
Title Fully automated synthetic BIM dataset generation
using a deep learning-based framework

Author(s) Liang, Xing; Yabuki, Nobuyoshi; Fukuda, Tomohiro

Citation Automation in Construction. 2025, 181, p. 106584

Version Type VoR

URL https://hdl.handle.net/11094/103515

rights This article is licensed under a Creative
Commons Attribution 4.0 International License.

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

Fully automated synthetic BIM dataset generation using a deep
learning-based framework

Xing Liang a, Nobuyoshi Yabuki b,c, Tomohiro Fukuda a,*

a Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, The University of Osaka, Osaka, 565-0871, Japan
b Advanced Research Laboratories, Tokyo City University, Tokyo, 158-8557, Japan
c The University of Osaka, Osaka, Japan

A R T I C L E I N F O

Keywords:
2D-to-BIM reconstruction
Floor plan generation
Synthetic BIM dataset
BIM
Automation
Data-driven modeling
Deep learning
Image processing

A B S T R A C T

Building information models (BIMs) are essential for efficient building operation, yet most existing buildings only
have two-dimensional (2D) drawings, leading to increased interest in 2D-to-BIM reconstruction. To address the
data scarcity hindering automated BIM reconstruction and evaluation, this paper presents a deep learning-based
fully automated framework for BIM dataset generation. The approach uses image processing to define polygonal
boundaries, applies neural networks to generate geometric layouts, and augments semantic information with
predefined data for BIM generation via software application programming interfaces (APIs). The resulting
Residential unit BIM (ResBIM) is a synthetic dataset comprising over 1000 paired BIMs (RVT format) and their
corresponding 2D floor plans automatically annotated via a toolbox, filling a critical gap in BIM data availability.
This work provides a scalable automated BIM reconstruction solution and establishes the foundation for future
AI-driven BIM automation research.

1. Introduction

The proportion of global energy consumption attributable to the
building sector has steadily increased and now accounts for around 40 %
[1]. The largest portion of building energy consumption occurs during
the operation and maintenance (O&M) stage, which is the longest stage
of the building lifecycle [2,3]. Traditional methods of managing build
ings during the O&M stage—such as using two-dimensional (2D)
drawings or spreadsheets—often result in inefficiencies and coordina
tion challenges due to error-prone and labor-intensive design adjust
ments on drawings [4,5]. Recently, research interest has increasingly
focused on developing three-dimensional (3D) models for existing
buildings, particularly building information models (BIMs). Compared
to 2D drawings, a BIM provides a more comprehensive representation of
a building’s physical and functional characteristics, leading to increased
work efficiency, better decision-making, and reduced energy consump
tion [6]. This enhancement is attributed to the capabilities of BIMs, such
as real-time data integration and energy simulations, which allow op
erators to monitor energy usage, detect system faults, and predict when
maintenance is required [7–9]. Statistical evidence indicates that
implementing BIMs can lead to considerable benefits, including a

reduction in energy consumption of up to 35 % in commercial buildings
by identifying inefficiencies earlier [10].

Despite the considerable advantages of BIMs, most existing buildings
lack these information-rich 3D models, as their design and construction
occurred before the widespread adoption of BIM technologies [11,12].
Consequently, project information is often stored and delivered in the
form of 2D “as-designed” or “as-built” drawings [13]. These drawings
contain valuable semantic information and are readily available, making
them an ideal foundation for BIM reconstruction. To address this,
numerous studies have proposed methods for reconstructing BIMs from
such 2D data (2D-to-BIM), particularly by incorporating artificial in
telligence (AI) to enhance reconstruction efficiency [14,15]. Technolo
gies such as optical character recognition (OCR) can automatically
extract key features from 2D drawings and efficiently convert them into
accurate BIMs [16]. This AI-assisted approach can not only automate the
conversion process and reduce human errors but also accelerate the
development and application of BIMs. These advancements consider
ably streamline the otherwise labor-intensive and error-prone manual
process of creating BIMs from legacy documents, making it feasible to
apply BIMs to a wider range of existing buildings and thus to support
better facility management, renovation planning, and operational

* Corresponding author at: Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, The University of Osaka, Osaka, 565-
0871, Japan.

E-mail addresses: xing.liang@it.see.eng.osaka-u.ac.jp (X. Liang), yabukin@tcu.ac.jp (N. Yabuki), fukuda.tomohiro.see.eng@osaka-u.ac.jp (T. Fukuda).

