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1. Introduction and main results

By Yamamoto [15], Shibata and Soga [7], etc., we know that we can con-
struct the scattering theory for the elastic wave equation corresponding to the
theory for the scalar-valued wave equation formulated by Lax and Phillips [3, 4].
Employing Lax and Phillips’ theory, Majda [5] obtained a representation of the
scattering kernel (operator), which was very useful for investigation on the
inverse scattering problems (cf. Majda [5], Soga [8, 10], etc.). In the present
paper we shall give the similar representation of the scattering kernel for the
elastic wave equation considered in Shibata and Soga [7], and examine the singu-
lar support of that kernel.

Let Q be an exterior domain in R} (x=(x,, -+, x,)) whose boundary 8Q is
a compact C* hypersurface, and consider the elastic wave equation

(63_.-}"31“-' 8:0.)ut,x)=0 in RXQ,

1.1 Bu(t,x)=0 on RX0Q,
u(O: x) =f1(x)) 6,1!(0, x) =f2(x) on Q.
Here, u="*(u,, ---, u,) is the displacement vector, a,; are constant nX7 matrices

whose (p, g)-components a,,;, satisfy
(A1) ivja = Fpijg = Yjaip Ll Py g=1,2,,m,

(A2) Iﬁ @;p10€ieCip = O ”E |&;,|? for every symmetric matrices (§;;),
0,5,0=1 ip=1

i

and the boundary operator B is of the form

Bu=uls or 33 %(x)a,0:l0a,
where v=(»,, -, »,)) is the unit outer vector normal to Q. We denote by U(z)
the mapping: f=(f,, f,)—>(¢, +), du(t, <)) associated with (1.1), and by Uy?)
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the one associated with the equation in the free space (Q=R").

Shibata and Soga [7] show that under the assumptions (A.1) and (A.2)
U(t) (resp. U,y(t)) becomes a group of unitary operators on the Hilbert space H
(resp. H,) equipped with the energy norm

fllsa= 45 {_( 3 aideificdufiy + 1 fol 12

(resp. || fllg, g») (cf. 81 of [7]). Furthermore, adding the assumption

> i iplici =H(E,, -
(A3) 32 a, ;£ £, has eigenvalues of constant multiplicity for any £=*(&,, -+, £,)

eR"— {0},

they show that the wave operators W,o=lim U(—?)U,(¢) are well defined and com-
plete (cf. §3 of [7]). =

As is shown in §2 of Shibata and Soga [7], if (A.1)~(A.3) are satisfied,
we can construct concretely the translation representations corresponding to
Lax and Phillips’ [3, 4] by means of the Radon transformation: g(x)— (s, 0)=

S _ g®)dS. (5 0) ERXS™Y. Let (B} s, (u< - <N be the dis-
tinct positive eigenvalues of 2"_ a;;£E;, and let P,(Z) be the projection into the

eigenspace of A ;(£). Then the translation representations of the data f=(f,, f,)
(€38) in the free space are defined by

£16 0) = 30 @) 4P (@) (2 () 70,7,
+ /R @)s 0), (s, ) ERXS™,

where J,=(—0,)"b?2 for odd n and J, for even n» mean the operators
F-Y(—io)pP2F.] (F being the Fourier transformation in s) whose symbols
(—io)¢~17 and (—ia)" 1" denote the branches of (—ia)® Y/ continued analy-
tically into the upper and lower half complex plane respectively (cf. §2 in Shibata
and Soga [7]).

We define the scattering operator S by S=T¢(W.,)"*W_(T5)™, as Lax and
Phillips [3, 4] did. S is a unitary operator from L¥(Rx S*™?) (= {L¥R X S*!)}")
to itself, and is expressed with the distribution kernel S(s, 8, ») (called the scat-
tering kernel):

(SK)(s, 0) — SS S(s—t, 6, w)k(t, w)dtde .

Let (¢, x; ) be the solution of the equation
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20— 31a,0,0,0=0 in RXQ,
i,j=1

Bo = — 27— 27" ny(e0)~" B{3(t— ()"0 -x)P,(w)} on RX5Q,
=20 if ¢«0.

vy(t, %; ) is an #Xn matrix of C* functions of x and » with the value of the
distribution in ¢.

Theorem 1. We assume (A.1)~(A.3) and the following
(A4) slowness hypersurface 3= {&: N (§)=1} (i=1, -+, d) is strictly convex
"7 (i.e. the Gaussian curvature does not vanish anywhere).
Then the scattering kernel is represented in the following way :

S(s,0,0) = S (0 [ {PL6) (91N0) ((0) 7055, 33 0)

—A(6)2P,(8) (N 0-2) (330 ) (1 (6) 26 -x—s, %; w)}dS,
(0*w),

where N= 3 v(x)a,0,;.
i,i=1

It has been announced in Soga [12] that we can obtain this representation
in the space of the odd dimension #. Improving the methods in [12], we shall
prove it in §3 inclusive of the even dimension. We need much more precise
analysis when # is even than when 7 is odd.

In the proof of Theorem 1 there are two difficulties which we did not en-
counter in the scalar-valued wave equation treated in Majda [5], Soga [8, 9],
etc., although the idea of the procedures is similar. The first difficulty is to verify
the following theorem. This is one of the bases for the proof of Theorem 1.

Theorem 2. For 68" and j=1, +--,d set

,(8) = m"IEK (B)2| Beh (B) | DA (9) -0l
7(0) = 27\ (0) V0N (6)
£,(6) =\ ,(6)0,

where K (0) denotes the Gaussian curvature of =.; at \(0)?0 (EX,). Then, for
any f with T3 f € S(R X S*™') we have

T3 f(s, 6) = lim =0/ ’2:3 x ()P (0)(Us(2) f)(tn,(0)+5E (6)) -

In the scalar-valued wave equation Lax and Phillips [3] obtained similar for-
mula (see Theorem 2.4 in Ch. IV of [3]), but their methods do not work well in

our case.
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In the proof of Theorem 1 we use the fundamental solution of the wave
equation (1.1) as Majda [5] and Soga [8, 9] 'did. The fundamental solution of
the d’Alembert equation can be expressed concretely, e.g., 47t~18 (| x| —2) (n=3),
etc. They in [5, 8, 9] utilized this concrete expression skilfully. In the present
case, however, we cannot expect that the fundamental solution is written in such
a concrete form. 'This is the second difficulty. We can obtain the representa-
tion of the scattering kernel without the concrete expression of the fundamental

solution, by examining the integrals S (J+R) (tp(w), w)de as |t|—oco (@(w) being

some real-valued function on S*-!). The proof of Theorem 2 is also reduced to
examination of the same integrals. In Appendix (§5) we show some properties
of those integrals needed in the proofs, which are similar to the well-known re-
sults for the method of stationary phases; however, our results can not obviously
be derived by this method. Especially, this derivation for even » is much more
difficult than for odd #». This is because J, are not differential operators when
n is even.

Using the representation in Theorem 1, we obtain the following theorem
about the (singular) support of the back-scattering S(s, —w, w) corresponding
to the one in Majda [5] and Soga [10]:

Theorem 3. For any fixed o =S"! we have
(i) supp [P—w) S(-, —o, 0) Plo)]C
(=00, —(n(@) 42, (@) (@] (=1, - d),
(i) P—w)S(s, —w, ) P(w) is singular (not C=) at s = —2x () r(w)
(]_—:1’ e, d),

where r(co)=m§n xXe0.
z€0Q

The above results are reasonable since P,(—w)S(\(0) 0 x—t, —o, ®)
P (o) means the \(w)-mode wave scattered in the direction —e for the incident
M j(w)-mode wave in the direction . Theorem 3 was announced in Soga [12]
under some more restricted assumptions. When (1.1) is the isotropic equa-
tion (i.e. @;p;q=p(8¢8;;18;8,;,)+N8;,8 4, >0, u+21/3>0) with the Dirichlet
boundary condition in the case of #=3, Yamamoto [16] has also obtained the
same results as in Theorem 3. But it seems difficult to apply his methods to
our case.

