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A B S T R A C T

Building information models (BIMs) are essential for efficient building operation, yet most existing buildings only 
have two-dimensional (2D) drawings, leading to increased interest in 2D-to-BIM reconstruction. To address the 
data scarcity hindering automated BIM reconstruction and evaluation, this paper presents a deep learning-based 
fully automated framework for BIM dataset generation. The approach uses image processing to define polygonal 
boundaries, applies neural networks to generate geometric layouts, and augments semantic information with 
predefined data for BIM generation via software application programming interfaces (APIs). The resulting 
Residential unit BIM (ResBIM) is a synthetic dataset comprising over 1000 paired BIMs (RVT format) and their 
corresponding 2D floor plans automatically annotated via a toolbox, filling a critical gap in BIM data availability. 
This work provides a scalable automated BIM reconstruction solution and establishes the foundation for future 
AI-driven BIM automation research.

1. Introduction

The proportion of global energy consumption attributable to the 
building sector has steadily increased and now accounts for around 40 % 
[1]. The largest portion of building energy consumption occurs during 
the operation and maintenance (O&M) stage, which is the longest stage 
of the building lifecycle [2,3]. Traditional methods of managing build
ings during the O&M stage—such as using two-dimensional (2D) 
drawings or spreadsheets—often result in inefficiencies and coordina
tion challenges due to error-prone and labor-intensive design adjust
ments on drawings [4,5]. Recently, research interest has increasingly 
focused on developing three-dimensional (3D) models for existing 
buildings, particularly building information models (BIMs). Compared 
to 2D drawings, a BIM provides a more comprehensive representation of 
a building’s physical and functional characteristics, leading to increased 
work efficiency, better decision-making, and reduced energy consump
tion [6]. This enhancement is attributed to the capabilities of BIMs, such 
as real-time data integration and energy simulations, which allow op
erators to monitor energy usage, detect system faults, and predict when 
maintenance is required [7–9]. Statistical evidence indicates that 
implementing BIMs can lead to considerable benefits, including a 

reduction in energy consumption of up to 35 % in commercial buildings 
by identifying inefficiencies earlier [10].

Despite the considerable advantages of BIMs, most existing buildings 
lack these information-rich 3D models, as their design and construction 
occurred before the widespread adoption of BIM technologies [11,12]. 
Consequently, project information is often stored and delivered in the 
form of 2D “as-designed” or “as-built” drawings [13]. These drawings 
contain valuable semantic information and are readily available, making 
them an ideal foundation for BIM reconstruction. To address this, 
numerous studies have proposed methods for reconstructing BIMs from 
such 2D data (2D-to-BIM), particularly by incorporating artificial in
telligence (AI) to enhance reconstruction efficiency [14,15]. Technolo
gies such as optical character recognition (OCR) can automatically 
extract key features from 2D drawings and efficiently convert them into 
accurate BIMs [16]. This AI-assisted approach can not only automate the 
conversion process and reduce human errors but also accelerate the 
development and application of BIMs. These advancements consider
ably streamline the otherwise labor-intensive and error-prone manual 
process of creating BIMs from legacy documents, making it feasible to 
apply BIMs to a wider range of existing buildings and thus to support 
better facility management, renovation planning, and operational 
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efficiency.
While many prior studies have focused on developing algorithms for 

2D-to-BIM reconstruction, a critical challenge remains unresolved: the 
lack of publicly available datasets containing paired 2D data and reliable 
reference (RF) BIMs [17]. Specifically, 3D reconstruction is typically 
evaluated using metrics such as earth mover’s distance and intersection- 
over-union (IoU), both of which require well-defined RF models for 
quantitative accuracy assessment. However, the objective evaluation 
and benchmarking of 2D-to-BIM methods, a specialized category of 3D 
reconstruction, remain challenging due to the scarcity of RF BIM data
sets [16].

This issue arises mainly because most existing buildings do not have 
corresponding 3D models or BIM data, and even when these models 
exist, confidentiality agreements and intellectual property concerns 
within the building sector often restrict their sharing and dissemination 
[18,19]. Consequently, current 2D-to-BIM research is often validated 
using limited case studies based on researcher-collected data, making 
cross-method comparisons difficult [20]. Although recent research has 
introduced metrics that do not require RF data, such as the dense map 
posterior [21], which evaluates reconstruction quality based on point 
cloud density, obtaining point clouds remains resource-intensive, 
involving substantial manual labor, equipment investment, and com
plex path planning [22]. Given these challenges, there is an urgent need 
to develop cost-effective methods for creating comprehensive datasets 
containing BIMs to facilitate robust and objective evaluations of 2D-to- 
BIM methods.

Motivated by this gap, to address the challenge of BIM data scarcity, 
this study proposes an automated framework that utilizes deep learning 
for synthetic BIM dataset generation. The pipeline begins with defining 
polygonal floor plan boundaries using Python’s OpenCV library, fol
lowed by employing convolutional neural networks (CNNs) to generate 
room and wall layouts within these boundaries, thereby producing 
raster floor plans. Semantic and geometric information is then extracted 
from these raster images via image processing techniques and combined 
with predefined semantic attributes and dimensional parameters. These 
enriched data are then fed into BIM software application programming 
interfaces (APIs) to automatically generate corresponding BIMs. 
Through this process, this study has created the Residential unit BIM 
(ResBIM) dataset, consisting of over 1000 BIMs paired with annotated 
2D floor plans, alongside an automatic annotation toolbox for efficient 
labeling of 2D drawings.

Building on this framework, this research contributes theoretically 
and methodologically to 2D-to-BIM reconstruction and BIM automation 
through the establishment of a procedural BIM synthesis paradigm. This 
paradigm integrates deep learning-based floor plan generation with 
structured semantic enrichment via explicit mapping between 2D 
drawing elements and BIM entities, thereby resolving scalability and 
consistency limitations found in existing BIM dataset construction. 
ResBIM dataset provides synthetic floor plans with controlled geometric 
variability and RF BIMs, offering a reproducible resource for objective 
methodology evaluation. Furthermore, the open-source annotation 
toolbox formalizes semantic relationships across 2D-to-BIM domains, 
fostering community-driven refinement of annotation practices and 
advancing structured knowledge representation in BIM automation 
research.

The remainder of this paper is organized as follows. Section 2 re
views related datasets and existing AI-driven 2D-to-BIM approaches. 
Section 3 describes the proposed method for automatic BIM generation. 
Section 4 presents evaluation experiments and the generation of the 
ResBIM dataset. Section 5 discusses the research findings and limita
tions. Finally, Section 6 concludes the paper and outlines future research 
directions.

2. Related work

2D-to-BIM typically involves two main steps: data extraction and 

BIM generation. The primary objective of the data extraction phase is to 
recognize and extract geometric and semantic information from draw
ings, a process in which AI techniques are frequently employed. To 
support AI research on 2D-to-BIM tasks, Table 1 summarizes datasets 
released after 2015 that provide floor plans or BIMs, each with varying 
levels of accessibility. Specifically, the table provides an overview of 
each dataset’s data source, data format, the presence of 3D data, and its 
accessibility. In this work, 3D models in the datasets are classified into 
two categories: ground truth (GT) models and RF models. GT models are 
derived from real-world buildings measured with high-precision tools 
and are manually constructed, whereas RF models refer to synthetically 
or algorithmically generated 3D data.

2.1. Data extraction and BIM generation

The data used for 2D-to-BIM reconstruction can be classified based 
on their data format (vector or raster) and source (real-world or syn
thetic). This classification yields four distinct types: real-world vector, 
real-world raster, synthetic vector, and synthetic raster. Each type re
quires different data extraction methods.

Real-world vector data from CAD software (e.g., DWG, DXF) contain 
precise geometries and attributes [39,40]. Such data often contain rich 
implicit information distributed across different layers, including line 
width, segment spacing, text, and color, which makes rule-based algo
rithms widely adopted for classification and information extraction. For 
instance, methods such as automatic layer classification method (ALCM) 
and ALCM-based elevation detection have been developed to identify 
hidden layers and infer floor levels [41], while commercial software 
vendors leverage rule-based algorithms and APIs (e.g., AutoCAD API) to 
facilitate BIM reconstruction [42]. However, CAD drawings usually 
contain multiple categories of building elements (e.g., furniture, struc
tural components). Since most existing studies focus on a single category 
such as architectural floor plans, preprocessing remains necessary—for 
example, removing furniture and staircases or splitting multiple draw
ings into independent files [15,43]. Moreover, vector files are not always 
readily available, especially in renovation projects where digital records 
are often missing [44].

