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A B S T R A C T

Sustainable building design increasingly emphasizes daylight access and glare reduction due to their impact on 
energy efficiency and occupant comfort. However, integrating daylight distribution with dynamic glare risk from 
an occupant-centered perspective remains a significant challenge. To address this, this paper develops an 
interpretable Stacking ensemble framework enhanced with SHapley Additive exPlanations (SHAP) method for 
automated evaluation of indoor visual comfort (IVC). Six ensemble models are optimized through Bayesian 
optimization and 5-Fold cross-validation. The final Stacking model, which includes ensemble XGBoost, 
LightGBM, and CatBoost, achieves high predictive accuracy (R2 = 0.911) and efficient prediction capability. 
SHAP analysis identifies six key design variables accounting for 80.6 % of the model’s contribution, with 
building forms (46.6–52.7 %) and fenestration features (22.6–24.9 %) as primary factors. The framework pro
vides rapid feedback in early-stage design, supporting data-driven decisions to optimize IVC and integrate 
performance analysis into occupant-centered design processes.

1. Introduction

Driven by the sustainable development goals (SDGs), the concept of 
green building has been widely recognized as a way to balance indoor 
environmental quality with resource efficiency [1]. Daylight is a critical 
factor in this context: it reduces dependence on artificial lighting to 
improve energy performance and also affects occupants’ mental health, 
social behavior, and productivity [2,3]. Since people spend about 90 % 
or more of their time indoors, optimizing building daylighting design 
has become a key requirement for improving indoor environmental 
quality [4]. Recent studies have tried to balance daylight performance 
with energy consumption and thermal comfort [5–7]. However, these 
approaches often remain fragmented: many focus on specific design 
components—such as window configurations or shading system
s—without adequately capturing the nonlinear interactions among 
multiple building features [8–10]. Furthermore, some evaluation 
frameworks emphasize overall indicators, such as energy savings or 

daylight distribution [11–13]. While useful, these indicators provide 
limited information on localized, dynamic indoor visual comfort (IVC) 
parameters, including glare frequency and luminance distribution. As a 
result, such methods have difficulty supporting design decisions that 
reflect the actual visual experience of occupants across different build
ing uses and environmental conditions.

Although advancements in generative design and machine learning 
(ML) technologies offer promising methodologies for performance- 
driven workflows, a gap remains between computational outcomes 
and occupant-centered design needs [14]. In current practice, decision- 
making often relies on static standards and professional experience, 
which can lead to results that do not fully reflect occupants’ preferences 
or comfort [15]. This mismatch is especially evident in lighting design. 
Prior studies have shown that visual comfort is as important as energy 
efficiency and electricity consumption in evaluating building perfor
mance [16]. Therefore, there is a need to develop frameworks that 
move beyond purely technology-driven approaches and explicitly 
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address issues of IVC. Such frameworks should support decision-making 
that integrates IVC requirements with sustainability objectives, thereby 
contributing to occupant-centered green building design.

1.1. Objectives

The aim of this study is to propose a framework to explore the 
relationship between occupant-centered IVC environment and building 
features. Specifically, the objectives are as follows: (1) a rapid occupant- 
centered method for zonal visual comfort evaluation, (2) an explanatory 
stacking architecture model exposing the effect of design variables on 
IVC, and (3) validation of the feasibility of this approach across different 
climatic zones.

1.2. Contributions

This study introduces an automated IVC evaluation framework for 
sustainable building design by integrating Stacking model with the 
SHapley Additive exPlanations (SHAP) method. The framework offers 
enhanced insight into the potential impacts of IVC on occupants. The 
main contributions of this paper are summarized as follows: 

• Interaction between daylight distribution and glare risk: this study 
proposes a framework that incorporates occupants’ viewing di
rections to evaluate localized glare from windows, particularly ac
counting for views oriented toward the window as they change with 
building rotation.

• Stacking ensemble architecture for IVC predictions: this study es
tablishes an optimal stacking architecture by comparing the pre
dictive performance of different ML model. A stacking 
architecture—composed of XGBoost, LightGBM, and CatBoost—was 
developed to address the complexities of IVC evaluation, offering 
enhanced predictive performance and feedback for designers.

• Explanatory analysis using SHAP: this study introduces a “predic
tion-explanation” mechanism based on the SHAP method, which 
deconstructs the nonlinear interactions between design variables 
(DVs) and identifies the key DVs affecting IVC. To validate the 
generalizability of this framework, testing was conducted across 10 
typical cities, yielding highly satisfactory results.

1.3. Structure of the paper

The remainder of this paper is organized as follows. Section 2 pro
vides an overview of current research on IVC challenges and artificial 
intelligence technologies. Section 3 describes the research methodology, 
which includes the identification of DVs, the definition of IVC metrics, 
the development of stacking ensemble approach, and the creation of 
interpretable evaluation platform for IVC. Section 4 and 5 present and 
discuss the experimental results, analyzing the performance of various 
stacking ensemble architectures, elucidating how different training pa
rameters affect the target outcomes, and highlighting several note
worthy—or potentially contentious—practices observed during 
experimentation. Finally, Section 6 concludes the paper by summarizing 
its contributions, discussing the main limitations of the study, and out
lining directions for future work.

2. Related works

This section provides an overview of the developments and chal
lenges in the field of IVC. It begins by addressing the challenges in 
current research on indoor daylight distribution and glare control, 
exploring the relationship between these two factors, and discussing the 
application of advanced ML techniques to further advance this field.

2.1. Challenges in daylight distribution and glare control for indoor visual 
comfort

IVC has emerged as a critical factor in assessing indoor environ
mental quality, closely related to various aspects. Research has shown 
that IVC is strongly linked to the uniformity of daylight distribution, 
daylight intensity, and local glare control [17]. To better quantify these 
factors, the academic community has developed various quantitative 
evaluation indicators. Illuminance-based daylight metrics such as 
daylight autonomy (DA), useful daylight illuminance (UDI), and 
daylight factor (DF) primarily evaluate daylight distribution, whereas 
luminance-based glare metrics like daylight glare probability (DGP) 
assess visual comfort by accounting for contrast-related glare effects 
[18,19]. Carlucci et al. studied 34 light environment evaluation in
dicators and found that 50 % of the existing systems prioritize glare 
avoidance, while 26 % focus on the amount of light, emphasizing the 
tension between lighting efficiency and glare control in light environ
ment design [16]. Moreover, simply increasing daylight performance 
could increase glare risks, requiring designers to balance illuminance 
levels, glare control, and light uniformity [20].

These results illustrate the dilemma in sustainable building design: 
how to improve daylight performance while simultaneously controlling 
glare, thereby maintaining overall indoor environmental quality. 
Quantifying glare probability by measurements is more complicated 
than measuring illuminance [21]. Although DGP is considered the most 
reliable glare quantification tool, its reliance on specific scene modeling 
and rendering limits its early-stage application in building performance 
evaluations [19]. Jones introduced glare autonomy (GA) as an inno
vative approach to reconstruct the DGP equation, replacing luminance 
and illuminance terms with line-of-sight vectors for rapid assessment 
without rendering [20]. This technology shifts the research focus from 
static illuminance evaluation to discomfort glare for occupants with 
different viewing directions. Additionally, Wasilewski et al. introduced a 
method called raytraverse [22], which addresses the spatiotemporal 
distribution of daylight conditions within architectural spaces. This 
method is capable of accurately calculating visual comfort metrics such 
as DGP and unified glare probability (UGP).

2.2. Fragmented frameworks and the need for integrated in indoor visual 
comfort assessment

The development of lightweight frameworks for IVC assessment has 
received limited attention compared to the progress in energy con
sumption prediction. First, some focus on energy use or thermal comfort, 
combining daylight distribution indicators such as UDI and DF to build 
evaluation models [23–26], while others solely target glare reduction 
[27,28]. Few studies have combined daylight distribution and glare risk 
into a unified framework [10,29]. Additionally, certain frameworks are 
constrained by specific case studies or climate conditions [10,12,27], 
while broader frameworks often have difficulty accounting for regional 
variations [11,23,25]. This fragmentation limits the ability to 
comprehensively evaluate glare and indoor daylight performance [30], 
reducing the usefulness of these methods for sustainable building 
design. Second, most existing frameworks do not consider occupants’ 
line-of-sight factors, such as seating positions and viewing directions, 
which creates inconsistencies between technical metrics and actual 
occupant experience [31]. Therefore, a unified and adaptable frame
work that accounts for both daylight and glare, as well as occupant 
variability, is necessary for achieving sustainable building design.

Performance-driven workflows are increasingly used in architectural 
design because they allow multi-dimensional evaluation of building 
performance [5,14,23]. Understanding the impact of building elements 
on IVC is essential for improving occupant comfort and satisfaction. 
Parametric design approaches provide a systematic way to explore 
different design options in changing environmental conditions [32]. 
For example, Razmi et al. defined ten DVs for school dormitories, 
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targeting daylight performance, thermal comfort, and energy demand, 
and applied optimization algorithms to identify improved spatial con
figurations [5]. Similarly, Marzouk et al. employed spatial daylight 
autonomy and annual solar exposure to assess daylight performance in 
heritage buildings, examining skylight configurations, materials, and 
glazing types [9]. Although such elements like window size, room size, 
layout, and daylighting have been studied, less attention has been given 
to how these elements interact to shape occupants’ viewing directions 
and visual experiences. Therefore, there is a need for an evaluation 
framework that integrates building features and visual comfort, estab
lishing a dual assessment system that considers both daylight distribu
tion and glare risk.

2.3. Machine learning approaches for enhancing indoor visual comfort

Traditional building performance simulation (BPS) methods face 
challenges in computation time and complexity. While software such as 
Radiance provides accurate results, its high computational cost limits 
the efficiency of design optimization [6,33]. ML-based surrogate 
models have been proposed to address this issue because they offer fast 
prediction and generalization [5]. Ensemble learning (EL) models, 
including random forest and XGBoost, have shown higher prediction 
accuracy and robustness, particularly when applied to complex and 
high-dimensional datasets [34]. Moreover, for structured data predic
tion, ML models have outperformed deep learning models in several 
cases [35], which supports their application in studies of indoor com
fort [33,36–38].