We can obtain Theorem 3 by the same procedures as in Majda [5], Soga
[10], etc.: Employing the asymptotic solutions of (1.1) (constructed in Soga
[13]), we expand asymptotically the Fourier transform of a(s)P,(—)S(s, —w, »)

P () in the form kf% SR e="7* By(y)(ic)™* dy (as |o|—>o0), and apply Theo-

rem 2 in Soga [10] to this form (which deals with those oscillatory integals).
It is an interesting problem whether or not P(—w)S(s, —w, ®)P;(w) with
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i = j is singular at s=—(\,(@) 24 (0)*)r(w). To solve this problem, how-
ever, we need more precise analysis than for Theorem 3. It is examined in the
paper Kawashita and Soga [1].

The author would like to thank Mr. M. Kawashita for his useful indications.

2. Properties of the translation representations

In this section we assume (A.1)~(A.4) in Introduction, and show some
properties of the translation representations 75 in the free space and the ones
T*(=T7(W#*)~") for the mixed problem (1.1). Theorem 2 in §1 follows im-
mediately from Theorem 2.1 below. The notations in §1 are used also in this
section.

We set L= 3] a;

i,j=1

l:é 2 , and denote the domain of Af by D(AF). A, is the generator of U,(t).

In the same way we denote by A the generator of U(#). The properties of these
operators are described precisely in Shibata and Soga [7]. We denote by C5(M)
the space of C™ functions on M with compact support, and by B=(M) the space
of C™ functions v(x) on M satisfying WE’” sup |97v(x) | < o0 (B~= mf;ﬁ.@"’). S

0.,0.;. Let A, be the operator on H, defined by 4A,=

S

means the set of the Schwartz rapidly decreasing functions. We abbreviate the
product E'X -+« X E of a functional space E by E.

Theorem 2.1. Let «(0), 7,(6) and £ (0) be the functions defined in Theo-
rem 2.
(i) Let f be any data satisfying feD(A4*®). Then, for any h(s, )<
S(R X S™1) there exists a constant C independent of f and t ER such that

1[92 53 ,00P(6) (U012 (0n,(60)+5t (O, O)asde)
Rxs*1

<C 34 lle.re
(i) If fEH, satisfies T f € S(R X S*"Y), then for any (s, §) we have
T$f(s, 0) = lim 1457 33 (0)P(0) (Uy(1) s (t,(6)+55 (6))

If f €D(A3*3), then the above equality is valid in the sense of the distributions on
R, xSy

From the above theorem we obtain the following theorem concerning 7=
T§(W,)™, which is one of the bases for the proof of Theorem 1 in §1.

Theorem 2.2. Let x,(0), n,(0) and £ (0) be the functions defined in Theo-
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rem 2. If f = D(A**?), then t*-bi2 é x(0)P(0) (U(t)f), (tn(0)+sE (0)) converges

to T f(s, 0) in the sense of the distributions as t— o ; i.e., for any h(s, ) ECT(R X
S*-1) we have

tim ({4009 32 1 (O)P (0) (U@ (4n,(0)+52 (0))

—T*f(s, O)} (s, 6)dsdd = 0.

The above theorems are the main results in this section and will be proved
later.

The slowness surfaces 3; are (n—1) dimensional C* hypersurfaces expressed
by {\(0) ?w} pesn-1.  Each mapping: o—>\,(0) % is a diffeomorphism from
S*1to 3, Itis easy to see

Lemma 2.3. Fix nE€ R" (£0) arbitrarily, and set @ (w)= N, (0) Vo y
(0ES*).

(1) @)w)is maximum at only one point wi and minimum at only ome point
o7 ; furthermore, o =—o7.

(ii) The gradient of @ (w) does not vanish at any o which is not equal to w}
or ;.

(i) @yor) << @ywr) <0< pwf) < < @ of).
The following lemmas are key lemmas for the proof of Theorem 2.1.
Lemma 24. Let y€R" (%0) and s,=R, and set @, (w)= N(w) Pwy
+5o (0ES™Y).  Then, for any k(s, 0) € S(R X S"*) we have
lim 1002 | (JH) (o), @)do

B {0 if pi(ot) 0,
®(01)R(0, of) if p)(wf) =0,
where wf are the points in Lemma 2.3 and it w)= 2(27)" V7|5 | -0 (o)1
K@) | 9en(w)| .

Lemma 2.5. Let u be any vector in {uER"; ua'< | | = po} (po>1), and
let s, €R.  Set ()= p+(0e\;) (N(0)720)+5,(0=S*""Y). Then, for any k(s, ) €
S(R X S"Y) we have

oo , (J£R) (44(6), 6)d0) SCIlEll s s

where || +||,s, gxs»-1 denotes the Sobolev norm on R X S*~! of order m and C is a con-
stant independent of u, k and t (ER).
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Proof of Lemma 2.4. Take a prtition {X} ;», of unity on S*-! such that
supp[X,] D w/ &supp[X,] (=1) and supp[X,]>wisupp[X;] (=2 and =0).
For each X; we choose a local coordinate system o=o(y) (y ER""?), and con-
sider the integral

L) =10 (J5) (w0, o) (o() 1 521 dy.

As is stated in Lemma 2.3. |9,p,(»(y))| does not vanish on supp[X,] when
j=2. Therefore, by Theorem 5.2 (and (i) of Remark below Theorem 5.4) in §5,
we have |I(¢)| =Ct'—0 (as t—>o0) when j=2. From the assumption (A.4) it
is seen that Theorem 5.4 or 5.6 in §5 can be applied to I(¢) and I,(t) (see (ii) of
Remark below Theorem 5.4 also). Therefore, if @,(w7)==0, then 1}2}, I(t)=0
for j=0,1 (by (ii) of Theorem 5.4). And if @,(wi)=0, then, noting that J¥=
"~1J_ and —@,(0)=0 near o}, we have 1‘1-1'2 1(t) = ®(w7)k(0, o) (by (ii) of Theo-

rem 5.6); lim I,(¢) = 0 since @,(w7)=0. Hence the lemma is obtained.
100

Proof of Lemma 2.5. It is seen that +J»,(f) is maximum at 6,=|x|~'x and
minimum at §_=— | x| ', and that the gradient of +,(d) does not vanish when
0=+0,; furthermore the Hessian of +r,(f) does not vanish near §=60.. In the
same way as in the proof of Lemma 2.4, taking the partition of unity, we can
derive Lemma 2.5 from Theorem 5.2 and (i) of Theorem 5.6 in §5. The proof
is complete.

Proof of Theorem 2.1. (i) Let us note that

(U ) = 27y [ S1Ml() i)

(2.1)
(J*R) (M(@)Yw x—t, 0)dw, k=TFf

(cf. Theorem 2.1 and (2.14) in Shibata and Soga [7]). We see that this is

valid if f&D(4g). Therefore the integral W(f) = SS 1D 33 & (B)P (6)
ji=1
Rxs"!

(U(8) feltn,(8) 4L (8))h(s, 6)dsd is written in the form

w() =27 3 {do |7 dsnoyen| e (o)P (0)P (o)

=1

(JET3f) (M) ™20 +;(0)+$Ni() ™2 £ () —2, w)h(s, 6)db .