Real-world raster data (e.g., CFC-FP [23], SydneyHouse [24]) typi
cally consist of scanned drawings or basic digital sketches stored in 
formats such as PNG. These drawings contain geometric components (e. 
g., walls, doors) and textual annotations (e.g., dimensions, room names). 
Data extraction from raster data usually combines CNN-based object 
detection with OCR techniques [45]; for example, Faster R-CNN with 
OCR has been used to generate IFC-compliant BIMs [42]. However, 
many mainstream detection and recognition models were originally 
trained on natural images and may not perform well on architectural 
drawings. To address this limitation, recent studies have benchmarked 
popular detection and recognition models on three different real-world 
raster floor plan datasets, evaluating their performance in recognizing 
objects of different sizes (large, medium, small) as well as both hand
written and machine-printed annotations [46]. Similar to real-world 
vector data, raster drawings also rely on preprocessing to filter out 
non-target objects; for example, a CNN-based approach has been pro
posed to detect wall and opening pixels in order to remove furniture and 
other elements, thereby enabling more accurate reconstruction of ver
tical, horizontal, and diagonal walls [47].

Both synthetic vector and raster data are algorithmically generated 
or augmented from real layouts. Although they may not fully capture 
real-world complexity, they provide standardized geometries and rule- 
based semantics, which make data extraction more tractable and have 
therefore been widely adopted for dataset construction and bench
marking [48]. Rule-based and script-driven methods (e.g., Python) are 
effective for parsing such layouts. For instance, the augmented dataset 
RPLAN [28] encodes architectural semantics via pixel positions and 
color values, enabling a coupled generative adversarial network 
(CoGAN) to learn architectural feature relationships [49].
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The extracted data serve as input parameters for BIM generation, 
which typically follows three approaches: IFC-based methods (e.g., 
IfcOpenShell), parametric design tools (e.g., Dynamo), and BIM software 
APIs (e.g., Revit API). IFC-based methods provide interoperability but 
require expertise [50]; parametric tools offer extensible visual work
flows but struggle with scalability [17]; APIs allow fine-grained auto
mation but are software-dependent [41].

Overall, the choice of data source directly shapes the complexity and 
reliability of data extraction in 2D-to-BIM workflows. Real-world inputs 
are noisy and inconsistent, often requiring preprocessing, intermediate 
files (e.g., XML, TXT), and manual validation before BIM reconstruction 
[14,51]. Synthetic data, in contrast, are semantically explicit and scal
able, making them ideal for automated pipelines.

2.2. 2D-to-BIM evaluation

Current 2D-to-BIM research typically evaluates two main stages 
separately: data extraction and BIM generation. For the data extraction 
stage, the primary focus lies in measuring the accuracy of retrieving 
semantic and geometric information from 2D drawings, particularly in 
AI-based approaches. Common evaluation metrics include detection 
rate, pixel accuracy, and class accuracy, as summarized by Pizarro et al. 
[20]. Although most studies employ one or more of these metrics, the 
absence of a standardized evaluation protocol leads to inconsistent 
metric usage, making cross-comparison between studies difficult, even 
when the tasks are similar. As a result, existing works remain at the level 
of fragmented single evaluations rather than standardized 
benchmarking.

For the BIM generation stage, evaluation typically focuses on BIM 
fidelity, which requires comparing the generated BIM with a ground- 
truth model or a RF BIM. Commonly used metrics include geometric 
IoU from point cloud comparisons or component matching based on IFC 
outputs [43,52]. However, in the absence of RF models, evaluation often 
relies on manually created test cases or small proprietary datasets, 
supplemented by qualitative visual inspection or manual verification 
[15]. Such datasets are frequently tailored for specific purposes—such 
as residential building floor plans—introducing potential bias and 
reducing objectivity [14].

For example, Yang et al. [39] proposed a semi-automatic BIM 
reconstruction approach based on layer-segmented CAD drawings and 
rule-based extraction, which was followed by BIM modeling through the 
Revit Dynamo plugin. Their evaluation involved only two manually 
created cases and reported execution times of approximately 4500 s and 
1800 s, without employing standardized accuracy metrics. Similarly, 

Zhao et al. [42] introduced a hybrid AI-enhanced approach combining 
image processing and Faster R-CNN, in which accuracy was judged by 
comparison with another object detection model (YOLO) rather than a 
RF BIM.

In addition, most current studies still focus primarily on floor plans, 
with height and semantic attributes either set to default values or 
manually specified [15,45], highlighting that 2D-to-BIM remains at an 
early stage. These methodological limitations are further exacerbated by 
the scarcity of publicly available paired 2D-3D datasets, constraining 
objective evaluation [14,40]. Although some public datasets (e.g., In
door PC/BIM [33], SLABIM [36], BIMNet [38]) provide BIMs paired 
with scanned point clouds, they lack corresponding 2D drawings and are 
primarily designed for scan-to-BIM or SLAM applications. Collectively, 
these challenges highlight a critical research gap: the absence of large- 
scale paired 2D-BIM datasets, without which the development of stan
dardized evaluation protocols and rigorous benchmarking remains 
difficult to achieve.

2.3. AI-driven synthetic BIM generation

Data scarcity and the lack of standardized benchmarks have moti
vated increasing reliance on AI-driven floor plan generation to expand 
BIM availability. Recent advances in deep learning show considerable 
potential for creating enriched BIM datasets by producing synthetic floor 
plans augmented with predefined attributes for 2D-to-3D conversion.

Early approaches typically adopted a two-stage “semantic segmen
tation plus geometric optimization” pipeline. For instance, the indoor 
scene synthesis network (ISSNet) [53] leveraged CNNs to produce pixel- 
level semantic segmentation of room types, with its output subsequently 
serving as constraints in mixed-integer quadratic programming [54] to 
perform geometric layout optimization. While this paradigm improved 
spatial rationality and layout regularity, establishing itself as an 
important baseline in automatic floor plan generation, the method often 
suffered from limited global consistency and reduced robustness in 
handling complex or large-scale scenarios.

To address such limitations, end-to-end frameworks have been pro
posed, mainly GAN- and CNN-based. GAN-based approaches (e.g., 
House-GAN++ [55], HouseGanDi [56]) generate symbolic nodes for 
functional spaces, connected by wall segments to form layouts. In BIM 
context, Ghannad et al. [49] and Liu et al. [57] applied CoGAN and GC- 
GAN for modular residential design, exporting outputs into IFC or Revit- 
based BIMs. Although effective for diversity and conceptual design, 
GANs often produce irregular geometries, gaps, or mode collapse, 
undermining their robustness for BIM generation [57–59].

Table 1 
Datasets released after 2015 containing floor plans or building information models (BIMs).*1, *2, *3, *4

Dataset Year Data source*1 Format*2 Availability*3 Presence of 3D data*4 Number of data

CVC-FP [23] 2015 RW R √ × 122 scanned floor plans
SydneyHouse [24] 2016 RW R √ × 174 random houses’ floor plans in Sydney
ROBIN [25] 2017 A R √ × 510 real-world floor plans
R2V [26] 2017 A R, V √ × 100 k + synthetic vector-graphics floor plans
CubiCasa5K [27] 2019 RW R, V √ × 5 k floor plans annotated into over 80 floor-plan object categories
RPLAN [28] 2019 A R, V ○ × 80 k + annotated plans of collected real buildings
HouseExpo [29] 2020 S R √ × 35 k + synthetic indoor layouts
Structure3D [30] 2020 A R ○ RF 3.5 k house designs with 3D wireframe
ZInD [31] 2021 RW R ○ × 71 k images-derived floor plans
FloorPlanCAD [32] 2022 RW V √ × 15 k vector floor plans
Indoor PC/BIM [33] 2023 RW BIM, PC √ GT Point clouds of 5 indoor spaces and corresponding as-built BIMs
MLSTRUCT-FP [34] 2023 A R √ × 954 multi-unit floor plans
Tell2Design [35] 2023 A R √ × 80 k + residential floor plans for natural language design
SLABIM [36] 2024 RW BIM, PC √ GT 1 large BIM model of a university building
MSD [37] 2024 A R, V √ × 5.3 k floor plans of building complexes
BIMNet [38] 2025 RW BIM, PC ○ GT 25 IFC-based BIMs, containing 382 rooms and corresponding point clouds

*1 RW = real world, A = augmented from real-world data but does not directly reflect the real world, S = synthetic.
*2 R = raster, V = vector, PC = point cloud. Multiple formats are available if multiple annotations exist.
*3 Availability: √ = has been published on project website or GitHub, ○ = available on request.
*4 GT = ground-truth model, RF = reference model.
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CNN-based methods typically employ cascaded architectures (e.g., 
combining ResNet-34 [60] and U-Net [61]) to extract geometric and 
semantic features before generating structured layouts. These pipelines 
are particularly effective for drawing analysis and rule-constrained tasks 
owning to their high geometric precision and boundary stability. Wu 
et al. [28] imposed boundary constraints to produce stable and regular 
floor plans. This approach aligns with our previous study [62], which 
introduced a spatial constraint strategy to generate floor plans with 
greater spatial consistency. The generated plans were exported to 
structured Excel sheets and further processed for semi-automated BIM 
conversion. However, similar to earlier works [17,45], the semantic and 
material diversity remains limited, as generated BIMs continued to rely 
on default materials and height parameters.

Despite these advances, existing studies have yet to achieve a unified 
and scalable framework for generating semantically and geometrically 
valid BIM datasets. A fully automated synthetic BIM dataset pipeline is 
needed to overcome data scarcity and support standardized evaluation, 
laying the groundwork for benchmark datasets that enable reproducible 
cross-method comparison.

