81 KO mice. Motility was checked after 10 min
and 2 h of incubation in Toyoda, Yokoyama, Hoshi (TYH) media (ns indicates not significant, Student’s t-test, N = 3).

genes contribute to male reproductive function in humans. For
instance, we revealed that loss of ATP6VIE2 did not affect
male fertility in mice (Figure 2). However, Cozzubbo et al.
demonstrated a strong association between ATP6V1E2 expression
in spermatozoa and fertilization outcomes in patients undergo-
ing ICSI.** Therefore, ATP6VIE2 should have some important

functions in the male reproductive system in humans. One
reason that ATP6VIE2 works differently in humans and mice
may be due to functional redundancy. The V-ATPase V1 complex,
also referred to as ATP6V1,*? is composed of multiple subunits
(A-H),”® and these paralogs may work to complement the
function of ATP6V1E2. Another example involves members of
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FIGURE 4 | Phenotypic analysis of Prdx6b knockout (KO) male mice. (A) KO strategy for generating Prdx6b KO mice. The upper and bottom
panels show diagrams for WT and KO alleles, respectively. Two gRNAs (blue arrows) were designed to remove almost the whole open reading frame.
Fw1 and Fw2 are forward primers for genotyping. Rvl and Rv2 are reverse primers for genotyping. Our study generated a Prdx6b KO mouse line with
an 846-bp deletion. (B) Genotyping of Prdx6b KO mutant mice. Fwl/Rvl and Fw2/Rv2 primers shown in Figure 4A were used. (C) Sanger sequence of
Prdx6b KO mutant mice. The dashed line marks the deletion breakpoint. (D) Gross morphology of control and Prdx6b KO testes. Scale bar: 2.0 mm.
(E) The average testis weight per body weight of control and Prdx6b KO mice (ns indicates not significant, Student’s t-test, N = 3). (F) Hematoxylin and
PAS-stained sections of the testes, caput, and cauda epididymides. Scale bars: 50 um. (G) Morphology of spermatozoa from control and Prdx6b KO mice
obtained from the cauda epididymis. Scale bars: 50 um. (H) Motile sperm rate and progressive sperm rate from control and Prdx6b KO mice. Motility
was checked after 10 min and 2 h of incubation in Toyoda, Yokoyama, Hoshi (TYH) media (ns indicates not significant, Student’s t-test, N = 3).

the PRDX6 family, PRDX6 and PRDX6B. Disruption of each In summary, we applied the CRISPR/Cas9 system to disrupt
gene individually does not significantly affect male fertility* 10 testis-enriched genes and one non-testis-enriched gene indi-
since they may compensate for each other. To overcome this vidually in mice. Although our mating results reveal that not
problem, it may be necessary to generate multiple gene KO all of these genes are essential for male fecundity in mice,
animals, thereby minimizing compensatory effects from paralogs these findings contribute to the efficient allocation of research
and more accurately revealing their contributions to reproductive resources by preventing redundant efforts on non-essential genes.
function. Furthermore, this study facilitates the prioritization of future
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research toward identifying genes that play critical roles in male
reproduction.
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