Applying Lemma 3.5 to the above integral SS”_I &;P,P(JETSf)hdO with p=

27\ (@) ™¥%», we have
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L4 nt .
|w@)| <C, Ss do S_” ds zf 10373 f(r, w)llz2 sup | 95h(s, 0)]
i= e

lo|<n+3
<C, 3 4ifls, e
Here we have used the equality ||8i7'3f(s, o)l z2gxsn-n=||4sf|lg, g» (cf. §2 of
Shibata and Soga [7]). Hence, (i) of Theorem 2.1 is proved.
d
(i) By (21), SOS07 3 k(6)P,(6) (Ut))ltn,(6)+5,(6)) is of the
form
(1) = 242m)" 33 OO [ | Aif0) P (o)
ji=1 sn-1
(JER) (Eni(@) %0+ 0 ,(0)+sNi(0) V20 - £ () —2, w)do

Let w}; (resp. wi;) be the point at which @, ;(w)=nA(®) 207 (0)—1 is maximum
(resp. minimum) on S%~%.  Then, since A;(6)~20 270N, (N\,(0)20) =1 (from
the Euler equality) by Lemma 2.3 we have

wfi= 20, @1 0i)<0, @i oh)Eoueh) =0 if I+].

Therefore, applying Lemma 2.4, we obtain
ltim d(t) = ;é Py(0)k(s, 0) = T3 f(s, 0) .
Thus Theorem 2.1 is proved.

Proof of Theorem 2.2. We take a C*~ function X(x) such that supp[X]CQ
and X(x)=1 for |x| =7, (0QC {x: |x| <r,}). The problem (1.1) has a finite pro-
pagation speed (cf. §3 of Shibata and Soga [7]). Let this speed be less than s,,.
Then it follows that

(U (@) = (U(t—etyXUEDF)(x)  When | ] Zsmex(1—)t+70,
where we choose the constant ¢ so that ¢=1—2"" min {1, szi|7,(0)| (j=1, -+, d,
=S ")}. Since |7,(0)| = 2 smax(1—¢), there is a constant £, such that |#y,(6)
+58 (0)| ZSmax(1—C)t+7, for =1, Therefore we can write

U@)f (¢7,(0)+s£ (0))
(2:2) = Uy®) {U(—et)XU(ct)f — W3 f} (tn;+sE )
+ U)W f(tn;+sE;) whent=t,.
Since f €D(A"*), we have W3'f € D(A3**) and

lim | 4H{U(—et)XU(ct)f — W3} |g,p = O
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for any integer ¢ with 0=¢=<n-+-3. This and (i) of Theorem 2.1 yield that

25 | [0 33 1,2 [U0) UM~ tXU(et)f — W 13Ty (1,458 Yhdsde|

gcgllAé{Uo(—ct)xU(ct)f— W3 fHig g —0 as t—>c .
For any 8§>0 there exists g&H, such that T{g<S and g and gl]zél{;(g—
W f)lls.rr (= :2.:ua;'(ng—T+f)||Lz(,,xs"-1,)<s. By Theorem 2.1 and the
Lebesgue convergence theorem we have
[ 3202 (U W10, (10,458 ) — T* Py hasde)
@4  SCH AW —)lerr |
+ 1§ 1m0 53 P (U0 (1n,+48 ) — Tigh hasdo|

T Sg (Tig— T+ f)hdsdd|
< C8-+5+36||h]|,2 1if ¢is large enough.
Combing (2.2), (2.3) and (2.4), for any 8'>0 we obtain

d
| 4tevm 53 0 P U (19,458 ) — T+ g hasas
=<3&' if ¢ is large enough.
Thus Thoerem 2.2 is proved.

3. The representation of the scattering kernel

At first, we state a theorem (Theorem 3.1) basic for proof of the represen-
tation of the scattering kernel. And next we prove this representation, that
is, Theorem 1 in §1 and more precise results (Theorem 3.3). We use the
notations in the previous sections also in this section.

Theorem 3.1. Let x(0), »,(0) and £ (0) be the functions defined in Theorem
2. Assume that w(t, x) is a function € B~(R X Q) satisfying

(@*—Lyw(t,x)=0  in RxQ,

1
(3-1) w(t,x)=10 if t<r,

(where L= 2”} a,0,0,,). Then we have
i,0=1
(i) there exists a constant C independent of (f,s,0)ER, X RXS" ! (R,=
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(0, o0)) such that
| B0 (0)(Jtw) (2, En(0)+sE ()| =C;
(i) #f lim d%w(¢, x) = lim 8%0,w(t, x) =0 for every x0Q and every non-
negative integ::k§3(n+1)/z:hen for any (s, )€ R X S*~ we have
lim #=b% (0) (J¥w) (2, #9;(0)+55 (6))

= 2,(0) [, (P (0)01"Nuw(n,(6)10-3—s, 3
—A,(0) V2P (6)(*NO-x)0;'(n(0) 20 -x—s, )} dS, .

We know that the solutions of the equation (87—L)u(¢, x)=0 have a finite
propagation speed (cf. §3 of Shibata and Soga [7]); we denote the maximum of
this speed by sp... Let us note that if the function u(t, x) satisfies (87— L)u(t, x)
=0in RXR" and u(0, x)=08,4(0, x)=0 for |x|=x, (>0), then for any point
% with |&| =x, we have u(t, )=0 when || <(|%| —%)Smax-

To prove Theorem 3.1, we verify

Lemma 3.2. Take {€R and R=R" with |X|>r,+1, and let w(t, x) be
a function € B=(R X Q) satisfying (3.1). Then we have

w(t, 1) = ey 3 || (@) P(w)
aaxs"!
(3.2) NA,_o(Xw) (F+Ai(0) V2w - (x—X), %)
— M)~ *H2P () (*N o -x)
iA (X)) (F+Ny(0) 0 - (x— X, %)} dS,dw ,
where A, (=A,(D,))=D,;|D,| ™" and X=2X(t) is an arbitrary C* function such that
X(t)=1 for t<% and X(t)=0 for t = I+ (| %| —7r,—1) s7ix

Proof. Take p(x)€C*=(R") such that S p(x)dx=1 and supp[p]C {»: |x| <

1}, and set 84(%) = & "p(x/€) (0<E=1). Let E(¢, x) be the solution of the equa-
tion
(0;—L)E(t,) =0 in RXR",
i Ey0,x) =0, 08,E,0,x)=8,(x)] on R"

(where I is the n X n identity matrix). By intgeration by parts we have
(3.3) S 84(x—B)w(E, x)dx
Q

— S dS,S' dt *E(F—t, x—%)Nu(t, )
9Q ~oo
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~

— s dS,S' dH(NE)(F—t, x—Byu(t, x)
9Q :°°
_ S . dxg’_°° (93— LY E,(F—t, x—Z)w(2, x)
= I)(6)—1(6)—1¢),
where N ‘E,=_i=} v,(0,E,)a;; and l‘E,=_2: (0.,0:/Ep)a;;. In view of L*E,=

LE,), we have I(€) = 0. Since ‘Eylt,¥)= 3} F[0(E)™2sin 0(E)08 (E)P,E)]x)
(8, =F[8,]) and E,(¢, x)=0 when || <(|x|—1)s5l,, it follows that

! “ had -~
I(6) = 121 Saa ds, S_N dt gsn—l dew (27)~" 50 doeiT® =5

sin (M(w) V2o (F—1)) 8y(aw)o™n(w) V2P (@) NXu(t, x)

(where X(t) is the function in (3.2)). We see that lim Sm dt Sm doe'™® e*i7t
28>0 —-00 0

3,(a-co)a-"'zv(t) = S: ¢'”* F[v](Fo)o"%do for any v(¢)CF(R). Therefore, noting

that sin 6 = (27)~! (e'®*—e~?%), we obtain

lim I,(e) = 2 sm dS.(27)~"(2i)~ SS do S: do 3 m(0) Py(w)
(3.4) exp {low * (x—X)+rict n (@)% FINXw] (A 0) V%o, x)o™ 2
— (2m)'"(26)"! ,é SS ()P ()

aaxg" ™t

NA,_(Xw)(F+n(0) V0 (x—X), x)dS,do .
In the same way we get
(35)  limLe) = @) 3| @) eP @) (No-2)

aaxg” !
iA, . (Xw) (F4-Ny(w) Y20 - (x—Z), x)dS . do .

