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ARTICLE INFO ABSTRACT

Keywords: Sustainable building design increasingly emphasizes daylight access and glare reduction due to their impact on
Stacking ensemble learning approach energy efficiency and occupant comfort. However, integrating daylight distribution with dynamic glare risk from
SHAP

an occupant-centered perspective remains a significant challenge. To address this, this paper develops an
interpretable Stacking ensemble framework enhanced with SHapley Additive exPlanations (SHAP) method for
automated evaluation of indoor visual comfort (IVC). Six ensemble models are optimized through Bayesian
optimization and 5-Fold cross-validation. The final Stacking model, which includes ensemble XGBoost,
LightGBM, and CatBoost, achieves high predictive accuracy (R> = 0.911) and efficient prediction capability.
SHAP analysis identifies six key design variables accounting for 80.6 % of the model’s contribution, with
building forms (46.6-52.7 %) and fenestration features (22.6-24.9 %) as primary factors. The framework pro-
vides rapid feedback in early-stage design, supporting data-driven decisions to optimize IVC and integrate
performance analysis into occupant-centered design processes.

Daylight and glare
Performance-driven design
Building performance

1. Introduction

Driven by the sustainable development goals (SDGs), the concept of
green building has been widely recognized as a way to balance indoor
environmental quality with resource efficiency [1]. Daylight is a critical
factor in this context: it reduces dependence on artificial lighting to
improve energy performance and also affects occupants’ mental health,
social behavior, and productivity [2,3]. Since people spend about 90 %
or more of their time indoors, optimizing building daylighting design
has become a key requirement for improving indoor environmental
quality [4]. Recent studies have tried to balance daylight performance
with energy consumption and thermal comfort [5-7]. However, these
approaches often remain fragmented: many focus on specific design
components—such as window configurations or shading system-
s—without adequately capturing the nonlinear interactions among
multiple building features [8-10]. Furthermore, some evaluation
frameworks emphasize overall indicators, such as energy savings or

daylight distribution [11-13]. While useful, these indicators provide
limited information on localized, dynamic indoor visual comfort (IVC)
parameters, including glare frequency and luminance distribution. As a
result, such methods have difficulty supporting design decisions that
reflect the actual visual experience of occupants across different build-
ing uses and environmental conditions.

Although advancements in generative design and machine learning
(ML) technologies offer promising methodologies for performance-
driven workflows, a gap remains between computational outcomes
and occupant-centered design needs [14]. In current practice, decision-
making often relies on static standards and professional experience,
which can lead to results that do not fully reflect occupants’ preferences
or comfort [15]. This mismatch is especially evident in lighting design.
Prior studies have shown that visual comfort is as important as energy
efficiency and electricity consumption in evaluating building perfor-
mance [16]. Therefore, there is a need to develop frameworks that
move beyond purely technology-driven approaches and explicitly
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DGP, Daylight glare probability; DVs, Design variables; EL, Ensemble learning; ET, Extra Tree; GA, Glare autonomy; GAyindow, Glare autonomy for window direction;
IQR, Interquartile range; IVC, Indoor visual comfort; LGBM, LightGBM (Light Gradient Boosting Machine); ML, Machine learning; RF, Random forest; sGA, Spatial
glare autonomy; SHAP, SHapley additive exPlanations; UDI, Useful daylight illuminance; WWR, Window-to-wall-ratio; XGB, XGBoost (eXtreme Gradient Boosting).
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address issues of IVC. Such frameworks should support decision-making
that integrates IVC requirements with sustainability objectives, thereby
contributing to occupant-centered green building design.

1.1. Objectives

The aim of this study is to propose a framework to explore the
relationship between occupant-centered IVC environment and building
features. Specifically, the objectives are as follows: (1) a rapid occupant-
centered method for zonal visual comfort evaluation, (2) an explanatory
stacking architecture model exposing the effect of design variables on
IVC, and (3) validation of the feasibility of this approach across different
climatic zones.

1.2. Contributions

This study introduces an automated IVC evaluation framework for
sustainable building design by integrating Stacking model with the
SHapley Additive exPlanations (SHAP) method. The framework offers
enhanced insight into the potential impacts of IVC on occupants. The
main contributions of this paper are summarized as follows:

e Interaction between daylight distribution and glare risk: this study
proposes a framework that incorporates occupants’ viewing di-
rections to evaluate localized glare from windows, particularly ac-
counting for views oriented toward the window as they change with
building rotation.

Stacking ensemble architecture for IVC predictions: this study es-
tablishes an optimal stacking architecture by comparing the pre-
dictive performance of different ML model. A stacking
architecture—composed of XGBoost, LightGBM, and CatBoost—was
developed to address the complexities of IVC evaluation, offering
enhanced predictive performance and feedback for designers.
Explanatory analysis using SHAP: this study introduces a “predic-
tion-explanation” mechanism based on the SHAP method, which
deconstructs the nonlinear interactions between design variables
(DVs) and identifies the key DVs affecting IVC. To validate the
generalizability of this framework, testing was conducted across 10
typical cities, yielding highly satisfactory results.

1.3. Structure of the paper

The remainder of this paper is organized as follows. Section 2 pro-
vides an overview of current research on IVC challenges and artificial
intelligence technologies. Section 3 describes the research methodology,
which includes the identification of DVs, the definition of IVC metrics,
the development of stacking ensemble approach, and the creation of
interpretable evaluation platform for IVC. Section 4 and 5 present and
discuss the experimental results, analyzing the performance of various
stacking ensemble architectures, elucidating how different training pa-
rameters affect the target outcomes, and highlighting several note-
worthy—or potentially contentious—practices observed during
experimentation. Finally, Section 6 concludes the paper by summarizing
its contributions, discussing the main limitations of the study, and out-
lining directions for future work.

2. Related works

This section provides an overview of the developments and chal-
lenges in the field of IVC. It begins by addressing the challenges in
current research on indoor daylight distribution and glare control,
exploring the relationship between these two factors, and discussing the
application of advanced ML techniques to further advance this field.
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2.1. Challenges in daylight distribution and glare control for indoor visual
comfort

IVC has emerged as a critical factor in assessing indoor environ-
mental quality, closely related to various aspects. Research has shown
that IVC is strongly linked to the uniformity of daylight distribution,
daylight intensity, and local glare control [17]. To better quantify these
factors, the academic community has developed various quantitative
evaluation indicators. Illuminance-based daylight metrics such as
daylight autonomy (DA), useful daylight illuminance (UDI), and
daylight factor (DF) primarily evaluate daylight distribution, whereas
luminance-based glare metrics like daylight glare probability (DGP)
assess visual comfort by accounting for contrast-related glare effects
[18,19]. Carlucci et al. studied 34 light environment evaluation in-
dicators and found that 50 % of the existing systems prioritize glare
avoidance, while 26 % focus on the amount of light, emphasizing the
tension between lighting efficiency and glare control in light environ-
ment design [16]. Moreover, simply increasing daylight performance
could increase glare risks, requiring designers to balance illuminance
levels, glare control, and light uniformity [20].

These results illustrate the dilemma in sustainable building design:
how to improve daylight performance while simultaneously controlling
glare, thereby maintaining overall indoor environmental quality.
Quantifying glare probability by measurements is more complicated
than measuring illuminance [21]. Although DGP is considered the most
reliable glare quantification tool, its reliance on specific scene modeling
and rendering limits its early-stage application in building performance
evaluations [19]. Jones introduced glare autonomy (GA) as an inno-
vative approach to reconstruct the DGP equation, replacing luminance
and illuminance terms with line-of-sight vectors for rapid assessment
without rendering [20]. This technology shifts the research focus from
static illuminance evaluation to discomfort glare for occupants with
different viewing directions. Additionally, Wasilewski et al. introduced a
method called raytraverse [22], which addresses the spatiotemporal
distribution of daylight conditions within architectural spaces. This
method is capable of accurately calculating visual comfort metrics such
as DGP and unified glare probability (UGP).