EL combines the strengths of multiple models to reduce overfitting 
and variance while capturing complex nonlinear relationships. The main 
methods in EL are Bagging, Boosting, and Stacking [39]. Bagging cre
ates sub-datasets through bootstrap sampling, trains models in parallel, 
and aggregates their predictions, reducing variance and ensuring di
versity. Boosting trains models sequentially, adjusting sample weights 
with gradient descent to improve performance on difficult data points. 
For instance, Lee et al. studied solar radiation forecasting and found that 
their EL models significantly outperformed individual models [40]. 
Similarly, Yan et al. applied various ML techniques to model indoor 
lighting and outdoor thermal comfort, with XGBoost yielding the best 
results [12]. On the other hands, the stacking ensemble architecture 
have gained popularity for improving predictive accuracy in building 
performance prediction over the past decade [41]. Stacking is useful for 
capturing the complex, nonlinear relationships in building performance, 
where individual models often struggle. Some studies have applied 
Stacking models to building energy predictions [42,43]. However, the 
use of Stacking models to IVC assessment is still emerging, with most 
studies appearing in recent years.

As ML models in building performance research become increasingly 
complex, ensuring their interpretability has become a critical concern, 
beyond merely achieving predictive accuracy [44]. Interpretable ML 
methods are becoming a vital bridge between data-driven predictions 
and practical design decisions [36,45]. Therefore, models must offer 
transparent decision logic to build trust and support informed IVC 
design decisions. To address this, eXplainable Artificial Intelligence 
(XAI) tools, such as SHAP and LIME, have been increasingly applied to 
improve model transparency and uncover nonlinear interactions among 
various environmental and DVs [46–48]. While local interpretation 
methods like LIME provide useful insights, SHAP offers more robust 
explanations, especially under sample perturbations [46], making it 
particularly effective for feature contribution analysis. Thus, model 
interpretability not only helps clarify causal relationships but also en
hances the applicability of research findings in guiding architectural 
practice, shaping industry standards, and informing policy development 
[49,50].

3. Methodology

Fig. 1 shows the three steps of the proposed framework, developed to 
address the challenges of evaluating IVC in sustainable building design. 
Step 1 involves BPS process and dataset generation. The dataset includes 
site conditions, DVs, and IVC evaluation metrics (Section 3.1). By sam
pling a range of building features, a comprehensive dataset was created 
to reflect performance across diverse scenarios (Section 3.2). Step 2 
focuses on ML model selection, training, and evaluation. Various 
stacking ensemble strategies were compared to balance computational 
efficiency with predictive accuracy (Section 3.3). Step 3 focuses on 
analyzing the contribution of DVs (Section 3.4). This step identifies 
which variables most influence IVC, enhancing the interpretability and 
transparency of decision-making. Ultimately, this framework offers an 
automated and interpretable ML-based tool that enables designers to 
quickly evaluate design scenarios and personalize solutions to specific 
project needs.

3.1. Parametric modeling and design variables setting

This study developed a parametric modeling framework using two 
prototype rooms to efficiently evaluate the impact of key DVs on IVC. 
The prototype rooms were derived from the M3 Building at Suita 
Campus, The University of Osaka, Japan. The prototypes represent 
typical office building configurations, enabling a focused exploration of 
realistic daylighting scenarios (Fig. 2). The 3D scene of the building and 
its surroundings was modeled using Grasshopper, a widely recognized 
parametric modeling platform [51]. Digital elevation data from the 
Shuttle Radar Topography Mission (SRTM) provided a 30-m resolution 
of the terrain [52], and building height data from OpenStreetMap was 
used to generate 3D models of the surrounding area [53]. Moreover, 
typical meteorological year data for Osaka area was used for weather 
calculation [54]. The indoor light environment was simulated using 
Ladybug Tools (1.6.0) [55], which operates on the Radiance engine 
(5.4a)—a highly accurate, Monte Carlo-based ray-tracing tool widely 
adopted in international lighting standards [56].

This study defined and evaluated several DVs that influence daylight 
performance. The DVs were defined according to the Comprehensive 
Assessment System for Built Environment Efficiency (CASBEE) in Japan 
[57], LEED standard in United States [58], and insights from relevant 
literature [5,6,12,59], ensuring they align with empirical findings and 
industry standards. Focusing on 15 key DVs with the most significant 
impact on IVC, as identified in existing researches, this study avoids 
including all possible variables. The variation ranges for these DVs, 
defined in Table 1, were based on the aforementioned standards and 
reference experiences. Fig. 3 shows the simplified prototype rooms and 
the associated building elements categorized into four main groups: 
building forms, fenestration, shading devices, and surface materials, 
illustrating how building features affect IVC. The relationship between 
window-to-wall-ratio (WWR) and other fenestration variables is inter
dependent, meaning adjustments in one may require corresponding 
changes in others. In other words, increasing the WWR may necessitate 
adjustments to window dimensions to maintain balanced daylight dis
tribution. Conversely, altering the window’s height or length will 
inherently affect the WWR, as the window’s total area relative to the 
wall area changes.

3.2. Generation of indoor visual comfort dataset

This subsection first establishes an IVC evaluation system, which is 
developed based on the indoor daylight and glare performance. Then, a 
comprehensive IVC dataset is constructed by sampling and recording 
various building features.

3.2.1. Evaluation metrics of indoor visual comfort
This study develops an evaluation framework based on occupant’s 
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Fig. 1. Research framework.

Fig. 2. Floor plans and photographs of rooms derived from real scenarios in (a) south-facing window openings, and (b) north-facing window openings.
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line of sight, integrating both horizontal illuminance distribution and 
vertical glare risk from window directions. Four indicators—UDI, ASE, 
GAwindow, and sGA—form a multi-scale system for IVC assessment. The 
simulation period spans from 8:00 to 18:00, aligning with the building 
operation schedule outlined in Japan’s green building standards [57].

Useful daylight illuminance (UDI) is a critical metric for evaluating 
daylight distribution on the horizontal work plane, defined as the per
centage of time the illuminance on the work plane stays within a defined 
effective range during a specific period [60]. UDI has three illuminance 
ranges, each offering distinct insights into daylight quality: insufficient 
daylight (UDI-i, illuminance <300 lx), autonomous daylight (UDI-a, 
300 lx ≤ illuminance ≤2000 lx), and excessive daylight (UDI-e, illumi
nance >2000 lx). In this study, a 1 × 1 m grid sensor matrix was used at a 
work plane height of 0.75 m, with the autonomous illuminance range of 
UDI (UDI-a at here) set between 300 and 2000 lx, representing the range 
of daylight that is most suitable for work activities. While UDI-e iden
tifies zones with high illuminance levels that may pose a glare risk, it 
does not directly quantify directional glare effects. It focuses on the 

temporal frequency of overexposure (time with illuminance >2000 lx), 
while glare assessment requires additional metrics.

Annual sunlight exposure (ASE) complements UDI by evaluating the 
spatial distribution of prolonged high-exposure areas, defined as the 
percentage of floor area exceeding 1000 lx for at least 250 occupied 
hours annually [61]. ASE highlights areas prone to glare and thermal 
discomfort, complementing UDI by providing spatial context for high 
illuminance, while UDI focuses on temporal frequency. Although UDI 
and ASE together offer a comprehensive evaluation of daylight quality, 
their potential redundancy is acknowledged. Both metrics highlight 
excessive illuminance, but their focus on time versus space provides 
complementary insights.

The actual glare effects necessitate additional metrics and vertical- 
plane analysis. Glare autonomy (GA) assesses visual discomfort based 
on the occupant’s line of sight. The brightness and contrast terms in the 
DGP equation were replaced to create an imageless evaluation model 
based on multi-step calculations [20]. This method calculates the per
centage of glare-free time (DGP ≤ 0.4) from specific viewpoints without 

Table 1 
Definition of the DVs for IVC environment.

Building 
features

DVs Label Range Steps Unit Description

Building forms Room_Width X1 [5.0, 
20.0]

0.1 m This DV influences spatial layout. The range is set to ensure a balanced room shape that it is 
neither too narrow nor excessively wide.

Room_Length X2 [5.0, 
20.0]

0.1 m The goal of this DV is same as the Room_Width.

Room_Height X3 [3.0, 5.0] 0.1 m This DV affects airflow and lighting, and plays a role in indoor comfort.
Room_Orientation X4 [− 90, 

90]
1 degree This is a crucial DV for understanding how daylight enters the room and how it can affect 

IVC and energy use.
Fenestration WWR_South/North X5 [0.30, 

0.90]
0.01 – This DV determines the amount of daylight entering the room and can significantly affect 

energy efficiency, daylight distribution, and thermal comfort.
Window_Height X6 [2.0, 3.0] 0.1 m This DV affects the amount of daylight penetration and views to the outside.
Window_SillHeight X7 [0.10. 

1.00]
0.01 m This dimension influences how daylight enters the room, as well as how occupants interact 

with the window.
Window_Length X8 [0.8, 2.4] 0.1 m This DV affects the total surface area available for daylight and ventilation.

Shading device Shading_Length X9 [0.00, 
2.00]

0.01 m This DV controls how much direct sunlight enters through the window, thereby affecting 
energy use and occupant comfort.

Shading_Angle X10 [− 60, 
60]

1 degree This DV helps to regulate solar gain and visual comfort by adjusting how shading is applied.

Surface 
material

Reflectance_Wall X11 [0.50, 
0.90]

0.01 – This DV is important for understanding how much light is reflected into the room, which can 
enhance daylight availability and visual comfort.

Reflectance_Ceiling X12 [0.70, 
0.90]

0.01 – A higher reflectance increases the amount of reflected light, contributing to brighter 
interiors and improved visual comfort.