3. Methodology

This study presents a deep learning-based framework for automated 
BIM dataset generation, aimed at supporting the creation of large-scale, 
semantically rich floor plan–BIM pairs. As illustrated in Fig. 1, the 
workflow consists of four primary steps: data preparation, data extrac
tion, BIM generation, and annotation. Importantly, each step is designed 
in modular, allowing for multiple alternative implementations depend
ing on specific research objectives or software environments.

To enable a fully automated workflow, a four-channel intermediate 
image representation is introduced to separately encode geometric 
structures, spatial semantics, height information, and material attributes 
for each floor plan. Specifically, the content of the first and second 
channels is extracted from the generated floor plan using image pro
cessing techniques, while the third and fourth channels contain pre
defined attributes for height information and material semantics, 
respectively.

The process begins with the deep learning–based generation of 
synthetic floor plans, which serve as the foundational layout for BIM 
modeling. Geometric and semantic data are extracted from the gener
ated floor plans using image processing techniques and stored in the first 
and second channels of the intermediate file. Since the generated output 

is inherently two-dimensional, predefined height and material proper
ties are assigned to the third and fourth channels, respectively. This 
intermediate representation is then used as the input to the Revit API for 
automated BIM generation. The final output is a multimodal dataset 
comprising both BIMs and paired annotated drawings. To further 
enhance the utility of the generated BIMs, corresponding annotation 
tools are developed for generating 2D drawings in various aspects (e.g., 
floor plans, elevations), providing essential data to facilitate 2D-to-BIM 
research.

For demonstration purposes, a modified ResNet-34 [60] and U-Net 
[61] combination is employed for floor plan generation, trained on 
RPLAN dataset [28], with subsequent modeling and annotation per
formed via the Revit API. This architecture is chosen for its strong per
formance in producing well-structured layouts with stable boundaries, 
while Revit API-based BIM generation ensures compatibility with in
dustry standards. The chosen configuration achieves a balance between 
generation quality and practical software integration.

The applicability of the proposed framework is fundamentally 
determined by the characteristics of the chosen deep learning models 
and training datasets. In this study, the RPLAN dataset is used to train 
and validate the deep learning model; consequently, the generated floor 
plans reflect the structural conventions present in RPLAN—for example, 
the inclusion of a living room in every floor plan––as detailed in Section 
3.1.1. The applicability of the framework can be further extended in 
future research by employing datasets with broader and more diverse 
geometric or functional variations.

3.1. Data preparation

Data preparation encompasses the selection of datasets and the 
configuration of deep learning networks. As outlined in Section 2, recent 
open-source datasets released since 2015 have been reviewed, with their 
characteristics analyzed according to data sources and formats. The 
advantages and limitations of different neural network architectures for 
floor plan generation have also been discussed. Beyond the data
set–network combination adopted in this framework, alternative models 
and training datasets can be applied to accommodate varying research 
objectives or domain-specific requirements.

3.1.1. Training data
The RPLAN dataset [28] serves as the training data in this frame

work. It is derived from real-world residential building floor plans, with 

Fig. 1. Overall workflow of proposed framework.
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common areas (e.g., elevators, staircases) removed, and each residential 
unit converted into a rule-based floor plan through algorithmic pro
cessing. The dataset contains over 80,000 floor plans, with all data 
points adhere to the following rules: 

• Each data point is in RGBA format (four channels: Red, Green, Blue, 
and Alpha) in PNG files. The RGB channels represent color infor
mation, while the Alpha channel encodes transparency, controlling 
pixel opacity. In this dataset, pixel values across the four channels are 
only used for labeling and annotating the images to convey semantic 
information.

• There must be a living room on the floor plan.
• The total area of each floor plan ranges from 60 m2 to 120 m2.
• The number of rooms on a floor plan ranges from three to nine, and 

the average area of each room is between 10 m2 and 20 m2.
• The ratio of the living room’s area to the whole area is between 0.25 

and 0.55.
• Each image datum is 256 × 256 pixels in resolution, representing a 

square region of 18 m × 18 m.

Table 2 describes the four channels and the semantic information 
encoded in their pixel values. This dataset enables CNNs to learn the 
internal spatial relationships and the building boundaries, thereby 
generating floor plans that are spatially comparable to those designed by 
human architects.

Fig. 2 illustrates the unprocessed raw view and four channels of an 
RPLAN data point. In Fig. 2(a), the unprocessed raw view represents the 
combined RGBA channels. Fig. 2(b) shows the first channel, which de
picts floor plan boundaries with the front door highlighted in yellow. 
Fig. 2(c) presents the second channel, where distinct pixel values 
represent various room types and elements, each assigned unique clas
sifications. Fig. 2(d) corresponds to the third channel, used to calculate 
the total number of rooms in the floor plan. Fig. 2(e) displays the fourth 
channel, identifying and representing the enclosed areas within the 
defined boundaries.

3.1.2. Deep learning networks
The framework adopts the combination of two complementary 

CNNs: a modified ResNet-34 and a U-Net. The modified ResNet-34 is 
designed for predicting the centroid locations of rooms from rasterized 
floor plan images. To improve spatial feature representation, the stan
dard ResNet-34 is modified to accept four-channel (RGBA) input images 
of 256 × 256 pixels, with the additional channel encoding supplemen
tary semantic or structural information beyond standard RGB. The U- 
Net encoder–decoder is employed to predict pixel-level wall structures 
between the room centroids identified by the modified ResNet-34. This 
division allows the framework to address two distinct yet interrelated 
prediction tasks required for automated floor plan generation, as illus
trated in Fig. 3.

3.1.2.1. Room prediction strategy. The room prediction follows a 
“living-room-first” strategy in which the position of the living room is 
predicted first. This strategy is informed by three primary considerations 
derived from the characteristics of the training data: (1) the living room 
is an essential element of residential units, (2) it is typically situated 
centrally within the floor plan, and (3) it connects to most other rooms 
either directly or indirectly. Prioritizing the living room’s location im
proves the accuracy and structural consistency of the generated floor 
plans.

3.1.2.2. Iterative room prediction with modified ResNet-34. The task of 
room placement is formulated as an iterative localization process, where 
the model sequentially predicts the centroid locations of all rooms in the 
floor plan, as shown from step 1 to step 3 in Fig. 3. The process begins by 
predicting the location of the living room. At each iteration, the modi
fied ResNet-34 receives a multi-channel (RGBA) floor plan image, 
updated to reflect the placement of previously predicted rooms. The 
network processes this contextual input to regress the centroid co
ordinates and semantic label of the next room to be added. After each 
prediction, the layout is updated by marking the new room’s position 
and type, and the process continues until a predefined stop criterion is 
reached. The stop criterion is determined by training data and hyper
parameters, as discussed in Section 5.2.

3.1.2.3. Wall prediction with U-Net. The U-Net predicts pixel-level wall 
structures from a multi-channel image that encodes both the spatial 
boundaries and the centroid of all rooms. The centroid points serve as 
spatial anchors that guide the network in inferring the logical parti
tioning of space. As a result, the output pixels represent walls that 
spatially separate the areas around each predicted room centroid, pro
ducing pixel-accurate wall boundaries that are consistent with the 
overall room layout, as demonstrated from step 3 to step 4 in Fig. 3.

3.2. Image processing for data extraction

Image processing techniques are employed to classify and extract 
geometric structures and spatial semantics from the floor plans gener
ated by the CNN-based models (input). The extracted results are then 
encoded into the first and second channels of the intermediate repre
sentation. The input data are in raster format and are converted into a 
three-dimensional matrix (Input) using image processing libraries (e.g., 
Python’s OpenCV), as shown below: 

Input ∈ ℝh×w×c, Intermediate = 0 ∈ ℝh×w×c,Mask = 0 ∈ ℝh×w×c, (1) 

where h is the height resolution of the input 2D image, w is the width 
resolution, and c is the number of channels. Additionally, two 
matrices—Intermediate and Mask are initialized as zero matrices of the 
same dimension as Input, where Intermediate representing the PNG 
output in matrix form and Mask serving to identify different pixel classes 
within the image matrix.

Different pixel values in the Input matrix represent distinct building- 
related elements, with specific values determined by the CNNs and 
training dataset. Each number in the Input matrix is evaluated to 

Table 2 
Mapping labels and pixel values in training dataset (RPLAN).