2.2. Fragmented frameworks and the need for integrated in indoor visual
comfort assessment

The development of lightweight frameworks for IVC assessment has
received limited attention compared to the progress in energy con-
sumption prediction. First, some focus on energy use or thermal comfort,
combining daylight distribution indicators such as UDI and DF to build
evaluation models [23-26], while others solely target glare reduction
[27,28] . Few studies have combined daylight distribution and glare risk
into a unified framework [10,29] . Additionally, certain frameworks are
constrained by specific case studies or climate conditions [10,12,27],
while broader frameworks often have difficulty accounting for regional
variations [11,23,25]. This fragmentation limits the ability to
comprehensively evaluate glare and indoor daylight performance [30],
reducing the usefulness of these methods for sustainable building
design. Second, most existing frameworks do not consider occupants’
line-of-sight factors, such as seating positions and viewing directions,
which creates inconsistencies between technical metrics and actual
occupant experience [31]. Therefore, a unified and adaptable frame-
work that accounts for both daylight and glare, as well as occupant
variability, is necessary for achieving sustainable building design.

Performance-driven workflows are increasingly used in architectural
design because they allow multi-dimensional evaluation of building
performance [5,14,23] . Understanding the impact of building elements
on IVC is essential for improving occupant comfort and satisfaction.
Parametric design approaches provide a systematic way to explore
different design options in changing environmental conditions [32].
For example, Razmi et al. defined ten DVs for school dormitories,
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targeting daylight performance, thermal comfort, and energy demand,
and applied optimization algorithms to identify improved spatial con-
figurations [5]. Similarly, Marzouk et al. employed spatial daylight
autonomy and annual solar exposure to assess daylight performance in
heritage buildings, examining skylight configurations, materials, and
glazing types [9]. Although such elements like window size, room size,
layout, and daylighting have been studied, less attention has been given
to how these elements interact to shape occupants’ viewing directions
and visual experiences. Therefore, there is a need for an evaluation
framework that integrates building features and visual comfort, estab-
lishing a dual assessment system that considers both daylight distribu-
tion and glare risk.

2.3. Machine learning approaches for enhancing indoor visual comfort

Traditional building performance simulation (BPS) methods face
challenges in computation time and complexity. While software such as
Radiance provides accurate results, its high computational cost limits
the efficiency of design optimization [6,33]. ML-based surrogate
models have been proposed to address this issue because they offer fast
prediction and generalization [5]. Ensemble learning (EL) models,
including random forest and XGBoost, have shown higher prediction
accuracy and robustness, particularly when applied to complex and
high-dimensional datasets [34]. Moreover, for structured data predic-
tion, ML models have outperformed deep learning models in several
cases [35], which supports their application in studies of indoor com-
fort [33,36-38].

EL combines the strengths of multiple models to reduce overfitting
and variance while capturing complex nonlinear relationships. The main
methods in EL are Bagging, Boosting, and Stacking [39]. Bagging cre-
ates sub-datasets through bootstrap sampling, trains models in parallel,
and aggregates their predictions, reducing variance and ensuring di-
versity. Boosting trains models sequentially, adjusting sample weights
with gradient descent to improve performance on difficult data points.
For instance, Lee et al. studied solar radiation forecasting and found that
their EL models significantly outperformed individual models [40].
Similarly, Yan et al. applied various ML techniques to model indoor
lighting and outdoor thermal comfort, with XGBoost yielding the best
results [12]. On the other hands, the stacking ensemble architecture
have gained popularity for improving predictive accuracy in building
performance prediction over the past decade [41] . Stacking is useful for
capturing the complex, nonlinear relationships in building performance,
where individual models often struggle. Some studies have applied
Stacking models to building energy predictions [42,43]. However, the
use of Stacking models to IVC assessment is still emerging, with most
studies appearing in recent years.

As ML models in building performance research become increasingly
complex, ensuring their interpretability has become a critical concern,
beyond merely achieving predictive accuracy [44]. Interpretable ML
methods are becoming a vital bridge between data-driven predictions
and practical design decisions [36,45]. Therefore, models must offer
transparent decision logic to build trust and support informed IVC
design decisions. To address this, eXplainable Artificial Intelligence
(XAI) tools, such as SHAP and LIME, have been increasingly applied to
improve model transparency and uncover nonlinear interactions among
various environmental and DVs [46-48]. While local interpretation
methods like LIME provide useful insights, SHAP offers more robust
explanations, especially under sample perturbations [46], making it
particularly effective for feature contribution analysis. Thus, model
interpretability not only helps clarify causal relationships but also en-
hances the applicability of research findings in guiding architectural
practice, shaping industry standards, and informing policy development
[49,50].
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3. Methodology

Fig. 1 shows the three steps of the proposed framework, developed to
address the challenges of evaluating IVC in sustainable building design.
Step 1 involves BPS process and dataset generation. The dataset includes
site conditions, DVs, and IVC evaluation metrics (Section 3.1). By sam-
pling a range of building features, a comprehensive dataset was created
to reflect performance across diverse scenarios (Section 3.2). Step 2
focuses on ML model selection, training, and evaluation. Various
stacking ensemble strategies were compared to balance computational
efficiency with predictive accuracy (Section 3.3). Step 3 focuses on
analyzing the contribution of DVs (Section 3.4). This step identifies
which variables most influence IVC, enhancing the interpretability and
transparency of decision-making. Ultimately, this framework offers an
automated and interpretable ML-based tool that enables designers to
quickly evaluate design scenarios and personalize solutions to specific
project needs.

3.1. Parametric modeling and design variables setting

This study developed a parametric modeling framework using two
prototype rooms to efficiently evaluate the impact of key DVs on IVC.
The prototype rooms were derived from the M3 Building at Suita
Campus, The University of Osaka, Japan. The prototypes represent
typical office building configurations, enabling a focused exploration of
realistic daylighting scenarios (Fig. 2). The 3D scene of the building and
its surroundings was modeled using Grasshopper, a widely recognized
parametric modeling platform [51]. Digital elevation data from the
Shuttle Radar Topography Mission (SRTM) provided a 30-m resolution
of the terrain [52], and building height data from OpenStreetMap was
used to generate 3D models of the surrounding area [53]. Moreover,
typical meteorological year data for Osaka area was used for weather
calculation [54]. The indoor light environment was simulated using
Ladybug Tools (1.6.0) [55], which operates on the Radiance engine
(5.4a)—a highly accurate, Monte Carlo-based ray-tracing tool widely
adopted in international lighting standards [56].

This study defined and evaluated several DVs that influence daylight
performance. The DVs were defined according to the Comprehensive
Assessment System for Built Environment Efficiency (CASBEE) in Japan
[571, LEED standard in United States [58], and insights from relevant
literature [5,6,12,59], ensuring they align with empirical findings and
industry standards. Focusing on 15 key DVs with the most significant
impact on IVC, as identified in existing researches, this study avoids
including all possible variables. The variation ranges for these DVs,
defined in Table 1, were based on the aforementioned standards and
reference experiences. Fig. 3 shows the simplified prototype rooms and
the associated building elements categorized into four main groups:
building forms, fenestration, shading devices, and surface materials,
illustrating how building features affect IVC. The relationship between
window-to-wall-ratio (WWR) and other fenestration variables is inter-
dependent, meaning adjustments in one may require corresponding
changes in others. In other words, increasing the WWR may necessitate
adjustments to window dimensions to maintain balanced daylight dis-
tribution. Conversely, altering the window’s height or length will
inherently affect the WWR, as the window’s total area relative to the
wall area changes.