Reflectance_Floor X13 [0.20, 
0.50]

0.01 – Floor reflectance influences the distribution of light across the room, affecting both lighting 
efficiency and visual comfort.

Transmittance_Window X14 [0.70, 
0.95]

0.01 – This DV determines how much daylight is transmitted through the window, influencing 
energy efficiency and indoor lighting quality.

Reflectance_Shading X15 [0.50, 
0.90]

0.01 – This affects the overall performance of the shading system in terms of both controlling solar 
gain and improving the distribution of daylight in the space.

Fig. 3. Prototype rooms used in BPS process, showing the applied DVs: (a) south-facing window openings, and (b) north-facing window openings.
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sacrificing accuracy in contrast terms, making it suitable for early-stage 
design analysis. However, it does not account for dynamic viewing di
rections, limiting its adaptability to varied occupant behaviors.

The DGP equation is as follows: 

DGP = 5.87 × 10− 5⋅Ev⏟̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅⏟
brightness term

+ 0.0918⋅log10

(

1 +
∑n

i=1

L2
s,iωs,i

E1.87
v P2

i

)

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟
contrast term

+ 0.16 (1) 

where Ev is the vertical eye illuminance, Ls and ωs are the luminance and 
solid angle of glare source, respectively, P is Guth position index, and n is 
the number of glare sources.

In GA, the brightness and contrast terms are redefined using daylight 
coefficient-based calculations: 

E’
v = kDtotal • S (2) 

Ls =
kddirectsi

ωcosθ
(3) 

where the vector Dtotal is daylight coefficients, S is point in time sky 
luminance vector of all Reinhart sky patches, ddirect is the direct 
component coefficient for sky patch i, si is point in time sky luminance 
value of sky patch i, and k is 179 lm/W represents the luminous efficacy 
of daylight.

Unlike previous methods [20,62], which rely on uniform directional 
sampling or fixed glare metrics, this study introduces a dynamic view- 
tracking approach that adapts to both building rotation and window 
positioning. The proposed glare autonomy for window direction 
(GAwindow) index effectively integrates room orientation and occupant 
viewing direction for dynamic glare detection: (1) Seated eye-level 
height: A height of 1.1 m is assumed based on anthropometric data 
[63,64], which is adopted in glare evaluations. The horizontal field of 
view is divided into eight segments, with three (spanning 135◦) used for 
glare calculation. (2) View-tracking algorithm: This algorithm dynami
cally links room orientation to the field of view (Fig. 4). As the building 
rotates, the occupant’s forward view remains aligned with the window 
position within ±45◦. When the window shifts beyond this range 
(θ ∈ [ − 90◦

, − 46◦

] or θ ∈ [46◦

,90◦

]), the system switches the reference 

window side to maintain glare evaluation accuracy. This ensures that 
occupant’s perspective remains anchored to the actual light entry 
direction.

This study employs spatial glare autonomy (sGA) index proposed by 
Jones, which extends GA by using dual glare thresholds (0.4 ≤ DGP ≤
0.45) and time proportion (≥ 5 % of the annual working hours) to 
evaluate the uniformity of glare distribution [20]. sGA is well-suited for 
assessing glare in multiple areas, offering a comprehensive evaluation of 
glare gradients. Although similar glare metric, such as the spatial dis
turbing glare (sDG) in the ClimateStudio plugin [62], sDG uses a 
broader and less specific threshold (DGP > 0.38), making sGA’s dual- 
threshold approach more precise for performance-driven design.

3.2.2. Sampling and dataset generation
Based on a comparative analysis (Appendix Fig. A.1) and findings 

from previous studies [5,59,65], Latin hypercube sampling (LHS) was 
selected for its superior ability to uniformly and randomly cover the 
parameter space, making it well-suited for capturing nonlinear re
lationships in medium- to high-dimensional datasets [66]. The mini
mum sample size should be ten times the number of input variables (i.e., 
150 samples in this study) according to previous research [67,68]. 
However, 150 samples were insufficient to cover all building features 
adequately as ML model requires more data for training and testing. 
While increasing the sample size further would significantly extend 
dataset preparation time with slightly improvements in model accuracy. 
Using empirical and trial-and-error methods [69], this study designed 
2000 samples for both south- and north-facing window scenarios, 
respectively. These two datasets were used for training the ML models. 
Considering the dimensional requirements of the DVs in this study, this 
sample size could fulfill the requirements for dataset construction.

3.3. Ensemble learning supported model prediction

This study was conducted on a personal computer equipped with an 
Intel Core i9-12900KF processor (3.2 GHz), NVIDIA GeForce RTX 3090, 
and 64GB of RAM. All ML models were implemented using the Scikit- 
learn library in Python [70].

Fig. 4. Occupant-centered horizontal field of view toward the window direction, with the wall where the window is opened defined as “Length” and the opposite 
wall defined as “Width”.
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3.3.1. Data pre-processing
The dataset used in this study was generated from simulation sce

narios involving both south-facing and north-facing window openings, 
with 2000 samples per direction, totaling 4000 samples. Each sample 
corresponds to a unique configuration of building features, window 
placement, and sun position. Due to the randomized nature of the 
sampling process, some combinations produced extreme or atypical 
glare outcomes. To ensure data quality, Interquartile range (IQR) 
method is employed [71] for data cleaning. This technique eliminates 
data points lying significantly outside the middle 50 % of the distribu
tion, which could otherwise distort model training and evaluation 
(Appendix Fig. A.2). This approach guarantees that the data used for IVC 
evaluation is of both high quality and representative.

3.3.2. Ensemble learning approach
This study employs EL techniques to improve predictive accuracy 

and robustness. The stacking ensemble follows a two-layer architecture 
that combines the predictions of multiple base learners (Fig. 5). A meta- 
learner is then used to determine the optimal weighting of these pre
dictions, enhancing overall model performance [72]. 

(1) Level 1 (base-learner): Each base model is trained using K-fold 
cross-validation to ensure full data utilization and prevent data 
leakage. In each fold, the model is trained on K-1 subsets and 
validated on the remaining subset. The out-of-fold predictions are 
assembled into a meta-feature matrix M ∈ Rn×m, where n is the 
number of base models and m is the number of samples.

(2) Level 2 (meta-learner): A linear regression model serves as the 
meta-learner, which takes M as input and learns the optimal 
combination of base model outputs. The final stacked prediction 
is computed as:

ŷstacking =
∑m

i=1
ωifi(x) + b (4) 

where fi(x) is the prediction from the i-th base learner, ωi is its corre
sponding weight, and b is the bias term. The meta-learner assigns higher 
weights to more accurate models for specific data patterns, improving 
both prediction accuracy and generalization.

3.3.3. Model selection and stacking
To build a robust and generalizable stacking ensemble for IVC 

prediction, this study follows a two-stage learning process. It involves 
selecting diverse base learners, training them independently, and 
combining their outputs with a meta-learner. 

• Selection and training of base models

This study first evaluates six state-of-the-art models for constructing 
a robust stacking ensemble: XGBoost (XGB), LightGBM (LGBM), Cat
Boost (CB), AdaBoost (AB), Random Forest (RF), and Extra Trees (ET). 
The six base models are grouped into two categories: (1) Bagging-based 
models (RF, ET), which use bootstrap resampling to train multiple 
learners in parallel, reducing variance and mitigating overfitting 
through feature selection randomness. (2) Boosting-based models (XGB, 
LGBM, CB, AB), which are trained sequentially, with each model 
focusing on misclassified instances of its predecessors. All base models 
were trained using 80 % of the dataset, with each model trained inde
pendently under its respective ensemble strategy to capture various 
feature-space structures. K-fold cross-validation (K = 5) was applied in 
each fold to improve model generalization capabilities. 

• Training and evaluation of meta-model

The meta-model was trained on out-of-fold predictions from the base 
models, ensuring that it combined model outputs without any data 
leakage from the training data. For final evaluation, 20 % of the dataset, 
untouched during base models and meta-model training, was reserved 
as an independent test set. This test set was solely used for performance 
assessment, ensuring an unbiased evaluation that reflects the model’s 
ability to generalize to new data. By integrating diverse models and 
maintaining strict data separation throughout the training process, the 
stacking ensemble framework enhances prediction stability and gener
alization. In contrast to rule-based ensemble strategies, stacking allows 
the meta-model to learn optimal weights, improving adaptability to 
complex IVC scenarios.

3.3.4. Hyperparameter optimization
Hyperparameter optimization process can enhance model training 

efficiency, generalization ability, and prediction accuracy by identifying 
the best combination of hyperparameters [73]. Hyperparameter fine- 
tuning mainly focuses on learning rate, max depth, number of itera
tions, subsample, lambda, and alpha. Bayesian optimization was 
employed in this study to improve model performance, reduce 

Fig. 5. The architecture of Stacking ensemble learning approach.
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computational resources, and effectively prevent overfitting or under
fitting. It offers the advantage of using a surrogate model (Gaussian 
process) to predict performance distribution, allowing for a more effi
cient search for the global optimum with fewer computations [74].

3.3.5. Model evaluation
Model performance is evaluated based on six EL models and the final 

stacking ensemble. All models were assessed on the held-out test set to 
provide an unbiased estimate of generalization performance. Three 
standard regression evaluation metrics were used to evaluate accuracy: 
the coefficient of determination (R2), root mean square error (RMSE), 
and mean absolute error (MAE) (Eqs. (5)–(7)) [75–77]. R2 represents 
the proportion of variance in the dependent variable explained by the 
independent variables, with values approaching 1.0 indicating greater 
explanatory strength. RMSE and MAE provide insights into the predic
tion error, with RMSE penalizing larger errors more heavily and MAE 
reflecting average absolute errors. Lower values of RMSE and MAE 
indicate better model performance. The definitions of R2, RMSE, and 
MAE are as follows: 

R2 = 1 −

∑n

i=1
(yi − ŷi)

2

∑n

i=1
(yi − y)2

(5) 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(yi − ŷi)

2

√

(6) 

MAE =
1
n
∑n

i=1
|yi − ŷi| (7) 

where yi is the actual value, ̂yi is the predicted value, y is the mean of the 
actual values, and n is the sample size.