Combining (3.5) with (3.3) and (3.4) yields (3.2). The proof is complete.

Proof of Theorem 3.1. Choose a C= function X,(t) such that X,(f)=1
for <0 and X,(¢) =0 for £>1, and set

Xi®) = %("E), 7= 25au)™ min 1n(0)].

(S
1=I<d

Then we can apply Lemma 3.2 with %= #y,(0)+s,(0) and X()=X;(¢) if ¢
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is large enough. Therefore, when £ is large enough, it follows that

e (9) (4w F, B (6)-+5£,(6))
= s ey R(|  (u@ P

2axg" !
Fo-0i JRA, _ {(6X7 —26+1)Nw} | (F+ (@) V2w - (x— X), x)
— (@)~ V2P (o) (*N w - %)
F-DA TEA, . (X5 —26+1)w}] (F42i(0) V0 - (v—E), &) dS.dw,
= .Z“,fb'(f) ,

where %= #5,(0)+s{ (6).
The first step is to prove that lim @ (#)=0. The function {1—x,(e)™?

(R

w+n;(0)} (on S;™) is maximum at only one point o, and minimum at only an-
other point w_; furthermore there are no stationary points in S, except w,. (cf.
Lemma 2.3). We take a partition {aj(w)};—1,.. of unity on S"~! such that
w4+ Esuppla,g] Pw-Esupp[a;] P o, and w.esupple;] (¢>2), and miltiply the
integrand in &(7) by @,(w). Introduce local coordinates w=ew(y) (yER"™) in
a neighborhood of each supp[e;,] and apply Theorem 5.2 and (i) of Theorem 5.4
in §5 with @(y)=1—x\((y))"V?w(y)-n;(6) when =2 and i=0, 1 respectively.
Here, let us note that the Hessian of @(y) is non-degenerate on supp[e,(w(y))]
when =0 and 1 (from the assumption (A.4)). Therefore we have

e | p(D) {0t — e} (F+ () 0+ (v—), 2)do]
< G 5ysup |03 {(Xr —1)o} (5, )1

where p(D,) = J*A,_, or iJ¥A,_;,, v=Nw or w and m =the maximum integer
<3(n+1)/2. sup | 8% {(X7 —1)v}(t, x)| is bounded in >0 and x€0Q, and con-
te

verges to 0 as f—oco (for any fixed x€9Q)) since lim 9}v (¢, ) =0 (0=k=m).
1y
Therefore, by the Lebesgue convergence theorem, we get lim &,(#)=0.

The second step is to examine the behavior of @) as f—>oco. We employ
the same reduction with the partition {@,(®)};=o,.. as in the first step. Then
there are no stationary points of 1—\,(w) %7, in supp[a(e)] if i=2. And
therefore, in the same way as in the first step we see from Theorem 5.2 in §5
that the absolute values of the terms with ¢, (¢ =2) are of the order less than #2-*
(as Z—>o0) and tend to 0 as #—>co. Consequently it suffices to examine only the
terms containing «, or a;.

We take local coordinates w=w(y) (y ER"™?) available in a neighborhood
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U, of supp[a;] such that o(y)=1—x(o(¥))?(y)-1,f) is minimum at y=0,
ie., p(0)=@(y) on U,={y: w(y)€U}. Then, from the assumption (A.4) we
can assume that the Hessian of ¢(y) is not degenerate on U,. Furthermore, since
ltljg dtw(t, x)= }112 9.05w(t, x) = 0 for any non-negative integer k < 3(n+1)/2, the

function

k(t, y; x) = ay(@)ni(@) P (@)v(t+Ni(w0) Voo (x—5E ), %) | umuty
(v=19}"w or i87"% Nw)
satisfies St k(r,y; x)dre B~(Rx U,;x8Q) and lim sup | 8%k(d-t,y; )| =0 for
0

1> |o|<(+5)72
yer,

any x€0Q. In view of the equalities that J*¥A,_,=i],07 2and {J*A,_,=1],0;7,

we see that the term (with a;) to be examined is sum of the forms Z(*-)/ SS

axT1

Jk(Ep(y), y; x)dydS,. Noting that @(0)=0 if / = j and ¢(0)=0 if I=j, we ap-
ply Theorem 5.4 or Theorem 5.6 to the integral f J+k(Ep(), y; x)dy (see (ii) of

Remark below Theorem 5.4 also). Then it is seen in the same way as in the
proof of Lemma 2.4 that as f—co each part with «, tendsto 0 if /= and to

x,.(a)—»ﬂgm {P(0)0;~"Nw(\ (0)~20-x—s,x)—\ () 2P (0) (*NO-x)87 "w(N (6) '/

0-x—s, x)}dS, if [=j. Similarly we can know that the other term containing
ay(w) converges to 0 as —>co since the maximum of 1—x,(w)w-7,(f) on
supp[ay(w)] is not equal to 0. Thus it is proved that as F—oco &,(#) converges
to the limit of the term containing ¢; and satisfying /=j. The proof is complete.

Regard the Dirac function 8(t—x(w) " w-x) as a distribution-valued C*
funation on R} X S27, and consider the equation

(02—L)v(t, x)=0 in RXQ,
(3.6) {Bv= —2-1(—27zi)""xj(w)-"/4B {S(t——xj(w)"/zw-x)Pj(m)} on RX0Q,
v=0 for t<0.

Then there exists a unique solution v,(, x; w) which is an 7 X7 matrix of distri-
bution-valued C= functions on R} X S7* (cf. Soga [14]).

The scattering operator .S is represented by means of v; (j=1, ---,d) in
the following way:

Theorem 3.3. Let the assumptions (A.1)~(A.4) be satisfied, and set
S5, 6 0) = 33 2,(0) jm {P,(8) (01N ) (\(0) 20 x—s, &3 w)
i,j=
—M(0)TP(O)(*'N 0-2)917'0 ) (M(0) 70 - x—s, x; )} dS.,
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where N= é vi(x)ay0,,. Then we have
k=1

(SE)s, 6) = H Sy(s—t, 8, ) k(t, w)dtdeo + Kk(s, 0)

Rxs"?

E(s, o) ECT(RX S*Y),
where Kk(s) = F![(sgn a)*~'[FK] (a)](s).

In the above theorem, the integral means the Riemann sum with the value
of the distributions on R. Theorem 2 in §1 follows from the above theorem
since the kernel of K is equal to 0 when §=w. This theorem will be derived
later from Theorem 2.2, Theorem 3.1 and the following lemma.

Lemma 3.4. Let the data fin (1.1) satisfy ToW 2 f(s, 0) ECT(RX S*Y),
and set k=T5 WZ2'f. Then we have

(U@) N)x) = (Ug(t) W= f), ()
(3.7) +(—i)"‘1l=§1} SS oi(t+s, ;3 ) J* k(s, o) ds do .

Rxs"!

Proof. Denote the left side and the right one of the equality (3.7) by u,(%, x)
and #@,(¢, x) respectively. Then it is obvious that (07— L)u,= (85— L)%#,=0 in
RX Q. From the assumption it follows that k(s, )=0 when s>s, (for some
constant s,), which implies that U(¢)f= Uy(t) WZ!f when t<<¢, (¢, being a
constant determined by s,) (cf. §3 of Shibata and Soga [7]). Furthermore,
é g 5 (4, *; 0) JXE(s, w)dsdw =0 if ¢ is small enough, because J*k(s, w)=
=1

Rxs""1
0 for s>s, (cf. Lemma 2.1 of Soga [8]). Therefore we have u,(t, x) = @,(¢, x) if
t is small enough.