3.2. Generation of indoor visual comfort dataset

This subsection first establishes an IVC evaluation system, which is
developed based on the indoor daylight and glare performance. Then, a
comprehensive IVC dataset is constructed by sampling and recording
various building features.

3.2.1. Evaluation metrics of indoor visual comfort
This study develops an evaluation framework based on occupant’s
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Table 1
Definition of the DVs for IVC environment.
Building DVs Label  Range Steps  Unit Description
features
Building forms =~ Room_Width X [5.0, 0.1 m This DV influences spatial layout. The range is set to ensure a balanced room shape that it is
20.0] neither too narrow nor excessively wide.
Room _Length Xs [5.0, 0.1 m The goal of this DV is same as the Room_Width.
20.0]
Room_Height X3 [3.0, 5.0] 0.1 m This DV affects airflow and lighting, and plays a role in indoor comfort.
Room_Orientation X4 [—90, 1 degree  This is a crucial DV for understanding how daylight enters the room and how it can affect
90] IVC and energy use.
Fenestration WWR_South/North Xs [0.30, 0.01 - This DV determines the amount of daylight entering the room and can significantly affect
0.90] energy efficiency, daylight distribution, and thermal comfort.
Window_Height Xe [2.0, 3.0] 0.1 m This DV affects the amount of daylight penetration and views to the outside.
Window _SillHeight X7 [0.10. 0.01 m This dimension influences how daylight enters the room, as well as how occupants interact
1.00] with the window.
Window_Length Xg [0.8, 2.4] 0.1 m This DV affects the total surface area available for daylight and ventilation.
Shading device ~ Shading Length Xo [0.00, 0.01 m This DV controls how much direct sunlight enters through the window, thereby affecting
2.00] energy use and occupant comfort.
Shading Angle X10 [—60, 1 degree  This DV helps to regulate solar gain and visual comfort by adjusting how shading is applied.
60]
Surface Reflectance_Wall X171 [0.50, 0.01 - This DV is important for understanding how much light is reflected into the room, which can
material 0.90] enhance daylight availability and visual comfort.
Reflectance_Ceiling Xi2 [0.70, 0.01 - A higher reflectance increases the amount of reflected light, contributing to brighter
0.90] interiors and improved visual comfort.
Reflectance_Floor X3 [0.20, 0.01 - Floor reflectance influences the distribution of light across the room, affecting both lighting
0.50] efficiency and visual comfort.
Transmittance Window  Xj4 [0.70, 0.01 - This DV determines how much daylight is transmitted through the window, influencing
0.95] energy efficiency and indoor lighting quality.
Reflectance_Shading X1s [0.50, 0.01 - This affects the overall performance of the shading system in terms of both controlling solar
0.90] gain and improving the distribution of daylight in the space.

(b) e e

Fig. 3. Prototype rooms used in BPS process, showing the applied DVs: (a) south-facing window openings, and (b) north-facing window openings.

line of sight, integrating both horizontal illuminance distribution and
vertical glare risk from window directions. Four indicators—UDI, ASE,
GAvindow, and sGA—form a multi-scale system for IVC assessment. The
simulation period spans from 8:00 to 18:00, aligning with the building
operation schedule outlined in Japan’s green building standards [57].

Useful daylight illuminance (UDI) is a critical metric for evaluating
daylight distribution on the horizontal work plane, defined as the per-
centage of time the illuminance on the work plane stays within a defined
effective range during a specific period [60]. UDI has three illuminance
ranges, each offering distinct insights into daylight quality: insufficient
daylight (UDI-i, illuminance <300 Ix), autonomous daylight (UDI-a,
300 Ix < illuminance <2000 Ix), and excessive daylight (UDI-e, illumi-
nance >2000 1x). In this study, a1 x 1 m grid sensor matrix was used ata
work plane height of 0.75 m, with the autonomous illuminance range of
UDI (UDI-a at here) set between 300 and 2000 1x, representing the range
of daylight that is most suitable for work activities. While UDI-e iden-
tifies zones with high illuminance levels that may pose a glare risk, it
does not directly quantify directional glare effects. It focuses on the

temporal frequency of overexposure (time with illuminance >2000 1x),
while glare assessment requires additional metrics.

Annual sunlight exposure (ASE) complements UDI by evaluating the
spatial distribution of prolonged high-exposure areas, defined as the
percentage of floor area exceeding 1000 Ix for at least 250 occupied
hours annually [61]. ASE highlights areas prone to glare and thermal
discomfort, complementing UDI by providing spatial context for high
illuminance, while UDI focuses on temporal frequency. Although UDI
and ASE together offer a comprehensive evaluation of daylight quality,
their potential redundancy is acknowledged. Both metrics highlight
excessive illuminance, but their focus on time versus space provides
complementary insights.

The actual glare effects necessitate additional metrics and vertical-
plane analysis. Glare autonomy (GA) assesses visual discomfort based
on the occupant’s line of sight. The brightness and contrast terms in the
DGP equation were replaced to create an imageless evaluation model
based on multi-step calculations [20]. This method calculates the per-
centage of glare-free time (DGP < 0.4) from specific viewpoints without
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sacrificing accuracy in contrast terms, making it suitable for early-stage
design analysis. However, it does not account for dynamic viewing di-
rections, limiting its adaptability to varied occupant behaviors.

The DGP equation is as follows:

n L2-CU .
DGP = 5.87 x 1075-E, + 0.0918:log;, (1 + ZEl >
ne - -1 v

.87 p2
, P
brightness term

) +0.16 (€D)]

contrast term

where E, is the vertical eye illuminance, L; and w;s are the luminance and
solid angle of glare source, respectively, P is Guth position index, and n is
the number of glare sources.

In GA, the brightness and contrast terms are redefined using daylight
coefficient-based calculations:

Ev = k-Dtoml oS 2
Ls _ kddirectsi (3)
wcosl

where the vector D,y is daylight coefficients, S is point in time sky
luminance vector of all Reinhart sky patches, dgp. is the direct
component coefficient for sky patch i, s; is point in time sky luminance
value of sky patch i, and k is 179 Im/W represents the luminous efficacy
of daylight.

Unlike previous methods [20,62], which rely on uniform directional
sampling or fixed glare metrics, this study introduces a dynamic view-
tracking approach that adapts to both building rotation and window
positioning. The proposed glare autonomy for window direction
(GAyindow) index effectively integrates room orientation and occupant
viewing direction for dynamic glare detection: (1) Seated eye-level
height: A height of 1.1 m is assumed based on anthropometric data
[63,64], which is adopted in glare evaluations. The horizontal field of
view is divided into eight segments, with three (spanning 135°) used for
glare calculation. (2) View-tracking algorithm: This algorithm dynami-
cally links room orientation to the field of view (Fig. 4). As the building
rotates, the occupant’s forward view remains aligned with the window
position within +45°. When the window shifts beyond this range
(0 €[—90°,-46"] or 0 € [46°,90°]), the system switches the reference
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window side to maintain glare evaluation accuracy. This ensures that
occupant’s perspective remains anchored to the actual light entry
direction.

This study employs spatial glare autonomy (sGA) index proposed by
Jones, which extends GA by using dual glare thresholds (0.4 < DGP <
0.45) and time proportion (> 5 % of the annual working hours) to
evaluate the uniformity of glare distribution [20] . sGA is well-suited for
assessing glare in multiple areas, offering a comprehensive evaluation of
glare gradients. Although similar glare metric, such as the spatial dis-
turbing glare (sDG) in the ClimateStudio plugin [62], sDG uses a
broader and less specific threshold (DGP > 0.38), making sGA’s dual-
threshold approach more precise for performance-driven design.