3.4. Model interpretation

The SHapley Additive exPlanations (SHAP) method enhances model 
transparency by quantifying the marginal contribution of each feature to 
the model’s output [48]. Based on Shapley values from cooperative 
game theory [78], it quantifies the contribution of each feature to the 
prediction outcome, with the absolute Shapley values indicating the 
priority of DVs for adjustment. For IVC prediction, SHAP effectively 
captures nonlinear relationships between DVs and lighting parameters, 
clearly highlighting feature interactions. SHAP method provides both 
global and local interpretability, integrates the benefits of various 
model-agnostic methods, and is robust to perturbations, making it ideal 
for interpreting prediction models in this study. Two types of interpre
tation were conducted: (1) Global interpretation using SHAP beeswarm 
plots to visualize the overall importance of each DV across all samples, 
and (2) Local interpretation using dependence plots to explain individ
ual predictions and explore how feature values influence model output 
in specific cases.

The calculation of Shapley value is as follows: 

ϕp =
∑

S⊆{x1 ,…,xP}\{xp}

|S|!(P − |S| − 1 )!

P!
(
f
(
S ∪

{
xp
} )

− f(S)
)

(8) 

where ϕp represents the Shapley value for feature P, S is a subset of 
features, xp is the value vector for feature p, P is the total number of 
features, and f(S) is the model prediction using only the features in 
subset S.

f(x) is a linear function of Shapley value of feature P: 

f(x) = ϕ0 +
∑P

p=1
ϕpz’

i (9) 

where f(x) is the predictive output and ϕ0 is the expected value of 
prediction. źi is a binary feature: źi = 1 represents a present feature and 
źi = 0 represents absent features. Features with larger absolute Shapley 
values contribute more to the IVC factors.

4. Results

This section presents the sampled data on IVC performance, com
pares the predictive accuracy of different stacking architectures, ana
lyzes the results of the optimal Stacking model, and demonstrates the 
application of proposed framework across various climate zones.

4.1. Dataset generation and pre-processing

The dataset contains 4000 IVC calculation samples for both south- 
and north-facing orientations. Fig. 6 shows the data distribution. The 
UDI index range for the sampled results is approximately 2.5 % higher in 
south-facing spaces than in north-facing ones, indicating a larger pro
portion of usable daylight throughout the year. North-facing indoor 
environments exhibit notable advantages in glare conditions. Median 
values of glare indicators—sGA and GAwindow—increase by 20.7 % and 
6.8 %, respectively, suggesting that most north-facing spaces are glare- 
free. In the ASE evaluation, the mean and median values for north-facing 
spaces are clustered closer to the coordinate origin and differ signifi
cantly from those of south-facing spaces.

4.2. Model performance and evaluation results

This subsection compares different stacking architectures to evaluate 
the trade-off between predictive performance and computational effi
ciency. It employs EL and Bayesian optimization for hyperparameter 
tuning, developing eight Stacking models across various room orienta
tions and light environment indicators, and systematically validating 
their effectiveness in predicting IVC.

4.2.1. Model performance results
Six EL models were trained using Bayesian optimization for perfor

mance benchmarking (Fig. 7). The results showed that XGB, LGBM, and 
CB outperformed other models in terms of R2, RMSE, and MAE. These 
three were therefore selected as base learners for stacking. Regarding 
computational efficiency, the XGB-based Stacking model required less 
than 1 min for training, significantly faster than LGBM-based (40 min) 
and CB-based (68 min). Given the need to balance accuracy and prac
tical deployment, the XGB-based Stacking model was selected for further 
experiments due to its optimal balance of performance and speed.

Model combinations were validated using 5-fold cross-validation 
(Table 2). The three-model stack (XGB-LGBM-CB) yielded the best 
overall performance with R2 = 0.911, RMSE = 4.084, and MAE = 2.986. 
This integration improved prediction accuracy by 0.9 % in R2 and 
reducing error metrics by approximately 4.5 % in RMSE and MAE 
compared to two-model stacks (e.g., XGB-CB). Adding more base 
learners (e.g., four- to six-model stacks) increased training set fit (R2 up 
to 0.988) but did not improve test performance. For example, the five- 
model stacking (XGB-LGBM-CB-RF-AB) showed higher RMSE (4.135) 
and MAE (3.016), indicating that increasing the number of base learners 
can lead to overfitting. Moreover, integrating Bagging-based models (e. 
g., RF) into Boosting-based stacks resulted in performance reduction. 
The XGB-LGBM-RF architecture showed RMSE and MAE increases of 
8.5 % and 13.5 %, respectively, compared to the optimal three-model 
stack. These results underscore the critical influence of base learner 
selection on stacking performance. Therefore, this study adopts the XGB- 
LGBM-CB stacking architecture, with a linear regression model as the 
meta-learner to assign weights to base learner outputs. This architecture 
combines the efficiency and generalization capability of linear models 
with the complementary strengths of the base learners, enhancing 
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prediction robustness under complex IVC scenarios.

4.2.2. Evaluation results of stacking model
As shown in Tables 3 and 4, the Stacking models outperform the 

individual base learners across four indicators. Among them, the best 
Stacking model achieved R2 = 0.922, compared to 0.913 for the top- 
performing base model. Similarly, the Stacking model also demon
strated lowest RMSE (1.011) and MAE (0.663) in north-facing GAwindow 
index compared to other models. This may indicate its superior ability to 

capture complex interactions among DVs.
Regression results for both training and test sets are shown in Fig. 8. 

For UDI prediction, the north-facing test set achieved a slightly higher 
R2 = 0.922 than the south-facing set (R2 = 0.911), with both scatter 
plots closely aligned along the y = x regression line, indicating high 
predictive accuracy. However, in glare-related indicators, south-facing 
models performed better due to greater variability in direct light. Spe
cifically, sGA prediction yielded R2 = 0.914 for the south-facing model 
versus R2 = 0.846 for the north-facing model; for GAwindow, the values of 

Fig. 6. Data distribution of UDI, sGA, GAwindow, and ASE indicators: (a) south-facing window openings; (b) north-facing window openings.

Fig. 7. Performance of six EL models based on R2, RMSE, and MAE indicators: (a), (b), (c) represent south-facing window openings; (d), (e), (f) represent north-facing 
window openings.
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R2 were 0.913 and 0.859, respectively. This suggests the models are 
more effective in environments with broader illuminance ranges, where 
nonlinear patterns are more pronounced. Conversely, the reduced 
variability in north-facing spaces limits model sensitivity, often leading 
to underestimated errors. ASE results further emphasize directional 
differences. The south-facing model achieved R2 = 0.883, while the 
north-facing model dropped to R2 = 0.709. This discrepancy can be 
attributed to the lower temporal variance of diffuse light in north-facing 
spaces, reducing the model’s ability to detect subtle shifts in light 
exposure—particularly in low-ASE regions. These findings highlight the 
need for greater sensitivity to weak lighting signals to enhance model 
performance in diffuse-light conditions.

Overall, these Stacking models demonstrated strong accuracy and 

robustness across all indicators. In south-facing spaces, dynamic lighting 
conditions facilitated more effective learning of nonlinear relationships. 
In contrast, north-facing spaces yielded lower absolute errors but require 
improved sensitivity to minor illuminance fluctuations—especially for 
ASE prediction. The variations in R2, RMSE, and MAE between orien
tations (Tables 3 and 4) underscore the influence of lighting conditions 
on model performance and error metric behavior.

4.3. Model interpretation results

This subsection employs the SHAP method for interpretability 
analysis to deconstruct the multidimensional impact mechanisms of IVC 
prediction based on the XGB-LGBM-CB architecture Stacking model. The 

Table 2 
Average results of different Stacking model selections.

Stacking model architecture Time cost (s) Training set Test set

R2↑ RMSE↓ MAE↓ R2↑ RMSE↓ MAE↓

XGB, RF 83.7 0.979 1.936 1.520 0.821 5.788 4.317
XGB, CB 18.1 0.922 1.231 0.976 0.903 4.262 3.125
XGB, LGBM 15.4 0.982 1.801 1.377 0.889 4.570 3.411
XGB, LGBM, CB 21.2 0.987 1.547 1.205 0.911 4.084 2.986
XGB, LGBM, RF 26.1 0.982 1.796 1.410 0.895 4.431 3.389
XGB, CB, RF 33.5 0.986 1.566 1.242 0.907 4.174 3.077
XGB, LGBM, CB, RF 44.7 0.988 1.447 1.230 0.910 4.106 2.994
XGB, LGBM, CB, AB 23.4 0.986 1.578 1.246 0.910 4.098 2.978
XGB, LGBM, CB, ET 25.8 0.985 1.625 1.287 0.910 4.104 3.014
XGB, LGBM, CB, RF, AB 28.6 0.986 4.599 1.280 0.909 4.135 3.016
XGB, LGBM, CB, RF, ET 36.2 0.988 1.449 1.100 0.911 4.097 2.986
XGB, LGBM, CB, ET, AB 28.6 0.987 1.512 1.213 0.911 4.090 2.975
XGB, LGBM, CB, RF, AB, ET 38.5 0.988 1.447 1.143 0.910 4.106 2.994

Abbreviation: XGB: XGBoost; LGBM: LightGBM; CB: CatBoost; AB: AdaBoost; RF: random forest; ET: extra tree.

Table 3 
Indoor visual comfort performance results for the south-facing window 
openings.