Channel Pixel 
value

Semantic 
information

Description

Channel 
1

0 Other Labeling the boundary of the floor plan
127 Exterior wall
255 Front door

Channel 
2

0 Living room Labeling the different spaces in the floor 
plan1 Master room

2 Kitchen
3 Bathroom
4 Dining room
5 Child room
6 Study room
7 Second room
8 Guest room
9 Balcony
10 Entrance
11 Storage
12 Wall-in
13 External area
14 Exterior wall
15 Front door
16 Interior wall
17 Interior door

Channel 
3

0 
1 to 9

Non-room area 
Different rooms

Distinguishing different rooms starting 
from 1; and 0 represents non-room area

Channel 
4

0 Exterior area Labeling the areas within the floor plan
255 Interior area

Note: the above numbers indicate the corresponding pixel values.
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determine whether it represents a geometric building component or 
spatial semantic information. Pixel values identified as geometric ele
ments are assigned to the Geometry array, whereas values corresponding 
to spatial semantics are assigned to the Spatial array. The resulting ar
rays are formalized as follows: 

Geometry = {g1, g2,⋯, gn}, Spatial = {s1, s2,⋯, sm} (2) 

where g represents the pixel values classified as geometry, n represents 
the total number of types of geometry elements, s represents the pixel 
values classified as spatial semantics, and m represents the total number 
of types of spatial semantics. In this study, the pixel values for gn and sm 
are provided in Table 2.

Next, the zero-initialized matrix Mask at position (h,w, c) is updated 
based on the classification results from the Input matrix. Specifically, if 
the value at Input(h,w, c) is found in the Geometry array, then the cor
responding position in Mask is set to 1; if it belongs to the Spatial array, 
then it is assigned a value of 2. This process is formalized as follows: 

Mask(h,w, c) =

⎧
⎨

⎩

1, if Input(h,w, c) ∈ Geometry,
2, if Input(h,w, c) ∈ Spatial,
0, otherwise.

(3) 

Finally, based on the values in Mask, the zero matrix Intermediate is 
updated as follows: 

Intermediate(h,w, k) = {Input(h,w, c) |Mask(h,w, c) = k}, k = 1, 2. (4) 

When Mask(h,w, c) = 1, the value at Input(h,w, c) is assigned to the 
first channel of Intermediate (k = 1), representing Geometry. Similarly, 
values belonging to the Spatial array are assigned to the second channel 
(k = 2).

Through Eqs. (1)–(4), all geometric and spatial semantic data 
extracted from the CNN-generated floor plans are transformed into the 
first and second channels of the Intermediate matrix. An example of these 
channels is shown in Fig. 4, illustrating the geometric map and spatial 
semantics, with pixel values derived from the CNN-generated floor 
plans.

3.3. BIM generation

The BIM generation process takes as input the mathematical 
parameter set produced in step two (image processing), which describes 
the building layout in terms of geometric coordinates, semantic labels, 
height values, and material attributes. These parameters can be stored in 

Fig. 2. Different views of sample from RPLAN dataset. (a) superimposed RGBA channels; (b) extracted floor plan boundaries; (c) room segmentation represented by 
distinct pixel values; (d) mask used for room count calculation; (e) area computation based on enclosed boundaries.

Fig. 3. Workflow of combined networks.
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any structured format (e.g., JSON, CSV/Excel tables, raster channel 
encodings) and are independent of any specific BIM platform. The pa
rameters are then mapped to building elements through either platform- 
neutral toolchains, such as generating IFC entities via Python with 
IfcOpenShell, or through platform-specific APIs (e.g., Autodesk Revit 
API, ArchiCAD API) for direct model creation.

To demonstrate this concept, a set of rule-based algorithms was 
developed and utilized alongside Revit API in Revit 2024 [63], imple
mented using C# in Visual Studio 2019. These algorithms read the in
termediate four-channel image as input, decode each channel into its 
corresponding geometric and semantic attributes, and map them to 
Revit building components. To achieve full automation, the algorithms 
and the Revit API procedures were integrated into a single executable 
script, which was compiled into a dynamic link library (DLL). This DLL is 
loaded directly within Revit 2024, enabling the BIM generation process 
to run entirely within the native Revit environment without manual 
intervention.

3.3.1. Decision-making strategy for semantic completion
Since the generated floor plans are inherently 2D, supplementary 

information—such as height values and semantic attributes (e.g., win
dow offsets, wall materials)—must be added before conversion. These 
attributes are encoded into the third (height) and fourth (material se
mantics) channels of the intermediate representation.

To overcome the limitations of previous studies in representing se
mantic and dimensional diversity, a custom component library was 

developed, with representative entries listed in Tables 3 and 4. The se
mantic completion strategy is governed by the following global heuristic 
design rules: 

• The first floor of the BIM—referred to as “Level 0”—is set at zero 
height.

• Elements belonging to the same category within the same floor plan 
have uniform semantic attributes.

• Interior and exterior walls within the same floor plan are assigned 
uniform height values.

As an alternative, the material semantics and dimensions presented 
in Tables 3 and 4 may be expanded or replaced to suit different research 
objectives by the workflow demonstrated in Fig. 5. For example, when 
adding a new interior door, the process begins by searching the local 
library. If the desired instance is unavailable, then the official Revit li
braries [64]—offering a comprehensive selection of materials and 
components for various countries—can be consulted; if the instance 
remains unavailable, then resources from the Revit community may be 
utilized, or the instance may be created manually as a last resort. Once 
the target instance is acquired, its dimensions are verified: if the 
required dimensions exist, then the instance can be added to the local 
library for API access; otherwise, a similar existing instance may be 
modified and saved as a new variant.

3.3.2. Height and semantic completion
The next step is to assign height information to Door, Wall, and 

Window in the third channel. Eq. (5) determines the type of architectural 
element represented by each pixel in the first channel by querying its 
pixel value. Different values are assigned in the third channel repre
senting the corresponding height in the first channel, based on the 
component library and global heuristic design rules specified in Section 
3.3.1: 

Intermediate(h,w, 3) =

⎧
⎨

⎩

0, Intermediate(h,w,1) ∈ Door,
U(28, 30), Intermediate(h,w,1) ∈ Wall,
0 ∪ U(8,10), Intermediate(h,w,1) ∈ Window.

(5) 

Because the standard range of pixel values in PNG images is 0 to 255, 
this study represents height by multiplying the pixel value by 100 mm; 
for example, a wall with a height of 2950 mm would have a pixel value 
of 29.5 in the third channel. U(28, 30) is a random number between 28 
and 30, representing 2.8–3 m in height. The geometry in the third 
channel is identical to that in the first channel in Fig. 4(a), but the pixel 
values differ, representing the height of the element.

Revit API can be divided broadly into three main functional modules: 
geometric modeling, semantic modeling, and filter and query module. 
The geometric modeling module is responsible for creating the basic 
geometric shapes of building elements, such as points, lines, and curves. 
Building on this foundation, the semantic modeling module assigns at
tributes, properties, and relationships to these geometric shapes, 

Fig. 4. First and second channels of intermediate PNG, containing geometries and spatial semantics derived from floor plans generated by convolutional neural 
networks (CNNs).

Table 3 
Semantics and dimensions of windows and doors.

Category Exterior 
door

Interior 
door

Sliding 
door

Plain 
window

French 
window

Legend

Length ×
height (mm 
× mm)

810 ×
2110 
910 ×
2110 
1010 ×
2110

810 ×
2010 
910 ×
2010 
810 ×
2110 
910 ×
2110

1700 ×
2000 
1700 ×
2100 
1800 ×
2000 
1800 ×
2100

910 ×
910 
910 ×
1210 
1360 ×
910 
1360 ×
1210 
1810 ×
910 
1810 ×
1210

2100 ×
2150

Offset (m) 0 0 0 0.8–1 0
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effectively transforming raw geometric models into semantically rich 
building components. Notably, the assignment of semantic attributes 
must be performed by selecting components from Revit’s library via the 
filter and query module. Related operations of the component library are 
discussed in Section 3.3.1.

Fig. 6 illustrates an example of creating a plain window instance 
listed in Table 3. First, three combined filter conditions (FamilySymbol, 
BuiltInCategory, and OST Windows) are applied in the filter and query 
module (FilteredElementCollector) to obtain windowType, an array con
taining all window instances that meet these filter conditions.

The second step uses NewFamilyInstance method to create a new 
instance in Revit by specifying both the element type and a designated 
coordinate. In this example, the fourth element (windowType[3] = Win
dows_Sgl_Plain 1360 × 1210 mm) from the query result and a coordi
nate (point) are specified. This creates a 1360 mm × 1210 mm window 
instance at the designated location point in Revit.

The specific material properties of the generated window are built-in 
in Revit, as illustrated in Fig. 7. Therefore, the pixel value of the fourth 
channel (material map) of the intermediate file is assigned based on 

Intermediate(h,w, 4) = {s|Intermediate(h,w,1) ∈ Geometry}, s

∈ {0,1,⋯, n − 1}, (6) 

where n is an integer representing the total number of specific building 
elements in the current Revit library that meet all filtering conditions, 
and s is the assigned pixel value, which is a random integer between 
0 and n − 1.

3.3.3. From floor plans to BIMs
The placement of each BIM element is determined by the geometric 

coordinates derived from the first channel of the intermediate matrix. 
However, in the pixel matrix representing the rasterized image, each 
pixel’s coordinates only indicate its position within the matrix without 
any real-world distance association. To address this, a scaling factor is 
introduced to convert pixel coordinates into actual distances.