3.2.2. Sampling and dataset generation

Based on a comparative analysis (Appendix Fig. A.1) and findings
from previous studies [5,59,65], Latin hypercube sampling (LHS) was
selected for its superior ability to uniformly and randomly cover the
parameter space, making it well-suited for capturing nonlinear re-
lationships in medium- to high-dimensional datasets [66]. The mini-
mum sample size should be ten times the number of input variables (i.e.,
150 samples in this study) according to previous research [67,68].
However, 150 samples were insufficient to cover all building features
adequately as ML model requires more data for training and testing.
While increasing the sample size further would significantly extend
dataset preparation time with slightly improvements in model accuracy.
Using empirical and trial-and-error methods [69], this study designed
2000 samples for both south- and north-facing window scenarios,
respectively. These two datasets were used for training the ML models.
Considering the dimensional requirements of the DVs in this study, this
sample size could fulfill the requirements for dataset construction.

3.3. Ensemble learning supported model prediction

This study was conducted on a personal computer equipped with an
Intel Core i9-12900KF processor (3.2 GHz), NVIDIA GeForce RTX 3090,
and 64GB of RAM. All ML models were implemented using the Scikit-
learn library in Python [70].
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3.3.1. Data pre-processing

The dataset used in this study was generated from simulation sce-
narios involving both south-facing and north-facing window openings,
with 2000 samples per direction, totaling 4000 samples. Each sample
corresponds to a unique configuration of building features, window
placement, and sun position. Due to the randomized nature of the
sampling process, some combinations produced extreme or atypical
glare outcomes. To ensure data quality, Interquartile range (IQR)
method is employed [71] for data cleaning. This technique eliminates
data points lying significantly outside the middle 50 % of the distribu-
tion, which could otherwise distort model training and evaluation
(Appendix Fig. A.2). This approach guarantees that the data used for IVC
evaluation is of both high quality and representative.

3.3.2. Ensemble learning approach

This study employs EL techniques to improve predictive accuracy
and robustness. The stacking ensemble follows a two-layer architecture
that combines the predictions of multiple base learners (Fig. 5). A meta-
learner is then used to determine the optimal weighting of these pre-
dictions, enhancing overall model performance [72].

(1) Level 1 (base-learner): Each base model is trained using K-fold
cross-validation to ensure full data utilization and prevent data
leakage. In each fold, the model is trained on K-1 subsets and
validated on the remaining subset. The out-of-fold predictions are
assembled into a meta-feature matrix M € R™™, where n is the
number of base models and m is the number of samples.

(2) Level 2 (meta-learner): A linear regression model serves as the
meta-learner, which takes M as input and learns the optimal
combination of base model outputs. The final stacked prediction
is computed as:

ysmcking = Z mifi(x) + b (4)
i=1

where fi(x) is the prediction from the i-th base learner, w; is its corre-
sponding weight, and b is the bias term. The meta-learner assigns higher
weights to more accurate models for specific data patterns, improving
both prediction accuracy and generalization.

3.3.3. Model selection and stacking
To build a robust and generalizable stacking ensemble for IVC
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prediction, this study follows a two-stage learning process. It involves
selecting diverse base learners, training them independently, and
combining their outputs with a meta-learner.

e Selection and training of base models

This study first evaluates six state-of-the-art models for constructing
a robust stacking ensemble: XGBoost (XGB), LightGBM (LGBM), Cat-
Boost (CB), AdaBoost (AB), Random Forest (RF), and Extra Trees (ET).
The six base models are grouped into two categories: (1) Bagging-based
models (RF, ET), which use bootstrap resampling to train multiple
learners in parallel, reducing variance and mitigating overfitting
through feature selection randomness. (2) Boosting-based models (XGB,
LGBM, CB, AB), which are trained sequentially, with each model
focusing on misclassified instances of its predecessors. All base models
were trained using 80 % of the dataset, with each model trained inde-
pendently under its respective ensemble strategy to capture various
feature-space structures. K-fold cross-validation (K = 5) was applied in
each fold to improve model generalization capabilities.

¢ Training and evaluation of meta-model

The meta-model was trained on out-of-fold predictions from the base
models, ensuring that it combined model outputs without any data
leakage from the training data. For final evaluation, 20 % of the dataset,
untouched during base models and meta-model training, was reserved
as an independent test set. This test set was solely used for performance
assessment, ensuring an unbiased evaluation that reflects the model’s
ability to generalize to new data. By integrating diverse models and
maintaining strict data separation throughout the training process, the
stacking ensemble framework enhances prediction stability and gener-
alization. In contrast to rule-based ensemble strategies, stacking allows
the meta-model to learn optimal weights, improving adaptability to
complex IVC scenarios.

3.3.4. Hyperparameter optimization

Hyperparameter optimization process can enhance model training
efficiency, generalization ability, and prediction accuracy by identifying
the best combination of hyperparameters [73]. Hyperparameter fine-
tuning mainly focuses on learning rate, max depth, number of itera-
tions, subsample, lambda, and alpha. Bayesian optimization was
employed in this study to improve model performance, reduce
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Fig. 5. The architecture of Stacking ensemble learning approach.
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computational resources, and effectively prevent overfitting or under-
fitting. It offers the advantage of using a surrogate model (Gaussian
process) to predict performance distribution, allowing for a more effi-
cient search for the global optimum with fewer computations [74].

3.3.5. Model evaluation

Model performance is evaluated based on six EL. models and the final
stacking ensemble. All models were assessed on the held-out test set to
provide an unbiased estimate of generalization performance. Three
standard regression evaluation metrics were used to evaluate accuracy:
the coefficient of determination (Rz), root mean square error (RMSE),
and mean absolute error (MAE) (Egs. (5)-(7)) [75-77]. R? represents
the proportion of variance in the dependent variable explained by the
independent variables, with values approaching 1.0 indicating greater
explanatory strength. RMSE and MAE provide insights into the predic-
tion error, with RMSE penalizing larger errors more heavily and MAE
reflecting average absolute errors. Lower values of RMSE and MAE
indicate better model performance. The definitions of R2, RMSE, and
MAE are as follows:

> i — i)
RR=1-—— ()
;O'i—Y)z
_ AN~ o2
RMSE = n;(y, 30 6)
MAE = X 3" 1y~ 5 7
f;iglyfyll %)

where y; is the actual value, y; is the predicted value, y is the mean of the
actual values, and n is the sample size.

3.4. Model interpretation

The SHapley Additive exPlanations (SHAP) method enhances model
transparency by quantifying the marginal contribution of each feature to
the model’s output [48]. Based on Shapley values from cooperative
game theory [78], it quantifies the contribution of each feature to the
prediction outcome, with the absolute Shapley values indicating the
priority of DVs for adjustment. For IVC prediction, SHAP effectively
captures nonlinear relationships between DVs and lighting parameters,
clearly highlighting feature interactions. SHAP method provides both
global and local interpretability, integrates the benefits of various
model-agnostic methods, and is robust to perturbations, making it ideal
for interpreting prediction models in this study. Two types of interpre-
tation were conducted: (1) Global interpretation using SHAP beeswarm
plots to visualize the overall importance of each DV across all samples,
and (2) Local interpretation using dependence plots to explain individ-
ual predictions and explore how feature values influence model output
in specific cases.

The calculation of Shapley value is as follows:

(P—IS|—1)!
b= Y B DNes0 1)) - 59) ®

SQ{Xl-u-vXP}\{XP}

where ¢, represents the Shapley value for feature P, S is a subset of
features, x, is the value vector for feature p, P is the total number of
features, and f(S) is the model prediction using only the features in
subset S.

f(x) is a linear function of Shapley value of feature P:

P
f) =0+ bz 9
p=1
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where f(x) is the predictive output and ¢, is the expected value of
prediction. Z; is a binary feature: z; = 1 represents a present feature and
7; = 0 represents absent features. Features with larger absolute Shapley
values contribute more to the IVC factors.

4. Results

This section presents the sampled data on IVC performance, com-
pares the predictive accuracy of different stacking architectures, ana-
lyzes the results of the optimal Stacking model, and demonstrates the
application of proposed framework across various climate zones.