Models Training set Test set

R2↑ RMSE↓ MAE↓ R2↑ RMSE↓ MAE↓

UDI index
XGB 0.997 0.674 0.480 0.882 4.699 3.617
LGBM 0.986 1.583 1.123 0.897 4.398 3.291
CB 0.990 1.354 0.853 0.885 4.651 3.408
AB 0.995 0.946 0.583 0.839 5.499 4.298
RF 0.960 2.706 1.959 0.802 6.088 4.753
ET 0.990 1.340 0.934 0.773 6.523 5.232
Stacking 0.987 1.547 1.205 0.911 4.084 2.986
sGA index
XGB 0.962 2.370 1.735 0.858 4.480 3.328
LGBM 0.992 1.119 0.782 0.896 3.715 2.621
CB 0.987 1.377 0.897 0.884 3.924 2.750
AB 0.982 1.625 1.163 0.773 5.485 4.242
RF 0.948 3.796 2.001 0.770 5.517 4.266
ET 0.985 1.507 1.173 0.676 6.547 5.180
Stacking 0.979 1.760 1.375 0.914 3.382 2.307
GAwindow index
XGB 0.984 0.672 0.496 0.869 1.713 1.278
LGBM 0.985 0.648 0.453 0.896 1.526 1.080
CB 0.989 0.564 0.369 0.890 1.569 1.117
AB 0.985 0.645 0.478 0.762 2.308 1.726
RF 0.935 1.356 0.923 0.731 2.453 1.821
ET 0.990 0.525 0.368 0.661 2.753 2.079
Stacking 0.984 0.682 0.552 0.913 1.394 1.064
ASE index
XGB 0.962 2.485 1.793 0.832 5.509 3.851
LGBM 0.987 1.462 1.041 0.850 5.208 3.459
CB 0.986 1.512 1.048 0.863 4.979 3.265
AB 0.990 1.311 0.836 0.721 7.099 4.916
RF 0.938 3.201 2.201 0.730 6.992 5.060
ET 0.969 2.251 1.639 0.686 7.532 5.413
Stacking 0.977 1.944 1.518 0.883 4.600 3.089

Table 4 
Indoor visual comfort performance results for the north-facing window 
openings.

Models Training set Test set

R2↑ RMSE↓ MAE↓ R2↑ RMSE↓ MAE↓

UDI index
XGB 0.981 2.275 1.737 0.889 5.435 4.068
LGBM 0.983 2.201 1.504 0.913 4.830 3.465
CB 0.988 1.832 1.328 0.912 4.837 3.486
AB 0.997 0.904 0.521 0.867 5.957 4.619
RF 0.964 3.169 2.267 0.844 6.452 4.959
ET 0.978 2.476 1.881 0.763 7.962 6.274
Stacking 0.992 1.589 1.276 0.922 4.576 3.083
sGA index
XGB 0.944 1.537 1.081 0.765 2.847 1.981
LGBM 0.986 0.778 0.514 0.822 2.480 1.468
CB 0.994 0.499 0.316 0.826 2.450 1.500
AB 0.982 0.872 0.615 0.715 3.138 1.969
RF 0.952 1.418 0.832 0.704 3.195 2.033
ET 0.910 1.949 1.311 0.570 3.852 2.786
Stacking 0.983 0.834 0.660 0.846 2.305 1.410
GAwindow index
XGB 0.973 0.447 0.301 0.838 1.086 0.659
LGBM 0.968 0.494 0.313 0.842 1.071 0.671
CB 0.987 0.308 0.194 0.840 1.077 0.661
AB 0.993 0.230 0.159 0.734 1.390 0.854
RF 0.933 0.710 0.402 0.729 1.402 0.875
ET 0.972 0.456 0.238 0.582 1.743 1.110
Stacking 0.981 0.381 0.305 0.859 1.011 0.663
ASE index
XGB 0.954 0.944 0.612 0.640 2.876 1.547
LGBM 0.956 0.925 0.602 0.642 2.869 1.558
CB 0.991 0.428 0.242 0.681 2.707 1.322
AB 0.997 0.240 0.131 0.637 2.890 1.155
RF 0.911 1.317 0.596 0.593 3.060 1.392
ET 0.990 0.435 0.212 0.529 3.291 1.626
Stacking 0.970 0.757 0.509 0.709 2.587 1.452
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Fig. 8. Training and test performance of the Stacking model on the target index, with a 95 % confidence interval, (a), (c), (e), (g) represent the south-facing window 
openings; (b), (d), (f), (h) represent the north-facing window openings.

Fig. 9. Global interpretation of SHAP value contributions for the Stacking model based on the target index in the south and north directions: (a), (c), (e), (g) 
represent the south-facing window openings; (b), (d), (f), (h) represent the north-facing window openings.
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global and local interpretation analyses reveal nonlinear interactions 
between DVs with SHAP values.

4.3.1. Global interpretation results
The SHAP method was used to deconstruct the Stacking model based 

on the XGB-LGBM-CB architecture. Eight subplots for the south-facing 
and north-facing windows reveal the explanatory advantages of the 
CB model in the automated evaluation system (Fig. 9). The average 
SHAP contribution for the CB model is about 75 %, significantly higher 
than LGBM (15 %) and XGB (10 %). These findings demonstrate that the 
CB model excels in capturing nonlinear interactions in the lighting 
environment. Given that the stacking model itself is not directly inter
pretable, the CB model was selected for this analysis.

Fig. 10 shows the quantified contribution weights of the DVs. Each 
subplot includes the SHAP value contribution on the left and a pie chart 
showing the contribution percentage on the right. The results reveal 
significant differences in feature importance between south- and north- 
facing spaces. Tables 5 and 6 rank the relative marginal contributions of 
the DVs, where higher percentages reflect greater impact on IVC. Among 
building features, building forms contribute approximately 46.6 %– 
52.7 % to prediction performance (south-facing average: 46.6 %, north- 
facing average: 52.7 %). Four features inside this category can consider 
as the key building factors in design decisions. Fenestration and shading 
device contribute between 22.6 %–24.9 % and 16 %–24.2 %, respec
tively, while surface material contributes only 6 %–7.2 %.

Further analysis of the four evaluation indicators reveals the 
following: (1) For the UDI index (Fig. 10a-b), room orientation, room 

length, and room width are the most influential factors. In south-facing 
spaces, orientation and room width contribute 18.9 % and 16.7 %, 
respectively, to the overall prediction. In north-facing spaces, room 
width, room length, and orientation together account for 53.6 %. 
Additionally, the shading angle and WWR contribute 11.9 % and 11.2 %, 
respectively, for south-facing rooms. (2) In glare evaluation (sGA and 
GAwindow), the south-facing shading angle is the most significant factor, 
contributing 15.9 %. Combined with room length (15.4 %), these two 
factors form the dual control mechanism for light distribution (Fig. 10c). 
For north-facing spaces, WWR and orientation together contribute 48.8 
% (Fig. 10d), emphasizing the importance of facade design. These results 
further highlight the role of room size and orientation in influencing 
comfort levels. (3) The ASE index confirms the central role of shading 
systems. For south-facing spaces, the shading angle contributes 17.5 % 
(Fig. 10g), with room length (15.8 %) and WWR (13.8 %) collectively 
accounting for 47.1 % of the explanatory dimension. For north-facing 
spaces, orientation contributes 33.9 % (Fig. 10h), with WWR contrib
uting 18.9 %, requiring careful attention in design. The SHAP values for 
ASE and UDI highlight the relative contributions of different DVs to 
excessive-brightness risk—a necessary precursor to glare—although 
validating perceptual glare still requires occupant studies. In summary, 
six key DVs—room orientation, room length, room width, WWR, 
shading length, and shading angle—account for 80.6 % of the prediction 
performance and are critical to determining IVC. While the ranking of 
feature importance varies slightly, orientation, room length, and room 
width are consistently the most significant factors.

Fig. 10. Global interpretation of SHAP value contributions for the target index in the south and north directions, with corresponding feature importance percentages: 
(a), (c), (e), (g) represent the south-facing window openings; (b), (d), (f), (h) represent the north-facing window openings.
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4.3.2. Local interpretation results
The local interpretation analysis in Fig. 11 reveals the nonlinear 

interaction effects between DVs. In the UDI analysis (Fig. 11a-b), WWR 
is positively correlated with room length and window sill height but 
negatively correlated with room width. Specifically, when room length 
exceeds 12 m and WWR ≥ 0.6, larger windows improve lighting effi
ciency by 23–28 %. This improvement is further enhanced when the 
window sill height is ≥0.4 m and dynamic shading is applied. The 
analysis of sGA and GAwindow indicates significant differentiation 
(Fig. 11c-f). Room length and width are positively correlated with 
shading angle and orientation, suggesting that larger indoor spaces 
(length and width > 12 m) should prioritize light over glare control. To 
achieve this, a WWR ≥ 0.6 is necessary for both south- and north-facing 
spaces. For north-facing spaces, increasing room width by 1 m in ori
entations between − 50◦ to 0◦ and beyond 50◦ improves IVC conditions 
(reducing luminance contrast) by approximately 10 %, even though 
direct solar glare is generally not a concern in these orientations. The 
ASE analysis (Fig. 11g-h) shows a significant negative correlation be
tween shading angle and room width, suggesting that shading angles 
should be between − 20◦ and 20◦ to reduce light exposure. This effect 
being particularly in south-facing spaces. The recommended WWR for 

south- and north-facing spaces is around 0.5 and 0.6, respectively, 
optimizing room dimensions (up to 10 m) while minimizing glare.

These findings demonstrate the model’s ability to identify designs 
that meet or exceed the acceptable visual comfort threshold. For south- 
facing spaces, controlling WWR around 0.5 ± 0.1 balances room di
mensions (up to 10 m) with daylight (Fig. 11a). Fig. 11c shows that 
shading angles between 25◦ and 35◦ effectively reduce glare and 
maintain IVC. In north-facing spaces, increasing WWR to 0.6–0.7 results 
in minimal ASE increases (Fig. 6b), suggesting that glare risk remains 
low despite larger window areas.

4.4. Validation of the proposed framework

This subsection evaluates the adaptability of the proposed frame
work across diverse climates. This study tested ten typical cities across 
five climate zones based on the Köppen-Geiger climate classification 
system [79]: Zone 1: Tropical climates (Singapore, Jakarta); Zone 2: 
Dry climates (Cairo, Riyadh); Zone 3: Temperate climates (Shanghai, 
Hamburg); Zone 4: Continental climates (Chicago, Helsinki); Zone 5: 
Polar climates (Iqaluit, Nuuk).