We know that (U)Wt f)z(x)=2'1(2n-)1"‘éss”_l M) Py () (J*

R) (A (@)™ w+x—1t, ®)dw (cf. Theorem 2.1 (and 2.14)) in Shibata and Soga [7];

this is valid if WZ2'f €D(AF)). Therefore we have B(Uy(t) WZ'f),=2"Y(2z)*""

> Ss (@) B APY(w)(JER)(M(w) -5 — )} deo. This is equal to —(—i)*~

=1 Js"~

B f} S S vy(t+s, x; 0)JXk(s, w)dsdw, which is seen from the form of the
=1

Rrxs"!
boundary value By, (cf. (3.6)). Hence we have Bu,= B#,= 0 on RX 9Q. Thus,
from the uniqueness of the solutions, it follows that u,(z, x) = @,(¢, x) on RX Q.
The proof is complete.
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Proof of Theorem 3.3. Let k(s, o) €C5(RX S*%), and set f= W_(T7) k.
Then f €D(A~) and U(t) f(x)=C=. Theorem 2.2 means that

Sk(s, 6) = lim #2-5% 33 1,(6) P (6) (U (1) ltn (6)-+55 (6)

where the above convergence is in the sense of the distributions on RX.S*"%
In view of Lemma 3.4, we have to examine the limits of

(3.8) t"'"’”éj x(0) P(0) (Us(t) W= f){tn(0)+5L(6)) ,

39 2O PO (=3 [ oltts tr0)+2,0); 0)
Rx.s""

JXk(s, w)dsdew
as t—>oco. Theorem 2.1 implies that (3.8) converges to Kk(s, ) since T§g=KTj5.
Therefore we have only to show that (3.9) converges to S S So(s—3, 0, ») k(3, )

d§dw as t—oo. -2t
Set
(3.10) w(t, %) = 3 S g vy(t+s, %; ) k(s, ) ds do .
=1
Rx8""1

Then w is a C* function on RX ) and satisfies
(*—L)w(t,x)=0 in RXQ,
Bw=g(,x') on RX0Q,
w=0 if <0,

where g is of the form

gty x) = =2 H(=2niy 33 o)
B{P,(0) k()™ &-x'—t, &)} do .

Since g(t, x" ) eCT(RX 0Q), H(w(t, ), 0, w(¢, +)) belongs to D(A~) for any large ¢.

Therefore, from the decay property of the mixed problem (1.1) (cf. §3 of Shibata

and Soga [7]), it follows that lim 8} w(¢, ") = lim 9} 8, w(¢, x')=0 for any noo-
L g >0

negative integer ¢ <3(n-+1)/2 and for any ¥’ €0Q. Hence we can apply Theorem
3.1 to the (¢, x) defined by (3.10). Furthermore we see that J¥ w(¢, x) = (—7)*™!

é sg vy(t+s, x; 0) J* k(s, w)dsdw. Thus it is seen that (3.9) converges to
=1
RXS'_"

S S So(s—$§, 0, 0) k(3, w) d§de in the sense of the distributions on R, X S§™! as
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t—>oo. The proof is complete.

4. Singularities of the scattering kernel

In this section, using Theorem 1 in §1, we examine the support and the
singular support of the back-scattering S(s, —®, »), and prove Theorem 3 in
§1. The notations in the previous sections are used also in this section. We
denote by H~=(M) the dual space of the Sobolev space of order o on M.

At first we solve (3.6) approximately by means of the asymptotic solutions
obtained in Soga [13]. Namely we construct the Poisson operator for the non-
glancing boundary data:

Theorem 4.1. We have an operator P: H (R X 0Q)—H =(RXQ) with
the following properties: There exist a neighborhood U of 0Q (in R") and an open
conic set T in T*(R X 0Q)= R, X R, X T*(0Q) containing R,X(R,— {0})x0Q x {0}
such that

(i) (3—L)PheC=(Rx(QxNU)), h(t, x'YeH=(Rx 0Q);

(i) Ph(t, x) €C=((— o0, 1) X Q) if h(t, x') is C= smooth when t<r,;

(iii) BPh(t, x") is well defined for any h(t, x") = H~>(R X 0Q), and furthermore

BPh(t, x')—h(t, x') €C=(R X Q)

if the wave front set of h is contained in T';

(iv) the mapping T: h—>NPh| gyaq (resp. h—Ph| pya0) is a pseudo-differen-
tial operator of order 1 (resp. —1) on RX0Q independent of t in the case of
Bu=1u| gxoq (resp. Bu=Nu| pxoq) ; furthermore, each local symbol T (y; o, ) (¥, 1)

being local coordinates of T*(8Q)) has homogeneous asymptotic expansion 3}
ji=0
T(y;o,n) such that every T (y; o, n) is real-valued and homogeneous of order
1—j (resp. —1—j) in (o, 1) and that
N d ’ ’
Ty; 0, 0) = io 23 Mv (" (9N Pi(v (+' ()

(resp. = (i0)™ é M@ (* ()72 Pi(v (%" (3))))

when Bu=1u| gxoq (Tesp. Bu=Nu| gx3a)-

Proof. We take a fine partition {X;};-; ... of unity on 9Q, and carry out
the following analysis in each neighborhood W, (CR") of supp[X,]. We
introduce local coordinates x’'=x’(y) on QN W, (ye R*™1).

If |n| (€ R*™?) is small enough, we have the solution @!(x; ») (I=1, :-,d)
of the equation

MO:9')=1 in QNW,,

U
P n) = 1), 22 ('3 ) <0 on 20NW,
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by the Hamilton-Jacobi method. Here, we choose W, so that @!(x; %) is defined
on the whole QN W,. Using the asymptotic solutions in Soga [13] (cf. Theorem
1.1 of [13]), in QN W, and for c € R and small || we can construct C* func-

tions p!(x; o, ) (I=1, -+, d) with asymptotic expansions 2 Pli(x; p) (10)~7+* (as
|| —o0) such that z’“ p,(x, 7) are real-valued and that

(af_L) (eidt+i¢¢l(s;'ﬂ) pl(x; o, 7])) =0 ( la. l —°°) in QO n Wk s
B{E e+ pl(w; o, )} | erip—e I T
=1
=0(le|™) on 8QNW,,

where £&=0 (resp. —1) when Bu=u|px9q (resp. Bu=Nu|pxoo) and I is the
nXn identity matrix.

Let X2(x; ) be a C= function such that X{(x; )=1 in a neighborhood of
supp [X:] X {»=0} and supp [X:] is in a place where @' and p’ are defined. We
set

P, h(t, x) = (27,-)-:' Ié SS ei¢'t+id’¢l(z;fl)P1(x; - 17)
=1
X%, 7) F[X4 k] (o, o) e* ' dody, hReCH(RX0Q),

where F[X,h] (o, ) = H e~ %.(x'(y)) A(t, x'(y)) dt dy. Then it is seen that
the operator P=31 P, has the all properties stated in Theorem 4.1. Hnece the
k

theorem is obtained.

Proof of Theorem 3. (i) Let v,(¢, x; ®) (j=1, ---, d) be the solutions of
(3.6) in §3. Then u=v, P/(w) satisfies the equations (8 —L) #=0 in RX Q and
Bu=§, Bv; on Rx0Q, which implies that v(¢, x; 0)=38,,v (1, ¥; ®) P\(w) in
RXQ (from the uniqueness of the solutions). Combining these equalities with
Theorem 1, we have

P(—w) S(s, —o, ») P (o)
= N (0) ™ P (w) Sm 012 No (— 1 () 2 w-2—s, ¥; w) dS,

(D) )P ) | N(aw)
(01 2) (—r(w0)™ wex—s, x; w) dS, .