4.1. Dataset generation and pre-processing

The dataset contains 4000 IVC calculation samples for both south-
and north-facing orientations. Fig. 6 shows the data distribution. The
UDI index range for the sampled results is approximately 2.5 % higher in
south-facing spaces than in north-facing ones, indicating a larger pro-
portion of usable daylight throughout the year. North-facing indoor
environments exhibit notable advantages in glare conditions. Median
values of glare indicators—sGA and GAyindow—increase by 20.7 % and
6.8 %, respectively, suggesting that most north-facing spaces are glare-
free. In the ASE evaluation, the mean and median values for north-facing
spaces are clustered closer to the coordinate origin and differ signifi-
cantly from those of south-facing spaces.

4.2. Model performance and evaluation results

This subsection compares different stacking architectures to evaluate
the trade-off between predictive performance and computational effi-
ciency. It employs EL and Bayesian optimization for hyperparameter
tuning, developing eight Stacking models across various room orienta-
tions and light environment indicators, and systematically validating
their effectiveness in predicting IVC.

4.2.1. Model performance results

Six EL models were trained using Bayesian optimization for perfor-
mance benchmarking (Fig. 7). The results showed that XGB, LGBM, and
CB outperformed other models in terms of Rz, RMSE, and MAE. These
three were therefore selected as base learners for stacking. Regarding
computational efficiency, the XGB-based Stacking model required less
than 1 min for training, significantly faster than LGBM-based (40 min)
and CB-based (68 min). Given the need to balance accuracy and prac-
tical deployment, the XGB-based Stacking model was selected for further
experiments due to its optimal balance of performance and speed.

Model combinations were validated using 5-fold cross-validation
(Table 2). The three-model stack (XGB-LGBM-CB) yielded the best
overall performance with R%=0.91 1, RMSE = 4.084, and MAE = 2.986.
This integration improved prediction accuracy by 0.9 % in R? and
reducing error metrics by approximately 4.5 % in RMSE and MAE
compared to two-model stacks (e.g., XGB-CB). Adding more base
learners (e.g., four- to six-model stacks) increased training set fit (R? up
to 0.988) but did not improve test performance. For example, the five-
model stacking (XGB-LGBM-CB-RF-AB) showed higher RMSE (4.135)
and MAE (3.016), indicating that increasing the number of base learners
can lead to overfitting. Moreover, integrating Bagging-based models (e.
g., RF) into Boosting-based stacks resulted in performance reduction.
The XGB-LGBM-RF architecture showed RMSE and MAE increases of
8.5 % and 13.5 %, respectively, compared to the optimal three-model
stack. These results underscore the critical influence of base learner
selection on stacking performance. Therefore, this study adopts the XGB-
LGBM-CB stacking architecture, with a linear regression model as the
meta-learner to assign weights to base learner outputs. This architecture
combines the efficiency and generalization capability of linear models
with the complementary strengths of the base learners, enhancing
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Fig. 7. Performance of six EL models based on RZ, RMSE, and MAE indicators: (a), (b), (c) represent south-facing window openings; (d), (e), (f) represent north-facing

window openings.
prediction robustness under complex IVC scenarios.

4.2.2. Evaluation results of stacking model

As shown in Tables 3 and 4, the Stacking models outperform the
individual base learners across four indicators. Among them, the best
Stacking model achieved R? = 0.922, compared to 0.913 for the top-
performing base model. Similarly, the Stacking model also demon-
strated lowest RMSE (1.011) and MAE (0.663) in north-facing GAyindow
index compared to other models. This may indicate its superior ability to

capture complex interactions among DVs.

Regression results for both training and test sets are shown in Fig. 8.
For UDI prediction, the north-facing test set achieved a slightly higher
R? = 0.922 than the south-facing set (R2 = 0.911), with both scatter
plots closely aligned along the y = x regression line, indicating high
predictive accuracy. However, in glare-related indicators, south-facing
models performed better due to greater variability in direct light. Spe-
cifically, sGA prediction yielded R? = 0.914 for the south-facing model
versus R% = 0.846 for the north-facing model; for GAyindow, the values of
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Table 2

Average results of different Stacking model selections.
Stacking model architecture Time cost (s) Training set Test set

R* RMSE] MAE| R* RMSE] MAE|

XGB, RF 83.7 0.979 1.936 1.520 0.821 5.788 4.317
XGB, CB 18.1 0.922 1.231 0.976 0.903 4.262 3.125
XGB, LGBM 15.4 0.982 1.801 1.377 0.889 4.570 3.411
XGB, LGBM, CB 21.2 0.987 1.547 1.205 0.911 4.084 2.986
XGB, LGBM, RF 26.1 0.982 1.796 1.410 0.895 4.431 3.389
XGB, CB, RF 335 0.986 1.566 1.242 0.907 4.174 3.077
XGB, LGBM, CB, RF 44.7 0.988 1.447 1.230 0.910 4.106 2.994
XGB, LGBM, CB, AB 23.4 0.986 1.578 1.246 0.910 4.098 2.978
XGB, LGBM, CB, ET 25.8 0.985 1.625 1.287 0.910 4.104 3.014
XGB, LGBM, CB, RF, AB 28.6 0.986 4.599 1.280 0.909 4.135 3.016
XGB, LGBM, CB, RF, ET 36.2 0.988 1.449 1.100 0.911 4.097 2.986
XGB, LGBM, CB, ET, AB 28.6 0.987 1.512 1.213 0.911 4.090 2.975
XGB, LGBM, CB, RF, AB, ET 38.5 0.988 1.447 1.143 0.910 4.106 2.994

Abbreviation: XGB: XGBoost; LGBM: LightGBM; CB: CatBoost; AB: AdaBoost; RF: random forest; ET: extra tree.

Table 3
Indoor visual comfort performance results for the south-facing window
openings.

Table 4
Indoor visual comfort performance results for the north-facing window
openings.