As shown in Table 7, the Stacking model demonstrates strong cross- 

Table 5 
Importance of DVs to relative marginal contributions toward south-facing window openings results.

DVs UDI index sGA index GAwindow index ASE index

Total (%) Ranking Total (%) Ranking Total (%) Ranking Total (%) Ranking

Building forms 55.7 44.0 41.8 44.9
Room_Width 16.7 2 11.3 5 10.6 5 11.8 4
Room_Length 16.0 3 15.4 2 11.0 4 15.8 2
Room_Height 4.1 8 5.9 7 5.6 8 6.1 8
Room_Orientation 18.9 1 11.4 4 14.6 2 11.2 5

Fenestration 22.8 25.1 26.9 24.7
WWR_South 10.2 5 15.1 3 22.1 1 13.8 3
Window_Height 5.3 7 3.6 10 0.9 10 3.4 9
Window_SillHeight 6.7 6 5.9 8 3.2 9 6.9 7
Window_Length 0.6 14 0.5 12 0.7 12 0.6 10

Shading device 14.9 24.6 22.8 28.0
Shading_Length 3.9 9 8.7 6 8.9 6 10.6 6
Shading_Angle 11.0 4 15.9 1 13.9 3 17.4 1

Surface material 6.6 6.3 8.5 2.4
Reflectance_Wall 1.6 11 1.2 11 0.9 11 0.6 10
Reflectance_Ceiling 0.5 15 0.3 15 0.2 15 0.6 12
Reflectance_Floor 0.8 13 0.3 14 0.3 14 0.5 13
Transmittance_Window 2.7 10 4.1 9 6.6 7 0.4 14
Reflectance_Shading 1.0 12 0.4 13 0.5 13 0.3 15

Table 6 
Importance of DVs to relative marginal contributions toward north-facing window openings results.

DVs UDI index sGA index GAwindow index ASE index

Total (%) Ranking Total (%) Ranking Total (%) Ranking Total (%) Ranking

Building forms 57.8 54.5 49.3 49.0
Room_Width 18.2 1 9.4 4 9.4 3 5.3 6
Room_Length 17.8 2 9.5 3 8.7 4 5.3 5
Room_Height 4.2 9 4.4 8 4.4 8 4.4 8
Room_Orientation 17.6 3 31.2 1 26.8 1 34.0 1

Fenestration 22.0 21.5 24.2 28.9
WWR_North 11.2 5 17.7 2 19.3 2 18.9 2
Window_Height 4.6 7 1.1 10 2.5 9 2.3 10
Window_SillHeight 5.5 6 1.6 9 1.2 10 2.7 9
Window_Length 0.7 11 1.1 11 1.2 11 5.0 7

Shading device 16.3 16.0 15.6 16.0
Shading_Length 4.4 8 8.3 5 8.5 5 8.2 3
Shading_Angle 11.9 4 7.7 6 7.1 7 7.8 4

Surface material 3.9 8.0 10.9 6.1
Reflectance_Wall 0.6 12 0.6 13 0.7 14 1.4 11
Reflectance_Ceiling 0.3 15 0.5 14 1.0 12 1.2 13
Reflectance_Floor 0.4 14 0.9 12 0.9 13 1.1 14
Transmittance_Window 2.1 10 5.5 7 7.7 6 1.3 12
Reflectance_Shading 0.5 13 0.5 15 0.6 15 1.1 15
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climate generalization capability, with an average R2 of 0.893 across 
five climate zones. However, errors increased in tropical and highly 
variable climates, indicating a need for further optimization. Although 
retraining is required for each city due to local climatic and solar vari
ations, the sampling and training process is efficient and performed only 
once per location. Once trained, the Stacking model functions as a fast 

and reusable surrogate, enabling rapid IVC predictions. This substan
tially reduces computational demands in later design stages, particularly 
when coupled with optimization algorithms for multi-objective 
optimization.

Fig. 11. Local interpretation of top 6 DVs for the target index in the south and north directions: (a), (c), (e), (g) represent the south-facing window openings; (b), (d), 
(f), (h) represent the north-facing window openings.
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5. Discussion

The stacking ensemble architecture model in this study simulta
neously predicts both daylight distribution and perceived glare, utilizing 
SHAP analysis to reveal the nonlinear interactions among DVs. By 
incorporating the occupant’s viewing direction, the framework facili
tates a dynamic assessment of IVC at the early stages of design, high
lighting the multidimensional pathways through which daylight 
influences indoor environments. Its high predictive accuracy and 
interpretability not only enhance efficiency but also provide practical 
insights for optimizing IVC, thereby supporting the creation of healthier 
and more sustainable buildings.

5.1. Stacking architecture for indoor visual comfort prediction

The stacking architecture in this study marks several key advance
ments: (1) By leveraging generative design strategies in conjunction 
with parametric modeling, the framework effectively generates diverse 
indoor performance scenarios. A systematic sampling approach of 
building features creates comprehensive training datasets, addressing 
the limitations of traditional experience-based models and accelerating 
the development of predictive models. (2) While Boosting-based models 
outperformed Bagging-based approaches in this study, the performance 
differences were relatively modest in some cases. These discrepancies 
may be attributed to data variability and cross-validation randomness, 
highlighting the need for cautious interpretation of the results. More
over, Boosting-based models (XGB, LGBM, CB, AB) consistently out
performed Bagging-based models (RF, ET), particularly in capturing 
nonlinear feature interactions. This trend aligns with trends observed in 
previous building performance studies [40,80]. (3) A comparison of 
performance between south- and north-facing spaces further empha
sized distinct daylight dynamics. South-facing rooms, dominated by 
direct solar exposure, exhibited greater illuminance variability, which 
enabled the model to capture more nonlinear patterns. In contrast, 
north-facing spaces, characterized by predominantly diffuse daylight, 
offered more stable but less responsive lighting conditions. These 
orientation-dependent dynamics underscore the importance of tailoring 
modeling strategies to specific building orientations, reinforcing the 
applicability of Stacking-based ML techniques for a broader range of 
building performance metrics. In particular, dynamic environmental 
features should be prioritized for south-facing spaces, while temporal 
variables—such as time of day and seasonal changes—are crucial for 
improving model sensitivity in north-facing spaces [41,42]. (4) The 
simulation-based sampling and model training process are required for 
each new location. Once trained, the surrogate model provides rapid 
predictions with minimal computational cost. Seamlessly integrated into 
the Grasshopper parametric platform, the model enables designers to 
input basic building parameters—such as room dimensions and window 
configurations—and receive immediate IVC feedback. This substantially 
reduces the computational load in downstream design iterations and 
multi-objective optimization processes.

5.2. Interpretable models for indoor visual comfort evaluation

SHAP analysis was employed in this study to deconstruct the decision 
mechanisms within the Stacking model, enabling designers to focus on 
performance-driven solutions and explore design alternatives more 
effectively. The results show that the CB model contributed the largest 
weight (75 %) to overall predictions and highlighted six key DVs—room 
orientation, room length, room width, window-to-wall ratio (WWR), 
shading length, and shading angle. These key variables are consistent 
with findings from previous daylight and glare studies [6,27,81,82]. 
Furthermore, interaction analysis indicated that the combination of 
WWR and shading device parameters plays a decisive role in shaping 
IVC across different orientations. Such quantified insights provide a 
theoretical foundation for optimizing façade configurations and shading 
systems.

The feature-priority mapping derived from SHAP analysis provides 
actionable guidance for sustainable building design. The six key DVs 
collectively accounted for 80.6 % of the total model impact (south-fac
ing: 79.6 %, north-facing: 81.6 %). This suggests that building forms and 
shading devices should be prioritized during early design stages, while 
refinements in material selection can follow at later stages. South-facing 
spaces, especially larger ones, contributed on average 29.5 % more to 
model predictions than north-facing counterparts, underscoring the 
importance of dynamic shading to mitigate glare and excessive solar 
gain. Conversely, WWR had a relatively greater influence in north-facing 
spaces, contributing 9.8 % more than in south-facing spaces. This 
finding suggests that larger windows in north-facing rooms can improve 
diffuse daylight without introducing excessive glare.

Importantly, dynamic shading systems emerged as a key enabler for 
reconciling daylight provision with IVC. While large windows enhance 
daylight penetration under overcast conditions, automated shading can 
effectively reduce glare and overexposure in sunny periods. This dual 
functionality underscores the potential of dynamic façade systems to 
balance visual comfort and energy efficiency. Moreover, room length 
and width were negatively correlated with comfort, whereas WWR 
showed a positive correlation, reinforcing the need to tailor window and 
shading strategies to local climatic conditions. Overall, these findings 
highlight that increasing WWR in north-facing spaces can compensate 
for limited diffuse daylight, while dynamic shading in south-facing 
spaces can alleviate excessive solar exposure. Together, these strate
gies provide designers with a framework for making orientation- 
sensitive decisions that enhance IVC and promote sustainable design 
outcomes.

5.3. Limitations

Despite its contributions, this study has several limitations:
One limitation of this study is the potential overlap among metrics 

that evaluate similar daylight aspects. For instance, both daylight au
tonomy (DA) and UDI-a reward moderate illuminance levels, while ASE 
and UDI-e penalize excessive daylight exposure. Although this overlap 

Table 7 
Framework validation results for ten typical cities across different climate zones based on indoor visual comfort indicators using Stacking models.