In this study, the training dataset used was RPLAN, which consists of 
a large collection of real-world floor plans normalized by the dataset’s 
authors to a resolution of 256 × 256, representing an actual area of 18 m 
× 18 m. This normalization implies that one pixel corresponds to 

Table 4 
Semantics and dimensions of walls.*1

Category Legend/Semantic information*1 Width (mm) Offset (mm) Height (m)

Exterior wall 310

0 2.8–3215

290

Interior wall 125

100

130

*1 Ext = Exterior, Int = Interior, Partn = Partition, Bwk = Brickwork, Air = Air cavity, Ins = Insulation, DBlk = Dense blockwork, Blk = Blockwork, P=Plaster, Std =
Stud, Gwb = Gypsum wallboard, MStd = Metal stud.

Fig. 5. Workflow for material extension or replacement.
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approximately 70 mm in real-world distance. Because the neural 
network trained on this dataset generates floor plans adhering to this 
scale, the generated plans approximately follow the same proportion. To 
ensure compatibility with the Revit software, which uses millimeters as 
its default unit of length but its API operates with imperial units (foot/ 
ft), a conversion factor f = 70

304.8 is applied. This conversion ensures that 
one pixel in the intermediate file accurately represents 70 mm in Revit, 
thus maintaining accurate scaling and compatibility between the ras
terized image output and the BIM generation process.

The orientation of each element is determined by the 
FacingOrientation parameter, defined as a 3D unit vector and can be 
modified. For example, when a door opens to the north, its 
FacingOrientation = (0, 1,0); if this parameter is changed to (0, − 1, 0), 
then the door’s opening direction is flipped to face south. In this study, 
directional orientation is computed by computing the spatial relation
ship between the center point of the living room and directional ele
ments such as doors; directions that are closer to the center point are 
defined as “inside,” whereas those farther away are defined as “outside.”

The geometric coordinates in the pixel coordinate system determine 

Fig. 6. Generating window instance by Revit API.

Fig. 7. Built-in material properties in Revit.

Fig. 8. Four geometry generation methods and determined geometry types.
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the corresponding position of an element in Revit, while other properties 
(such as thickness and width) are defined by the material properties. In 
the first channel of the intermediate file, pixels with the same value 
represent the same type of building element. From a geometric 
perspective, these equal-value pixels can be categorized into four types: 
a single point, a line segment, a non-closed polyline, and a closed loop. 
These four types correspond to four Revit API classes for BIM element 
creation: point-based, line-based, open curve-based, and closed curve- 
based, respectively, as described below: 

• Point-based elements such as windows and doors are generated using 
input 3D point coordinates as the central coordinates at the base of 
the geometry, as illustrated in Fig. 8(a). The length, width, and 
height of these elements are determined by the selected material 
properties.

• Line-based elements such as interior walls are generated using the 
input line as the central axis along the length of the geometry’s base, 
as shown in Fig. 8(b). The line is defined by a vector from the 3D start 
point to the 3D end point. The height and length of the generated 
element are specified by input parameters, while the width is 
determined by the selected material properties.

• In Revit API, the CurveLoop class is a collection of one or more lines, 
curves, or arcs. For elements generated from open curves, each in
dividual component (line, curve, or arc) within CurveLoop is treated 
as the central axis along the length of the geometry’s base, following 
the same generation method as line-based elements, as depicted in 
Fig. 8(c).

• For elements generated from closed curves, the input closed curve is 
extruded upward or downward to create geometry, as illustrated in 
Fig. 8(d). The thickness of the generated element is determined by 
the selected material properties.

Algorithm 1 is a pseudocode that uses the intermediate PNG as an 

input parameter and combines the rule-based algorithm and Revit API to 
generate a BIM. Specifically, Algorithm 1 takes two input parameters: an 
h × w × 4 matrix converted from the intermediate image and a dictio
nary D. The dictionary D is a mapping table with two parameters: a key 
and a value: key is a pixel value, and value is the corresponding element 
type of this pixel. For example, one data point in D is 
{

key = 127, value = ˝ExtWall˝
}

, meaning that if the input number 127 

is passed to the dictionary, then it returns the string “ExtWall,” indi
cating that this pixel value represents an exterior wall. This dictionary is 
created manually and converted from the mapping relations presented 
in Tables 2, 3, and 4. Such a dictionary ensures the scalability of the 
proposed framework in the case of different datasets used or the addition 
of new element types by adding a key–value pair to the dictionary.

The algorithm begins by iterating through all the pixel values in the 
first channel of the matrix. If the value at Intermediate[x, y,0] is not zero, 
then this indicates the presence of an architectural element at position 
[x, y]. The corresponding height and material attributes of this element 
are stored as Intermediate[x, y,3] and Intermediate[x, y, 4], respectively, 
while the specific element type is identified using the predefined dic
tionary D. Next, a 3 × 3 mask is applied around the position [x, y,0] to 
search for non-zero-pixel values. This local neighborhood is used to 
determine whether the pixel belongs to a point, line, open curve, or 
closed curve geometric classification, as described in Fig. 8.

This process collects all the necessary parameters required by Revit 
API to generate a complete architectural instance. These include the 
geometric classification, corresponding geometric coordinates, height 
information, and material semantic data.

Algorithm 1. BIM generation using Revit API.  
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3.4. Automatic annotation tools

The filter and query module of the BIM software API—in combina
tion with custom scripts—enable the extraction of orientation and di
mensions for individual building elements. These extracted data are 
then used to generate dimension annotations in floor plans and 
elevations.

Various properties of each element within the BIM can be obtained 
via the filter and query module of Revit API. As shown in Fig. 9, filter 
and query are used to retrieve the material properties of a door, where 
the three highlighted data items are FacingOrientation (the direction in 
which the door opens), Point (the generation coordinate), and Name (the 
dimensions or identifier). Algorithm 2 is a pseudocode that shows how 
to use different combination filter conditions to consult the document 
(BIM model) in the current Revit software and generate annotations for 
different aspects.

The algorithm begins by using filter and query module to retrieve 
material properties for a specific type of building element in the current 
BIM. From the querying results, key material properties are extracted, 
such as FacingOrientation, Point, and Name. Based on these, a dimension 
line can be created that is consistent with the length and orientation of 
the element to be annotated.

Next, an offset is specified manually to generate a reference line, RA; 
this is a parallel line that matches the length of line but is separated by 
the specified offset distance. Finally, RA is annotated with text repre
senting the length of line in millimeters. This approach ensures precise 
annotations that are aligned with the geometric and material properties 
of the building elements.

Algorithm 2. Generating annotations. 

3.5. Generality and cross-platform adaptability of the framework

The proposed framework is designed to be platform-independent and 
modular, comprising four key steps: data preparation, data extraction, 
BIM generation, and annotation. While the current implementation le
verages a specific combination—namely a modified ResNet-34 and U- 
Net for floor plan generation, and the Autodesk Revit API for BIM 
modeling and 2D annotation—each step in the workflow supports 
interchangeable alternatives depending on the dataset, modeling plat
form, or research objective.

Data preparation relies on data-driven models and is therefore in
dependent of any BIM tool. Data extraction applies image processing 
methods to convert the generated floor plan into a structured, machine- 
readable mathematical description of the building layout, consisting of 
geometric, semantic, height, and material parameters. These parameters 
can be stored in structured formats—such as raster images, JSON files, 
or spreadsheets—and serve as the direct input for BIM generation.

Regarding BIM generation, the parameter set can be processed via 
Python using IfcOpenShell to produce IFC entities or mapped to 
platform-specific APIs such as the Autodesk Revit API or the ArchiCAD 
API for model creation. Annotation is based on mathematical view 
projections of the BIM; using the same platform as in BIM generation 
helps to avoid format-conversion overhead and semantic mismatch.

4. Experiments

The experiments reported in this study were designed to evaluate the 
proposed framework’s performance in automating the generation of 
BIMs and paired annotated 2D drawings from generated floor plans. 
Specifically, the experiments aimed to validate three key aspects: (1) the 
prediction accuracy of the CNN models, (2) the quality and efficiency of 
BIM generation using Revit API, and (3) the effectiveness of the auto
mated annotation tool in producing annotated 2D drawings.

4.1. Implementation details

The networks were trained using PyTorch on an NVIDIA GeForce 
RTX 3090 (24G) GPU. The RPLAN dataset, comprising over 80,000 
raster images in PNG format, represents residential unit floor plans, and 

Fig. 9. Query results for a door displayed in Visual Studio 2019.
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these images were split into training, validation, and test sets in a 
70:15:15 ratio. To improve the training efficiency, the images were 
converted from PNG to Pickle files, a Python-specific serialized file 
format that efficiently stores and quickly loads complex data structures. 
This conversion considerably reduced I/O overhead and enhanced 
training speed compared to directly loading PNG images. Each Pickle 
file included masks for room boundaries, categories, indexes, and inte
rior walls or doors, as well as centroid coordinates for individual room 
types calculated using a custom Python script. Training and testing the 
two networks took approximately three days.