Models Training set Test set Models Training set Test set

R% RMSE| MAE| R*t RMSE| MAE| R% RMSE| MAE| R*t RMSE| MAE|}
UDI index UDI index
XGB 0.997 0.674 0.480 0.882 4.699 3.617 XGB 0.981 2.275 1.737 0.889 5.435 4.068
LGBM 0.986 1.583 1.123 0.897 4.398 3.291 LGBM 0.983 2.201 1.504 0.913 4.830 3.465
CB 0.990 1.354 0.853 0.885 4.651 3.408 CB 0.988 1.832 1.328 0.912 4.837 3.486
AB 0.995 0.946 0.583 0.839 5.499 4.298 AB 0.997 0.904 0.521 0.867 5.957 4.619
RF 0.960 2.706 1.959 0.802 6.088 4.753 RF 0.964 3.169 2.267 0.844 6.452 4.959
ET 0.990 1.340 0.934 0.773 6.523 5.232 ET 0.978 2.476 1.881 0.763 7.962 6.274
Stacking 0.987 1.547 1.205 0.911 4.084 2.986 Stacking 0.992 1.589 1.276 0.922 4.576 3.083
sGA index sGA index
XGB 0.962 2.370 1.735 0.858 4.480 3.328 XGB 0.944 1.537 1.081 0.765 2.847 1.981
LGBM 0.992 1.119 0.782 0.896 3.715 2.621 LGBM 0.986 0.778 0.514 0.822 2.480 1.468
CB 0.987 1.377 0.897 0.884 3.924 2.750 CB 0.994 0.499 0.316 0.826 2.450 1.500
AB 0.982 1.625 1.163 0.773 5.485 4.242 AB 0.982 0.872 0.615 0.715 3.138 1.969
RF 0.948 3.796 2.001 0.770 5.517 4.266 RF 0.952 1.418 0.832 0.704 3.195 2.033
ET 0.985 1.507 1.173 0.676 6.547 5.180 ET 0.910 1.949 1.311 0.570 3.852 2.786
Stacking 0.979 1.760 1.375 0.914 3.382 2.307 Stacking 0.983 0.834 0.660 0.846 2.305 1.410
GAwindow index GAwindow index
XGB 0.984 0.672 0.496 0.869 1.713 1.278 XGB 0.973 0.447 0.301 0.838 1.086 0.659
LGBM 0.985 0.648 0.453 0.896 1.526 1.080 LGBM 0.968 0.494 0.313 0.842 1.071 0.671
CB 0.989 0.564 0.369 0.890 1.569 1.117 CB 0.987 0.308 0.194 0.840 1.077 0.661
AB 0.985 0.645 0.478 0.762 2.308 1.726 AB 0.993 0.230 0.159 0.734 1.390 0.854
RF 0.935 1.356 0.923 0.731 2.453 1.821 RF 0.933 0.710 0.402 0.729 1.402 0.875
ET 0.990 0.525 0.368 0.661 2.753 2.079 ET 0.972 0.456 0.238 0.582 1.743 1.110
Stacking 0.984 0.682 0.552 0.913 1.394 1.064 Stacking 0.981 0.381 0.305 0.859 1.011 0.663
ASE index ASE index
XGB 0.962 2.485 1.793 0.832 5.509 3.851 XGB 0.954 0.944 0.612 0.640 2.876 1.547
LGBM 0.987 1.462 1.041 0.850 5.208 3.459 LGBM 0.956 0.925 0.602 0.642 2.869 1.558
CB 0.986 1.512 1.048 0.863 4.979 3.265 CB 0.991 0.428 0.242 0.681 2.707 1.322
AB 0.990 1.311 0.836 0.721 7.099 4.916 AB 0.997 0.240 0.131 0.637 2.890 1.155
RF 0.938 3.201 2.201 0.730 6.992 5.060 RF 0.911 1.317 0.596 0.593 3.060 1.392
ET 0.969 2.251 1.639 0.686 7.532 5.413 ET 0.990 0.435 0.212 0.529 3.291 1.626
Stacking 0.977 1.944 1.518 0.883 4.600 3.089 Stacking 0.970 0.757 0.509 0.709 2.587 1.452

R? were 0.913 and 0.859, respectively. This suggests the models are
more effective in environments with broader illuminance ranges, where
nonlinear patterns are more pronounced. Conversely, the reduced
variability in north-facing spaces limits model sensitivity, often leading
to underestimated errors. ASE results further emphasize directional
differences. The south-facing model achieved R? = 0.883, while the
north-facing model dropped to R? = 0.709. This discrepancy can be
attributed to the lower temporal variance of diffuse light in north-facing
spaces, reducing the model’s ability to detect subtle shifts in light
exposure—particularly in low-ASE regions. These findings highlight the
need for greater sensitivity to weak lighting signals to enhance model
performance in diffuse-light conditions.

Overall, these Stacking models demonstrated strong accuracy and

10

robustness across all indicators. In south-facing spaces, dynamic lighting
conditions facilitated more effective learning of nonlinear relationships.
In contrast, north-facing spaces yielded lower absolute errors but require
improved sensitivity to minor illuminance fluctuations—especially for
ASE prediction. The variations in R%, RMSE, and MAE between orien-
tations (Tables 3 and 4) underscore the influence of lighting conditions
on model performance and error metric behavior.

4.3. Model interpretation results

This subsection employs the SHAP method for interpretability
analysis to deconstruct the multidimensional impact mechanisms of IVC
prediction based on the XGB-LGBM-CB architecture Stacking model. The
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Fig. 8. Training and test performance of the Stacking model on the target index, with a 95 % confidence interval, (a), (c), (e), (g) represent the south-facing window
openings; (b), (d), (f), (h) represent the north-facing window openings.
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global and local interpretation analyses reveal nonlinear interactions
between DVs with SHAP values.

4.3.1. Global interpretation results

The SHAP method was used to deconstruct the Stacking model based
on the XGB-LGBM-CB architecture. Eight subplots for the south-facing
and north-facing windows reveal the explanatory advantages of the
CB model in the automated evaluation system (Fig. 9). The average
SHAP contribution for the CB model is about 75 %, significantly higher
than LGBM (15 %) and XGB (10 %). These findings demonstrate that the
CB model excels in capturing nonlinear interactions in the lighting
environment. Given that the stacking model itself is not directly inter-
pretable, the CB model was selected for this analysis.

Fig. 10 shows the quantified contribution weights of the DVs. Each
subplot includes the SHAP value contribution on the left and a pie chart
showing the contribution percentage on the right. The results reveal
significant differences in feature importance between south- and north-
facing spaces. Tables 5 and 6 rank the relative marginal contributions of
the DVs, where higher percentages reflect greater impact on IVC. Among
building features, building forms contribute approximately 46.6 %-—
52.7 % to prediction performance (south-facing average: 46.6 %, north-
facing average: 52.7 %). Four features inside this category can consider
as the key building factors in design decisions. Fenestration and shading
device contribute between 22.6 %-24.9 % and 16 %-24.2 %, respec-
tively, while surface material contributes only 6 %-7.2 %.

Further analysis of the four evaluation indicators reveals the
following: (1) For the UDI index (Fig. 10a-b), room orientation, room
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length, and room width are the most influential factors. In south-facing
spaces, orientation and room width contribute 18.9 % and 16.7 %,
respectively, to the overall prediction. In north-facing spaces, room
width, room length, and orientation together account for 53.6 %.
Additionally, the shading angle and WWR contribute 11.9 % and 11.2 %,
respectively, for south-facing rooms. (2) In glare evaluation (sGA and
GAwindow), the south-facing shading angle is the most significant factor,
contributing 15.9 %. Combined with room length (15.4 %), these two
factors form the dual control mechanism for light distribution (Fig. 10c).
For north-facing spaces, WWR and orientation together contribute 48.8
% (Fig. 10d), emphasizing the importance of facade design. These results
further highlight the role of room size and orientation in influencing
comfort levels. (3) The ASE index confirms the central role of shading
systems. For south-facing spaces, the shading angle contributes 17.5 %
(Fig. 10g), with room length (15.8 %) and WWR (13.8 %) collectively
accounting for 47.1 % of the explanatory dimension. For north-facing
spaces, orientation contributes 33.9 % (Fig. 10h), with WWR contrib-
uting 18.9 %, requiring careful attention in design. The SHAP values for
ASE and UDI highlight the relative contributions of different DVs to
excessive-brightness risk—a necessary precursor to glare—although
validating perceptual glare still requires occupant studies. In summary,
six key DVs—room orientation, room length, room width, WWR,
shading length, and shading angle—account for 80.6 % of the prediction
performance and are critical to determining IVC. While the ranking of
feature importance varies slightly, orientation, room length, and room
width are consistently the most significant factors.
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Table 5
Importance of DVs to relative marginal contributions toward south-facing window openings results.
DVs UDI index sGA index GAvyindow index ASE index
Total (%) Ranking Total (%) Ranking Total (%) Ranking Total (%) Ranking
Building forms 55.7 44.0 41.8 44.9
Room_Width 16.7 2 11.3 5 10.6 5 11.8 4
Room _Length 16.0 3 15.4 2 11.0 4 15.8 2
Room_Height 4.1 8 5.9 7 5.6 8 6.1 8
Room_Orientation 18.9 1 11.4 4 14.6 2 11.2 5
Fenestration 22.8 25.1 26.9 24.7
WWR _South 10.2 5 15.1 3 22.1 1 13.8 3
Window_Height 5.3 7 3.6 10 0.9 10 3.4 9
Window _SillHeight 6.7 6 5.9 8 3.2 9 6.9 7
Window_Length 0.6 14 0.5 12 0.7 12 0.6 10
Shading device 14.9 24.6 22.8 28.0
Shading_Length 3.9 9 8.7 6 8.9 6 10.6 6
Shading_Angle 11.0 4 15.9 1 139 3 17.4 1
Surface material 6.6 6.3 8.5 2.4
Reflectance_Wall 1.6 11 1.2 11 0.9 11 0.6 10
Reflectance_Ceiling 0.5 15 0.3 15 0.2 15 0.6 12
Reflectance_Floor 0.8 13 0.3 14 0.3 14 0.5 13
Transmittance_Window 2.7 10 4.1 9 6.6 7 0.4 14
Reflectance_Shading 1.0 12 0.4 13 0.5 13 0.3 15
Table 6
Importance of DVs to relative marginal contributions toward north-facing window openings results.
DVs UDI index sGA index GAwindow index ASE index
Total (%) Ranking Total (%) Ranking Total (%) Ranking Total (%) Ranking
Building forms 57.8 54.5 49.3 49.0
Room_Width 18.2 1 9.4 4 9.4 3 5.3 6
Room_Length 17.8 2 9.5 3 8.7 4 5.3 5
Room_Height 4.2 9 4.4 8 4.4 8 4.4 8
Room_Orientation 17.6 3 31.2 1 26.8 1 34.0 1
Fenestration 22.0 21.5 24.2 28.9
WWR _North 11.2 5 17.7 2 19.3 2 18.9 2
Window_Height 4.6 7 1.1 10 2.5 9 2.3 10
Window _SillHeight 5.5 6 1.6 9 1.2 10 2.7
Window_Length 0.7 11 1.1 11 1.2 11 5.0 7
Shading device 16.3 16.0 15.6 16.0
Shading_Length 4.4 8 8.3 5 8.5 5 8.2 3
Shading_Angle 11.9 4 7.7 6 7.1 7 7.8 4
Surface material 3.9 8.0 10.9 6.1
Reflectance_Wall 0.6 12 0.6 13 0.7 14 1.4 11
Reflectance_Ceiling 0.3 15 0.5 14 1.0 12 1.2 13
Reflectance_Floor 0.4 14 0.9 12 0.9 13 1.1 14
Transmittance_Window 2.1 10 5.5 7 7.7 6 1.3 12
Reflectance_Shading 0.5 13 0.5 15 0.6 15 1.1 15