Climate zones Validated cities Training set Test set

R2↑ RMSE↓ MAE↓ R2↑ RMSE↓ MAE↓

Zone 1 Singapore 0.974 1.405 1.058 0.880 3.203 2.303
Jakarta 0.973 1.217 0.876 0.840 3.031 2.002

Zone 2 Cairo 0.976 1.767 1.365 0.900 3.619 2.506
Riyadh 0.983 1.490 1.154 0.906 3.631 2.562

Zone 3 Shanghai 0.976 1.616 1.230 0.892 3.462 2.320
Hamburg 0.980 1.611 1.236 0.899 3.757 2.536

Zone 4 Chicago 0.979 1.601 1.237 0.897 3.592 2.418
Helsinki 0.982 1.429 1.109 0.912 3.295 2.252

Zone 5 Iqaluit 0.980 1.520 1.160 0.886 3.485 2.337
Nuuk 0.979 1.573 1.203 0.921 3.054 2.156
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may lead to redundancy, the metrics still capture complementary di
mensions of daylight quality. The combined use of sDA and ASE, as 
defined by IES LM-83-12 [61], offers a standardized balance of suffi
ciency and overexposure, though it may overlook finer spatial varia
tions. Subtle differences across standards, such as EN 17037, which 
translates sDA/DA thresholds (at least 50 % and 95 % of the time, 
respectively) into DF targets for different European locations, also need 
to be considered when interpreting results. Moreover, the glare assess
ment applied here is limited by its reliance on the GA metric. GA pri
marily captures glare from direct solar visibility but does not account for 
reflections or scattering from nearby buildings, floors, or shading de
vices, thus missing many common glare scenarios. This is a point to 
consider when interpreting glare-related findings.

A further shortcoming is the reliance on simulation-derived metrics 
without incorporating occupant-reported comfort data. The absence of 
field measurements restricts validation against user experience, and 
future work should integrate post-occupancy surveys and seasonal 
comfort variations. Extending optimization methods to multi-objective 
frameworks that balance daylight, thermal comfort, and energy use 
could further improve applicability [26,33]. This may help designers 
develop climate-responsive and comfortable indoor spaces 
[7,36,37,83].

Lastly, while the stacking ensemble improves predictive accuracy, it 
increases computational cost and architectural complexity. This may 
hinder adoption by design teams less familiar with ensemble methods. 
Training time, sensitivity to parameter space, and deployment chal
lenges remain obstacles for design practice. Transfer learning may help 
reduce computational load and improve scalability across diverse 
contexts.

6. Conclusions

This paper presented a framework that integrates a Stacking 
ensemble learning model with SHapley Additive exPlanations (SHAP) to 
predict and analyze indoor visual comfort (IVC) factors both efficiently 
and accurately. By following a “parameter input → performance pre
diction → mechanism explanation” workflow, the proposed framework 
enables rapid identification of critical design variables (DVs). The 
framework uncovers nonlinear interactions among DVs, thereby sup
porting the creation of occupant-centered, visually comfortable, and 
sustainable indoor environments.

The key contributions are as follows: First, an occupant-centered IVC 
evaluation mechanism was developed, combining daylight distribution 
and glare control into a joint “daylight-glare” assessment. Localized 
glare discomfort near windows was further addressed through sGA and 
GAwindow metrics, incorporating occupant viewing direction to refine the 
performance evaluation framework. Second, a high-performance pre
diction model was developed. This study proposed a novel stacking ar
chitecture integrating XGBoost, LightGBM, and CatBoost. This ensemble 
achieved an R2 of 0.911 with a training time of 21.2 s, outperforming 
both individual learners and traditional simulation-based approaches. 
Third, an interpretable decision-support system was implemented via 
SHAP method. This enabled deconstruction of complex DVs interactions 
and identification of six key variables—room orientation, length, width, 

window-to-wall-ratio, shading length, and shading angle—that together 
explain 80.6 % of IVC variance. Notably, building form (46.6 %–52.7 %) 
and fenestration (22.6 %–24.9 %) were prioritized as dominant design 
drivers in sustainable building design.

In future work, the following issues still need to be further discussed. 
Although the framework demonstrated strong performance across five 
climate zones and ten cities (average R2 = 0.893), its applicability is 
currently limited to standard office spaces. Future work should test its 
adaptability to various building types, incorporate occupant behaviors, 
and consider long-term climate change trends by integrating CMIP6 
climate projections. Additionally, the selected combination of daylight 
and glare indicators can be adjusted based on specific project needs. 
Expanding the model to support multi-objective opti
mization—addressing energy consumption, lighting quality, and resil
ience—would enhance its sustainability assessment capabilities.

CRediT authorship contribution statement

Yuxin Zhou: Writing – review & editing, Writing – original draft, 
Visualization, Validation, Software, Resources, Methodology, Investi
gation, Formal analysis, Data curation, Conceptualization. Tomohiro 
Fukuda: Writing – review & editing, Supervision, Project administra
tion. Nobuyoshi Yabuki: Writing – review & editing, Supervision, 
Project administration.

Declaration of generative AI and AI-assisted technologies in the 
writing process

During the preparation of this work, the authors used ChatGPT-4o 
and ChatGPT-5 tools in order to assist with language editing and 
refinement of the original manuscript. The primary goal was to improve 
the readability of the manuscript and to ensure that the language 
adhered to the conventions of academic English writing. After using 
these tools, the authors thoroughly reviewed and edited the content as 
needed and take full responsibility for the content of the published 
article.

Declaration of competing interest

Yuxin Zhou reports financial support was provided by The University 
of Osaka. Tomohiro Fukuda reports a relationship with The University of 
Osaka that includes: employment. If there are other authors, they 
declare that they have no known competing financial interests or per
sonal relationships that could have appeared to influence the work re
ported in this paper.

Acknowledgements

The research team would like to express our gratitude for the support 
of open-source technologies and the scholars who have contributed to 
this field of research. Moreover, the authors would like to thank Liang 
Yuan from the College of Architecture and Urban Planning, Tongji 
University for discussing this study.

Y. Zhou et al.                                                                                                                                                                                                                                    Automation in Construction 181 (2026) 106582 

16 



Appendix A. Appendix

Fig. A.1. Comparison of the grid, Latin hypercube, and random sampling methods. Note: sampling tests were conducted using three common methods: grid 
sampling, LHS, and random sampling. The experiment used the length and width of room as examples for the sampling analysis. Considering sampling coverage, data 
representativeness, and computational efficiency, the LHS method was selected to generate the building performance dataset.

Fig. A.2. Data pre-processing for the IQR method of the target index: south-facing window openings (left) and north-facing window openings (right).

Appendix B. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.autcon.2025.106582.
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Data availability

To facilitate reproducibility, the complete source code and a sample 
dataset have been made publicly available at: https://github. 
com/sggesf/IndoorVisualComfort-Stacking-SHAP.git
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ANN and XGBoost surrogate models trained on small numbers of building energy 
simulations, PLoS ONE 19 (2024) e0312573, https://doi.org/10.1371/journal. 
pone.0312573.

[36] H. Kim, G. Lee, H. Ahn, B. Choi, Interpretable general thermal comfort model based 
on physiological data from wearable bio sensors: light gradient boosting machine 
(LightGBM) and SHapley additive exPlanations (SHAP), Build. Environ. 266 (2024) 
112127, https://doi.org/10.1016/j.buildenv.2024.112127.

[37] M. Haghirad, S. Heidari, H. Hosseini, Advancing personal thermal comfort 
prediction: a data-driven framework integrating environmental and occupant 
dynamics using machine learning, Build. Environ. 262 (2024) 111799, https://doi. 
org/10.1016/j.buildenv.2024.111799.

[38] M. Deng, X. Wang, C.C. Menassa, Measurement and prediction of work engagement 
under different indoor lighting conditions using physiological sensing, Build. 
Environ. 203 (2021) 108098, https://doi.org/10.1016/j.buildenv.2021.108098.

[39] I.D. Mienye, Y. Sun, A survey of ensemble learning: concepts, algorithms, 
applications, and prospects, IEEE Access 10 (2022) 99129–99149, https://doi.org/ 
10.1109/ACCESS.2022.3207287.

[40] J. Lee, W. Wang, F. Harrou, Y. Sun, Reliable solar irradiance prediction using 
ensemble learning-based models: a comparative study, Energy Convers. Manag. 
208 (2020) 112582, https://doi.org/10.1016/j.enconman.2020.112582.

[41] I.K. Nti, A.F. Adekoya, B.A. Weyori, A comprehensive evaluation of ensemble 
learning for stock-market prediction, J. Big Data 7 (2020) 20, https://doi.org/ 
10.1186/s40537-020-00299-5.

[42] F. Li, H. Zheng, X. Li, F. Yang, Day-ahead city natural gas load forecasting based on 
decomposition-fusion technique and diversified ensemble learning model, Appl. 
Energy 303 (2021) 117623, https://doi.org/10.1016/j.apenergy.2021.117623.

[43] H. Park, D.Y. Park, B. Noh, S. Chang, Stacking deep transfer learning for short-term 
cross building energy prediction with different seasonality and occupant schedule, 
Build. Environ. 218 (2022) 109060, https://doi.org/10.1016/j. 
buildenv.2022.109060.

[44] S.R. Hong, J. Hullman, E. Bertini, Human factors in model interpretability: industry 
practices, challenges, and needs, Proc. ACM Hum.-Comput. Interact. 4 (2020) 
1–26, https://doi.org/10.1145/3392878.

[45] E. Taveres-Cachat, G. Lobaccaro, F. Goia, G. Chaudhary, A methodology to 
improve the performance of PV integrated shading devices using multi-objective 
optimization, Appl. Energy 247 (2019) 731–744, https://doi.org/10.1016/j. 
apenergy.2019.04.033.

[46] D. Gaspar, P. Silva, C. Silva, Explainable AI for intrusion detection systems: LIME 
and SHAP applicability on multi-layer perceptron, IEEE Access 12 (2024) 
30164–30175, https://doi.org/10.1109/ACCESS.2024.3368377.

[47] Y. Zhou, S. Booth, M.T. Ribeiro, J. Shah, Do feature attribution methods correctly 
attribute features? Proc. AAAI Conf. Artif. Intell. 36 (2022) 9623–9633, https:// 
doi.org/10.1609/aaai.v36i9.21196.