Contents lists available at ScienceDirect

Automation in Construction

journal homepage: www.elsevier.com/locate/autcon

https://doi.org/10.1016/j.autcon.2025.106584
Received 16 April 2025; Received in revised form 26 September 2025; Accepted 1 October 2025

Automation in Construction 181 (2026) 106584

Available online 18 October 2025
0926-5805/© 2025 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

mailto:xing.liang@it.see.eng.osaka-u.ac.jp
mailto:yabukin@tcu.ac.jp
mailto:fukuda.tomohiro.see.eng@osaka-u.ac.jp
www.sciencedirect.com/science/journal/09265805
https://www.elsevier.com/locate/autcon
https://doi.org/10.1016/j.autcon.2025.106584
https://doi.org/10.1016/j.autcon.2025.106584
http://creativecommons.org/licenses/by/4.0/

efficiency.
While many prior studies have focused on developing algorithms for

2D-to-BIM reconstruction, a critical challenge remains unresolved: the
lack of publicly available datasets containing paired 2D data and reliable
reference (RF) BIMs [17]. Specifically, 3D reconstruction is typically
evaluated using metrics such as earth mover’s distance and intersection-
over-union (IoU), both of which require well-defined RF models for
quantitative accuracy assessment. However, the objective evaluation
and benchmarking of 2D-to-BIM methods, a specialized category of 3D
reconstruction, remain challenging due to the scarcity of RF BIM data
sets [16].

This issue arises mainly because most existing buildings do not have
corresponding 3D models or BIM data, and even when these models
exist, confidentiality agreements and intellectual property concerns
within the building sector often restrict their sharing and dissemination
[18,19]. Consequently, current 2D-to-BIM research is often validated
using limited case studies based on researcher-collected data, making
cross-method comparisons difficult [20]. Although recent research has
introduced metrics that do not require RF data, such as the dense map
posterior [21], which evaluates reconstruction quality based on point
cloud density, obtaining point clouds remains resource-intensive,
involving substantial manual labor, equipment investment, and com
plex path planning [22]. Given these challenges, there is an urgent need
to develop cost-effective methods for creating comprehensive datasets
containing BIMs to facilitate robust and objective evaluations of 2D-to-
BIM methods.

Motivated by this gap, to address the challenge of BIM data scarcity,
this study proposes an automated framework that utilizes deep learning
for synthetic BIM dataset generation. The pipeline begins with defining
polygonal floor plan boundaries using Python’s OpenCV library, fol
lowed by employing convolutional neural networks (CNNs) to generate
room and wall layouts within these boundaries, thereby producing
raster floor plans. Semantic and geometric information is then extracted
from these raster images via image processing techniques and combined
with predefined semantic attributes and dimensional parameters. These
enriched data are then fed into BIM software application programming
interfaces (APIs) to automatically generate corresponding BIMs.
Through this process, this study has created the Residential unit BIM
(ResBIM) dataset, consisting of over 1000 BIMs paired with annotated
2D floor plans, alongside an automatic annotation toolbox for efficient
labeling of 2D drawings.

Building on this framework, this research contributes theoretically
and methodologically to 2D-to-BIM reconstruction and BIM automation
through the establishment of a procedural BIM synthesis paradigm. This
paradigm integrates deep learning-based floor plan generation with
structured semantic enrichment via explicit mapping between 2D
drawing elements and BIM entities, thereby resolving scalability and
consistency limitations found in existing BIM dataset construction.
ResBIM dataset provides synthetic floor plans with controlled geometric
variability and RF BIMs, offering a reproducible resource for objective
methodology evaluation. Furthermore, the open-source annotation
toolbox formalizes semantic relationships across 2D-to-BIM domains,
fostering community-driven refinement of annotation practices and
advancing structured knowledge representation in BIM automation
research.

The remainder of this paper is organized as follows. Section 2 re
views related datasets and existing AI-driven 2D-to-BIM approaches.
Section 3 describes the proposed method for automatic BIM generation.
Section 4 presents evaluation experiments and the generation of the
ResBIM dataset. Section 5 discusses the research findings and limita
tions. Finally, Section 6 concludes the paper and outlines future research
directions.

2. Related work

2D-to-BIM typically involves two main steps: data extraction and

BIM generation. The primary objective of the data extraction phase is to
recognize and extract geometric and semantic information from draw
ings, a process in which AI techniques are frequently employed. To
support AI research on 2D-to-BIM tasks, Table 1 summarizes datasets
released after 2015 that provide floor plans or BIMs, each with varying
levels of accessibility. Specifically, the table provides an overview of
each dataset’s data source, data format, the presence of 3D data, and its
accessibility. In this work, 3D models in the datasets are classified into
two categories: ground truth (GT) models and RF models. GT models are
derived from real-world buildings measured with high-precision tools
and are manually constructed, whereas RF models refer to synthetically
or algorithmically generated 3D data.