4.3.2. Local interpretation results

The local interpretation analysis in Fig. 11 reveals the nonlinear
interaction effects between DVs. In the UDI analysis (Fig. 11a-b), WWR
is positively correlated with room length and window sill height but
negatively correlated with room width. Specifically, when room length
exceeds 12 m and WWR > 0.6, larger windows improve lighting effi-
ciency by 23-28 %. This improvement is further enhanced when the
window sill height is >0.4 m and dynamic shading is applied. The
analysis of sGA and GAyindow indicates significant differentiation
(Fig. 11c-f). Room length and width are positively correlated with
shading angle and orientation, suggesting that larger indoor spaces
(Iength and width > 12 m) should prioritize light over glare control. To
achieve this, a WWR > 0.6 is necessary for both south- and north-facing
spaces. For north-facing spaces, increasing room width by 1 m in ori-
entations between —50° to 0° and beyond 50° improves IVC conditions
(reducing luminance contrast) by approximately 10 %, even though
direct solar glare is generally not a concern in these orientations. The
ASE analysis (Fig. 11g-h) shows a significant negative correlation be-
tween shading angle and room width, suggesting that shading angles
should be between —20° and 20° to reduce light exposure. This effect
being particularly in south-facing spaces. The recommended WWR for
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south- and north-facing spaces is around 0.5 and 0.6, respectively,
optimizing room dimensions (up to 10 m) while minimizing glare.

These findings demonstrate the model’s ability to identify designs
that meet or exceed the acceptable visual comfort threshold. For south-
facing spaces, controlling WWR around 0.5 + 0.1 balances room di-
mensions (up to 10 m) with daylight (Fig. 11a). Fig. 11c shows that
shading angles between 25° and 35° effectively reduce glare and
maintain IVC. In north-facing spaces, increasing WWR to 0.6-0.7 results
in minimal ASE increases (Fig. 6b), suggesting that glare risk remains
low despite larger window areas.

4.4. Validation of the proposed framework

This subsection evaluates the adaptability of the proposed frame-
work across diverse climates. This study tested ten typical cities across
five climate zones based on the Koppen-Geiger climate classification
system [79]: Zone 1: Tropical climates (Singapore, Jakarta); Zone 2:
Dry climates (Cairo, Riyadh); Zone 3: Temperate climates (Shanghai,
Hamburg); Zone 4: Continental climates (Chicago, Helsinki); Zone 5:
Polar climates (Iqaluit, Nuuk).

As shown in Table 7, the Stacking model demonstrates strong cross-
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Fig. 11. Local interpretation of top 6 DVs for the target index in the south and north directions: (a), (c), (e), (g) represent the south-facing window openings; (b), (d),
(f), (h) represent the north-facing window openings.

and reusable surrogate, enabling rapid IVC predictions. This substan-
tially reduces computational demands in later design stages, particularly
when coupled with optimization algorithms for multi-objective
optimization.

climate generalization capability, with an average R? of 0.893 across
five climate zones. However, errors increased in tropical and highly
variable climates, indicating a need for further optimization. Although
retraining is required for each city due to local climatic and solar vari-
ations, the sampling and training process is efficient and performed only
once per location. Once trained, the Stacking model functions as a fast

14



Y. Zhou et al.

Automation in Construction 181 (2026) 106582

Table 7
Framework validation results for ten typical cities across different climate zones based on indoor visual comfort indicators using Stacking models.
Climate zones Validated cities Training set Test set
Rt RMSE| MAE| R*t RMSE| MAE|
Zone 1 Singapore 0.974 1.405 1.058 0.880 3.203 2.303
Jakarta 0.973 1.217 0.876 0.840 3.031 2.002
Zone 2 Cairo 0.976 1.767 1.365 0.900 3.619 2.506
Riyadh 0.983 1.490 1.154 0.906 3.631 2.562
Zone 3 Shanghai 0.976 1.616 1.230 0.892 3.462 2.320
Hamburg 0.980 1.611 1.236 0.899 3.757 2.536
Zone 4 Chicago 0.979 1.601 1.237 0.897 3.592 2.418
Helsinki 0.982 1.429 1.109 0.912 3.295 2.252
Zone 5 Iqaluit 0.980 1.520 1.160 0.886 3.485 2.337
Nuuk 0.979 1.573 1.203 0.921 3.054 2.156

5. Discussion

The stacking ensemble architecture model in this study simulta-
neously predicts both daylight distribution and perceived glare, utilizing
SHAP analysis to reveal the nonlinear interactions among DVs. By
incorporating the occupant’s viewing direction, the framework facili-
tates a dynamic assessment of IVC at the early stages of design, high-
lighting the multidimensional pathways through which daylight
influences indoor environments. Its high predictive accuracy and
interpretability not only enhance efficiency but also provide practical
insights for optimizing IVC, thereby supporting the creation of healthier
and more sustainable buildings.