Y. Zhou et al.                                                                                                                                                                                                                                    Automation in Construction 181 (2026) 106582 

18 

https://github.com/sggesf/IndoorVisualComfort-Stacking-SHAP.git
https://github.com/sggesf/IndoorVisualComfort-Stacking-SHAP.git
https://doi.org/10.1016/j.autcon.2024.105420
https://doi.org/10.1016/j.autcon.2024.105420
https://doi.org/10.1016/j.enbuild.2020.110394
https://doi.org/10.1371/journal.pbio.3001571
https://doi.org/10.1371/journal.pbio.3001571
https://doi.org/10.1038/sj.jea.7500165
https://doi.org/10.1038/sj.jea.7500165
https://doi.org/10.1016/j.apenergy.2021.117828
https://doi.org/10.1016/j.apenergy.2021.117828
https://doi.org/10.1016/j.renene.2020.05.127
https://doi.org/10.1016/j.autcon.2024.105598
https://doi.org/10.1016/j.rser.2010.10.016
https://doi.org/10.1016/j.jare.2021.06.005
https://doi.org/10.1016/j.jare.2021.06.005
https://doi.org/10.1016/j.enbuild.2023.112970
https://doi.org/10.1016/j.enbuild.2023.112970
https://doi.org/10.1016/j.solener.2015.12.020
https://doi.org/10.1016/j.buildenv.2022.109081
https://doi.org/10.1016/j.energy.2018.04.106
https://doi.org/10.1016/j.autcon.2024.105284
https://doi.org/10.1016/j.autcon.2024.105284
https://doi.org/10.1016/j.solener.2020.07.058
https://doi.org/10.1016/j.rser.2015.03.062
https://doi.org/10.1016/j.autcon.2013.05.014
https://doi.org/10.1016/j.buildenv.2018.08.038
https://doi.org/10.1016/j.enbuild.2006.03.017
https://doi.org/10.26868/25222708.2019.210267
https://doi.org/10.26868/25222708.2019.210267
https://doi.org/10.1177/14771535231173291
https://doi.org/10.1177/14771535231173291
https://doi.org/10.1016/j.enbuild.2022.112141
https://doi.org/10.1016/j.enbuild.2022.112141
https://doi.org/10.1016/j.enbuild.2023.113512
https://doi.org/10.1016/j.solener.2019.08.039
https://doi.org/10.1016/j.solener.2019.08.039
https://doi.org/10.3390/buildings12091333
https://doi.org/10.3390/buildings12091333
https://doi.org/10.1016/j.autcon.2018.03.023
https://doi.org/10.1016/j.jobe.2020.101309
https://doi.org/10.3390/en12173265
https://doi.org/10.3390/en12173265
https://doi.org/10.1016/j.egyr.2020.06.008
https://doi.org/10.1016/j.egyr.2020.06.008
https://doi.org/10.1016/j.buildenv.2021.107912
https://doi.org/10.1016/j.buildenv.2021.107912
https://doi.org/10.1080/17452007.2022.2032576
https://doi.org/10.1080/17452007.2022.2032576
https://doi.org/10.1016/j.autcon.2023.105026
https://doi.org/10.1016/j.autcon.2023.105026
https://doi.org/10.1016/j.buildenv.2024.111386
https://doi.org/10.1016/j.buildenv.2024.111386
https://doi.org/10.1007/s11704-019-8208-z
https://doi.org/10.1371/journal.pone.0312573
https://doi.org/10.1371/journal.pone.0312573
https://doi.org/10.1016/j.buildenv.2024.112127
https://doi.org/10.1016/j.buildenv.2024.111799
https://doi.org/10.1016/j.buildenv.2024.111799
https://doi.org/10.1016/j.buildenv.2021.108098
https://doi.org/10.1109/ACCESS.2022.3207287
https://doi.org/10.1109/ACCESS.2022.3207287
https://doi.org/10.1016/j.enconman.2020.112582
https://doi.org/10.1186/s40537-020-00299-5
https://doi.org/10.1186/s40537-020-00299-5
https://doi.org/10.1016/j.apenergy.2021.117623
https://doi.org/10.1016/j.buildenv.2022.109060
https://doi.org/10.1016/j.buildenv.2022.109060
https://doi.org/10.1145/3392878
https://doi.org/10.1016/j.apenergy.2019.04.033
https://doi.org/10.1016/j.apenergy.2019.04.033
https://doi.org/10.1109/ACCESS.2024.3368377
https://doi.org/10.1609/aaai.v36i9.21196
https://doi.org/10.1609/aaai.v36i9.21196


[48] S.M. Lundberg, S.-I. Lee, A unified approach to interpreting model predictions, in: 
I. Guyon, U.V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, 
R. Garnett (Eds.), Advances in Neural Information Processing Systems, Curran 
Associates, Inc, 2017, https://doi.org/10.48550/arXiv.1705.07874.

[49] H. Chen, S.M. Lundberg, S.-I. Lee, Explaining a series of models by propagating 
Shapley values, Nat. Commun. 13 (2022) 4512, https://doi.org/10.1038/s41467- 
022-31384-3.

[50] A. Wojtuch, R. Jankowski, S. Podlewska, How can SHAP values help to shape 
metabolic stability of chemical compounds? J. Chemother. 13 (2021) 74, https:// 
doi.org/10.1186/s13321-021-00542-y.

[51] S. Saremi, S. Mirjalili, A. Lewis, Grasshopper optimisation algorithm: theory and 
application, Adv. Eng. Softw. 105 (2017) 30–47, https://doi.org/10.1016/j. 
advengsoft.2017.01.004.

[52] T.G. Farr, P.A. Rosen, E. Caro, R. Crippen, R. Duren, S. Hensley, M. Kobrick, 
M. Paller, E. Rodriguez, L. Roth, D. Seal, S. Shaffer, J. Shimada, J. Umland, 
M. Werner, M. Oskin, D. Burbank, D. Alsdorf, The shuttle radar topography 
mission, Rev. Geophys. 45 (2007) 2005RG000183, https://doi.org/10.1029/ 
2005RG000183.

[53] OpenStreetMap, OpenStreetMap. https://www.openstreetmap.org/, 2025 accessed 
December 8, 2024.

[54] L.K. Lawrie, D.B. Crawley, Development of Global Typical Meteorological Years 
(TMYx). https://climate.onebuilding.org, 2022.

[55] M. Sadeghipour Roudsari, M. Pak, A. Viola, Ladybug: A Parametric Environmental 
Plugin for Grasshopper to Help Designers Create an Environmentally-Conscious 
Design, 2013, https://doi.org/10.26868/25222708.2013.2499.

[56] G.J. Ward, The RADIANCE Lighting Simulation and Rendering System, in: 
Proceedings of the 21st Annual Conference on Computer Graphics and Interactive 
Techniques - SIGGRAPH ‘94, ACM Press, 1994, pp. 459–472, https://doi.org/ 
10.1145/192161.192286.

[57] S. Murakami, K. Iwamura, R.J. Cole, A Decade of Development and Application of 
an Environmental Assessment System for the Built Environment. https://www.ibec 
s.or.jp/CASBEE/english/download/CASBEE%20-%20A%20Decade%20of% 
20Development%20and%20Application%20of%20an%20Environmental%20A 
ssessment%20System%20for%20the%20Built%20Environment%20-.pdf, 2025 
accessed August 19, 2025.

[58] LEED, v4.1 | U.S. Green Building Council. https://www.usgbc.org/leed/v41, 2025 
accessed May 11, 2025.

[59] H. Yan, G. Ji, K. Yan, Data-driven prediction and optimization of residential 
building performance in Singapore considering the impact of climate change, 
Build. Environ. 226 (2022) 109735, https://doi.org/10.1016/j. 
buildenv.2022.109735.

[60] A. Nabil, J. Mardaljevic, Useful daylight illuminances: a replacement for daylight 
factors, Energ. Build. 38 (2006) 905–913, https://doi.org/10.1016/j. 
enbuild.2006.03.013.

[61] I. Lm, Approved Method: IES Spatial Daylight Autonomy (sDA) and Annual 
Sunlight Exposure (ASE), Illum Eng Soc Https//Www IES Org/Product/Ies-Spatial- 
Daylight-Autonomy-Sda-and-Annual-Sunlight-Exposure-ASE. https://webstore. 
ansi.org/preview-pages/IESNA/preview_IES+LM-83-12.pdf, 2013.

[62] Annual Glare — ClimateStudio Latest Documentation. https://climatestudiodocs. 
com/docs/annualGlare.html, 2025 accessed May 9, 2025.

[63] M. Lesinski, A. Schmelcher, M. Herz, C. Puta, H. Gabriel, A. Arampatzis, G. Laube, 
D. Büsch, U. Granacher, Maturation-, age-, and sex-specific anthropometric and 
physical fitness percentiles of German elite young athletes, PLoS ONE 15 (2020) 
e0237423, https://doi.org/10.1371/journal.pone.0237423.

[64] Z. Skomina, M. Verdenik, N.I. Hren, Effect of aging and body characteristics on 
facial sexual dimorphism in the Caucasian population, PLoS ONE 15 (2020) 
e0231983, https://doi.org/10.1371/journal.pone.0231983.

[65] T. Østergård, R.L. Jensen, F.S. Mikkelsen, The best way to perform building 
simulations? One-at-a-time optimization vs. Monte Carlo sampling, Energy Build. 
208 (2020) 109628, https://doi.org/10.1016/j.enbuild.2019.109628.

[66] I. Iordanis, C. Koukouvinos, I. Silou, Regression analysis in machine learning using 
conditioned latin hypercube sampling, in: 2023 13th International Conference on 
Dependable Systems, Services and Technologies (DESSERT), 2023, pp. 1–6, 
https://doi.org/10.1109/DESSERT61349.2023.10416433.

[67] D.D. Saurette, A. Biswas, A.W. Gillespie, Determining minimum sample size for the 
conditioned Latin hypercube sampling algorithm, Pedosphere 34 (2024) 530–539, 
https://doi.org/10.1016/j.pedsph.2022.09.001.
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