The first CNN employed was a modified ResNet-34 architecture, 
adjusted to handle four-channel RGBA images of 256 × 256 pixels. The 
training settings—including a batch size of 16, an initial learning rate of 
0.0001, and a weight decay of 0.0001—followed standard practices 
from previous CNN-based architectural image analysis studies [58]. 
Learning rate decay was applied at epochs 30, 60, and 90, based on 
empirical findings suggesting improved convergence and reduced risk of 
overfitting. This network was trained for 300 epochs because of the 
complexity and variability inherent in predicting accurate room 
centroid locations from raster images, allowing sufficiently many epochs 
for stable convergence.

The second network utilized an encoder–decoder architecture 
inspired by U-Net to predict pixel-level wall structures from room 
centroid locations generated by the first CNN. Similar to the first 
network, this encoder–decoder architecture used a batch size of 16, an 
initial learning rate of 0.0001, and weight decay of 0.0001. However, 
this network was trained for only 100 epochs because pixel-wise seg
mentation tasks typically converge more quickly because of the direct 
pixel-level supervision and the structured nature of the wall predictions 
[61]. The learning rate was progressively adjusted after each epoch to 
facilitate faster convergence and better model stability.

Both networks were trained independently, and their outputs were 
integrated sequentially within the proposed BIM generation pipeline, 
substantially enhancing the automation and accuracy of BIM conversion 
process.

4.2. Data preparation

Because the output of CNNs is inherently dependent on the training 
data, the floor plans generated in this study exhibit characteristics 

Fig. 10. Image input and output of networks.

Table 5 
Mapping labels and pixel values in CNN-generated floor plans.

Channel Semantic information Pixel value

1 (exterior wall) Exterior wall 
Front door

127 
255

2 (interior wall) Interior wall 127
3 (spatial semantic) Living room 100

Master room 101
Kitchen 102
Bathroom 103
Dining room 104
Child room 105
Study room 106
Second room 107
Guest room 108
Balcony 109
Entrance 110
Storage 
Wall-in

111 
112

4 (inside area) Inside area 255
Outside area 0

Note: the above numbers indicate the corresponding pixel values.
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similar to those of the RPLAN training dataset. Specifically, RPLAN 
represents an 18 m × 18 m spatial area using a 256 × 256-pixel map, 
where each pixel corresponds to approximately 70 mm × 70 mm (about 
4.9 × 10− 3 m2). Each floor plan in RPLAN spans 60–120 m2, equivalent 
to approximately 12,245–24,490 pixels.

To ensure consistency between the training data and the generated 
input representations, a Python-based program was developed to 
generate training-aligned synthetic floor plans. The process begins by 
initializing a 256 × 256 canvas on which polygonal room boundaries are 
drawn using OpenCV, ensuring that the enclosed area falls within the 
target pixel range. Each generated floor plan features a unique spatial 
configuration and may include non-Manhattan-style boundaries, 
ensuring both realism and geometric diversity. As shown in Fig. 10(a), 
the generated boundary and the area that it encloses—used as input for 
the CNNs—are represented by the first channel (exterior wall) and the 
fourth channel (inside area), respectively.

In the input image, only the first and fourth channels contain data, 
while the second and third channels are initially empty, as illustrated in 
the input data in Fig. 10(a). The first channel represents the building 
boundaries, including external walls and the front door, while the fourth 
channel contains the areas enclosed by these boundaries.

The iterative generative network generates spatial semantics in the 
third channel, and the encoder–decoder network generates internal 
walls with noise in the second channel, as shown in the output image 
with noise in Fig. 10(b). Finally, a denoising algorithm is applied to the 
second channel (interior wall) to remove noise, resulting in the denoised 
output shown in Fig. 10(c). These three data share the same set of pixel 
value mapping relations as given in Table 5, where specific semantic 
information is encoded by pixel values in different channels.

4.3. Data extraction

Fig. 11 illustrates the process of transforming the CNN-generated 
floor plan into an intermediate PNG through image processing. In 
Fig. 11(a), the denoised floor plan generated by the CNNs is presented, 
while Fig. 11(b) shows the synthesized intermediate PNG.

First, the external walls, internal walls, and front doors from the first 
and second channels of the CNN-generated floor plan are extracted and 
merged into the first channel of the intermediate image. Next, semantic 

information from the third and fourth channels is extracted and merged 
into the second channel of the intermediate image. The third and fourth 
channels of the intermediate image are completed manually to include 
height information and material properties, respectively.

4.4. BIM generation

The proposed framework employs rule-based algorithms and Revit 
API to transfer a CNN-generated floor plan to the corresponding BIM. By 
leveraging looping scripts, this process can be fully automated, enabling 
batch conversion of multiple floor plans into BIMs. Fig. 12 shows two 
CNN-generated floor plans and the corresponding synthetic BIMs.

Furthermore, by tuning the hyperparameters of the CNNs, different 
floor plan layouts can be generated from the same boundary input, as 
illustrated in Fig. 13. The adjustment of CNN hyperparameters and their 
impact on the generation results are discussed in detail in Section 5.2.

Building upon this capability, multi-story buildings can be created 
with limited manual intervention. Fig. 14 presents a two-story residen
tial unit, where the base level of the first floor is set to zero (level 0) and 
the base level of the second floor is set to 3000 mm (level 1) using Revit 
API.

4.5. Annotation tools

This study focuses on three aspects of automatic annotation: grid 
generation in floor plans, dimensioning in floor plans, and dimensioning 
in elevation views. The automatic annotation toolbox is built upon the 
Revit API query and filter functionalities as described in Algorithm 2 in 
Section 3.4. Additionally, 2D drawings in different styles can be gener
ated by selecting various built-in rendering modes in Revit. The anno
tated 2D floor plans shown in this section were rendered in the 
“Realistic” mode.

Fig. 15 depicts an annotated floor plan with grids and grid di
mensions. Different annotation fonts and sizes can be customized, as 
shown in Fig. 16. Fig. 16(a) demonstrates the annotations of grids, 
windows, and doors using the “Arial” font in different sizes. In addition, 
the toolbox can generate the dimensions of various elements and an
notations for elevation views, as shown in Fig. 16(b).

Fig. 11. Creating intermediate image.
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5. Results and discussion

This section provides a comprehensive evaluation of the proposed 
generation framework and the ResBIM dataset. It begins with quanti
tative assessments of model accuracy and a study of key hyper
parameters, followed by an examination of BIM generation quality and 
efficiency. The dataset’s characteristics are then analyzed and compared 
with existing resources, concluding with a discussion that highlights the 
contributions and limitations of this work.

5.1. Quantitative evaluation of model accuracy

For the first network (the modified ResNet-34), the mean absolute 
error (MAE) was used to evaluate the predicted room centroid positions 
against the GT centroids, with the error measured in pixels. The trained 
model achieves an MAE of approximately 5.2 pixels on the test set, along 
with a room type classification accuracy of 99 %, indicating strong 

performance in the room localization task. Fig. 17 illustrates the training 
loss, MAE, and classification accuracy over epochs.

The encoder–decoder network was tasked with pixel-wise wall seg
mentation, where wall pixels accounted for only about 5 % of the total 
image area (256 × 256), resulting in a severely imbalanced class dis
tribution. In such cases, commonly used metrics such as IoU tend to 
underestimate model performance, as even small misclassifications can 
disproportionately affect the IoU score when the target region is sparse. 
To address this limitation, the Dice coefficient was used as an evaluation 
metric [65]. This Dice score provides a more balanced assessment by 
incorporating both precision and recall, making it particularly suitable 
for segmentation quality evaluation under extreme class imbalance. The 
encoder–decoder network achieved 99 % spatial classification accuracy 
around wall regions, with an average Dice score of approximately 0.52, 
demonstrating reasonable segmentation capability despite the sparsity 
of the target class. The progression of training loss, Dice coefficient, and 
accuracy across epochs is shown in Fig. 18.

Fig. 12. Two CNN-generated floor plans (left) and corresponding synthetic BIMs (right).

Fig. 13. Three floor plans with identical boundaries but different spatial layouts.
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5.2. Key hyperparameters and their impacts

The synthetic floor plan generation process relies on several adjust
able hyperparameters, as summarized in Table 6. The parameter 
mask size (M) defines the pixel radius of the local search area used 
during the feature decoding process; it directly affects the pixel density 
of the generated floor plan layout. A smaller value of M produces sparser 
representations with lower pixel density, typically resulting in simpler 
and more abstract room layouts. In contrast, a larger M expands the 
search area, enabling the network to capture finer geometric details and 

produce denser, more complex spatial configurations. Therefore, M 
serves as a crucial parameter for controlling the granularity of the 
reconstructed floor plan.

The parameter room number (R) specifies the number of distinct 
room labels that the modified ResNet-34 architecture attempts to 
generate, effectively corresponding to the number of rooms in the syn
thesized floor plan. To ensure consistency with the scale and capacity of 
the input layout, the network imposes an upper limit on the number of 
rooms based on the input floor plan’s area. If R exceeds this predefined 
threshold, the actual number of rooms generated is constrained by both 

Fig. 14. BIM of two-story residential unit.

Fig. 15. Synthetic BIM (left) and creation of grids and dimensions in its floor plan (right).
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Fig. 16. Creating other types of annotations in different aspects.