2.1. Data extraction and BIM generation

The data used for 2D-to-BIM reconstruction can be classified based
on their data format (vector or raster) and source (real-world or syn
thetic). This classification yields four distinct types: real-world vector,
real-world raster, synthetic vector, and synthetic raster. Each type re
quires different data extraction methods.

Real-world vector data from CAD software (e.g., DWG, DXF) contain
precise geometries and attributes [39,40]. Such data often contain rich
implicit information distributed across different layers, including line
width, segment spacing, text, and color, which makes rule-based algo
rithms widely adopted for classification and information extraction. For
instance, methods such as automatic layer classification method (ALCM)
and ALCM-based elevation detection have been developed to identify
hidden layers and infer floor levels [41], while commercial software
vendors leverage rule-based algorithms and APIs (e.g., AutoCAD API) to
facilitate BIM reconstruction [42]. However, CAD drawings usually
contain multiple categories of building elements (e.g., furniture, struc
tural components). Since most existing studies focus on a single category
such as architectural floor plans, preprocessing remains necessary—for
example, removing furniture and staircases or splitting multiple draw
ings into independent files [15,43]. Moreover, vector files are not always
readily available, especially in renovation projects where digital records
are often missing [44].

Real-world raster data (e.g., CFC-FP [23], SydneyHouse [24]) typi
cally consist of scanned drawings or basic digital sketches stored in
formats such as PNG. These drawings contain geometric components (e.
g., walls, doors) and textual annotations (e.g., dimensions, room names).
Data extraction from raster data usually combines CNN-based object
detection with OCR techniques [45]; for example, Faster R-CNN with
OCR has been used to generate IFC-compliant BIMs [42]. However,
many mainstream detection and recognition models were originally
trained on natural images and may not perform well on architectural
drawings. To address this limitation, recent studies have benchmarked
popular detection and recognition models on three different real-world
raster floor plan datasets, evaluating their performance in recognizing
objects of different sizes (large, medium, small) as well as both hand
written and machine-printed annotations [46]. Similar to real-world
vector data, raster drawings also rely on preprocessing to filter out
non-target objects; for example, a CNN-based approach has been pro
posed to detect wall and opening pixels in order to remove furniture and
other elements, thereby enabling more accurate reconstruction of ver
tical, horizontal, and diagonal walls [47].

Both synthetic vector and raster data are algorithmically generated
or augmented from real layouts. Although they may not fully capture
real-world complexity, they provide standardized geometries and rule-
based semantics, which make data extraction more tractable and have
therefore been widely adopted for dataset construction and bench
marking [48]. Rule-based and script-driven methods (e.g., Python) are
effective for parsing such layouts. For instance, the augmented dataset
RPLAN [28] encodes architectural semantics via pixel positions and
color values, enabling a coupled generative adversarial network
(CoGAN) to learn architectural feature relationships [49].

X. Liang et al. Automation in Construction 181 (2026) 106584

2

The extracted data serve as input parameters for BIM generation,
which typically follows three approaches: IFC-based methods (e.g.,
IfcOpenShell), parametric design tools (e.g., Dynamo), and BIM software
APIs (e.g., Revit API). IFC-based methods provide interoperability but
require expertise [50]; parametric tools offer extensible visual work
flows but struggle with scalability [17]; APIs allow fine-grained auto
mation but are software-dependent [41].

Overall, the choice of data source directly shapes the complexity and
reliability of data extraction in 2D-to-BIM workflows. Real-world inputs
are noisy and inconsistent, often requiring preprocessing, intermediate
files (e.g., XML, TXT), and manual validation before BIM reconstruction
[14,51]. Synthetic data, in contrast, are semantically explicit and scal
able, making them ideal for automated pipelines.

2.2. 2D-to-BIM evaluation

Current 2D-to-BIM research typically evaluates two main stages
separately: data extraction and BIM generation. For the data extraction
stage, the primary focus lies in measuring the accuracy of retrieving
semantic and geometric information from 2D drawings, particularly in
AI-based approaches. Common evaluation metrics include detection
rate, pixel accuracy, and class accuracy, as summarized by Pizarro et al.
[20]. Although most studies employ one or more of these metrics, the
absence of a standardized evaluation protocol leads to inconsistent
metric usage, making cross-comparison between studies difficult, even
when the tasks are similar. As a result, existing works remain at the level
of fragmented single evaluations rather than standardized
benchmarking.

For the BIM generation stage, evaluation typically focuses on BIM
fidelity, which requires comparing the generated BIM with a ground-
truth model or a RF BIM. Commonly used metrics include geometric
IoU from point cloud comparisons or component matching based on IFC
outputs [43,52]. However, in the absence of RF models, evaluation often
relies on manually created test cases or small proprietary datasets,
supplemented by qualitative visual inspection or manual verification
[15]. Such datasets are frequently tailored for specific purposes—such
as residential building floor plans—introducing potential bias and
reducing objectivity [14].