5.1. Stacking architecture for indoor visual comfort prediction

The stacking architecture in this study marks several key advance-
ments: (1) By leveraging generative design strategies in conjunction
with parametric modeling, the framework effectively generates diverse
indoor performance scenarios. A systematic sampling approach of
building features creates comprehensive training datasets, addressing
the limitations of traditional experience-based models and accelerating
the development of predictive models. (2) While Boosting-based models
outperformed Bagging-based approaches in this study, the performance
differences were relatively modest in some cases. These discrepancies
may be attributed to data variability and cross-validation randomness,
highlighting the need for cautious interpretation of the results. More-
over, Boosting-based models (XGB, LGBM, CB, AB) consistently out-
performed Bagging-based models (RF, ET), particularly in capturing
nonlinear feature interactions. This trend aligns with trends observed in
previous building performance studies [40,80]. (3) A comparison of
performance between south- and north-facing spaces further empha-
sized distinct daylight dynamics. South-facing rooms, dominated by
direct solar exposure, exhibited greater illuminance variability, which
enabled the model to capture more nonlinear patterns. In contrast,
north-facing spaces, characterized by predominantly diffuse daylight,
offered more stable but less responsive lighting conditions. These
orientation-dependent dynamics underscore the importance of tailoring
modeling strategies to specific building orientations, reinforcing the
applicability of Stacking-based ML techniques for a broader range of
building performance metrics. In particular, dynamic environmental
features should be prioritized for south-facing spaces, while temporal
variables—such as time of day and seasonal changes—are crucial for
improving model sensitivity in north-facing spaces [41,42]. (4) The
simulation-based sampling and model training process are required for
each new location. Once trained, the surrogate model provides rapid
predictions with minimal computational cost. Seamlessly integrated into
the Grasshopper parametric platform, the model enables designers to
input basic building parameters—such as room dimensions and window
configurations—and receive immediate IVC feedback. This substantially
reduces the computational load in downstream design iterations and
multi-objective optimization processes.
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5.2. Interpretable models for indoor visual comfort evaluation

SHAP analysis was employed in this study to deconstruct the decision
mechanisms within the Stacking model, enabling designers to focus on
performance-driven solutions and explore design alternatives more
effectively. The results show that the CB model contributed the largest
weight (75 %) to overall predictions and highlighted six key DVs—room
orientation, room length, room width, window-to-wall ratio (WWR),
shading length, and shading angle. These key variables are consistent
with findings from previous daylight and glare studies [6,27,81,82].
Furthermore, interaction analysis indicated that the combination of
WWR and shading device parameters plays a decisive role in shaping
IVC across different orientations. Such quantified insights provide a
theoretical foundation for optimizing facade configurations and shading
systems.

The feature-priority mapping derived from SHAP analysis provides
actionable guidance for sustainable building design. The six key DVs
collectively accounted for 80.6 % of the total model impact (south-fac-
ing: 79.6 %, north-facing: 81.6 %). This suggests that building forms and
shading devices should be prioritized during early design stages, while
refinements in material selection can follow at later stages. South-facing
spaces, especially larger ones, contributed on average 29.5 % more to
model predictions than north-facing counterparts, underscoring the
importance of dynamic shading to mitigate glare and excessive solar
gain. Conversely, WWR had a relatively greater influence in north-facing
spaces, contributing 9.8 % more than in south-facing spaces. This
finding suggests that larger windows in north-facing rooms can improve
diffuse daylight without introducing excessive glare.

Importantly, dynamic shading systems emerged as a key enabler for
reconciling daylight provision with IVC. While large windows enhance
daylight penetration under overcast conditions, automated shading can
effectively reduce glare and overexposure in sunny periods. This dual
functionality underscores the potential of dynamic facade systems to
balance visual comfort and energy efficiency. Moreover, room length
and width were negatively correlated with comfort, whereas WWR
showed a positive correlation, reinforcing the need to tailor window and
shading strategies to local climatic conditions. Overall, these findings
highlight that increasing WWR in north-facing spaces can compensate
for limited diffuse daylight, while dynamic shading in south-facing
spaces can alleviate excessive solar exposure. Together, these strate-
gies provide designers with a framework for making orientation-
sensitive decisions that enhance IVC and promote sustainable design
outcomes.

5.3. Limitations

Despite its contributions, this study has several limitations:

One limitation of this study is the potential overlap among metrics
that evaluate similar daylight aspects. For instance, both daylight au-
tonomy (DA) and UDI-a reward moderate illuminance levels, while ASE
and UDI-e penalize excessive daylight exposure. Although this overlap
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may lead to redundancy, the metrics still capture complementary di-
mensions of daylight quality. The combined use of sDA and ASE, as
defined by IES LM-83-12 [61], offers a standardized balance of suffi-
ciency and overexposure, though it may overlook finer spatial varia-
tions. Subtle differences across standards, such as EN 17037, which
translates SDA/DA thresholds (at least 50 % and 95 % of the time,
respectively) into DF targets for different European locations, also need
to be considered when interpreting results. Moreover, the glare assess-
ment applied here is limited by its reliance on the GA metric. GA pri-
marily captures glare from direct solar visibility but does not account for
reflections or scattering from nearby buildings, floors, or shading de-
vices, thus missing many common glare scenarios. This is a point to
consider when interpreting glare-related findings.

A further shortcoming is the reliance on simulation-derived metrics
without incorporating occupant-reported comfort data. The absence of
field measurements restricts validation against user experience, and
future work should integrate post-occupancy surveys and seasonal
comfort variations. Extending optimization methods to multi-objective
frameworks that balance daylight, thermal comfort, and energy use
could further improve applicability [26,33]. This may help designers
develop climate-responsive and comfortable indoor spaces
[7,36,37,83].

Lastly, while the stacking ensemble improves predictive accuracy, it
increases computational cost and architectural complexity. This may
hinder adoption by design teams less familiar with ensemble methods.
Training time, sensitivity to parameter space, and deployment chal-
lenges remain obstacles for design practice. Transfer learning may help
reduce computational load and improve scalability across diverse
contexts.

6. Conclusions

This paper presented a framework that integrates a Stacking
ensemble learning model with SHapley Additive exPlanations (SHAP) to
predict and analyze indoor visual comfort (IVC) factors both efficiently
and accurately. By following a “parameter input — performance pre-
diction — mechanism explanation” workflow, the proposed framework
enables rapid identification of critical design variables (DVs). The
framework uncovers nonlinear interactions among DVs, thereby sup-
porting the creation of occupant-centered, visually comfortable, and
sustainable indoor environments.

The key contributions are as follows: First, an occupant-centered [VC
evaluation mechanism was developed, combining daylight distribution
and glare control into a joint “daylight-glare” assessment. Localized
glare discomfort near windows was further addressed through sGA and
GAvyindow Metrics, incorporating occupant viewing direction to refine the
performance evaluation framework. Second, a high-performance pre-
diction model was developed. This study proposed a novel stacking ar-
chitecture integrating XGBoost, LightGBM, and CatBoost. This ensemble
achieved an R? of 0.911 with a training time of 21.2 s, outperforming
both individual learners and traditional simulation-based approaches.
Third, an interpretable decision-support system was implemented via
SHAP method. This enabled deconstruction of complex DVs interactions
and identification of six key variables—room orientation, length, width,
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window-to-wall-ratio, shading length, and shading angle—that together
explain 80.6 % of IVC variance. Notably, building form (46.6 %-52.7 %)
and fenestration (22.6 %-24.9 %) were prioritized as dominant design
drivers in sustainable building design.

In future work, the following issues still need to be further discussed.
Although the framework demonstrated strong performance across five
climate zones and ten cities (average R? = 0.893), its applicability is
currently limited to standard office spaces. Future work should test its
adaptability to various building types, incorporate occupant behaviors,
and consider long-term climate change trends by integrating CMIP6
climate projections. Additionally, the selected combination of daylight
and glare indicators can be adjusted based on specific project needs.
Expanding the model to support multi-objective  opti-
mization—addressing energy consumption, lighting quality, and resil-
ience—would enhance its sustainability assessment capabilities.
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Fig. A.2. Data pre-processing for the IQR method of the target index: south-facing window openings (left) and north-facing window openings (right).

Appendix B. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.autcon.2025.106582.
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Data availability

To facilitate reproducibility, the complete source code and a sample
dataset have been made publicly available at:

https://github.

com/sggesf/IndoorVisualComfort-Stacking-SHAP.git
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