Fig. 17. Training loss, mean absolute error (MAE), and classification accuracy over epochs for modified ResNet-34.

Fig. 18. Training loss, Dice coefficient, and accuracy across epochs for encoder–decoder.
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the threshold and the effective spatial resolution governed by M. 
Consequently, R and M jointly regulate the spatial and semantic 
complexity of the final output.

Fig. 19. illustrates how varying M from 2 to 13 affects the generated 
(non-denoised) floorplans under a fixed floor plan boundary with R =
10. In this case, the value of R exceeds the threshold imposed by the 
network, as the maximum number of rooms in the training set is 9. 
Therefore, the CNNs rely on the value of M to determine the number and 
complexity of rooms. When M is between 1 and 6, the generated wall 
pixels are sparse, resulting in numerous broken and disconnected 
structures. When M ranges from 7 to 10, the model exhibits optimal 
convergence, producing clear layouts with minimal noise. However, 
when M exceeds 10, the number of wall pixels increases, but many of 
them are noise.

Fig. 20. presents the effect of increasing R from 2 to 6 under the same 
floor plan boundary, with M fixed at 7 and 9, both within the optimal 
convergence range. When R is below the network’s room-number 
threshold, it directly determines the number of rooms generated. 

Meanwhile, different values of M under the same R produce variations in 
room layout and spatial configuration.

Maintaining a consistent boundary is particularly valuable for ap
plications in modular architecture and multi-story building design. By 
using different combinations of M and R, the model can generate 
different floor plan layouts with varying room counts under the same 
boundary constraints, as demonstrated in Section 4.4.

5.3. Quality and efficiency of BIM generation

To ensure the quality of the generated BIMs, Revit API was utilized in 
conjunction with Revit’s built-in validation tools to check each con
verted instance systematically according to several key criteria: (1) wall 
continuity and integrity—verifying that all interior and exterior walls 
are fully connected, closed, and free from gaps, floating segments, 
overlaps, or redundant wall sections; (2) opening–host relation
ship—ensuring that each door or window (opening) is correctly asso
ciated with a host wall, with valid position and alignment within the 
wall boundaries and thickness; (3) spatial constraints—checking for 
door swings or window placements that might result in collisions with 
other doors, walls, or windows. During the conversion process, any BIM 
model failing to meet these requirements triggered a warning window in 
Revit, as illustrated in Fig. 21(a).

In a task that involved generating 1000 floor plans, the trained 
networks took an average of 1.2 s to produce one noisy floor plan and 
1.6 s to denoise it. On average, the framework generated BIMs at a speed 
of approximately six models per minute. In this study, 1100 distinct 
boundaries were generated using Python and OpenCV and served as 
inputs to the CNNs; correspondingly, the CNNs produced 1100 synthetic 
floor plans. When these floor plans were converted into BIMs using Revit 
API, 1027 conversions were successful without any warning windows, 
resulting in an overall conversion accuracy of 93.4 %. The entire process 
took around four hours to complete. The 73 failed conversions were 
caused primarily by dimensional errors, excessive pixel density, and 
insufficient pixel coverage, as shown in Fig. 21.

Table 6 
Key hyperparameters of CNNs.

Parameter 
(abbreviation 
letter)

Data 
type

Recommended 
range

Effect on results

mask_size (M) Integer 6–9 The radius of the local search 
area. Smaller values lead to 
sparser layouts; larger values 
result in more detailed and 
complex room distributions.

room_num (R) Integer 2–6 The number of room labels 
generated by the network 
represents the number of 
rooms in the generated floor 
plan.

Note: This table summarizes the two key hyperparameters. Additional hyper
parameters were tested but showed a minimal effect on the model’s 
performance.

Fig. 19. Effects of increasing mask size (M) under a fixed boundary and constant room number (R).

Fig. 20. Effects of increasing R from 2 to 6 on floor plan generation under a fixed boundary, with M set to 7 and 9 (within the optimal convergence range).
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Dimensional errors were encountered during the conversion of CNN- 
generated raster floor plans to BIMs. Because these floor plans are pixel- 
based, it is necessary to map pixel values to real-world distances; to 
maintain scale consistency with the training dataset, in this study each 
pixel represents 70 mm in the real world. However, some generated 
floor plans included walls with fewer than 10 pixels; this resulted in the 
wall length being less than 700 mm, which is smaller than the standard 
minimum width of a sliding door in the default Revit library. When 
attempting to insert a door into a wall narrower than the door width, 
Revit generates an error, preventing proper placement of the door, as 
illustrated in Fig. 21(a).

Failures were also observed in the encoder–decoder network. The 
encoder–decoder generates walls in the form of discrete pixels, 

which—despite containing noise—serve to partition space and define 
individual rooms. As analyzed in Section 5.2, if the mask size hyper
parameter is set too small, then the number of wall pixels becomes 
insufficient, resulting in broken or disconnected walls after denoising, as 
highlighted in Fig. 21(b) and (c). Conversely, if mask size is too large, 
then too many wall pixels are produced, which leads to redundant wall 
structures after denoising, as highlighted in Fig. 21(d) and (e).

5.4. Characteristics and usage of dataset

ResBIM is a synthetic dataset designed specifically for research in 
BIM automation and 2D-to-BIM reconstruction. The dataset comprises 
1027 paired samples, each consisting of a fully parametric 3D BIM (RVT 

Fig. 21. Three types of failure cases: (a) dimensional error, (b) disconnected walls resulting from small mask size and (c) corresponding denoised output, and (d) 
redundant spaces caused by large mask size and (e) denoised result.

Fig. 22. BIM in the ResBIM dataset (left) and corresponding RGB point cloud (right) in CloudCompare.
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format) and its corresponding annotated 2D floor plan. All data were 
generated and validated using automated workflows in Autodesk Revit 
to ensure both consistency and scalability. ResBIM is intended for a wide 
range of applications, including multi-platform BIM interoperability, 
serving as a foundation for benchmarking 2D-to-BIM algorithms, and the 
development of computer vision models for architectural analysis. The 
dataset supports a wide range of use cases, including but not limited to 
the following. 

• Multi-platform compatibility. The BIM generation in this study utilizes 
Revit API to produce RVT-format models within Autodesk Revit. 
Although RVT is a proprietary format with software dependency, 
Revit—as one of the mainstream BIM software solutions in the ar
chitecture, engineering, and construction (AEC) domain—provides 
various built-in tools for format conversion and export. Each BIM in 
the dataset can be exported seamlessly to the IFC format, enabling 
compatibility with multiple platforms.

• 2D-to-BIM evaluation and benchmarking support. ResBIM supports 
evaluation across the two major stages of the 2D-to-BIM workflow. In 
the data extraction stage, each annotated floor plan provides se
mantic categories, textual labels, and geometric elements, enabling 
the measurement of detection rate, pixel- and class-level accuracy, 
and OCR accuracy. In the BIM generation stage, each paired BIM 
serves as reference data, allowing reconstruction fidelity to be 
assessed using widely adopted metrics such as point cloud IoU and 
IFC-based component matching. Specifically, since BIMs are 
semantically rich 3D representations, they can be directly converted 
into IFC files, RGB-preserving point clouds (e.g., PLY), or meshes (e. 
g., OBJ). Fig. 22 illustrates an RGB point cloud converted from a BIM 
in the ResBIM dataset, used to compute IoU for 2D-to-BIM algo
rithms. Beyond these stage-wise assessments, ResBIM also supports 
end-to-end evaluation—from floor plan recognition to the genera
tion of the resulted BIM—enabling comprehensive benchmarking of 
accuracy, runtime efficiency, and overall system performance.

• Obtaining various types of 2D drawings. Because BIMs are semantically 
rich 3D representations, all BIMs in the dataset can be converted into 
various 2D views such as floor plans, elevations, and cross-sections. 
Combined with the provided annotation toolbox, these views can be 
exported conveniently from Revit with annotations. The resulting 2D 
drawings serve multiple research purposes, such as training OCR 
models to recognize different font styles or training CNNs to detect 
openings in elevation views. As illustrated in Fig. 16 (a) and (b), the 
paired floor plan and east elevation view are directly derived from 
the BIM model. This also addresses a common limitation highlighted 
in previous studies: the lack of annotated elevation drawings with 
height information, which has largely restricted 2D-to-BIM data 

extraction to planar geometry instead of multi-view representations 
[16,42].

5.5. Dataset comparison

To better evaluate the contribution of the proposed ResBIM dataset, 
two comparative analyses are presented: (1) against existing floor plan 
datasets, and (2) against BIM-based datasets. Numerous large-scale 
publicly available point cloud datasets based on real-world building 
scans, such as ScanNet [66] and S3DIS [67], have played an important 
role in scan-to-BIM and SLAM research. However, because these datasets 
provide only point cloud data without corresponding 2D floor plans or 
BIMs, they are not applicable to the present 2D-to-BIM task and are 
therefore excluded from the dataset comparison.