Since v (2, #; 0)=0 if <\ ;(0) ™ r(w), it follows that v (— A (0) 2 & -x—s, ¥; o)
=0 if s>—(\ (o)™ +r () ) 7(w). Therefore the right side of (4.1) is equal
to 0 if s>—(A /(@) "*+n (w) ") r(w). which proves (i) of Theorem 3.

(ii) Choose Yr(2)ECT(R) satisfying +(#)=1 in a neighborhood of
t=x\,(0)"27(w), and multiply the boundary data in (3.6) (with I=j) by +-(2).
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Let h(t, x") be this multiplied data. Then the wave front set (cf. §3 in Ch. 10
of Kumano-go [2], etc.) of % is contained in the set T' stated in Theorem 4.1 if
supp [y+] is small enough. From Theorem 4.1 it follows that B(Ph(t, x)—
v,(t, ¥; ®)) are C= smooth when <<\ (@) "*7(w)+-8 (8 is some positive constant)
and that (8f—L) (Ph(t, x)—v (2, x; 0))€C*(RX (2N U)). This implies that
v,(#, x; ») can be approximated by Pk(t, x) mod C*= in (— oo, A (w) "2 7(w)+-8) X
(N U), since the mixed problem (1.1) is C= solvable and has a finite propa-
gation speed (cf. Shibata and Soga [7]). Therefore, when s<<2X ,(w)~"2 r(w)+28,
we can change Nv (—\ (o) 2 @-x'—s, x'; 0) (resp. v (—A (o) 2 w-2'—s, 2’ ; w))
for Th(—x (o)™ w-x'—s, x") mod C* in the case of Bu=1u|aq(resp. Bu=Nu| ).
Combining this with (4.1) yields that

P(—o) a(s) S(s, —o, ©) P (o)
= %j(0) ™ P () Sm a(s) 0172 Th(—x (@) ™2 wea'—s, x") X(x") dS,/

(+2) a2 P @) | No-w) al)
01 A(—r () P wex’'—s, &) X(x') dS,, mod C=
[resp. = ()™ P (w) Sm a(s) 8172 B(— ()2 w-x'—s, &) X(x') dS,s

+2,(@) Pfo) | N(w-x) a(s)
(07 Th) (—1 (0) ™ w-x'—s, #') X(x") dS,» mod C=]

when Bu=u|qaq (resp. Bu=Nu|q5). Here, a(s) is an arbitrary cutoff C= func-
tion with sufficently small support such that a(—2x (w)~27(w))+0, and X(x') is
a C= function on 8Q such that X(x)=1 on the set W={x'€0Q; (s,x")E
supp [a(s) A(—N\ j(@)* w-x"—s, x")] for some s} and that supp [X] is sufficiently
small.

Let (¥, 2) (ER"'X R) be an orthonormal system of coordinates such that
the plane {x: w-x=s} is expressed by 2=s. Since 8Q Nsupp [X] is close to the
plane {x: w-x=7(w)}, 0Q is represented near supp [X] by 2=2"1\ (w)"* @ ()
for some C* function ¢(y). Introducing the local coordinates (2, y) and com-
bining (4.2) with (iv) of Theorem 4.1, we see in the same way as in §4 of Soga
[8] that there exists a matrix By(y) of real-valued C* functions (=0, 1, --+) with
supp [Bx(y)] Csupp [X(x'())] such that for any positive integer m

FIP(—o) &) S(5, —@, ) P(@)]
(43) = —2(=2m a0 | e S By) o)t dy
+0(lo|=™*Y) as |o|—>oo (F=2zFY).

Furthermore 8, satisfies
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Bo(y) = a(—2x () r(w)) P (o) {—iTy(y; 1,0)
(@) 33 ay oy 01} P (o)
(resp. at(—2 (@)™ 7(w)) M j(w)V? Pow){—1
—in (@)™ ay op 0, To(y; 1, 0} Pyw))
for y with  w-x'(y) = r(w)

when Bu=u|4q (resp. when Bu= Nu|,;). The function @(y) is minimum when
w+*'(y)=r(w), and then, by (iv) of Theorem 4.1, we have B,(y)=&2a(—2
A () (o)A (0) 2 P(0) + 0 (6 =+ (resp. —) when Bu=1u|qsq (resp. Bu=
Nu|aa)). Therefore we can apply Theorem 2 in Soga [10] to the oscillatory
integral in (4.3). Hence it follows that (14| |*) F[P(—w) a(s) S(s, —w, »)
P (w)] (o) & L¥ R) for some # € R, which proves (ii) of Theorem 3.

REMARK. The above methods (for the proof of (ii) of Theorem 3) do not
work well when examining the singularities of P(—w) S(s, —, ») P;(») in the
case of 7=+1. For in this case the By(y) is of the form &2a(—2x () 7(w))
A (@) P(w) P(w) for y with w-x'(y)=r(w), and so By(y)=0 for these y.
Therefore, in order to examine these singularities, we need a new analysis.
Kawashita and Soga [1] deal with the case of 7=+ j under some assumptions.

5. Appendix

For a function p(a) on R we denote by p(D,) (or p) the pseudo-differential
operator: h(s)—>F[p(c) F[k] (¢)] (s). It is known that p(D,) becomes a con-

tinuous operator from B~(R) to itself if p(c) is a C= function satisfying sup
ceR

(14 |a|)™™**8i p(c)| < oo for all non-negative integers # (cf. §1 in Ch. 2 of
Kumano-go [2]). We denote by |-, or |+|, ) the norm of B"(M), and by
[|*|lm OF ||*|lm, » the norm of the Sobolev space on M of order m.

Lemma 5.1. Let p(c) be a function on R homogeneous of order k>0. Then
p(D,) becomes a bounded operator from B™(R) to B™(R) (m and 1 being any inte-
gers with 0<Mm<m—r—2). Furthermore, for any 8§ with 0=8<x we have the
estimate

[ (14577 ph(s) | 7.= C [ (14572 b(s) | m »
where (14-5%)%2 h(s) B and C is a constant independent of h.

Let us note that Lemma 5.1 implies that if p(o) is homogeneous of order
x«>0, p(D,) becomes a continuous operator from B~(R) to itself.

Let U be an open ball {y: |y| <& in R!(I=2). Assume that @(y) is
a real-valued function€$=(U), and denote by H,(y) the Hesse matrix
{0,,9,,(»)};,;=1,~-,- From now on, we examine the behavior of the integral
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Sv p(D,) k(tp(y),y)dy (k(s, y)EB~(RX U)) as the parameter ¢ tends to oo or
— 00,

Theorem 5.2. Let p(c) be homogeneous of order rx>1. Assume that
08, (y)=*0 on U, and that k(s,y) is any function € B~(Rx U) with supp [k]C
RXU. Then there is a constant C independent of k and t = R such that

] (2(D) B 9(3),5) dy<C sup 185 k(s 5)]-

(NERXT

If p(D,) is a differential operator, the above estimate is valid for k=1.
This theorem is reduced to Lemma 5.1 and

Lemma 5.3. Let p(c) be homogeneous of order k>1, and let h(s, 3) be any
function with (1+§) (s, §)€ B*(RX R). Then(p(D,)k)(s',s")and (p(—D~)*h)(s’,
s') are integrable on R, and satisfy

[ e@yn e, yas = (p(=DyBE, ).

Proof of Theorem 5.2. Introducing a partition of unity on U, we can
assume that the support of k(s, ) in y is contained in a small open ball ¥ and
that 9, @(y)=+0 on the closure of U for some i. Let i=1 and y=(y,,').
Transforming the variable y, into s=¢(y), we have

| @@ 8 (), ) dy
= [+4f, @B @5 5:05,5).5

It is seen that (p(D,) k)(ts)=1t=*[p(D,) (h(tr))] (s). Therefore, by Lemma 5.3
we obtain

[, @@ o), @y
==[4{ @D R .5y asyay

2| asyay .
os

where E(s, § y')=k(s, »:(5, ¥"), ¥) | %(5‘, 9')|. Lemma 5.1 yields that
s
|((—=D)R)(s', s, ") | = Ci(1+ |87 l)'l'so;llpa (14 18)7-2 18 ks, 5, 5)| < C,

:,;ER

1+ ls,l)_l-sl Isg(ps |95 k(s, ¥)| (0<8<x—1). Hence Theorem 5.2 is obtained.
NERXT

Hereafter we consider the case
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(5.1) #(0)=p(y) and det Hy(y)+0 on U.

Theorem 5.4. Let (5.1) be satisfied, and assume that p(c) is homogeneous
of order k with [kK]>1[2 ([«x]= the maximum integer <«k). Then we have the fol-
lowing properties (i) and (ii) for any function k(s,y)€ B*(RX U) with supp [k]C
RXU.

(i) There is a constant C independent of k and t < R such that

#2[_ (b)) (to(5),9) dy| = C Rl tass o

(ii) If (0)==0 and 'lim sup |95 k(s,y)| =0, then it follows that
s|->0 |ob|<K+3
Yer

tim 2 | (p(D)B) (tp(s), ) dy = 0.

L gad

If p(D,) is a differential operator, the above statements (i) and (ii) are valid also
when x>12.

RemaRk. (i) In Theorem 5.2, let ks, y) = g’k(r, y)dr € B<(RxU),
[}

which is satisfied if, e.g., (14-52) k(s, ) EB~(RX U) or k(s, y) = 0,k(s, y) for some
E(s,y)EB~(Rx U). Then, noting that p(D,) k=p(D,) 8, k for such functions

k, we obtain the estimate lt‘“S Pk(tp(y), y)dy| =C, (for a constant C,; inde-
1

pendent of £).
(ii) The same assertion is correct also in Theorem 5.4: For any k(s,y)

witthk(r, y)dre B(Rx U), we have the estimate | /2 S Php(y), y) dy| <C,
0 U
(for a constant C, independent of ¢) and the property (ii) in Theorem 5.4 so long

as [k]>2"11—1; furthermore, if p(D,) is a differential operator, they are valid
when £>2"1]—1.

Theorem 5.4 is reduced to

Lemma 5.5. Let X(s)ECF(R), and let r, be any real constant. Assume

that p(c) is homogeneous of order k>1 and that h(s, r) is any C* functionon RX R,

(R.=(0, o)) satisfying sup |r 0} 0} h(s,r)| <oo foreveryi,j=0,1,---. Then
r)ERXR,

for any constant m with 0<m<[«] ([x] = the maximum integer <x) we have the

following properties (i) and (ii):
(i) There is a constant C independent of h and t = R such that

Ta S: (p(D,) ) (tr+-tro, 7) 72 X(7) dr |

L]+ ;o
<CS sup |70} 0ih(s, 7).

1,§=0 (s,r)ERXR,
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Led+ .
(i) Ifro+0 and lim S sup |7 8} ks, )| =0 (I,=supp [X] N R.), then

s> i=0 rel

Jtl->o0

lim " S: (p(D,) k) (tr--tro, ) r*=2 X (r) dr = 0.

If p(D,) is a differential operator, the above statements (i) and (ii) are valid when
15k and O<m<«k.

Proof. Let X(r) be a C~ function on R such that X(r)=1 when r<1 and
X (r)=0 when r =2, and set X3(r)=X (r/€), Xi(r) =X (&r)—X (r/€) and X’(r)=1—
X (ér), where € is a positive constant determined later. Then we have

£]™ S: (p(D,) ) (tr--tre, 1) ¥ X (7) dr

[ (@) 1) (s 8y r-r 121 7= 20 121) Xir)

Iit).

By Lemma 5.1 we get

[1+3 oo
(52)  L®ISCS sup [0iks p)] | vt (xildr (i=0,1)
(1]

j=0 (s,ERXI,

for a constant C,; independent of ¢, & and 4. By integration by parts, we have

oo

63) L0 ={ 3 a0 p0ih) (sgn 1) r-tro,7]121)
|2] =02 {rm=2 X (r]|2]) X2(r)} dr

for some constants c; ;, depending only on [«]. There are constants C, and C,

independent of &, ¢ and 4 such that

|9724rm X (r/ |2]) Xe(r)} | SCp 72,
(051 p0;1 k) ((sgn 2) r+-tro, 7/ | 2]) [ 2] ']

éCaZS} sup |p'10i10i h(s, p)|r~ia.

7=0 ¢s.ERXI,

Here, Lemma 5.1 is used in the above second inequality. Therefore we have

(54) )| SC, 3 sup |7 001 h(s, )] &,
']Z(:;,'E:] (s,r)ERXI,
where the constant C, is independent of &, ¢ and .

Combining (5.4) with (5.2) yields (i) of the lemma. (5.2) (with 7=0) and
(5.4) imply that for any §>0 we can choose & so that |Ii(#)| <& for i=0 and 2
(uniformly in #). After fixing € in this way, we let |¢| tend to co. Then we
get |I1(¢)| <8 (as |t|—o0) also. In fact, it follows from Lemma 5.3 that
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136y = {7_2(=D) (s, 712) 171 X(r12) X3((5BR ) b ey -
By Lemma 5.1 we see (in the above integral) that | p(—D,) {---} | S Cy(1+7?) N2

[kl+s
SVsup 0 {(1+ )P Is, pf) )| " Xlp )X (s 1) p) | S CiE)(1 47w

Lel+
ESSup | p? 85 h(s, p)| (0<y<x—1), where the constants C, and C,(€) do not de-
i=o0 pel,

pend on t. Therefore, by the Lebesgue convergence theorem, we get lim I}(2)
=0. Hence (ii) of the lemma is also obtained. =

Since 87" p(D,) is a constant if p(D,) is a differential operator, we can change
[«#] in (5.3) for « and carry out the above arguments with m<« and x=1.
Hence, in this case, (i) and (ii) in the lemma are valid also when m<x and x=1.
Thus Lemma 5.5 is proved.

Proof of Theorem 5.4. Since @(y) is minimum at y=0, the eigenvalues u;
of H,(0) are all positive. By means of Morse’s lemma (e.g., cf. the proof of
Theorem 4.1 in Mastumura [6]), we see that there exist local coordinates y(¥)
available in a neighborhood U, of the origin y=0 such that @ (y(¥)) = @(0)427!