Table 7 summarizes a comparison between ResBIM and representa
tive floor plan datasets. Among these datasets, real-world floor plans are 
often sourced from housing rental companies for marketing purposes. 
These drawings typically focus on layout and frequently suffer from 
incomplete information or distorted proportions. Fig. 23(a) shows a real- 
world plan from the CVC-FP [23] dataset, where room dimensions are 
annotated using area values (e.g., 26.18 m2). As a result, the exact 
spatial dimensions (e.g., length and width) of each room are difficult to 
determine. Fig. 23(b) displays a real-world plan from the SydneyHouse 
[24] dataset, where the red-highlighted annotation indicates the living 
room size as 6.8 × 4.2 (assuming a rectangular shape). However, the 
actual room shape is irregular, and certain rooms such as the laundry 
and bathroom lack dimensional annotations altogether.

In many augmented datasets, original elements present in real-world 
drawings—such as dimension annotations and furniture—are typically 
removed during the augmentation process. As shown in Fig. 23(c), a 
floor plan from the Tell2Design [35] dataset illustrates this character
istic. Such augmented floor plans are often created for classification 
tasks in computer vision and usually lack textual annotations and rarely 
include RF 3D models.

In contrast, ResBIM is generated within Autodesk Revit, which sup
ports customizable dimension annotations at varying levels of detail, as 
shown in Fig. 23(d). Because of the 3D nature of a BIM, in addition to 
generating floor plans, it can also produce elevation views as shown in 
Fig. 16(b)––a data type that remains rare in existing datasets. The RF 
BIMs in the dataset allow researchers to evaluate the accuracy and 
generalizability of their algorithms using standard metrics such as point- 
to-point distance and IoU.

Table 8 compares ResBIM with existing datasets that provide BIMs. 
Prior datasets in this category are typically derived from laser-scanned 
point clouds of real-world buildings and are designed primarily for 
scan-to-BIM tasks. While these datasets offer higher geometric and se
mantic complexity because of their real-world origin, they often lack 

Table 7 
Related datasets containing floor plans.*1, *2

Dataset Year Data source*1 3D data*2 Annotation type Dimension Furniture Height information

CVC-FP [23] 2015 RW × Text √ √ ×

SydneyHouse [24] 2016 RW × Text √ √ ×

ROBIN [25] 2017 A × × × √ ×

R2V [26] 2017 A × Text, RGB × √ ×

CubiCasa5K [27] 2019 RW × Text × √ ×

RPLAN [28] 2019 A × RGB × × ×

HouseExpo [29] 2020 S × × × × ×

Structure3D [30] 2020 A RF RGB × × √
ZInD [31] 2021 RW × Text √ × ×

FloorPlanCAD [32] 2022 RW × RGB √ √ ×

MLSTRUCT-FP [34] 2023 A × × × × ×

Tell2Design [35] 2023 A × RGB × × ×

MSD [37] 2024 A × RGB × × ×

ResBIM 2025 S RF Text, RGB √ × √

*1 RW = real-world data, A = augmented based on real-world data, S = synthetic data.
*2 RF = reference model.
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paired 2D annotations, limiting their applicability for 2D-to-BIM 
research. In contrast, ResBIM is designed specifically for the 2D-to- 
BIM task and includes labeled 2D floor plans that are consistent with 
the associated BIMs. As a synthetic dataset, ResBIM offers high scal
ability, allowing the data volume to be expanded with minimal manual 
effort––an essential property for training large-scale models. While 
ResBIM offers high scalability and precise 2D-3D correspondences, it 
does not fully replicate the complexity and diversity of real-world 
architectural data, a limitation discussed in Section 5.6.

5.6. Discussion

Existing public datasets for 2D-to-BIM research are fragmented. Real- 
world floor plan datasets are mainly designed for computer vision tasks 
such as image classification or pixel-level parsing and thus lack 3D 

models or the annotations needed in AEC workflows. Conversely, BIM- 
containing datasets are largely built for scan-to-BIM research and 
generally do not provide corresponding 2D drawings. Attempts to 
generate synthetic floor plans and convert them into BIMs have been 
hindered by the instability of generated layouts, which prevents large- 
scale automated production. In addition, semantic and height informa
tion in current 2D-to-BIM workflows is usually assigned through defaults 
or manual configuration, restricting dimensional and material diversity. 
The absence of annotated elevation views has further confined most 
extraction methods to planar geometry, creating a significant gap for 
tasks that require accurate and large-scale mapping between 2D and 3D 
representations.

ResBIM dataset directly addresses this gap by providing over 1000 
paired floor plans and fully parametric BIMs, generated through auto
mated Revit workflows. These pairs enable not only training of 

Fig. 23. Comparison of 2D drawings in different datasets.

Table 8 
Related datasets containing BIMs.*1, *2

Dataset Year Number of BIMs (areas) Data source*1 3D data*2 2D drawing availability Scalability and extensibility Target task

Indoor PC/BIM [33] 2023 5 (No mention) RW GT × Low Scan-to-BIM 
Scan-vs-BIM

BIMNet [38] 2025 25 (8710 m2) RW GT × Low Scan-to-BIM
ResBIM 2025 1 k (12,000 m2) S RF √ High 2D-to-BIM

*1 RW = real-world data, S = synthetic data.
*2 GT = ground-truth model, RF = reference model.
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advanced AI models but also reproducible evaluation of 2D-to-BIM al
gorithms using metrics reliant on RF BIMs. With the accompanying 
annotation toolbox, BIMs can be exported into multiple 2D view
s—including floor plans, elevations, and sections—supporting research 
in OCR, vision-based recognition, and multi-view reconstruction. In 
doing so, ResBIM tackles two critical limitations: the lack of paired 2D- 
3D datasets and the absence of annotated elevation views.

Beyond the dataset, the proposed four-step framework introduces 
methodological advances. Boundary constraints during floor plan gen
eration stabilize large-scale automated workflows, overcoming the 
instability issues reported in earlier data-driven methods (e.g., Section 
2.3). The extensible semantic material library enriches variability in 
materials, dimensions, and components, moving beyond reliance on 
defaults and enabling more representative scenarios. Together, these 
design choices make the framework scalable, platform-compatible, and 
adaptable across diverse data sources.

By filling a critical data gap, this work lays the groundwork for future 
research in automated BIM reconstruction and supports scaling to more 
diverse and complex architectural scenarios. Furthermore, the proposed 
generation pipeline demonstrates considerable cost-effectiveness in time 
and labor. It is capable of generating, denoising, and converting over 
1000 floor plans into BIMs within approximately four hours while 
maintaining a success rate exceeding 93 %, the framework substantially 
reduces manual workloads and modeling time relative to conventional 
BIM workflows. As the dataset continues to evolve, including the inte
gration of a wider range of architectural styles and elements, the pro
posed framework has the potential to further drive AI innovation in the 
AEC domain.

5.6.1.1. Limitations and positioning. Despite these advantages, certain 
limitations remain. The dataset primarily represents residential layouts 
with straight walls, which limits applicability to industrial or public 
facilities. Elements such as staircases, MEP systems, and façades are also 
absent, restricting its use in research targeting these features. Moreover, 
synthetic datasets cannot fully capture the drafting irregularities or 
noise of real-world drawings, which may affect model generalization. 
Nonetheless, as shown in related domains (e.g., RPLAN [28], SUNCG 
[68]), synthetic datasets with controlled assumptions can serve as useful 
early-stage resources. Accordingly, ResBIM should be viewed as a sup
plementary dataset rather than a replacement for real data, aiming to: 
(1) expand data availability in early-stage 2D-to-BIM research, (2) pro
vide a controlled baseline for method comparison, and (3) promote 
standardized benchmarking protocols for real or hybrid datasets.

6. Conclusions

This paper addressed a critical gap in 2D-to-BIM research by intro
ducing a procedural BIM synthesis framework that integrates deep 
learning–based floor plan generation with structured 2D-3D mapping. 
Alongside the framework, the open-source ResBIM dataset and its 
annotation toolbox provide the AEC community with scalable and 
reproducible resources for diverse applications. The key contributions 
are as follows: 

• Unified procedural framework. A scalable pipeline that formalizes the 
mapping from 2D drawings to BIMs, integrating deep learning with 
rule-based synthesis for large-scale automation.

• Paired 2D-3D dataset. ResBIM offers paired 2D-3D data with detailed 
annotations, filling a gap in the literature and providing a dataset 
that supports reproducible evaluation of 2D-to-BIM algorithms.

• Open-source tools for reproducibility. Annotation utilities and dataset 
design principles that support semantically consistent benchmarks 
and foster community-driven research in the AEC domain.

Limitations remain, particularly the dataset’s focus on residential 
layouts with rectilinear walls and the synthetic nature of the data, which 
cannot fully capture the drafting inconsistencies of real-world drawings. 
These constraints may affect model generalization across broader 
building typologies and more complex architectural features.

Future work should focus on expanding building typologies, incor
porating complex architectural elements, and integrating more 
advanced generative models capable of balancing diversity with geo
metric stability. Broader efforts to establish large-scale annotated 
datasets—both synthetic and real—and standardized evaluation pro
tocols will be essential to ensure objective comparison and accelerate 
the adoption of automated BIM generation in research and industry.
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