é w; ¥ (¥=(3, -+, ;) and that %3 (0) is an orthogonal matrix. Therefore,

introducing the variables 2= *(ui? 3,, -+, ui”? ,), we have
P(() = p(0+27 51, det 2 (0) = (det H,(0) .
2

Assume that the support of k(s, y) is contained in RX U,. Then, using the
variables r =27!| 2|2 and {= 2|~ 2 yields that

v (PD)R) (), ) dy
(5.5) —20-an( e (7 (D) R) (tr-+0(0), 5(v/2 1)
-2 | det 9V | dr} dt .
0z

The function k(s, 7, £) =k (s, y(v/2r §)) |det —gl (v/2r )| is a C= function
2

on RX R, x S'! satisfying sup 7 8] 81 k(s, 7, §)| < oo for every i, j=

G, )ERXR xS~
0,1, - and k(s, 7, £)=0 when r>r, (for some constrnt r,). Therefore we can

apply Lemma 5.5 to integral #/2 s p(D)k rd-212 | det 6y |dr, and from (i) of
Lemma 5.5 derive

82 (2(D)B) (to(5), 3) dy|
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[kl+3 s s
=X sup |7 0: 9l k(s, 7, §)|

4,7=0 (s,r,$)ERXR  x§'~1

for a constant C, independent of ¢ and k. This yields (i) of Theorem 5.4. lI}m
[kl+3 sl>e

3 sup |7 8i k(s, 7, £)| =0 follows from lim sup |83k(s, y)|=0.
i=0 (r.p)ERxS8-1 Isl>o0 |@|<K+3
yer

Hence, if (0)=0 and lim sup |8‘” k(s,¥)|=0, by (ii) of Lemma 5.5 and the
|a]->00 || <K+
yer

Lebesgue convergence theorem we get lim #/2 S (p(D,) k) (to(y), y)dy=0. Thus
8]0

the requirements are obtained if supp[k]C RX U,.
If supp[k] is not contained in RX U,, we take a function X(y) €Cg(U,)

with supp [1—X] $ 0, and apply the above methods to S (P(D,) k) (t(y), ¥)
U

X(y)dy. For the other term SU (p(D,) k) (tp (), ¥) (1—X(y)) dy, we can use
Theorem 5.2 since 0, @(y)#+=0 on supp[1—X]. Hence it follows that
t"ZS (2(D,) k) (19(), ) (1—X(9)) dy| S C,| ] *=*—>0 (as |t]—>oo), which

yields the required properties. Thus (i) and (ii) of Theorem 5.4 in the general
case are proved. It is easy to verify the note in the case where p(D) is a differ-
ential operator (by Lemma 5.5). The proof is complete.

Theorem 5.4 is not valid if p(D,)=J.(= (—9,)}/? defined in §1), but we
obtain similar results:

Theorem 5.6. Let (5.1) be satisfied, and assume that k(s,y) is any function
€ B*(RX U) such that supp [k]C RXU. Then we have the following properties
(i) and (ii):

(i) There is a constant C independent of k and tE R such that

102 (JB) (t0(3),9) a9 SCelliss pxw

(i) If @(0)=0 and S k(r, y) dr € B=(RX U), then we have
0

tim #2 | (J.R) (2:19(3), ) dy
= cL(27)"?(det Hy(0))"2k(0,0) (cy =1, cc = —i).

Proof. We give the proof only when [ is odd since we can get the theorem
by much easier methods when [ is even.

(i) We can obtain (i) of Theorem 5.6 in the same way as (i) of Theorem
5.4 if we have the following estimate similar to the one in (i) of Lemma 5.5:

(5.6) t'ﬂS (J k) (br--tro, 7) 79-2 X(7) d |
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< €, 331 sup 7 0 04 hs, ) Il

where £ and X are the functions of the same types as in (i) of Lemma 5.5 and m
is the integer with (/4+6)/2<m=(l+7)/2. Define Ii(t) (=0, 1, 2) in the same

1/21+4

. [
way as in the proof of Lemma 5.5. Then it is easy to see that |I4(f)| =C; X
llsup |8: k(s 7)||l2 for i=0 and 1. =0
reR
When [ is odd, 9;¢+Y/2 J, is written in the form 970+ ] k(s) =SN X.(7)

h(s—) dr for some functions X_.(7) homogeneous of order —1/2 (cf. the proof
of Theorem 1.2 in Soga [8]). We take +J(s)EC=(R) such that |y | =1, 4n(s)
=1 for |s|<land =0 for |s| >2, and set yy(s) = 1—fry(s). By the same calcu-
lation as in (5.3) (with p = J, and m=[/2), we have

0=, 5 cuul ) ] %) hyf(sn O 7—,7) de} o, (1) dr

o0

/e
+i=21.2 S;e { Sl-rl>1/t xi(r) 11”.(7-/7) hi‘((sgn t) r— r) dT} @, iz(r) dr]
= 3 Caa[Ph0)+ 3 @0 (e= (I+1)/2),

where h; (s, 7) =01 h(s+tro, r[|t]) r'1 |t]| “1and a; , (r) =7""1 0 {r-22 X (1] |2])
X%(r)}. Since |, ,(r)| < Cs(1+ |r|)~*2 (for a constant C; independent of ¢ and
r), it follows that

OO IS Gl || 1%l || sup (s, D)z,

lr
@ OISC [ dr| drlXar) 77 (gm0 r—m 1) | (14 |7 ) 520
=C, Il sup [h,(s, sz (0<3<1/2).

142

The function (s, ) ES; ki (s, p) ;. (p)dp satisfies |%, (s, 7)| < Cs sup |k, (s,
p)|(1417])7*2 On the hand, by integration by parts we have
) = ar|  dr{—(sgn ) X4(r) dlrlr) — (50 ) Xa(r) — Wil lr)
Ve r<lrl r
+X(7) ;T; V(1) By((sgn ) 7—7,7) .
Therefore it follows that
(@I SCf roimtdr (14 |71 53 1A, p)

(0<8<1)2).
Thus (5.6) is obtained.
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(i) Next let us prove (ii) of Theorem 5.6, In veiw of (5.5) we have

vr (J.B) (Lta(s), ) dy
—20-0e [ agen |7 (1R (217, 0) | det %Jzi (0)|X(r) r4-222 dr

e S {garvn S” ( ]ik) (dtr, 7, §) r@+oM-1 gy} d¢
si—1 0
= L)+ 1,(1),

where X(r) is a C= function satisfying X(r)=1 for <1 and X(r)=0 for r=2,
and k(s, 7, £) is of the form

B, 7, ) = 2070 {k(s, y (V2 1)) |det 22 (v/2r £))

—k(s, 0) |det %32’_ )| X(r)} r4 .

It is seen that A(s, 7, § )=Ss E(r, 7, ¥) dr satisfies sup |7 80 h(s, 1, L) |
0

o ERXR | x5 1

< oo for every i,j=1, 2, ---, and that J,k = J,0,h. Applying Lemma 5.5 with
p(D,)=].0, and m=(2]4-1)/4, we get sup |t@H+D/ S” (J+k) (2, 7, §) r@+nio-1
21 0

¢esi-t

dr| < oo, which yields that lim I,(t)=0.
t-roo

When [ is odd, ], are of the form (—9,)¢"b/2x,(D,), where Ari(c) are de-
fined by M(0) =2"Y%(1—i) o for ¢ =0 and = +2-Y2%(1-+i)|o| ¥ for ¢<0. By
integration by parts, we have

I,(t) = (F=1)0-rz 20-012 (% I—T"'%> | det %"—(0)1
2

Ssl_l g g : (Aak) (27, 0) =2 X (1) dr

(1)@ 20002 | et %y_ )| S gt s“’ (neh) (L2, 0)
b4 1 0

st=

9, {04! ~V2(r(-212 X (7)) — (04~ V2 -212) X (r)} dr

where h(s)=$ k(r,0)dr. Since A h(s)EPB(R), the second term of the right
0

side in the above equality converges to 0 as |[¢|—>co. Therefore, by means of
Lemma 5.7 below, we obtain lim I,(¢) = c4(27)"? (det Hy(0))"¥2 K(0, 0). Thus

(ii) of Theorem 5.6 is also proved.

Lemma 5.7. Let X(r) be a C= function on R such that X(r)=1 for r<1
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and X(r)=0 for r=2. Then, for any C= function h(r) with Srh(s)dsE@(R),
we obtain 0

|0 ) ()2 X(7) dr — a7 WO)|
= et | [ hs) st 21,
0

where c,=1, c.=—1i and the constant C does not depend on h or t.

We can derive the above lemma from the equalities that so (Nk) (s—7)

(—r)"2dr=+/7 k(s) and S“ (A_k) (s—7) r2dr=—i\/7 k(s) for k(s)ECs(R)
(cf. 1.13) of Soga [8]). 0
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