For example, Yang et al. [39] proposed a semi-automatic BIM
reconstruction approach based on layer-segmented CAD drawings and
rule-based extraction, which was followed by BIM modeling through the
Revit Dynamo plugin. Their evaluation involved only two manually
created cases and reported execution times of approximately 4500 s and
1800 s, without employing standardized accuracy metrics. Similarly,

Zhao et al. [42] introduced a hybrid AI-enhanced approach combining
image processing and Faster R-CNN, in which accuracy was judged by
comparison with another object detection model (YOLO) rather than a
RF BIM.

In addition, most current studies still focus primarily on floor plans,
with height and semantic attributes either set to default values or
manually specified [15,45], highlighting that 2D-to-BIM remains at an
early stage. These methodological limitations are further exacerbated by
the scarcity of publicly available paired 2D-3D datasets, constraining
objective evaluation [14,40]. Although some public datasets (e.g., In
door PC/BIM [33], SLABIM [36], BIMNet [38]) provide BIMs paired
with scanned point clouds, they lack corresponding 2D drawings and are
primarily designed for scan-to-BIM or SLAM applications. Collectively,
these challenges highlight a critical research gap: the absence of large-
scale paired 2D-BIM datasets, without which the development of stan
dardized evaluation protocols and rigorous benchmarking remains
difficult to achieve.

2.3. AI-driven synthetic BIM generation

Data scarcity and the lack of standardized benchmarks have moti
vated increasing reliance on AI-driven floor plan generation to expand
BIM availability. Recent advances in deep learning show considerable
potential for creating enriched BIM datasets by producing synthetic floor
plans augmented with predefined attributes for 2D-to-3D conversion.

Early approaches typically adopted a two-stage “semantic segmen
tation plus geometric optimization” pipeline. For instance, the indoor
scene synthesis network (ISSNet) [53] leveraged CNNs to produce pixel-
level semantic segmentation of room types, with its output subsequently
serving as constraints in mixed-integer quadratic programming [54] to
perform geometric layout optimization. While this paradigm improved
spatial rationality and layout regularity, establishing itself as an
important baseline in automatic floor plan generation, the method often
suffered from limited global consistency and reduced robustness in
handling complex or large-scale scenarios.

To address such limitations, end-to-end frameworks have been pro
posed, mainly GAN- and CNN-based. GAN-based approaches (e.g.,
House-GAN++ [55], HouseGanDi [56]) generate symbolic nodes for
functional spaces, connected by wall segments to form layouts. In BIM
context, Ghannad et al. [49] and Liu et al. [57] applied CoGAN and GC-
GAN for modular residential design, exporting outputs into IFC or Revit-
based BIMs. Although effective for diversity and conceptual design,
GANs often produce irregular geometries, gaps, or mode collapse,
undermining their robustness for BIM generation [57–59].

Table 1
Datasets released after 2015 containing floor plans or building information models (BIMs).*1, *2, *3, *4

Dataset Year Data source*1 Format*2 Availability*3 Presence of 3D data*4 Number of data

CVC-FP [23] 2015 RW R √ × 122 scanned floor plans
SydneyHouse [24] 2016 RW R √ × 174 random houses’ floor plans in Sydney
ROBIN [25] 2017 A R √ × 510 real-world floor plans
R2V [26] 2017 A R, V √ × 100 k + synthetic vector-graphics floor plans
CubiCasa5K [27] 2019 RW R, V √ × 5 k floor plans annotated into over 80 floor-plan object categories
RPLAN [28] 2019 A R, V ○ × 80 k + annotated plans of collected real buildings
HouseExpo [29] 2020 S R √ × 35 k + synthetic indoor layouts
Structure3D [30] 2020 A R ○ RF 3.5 k house designs with 3D wireframe
ZInD [31] 2021 RW R ○ × 71 k images-derived floor plans
FloorPlanCAD [32] 2022 RW V √ × 15 k vector floor plans
Indoor PC/BIM [33] 2023 RW BIM, PC √ GT Point clouds of 5 indoor spaces and corresponding as-built BIMs
MLSTRUCT-FP [34] 2023 A R √ × 954 multi-unit floor plans
Tell2Design [35] 2023 A R √ × 80 k + residential floor plans for natural language design
SLABIM [36] 2024 RW BIM, PC √ GT 1 large BIM model of a university building
MSD [37] 2024 A R, V √ × 5.3 k floor plans of building complexes
BIMNet [38] 2025 RW BIM, PC ○ GT 25 IFC-based BIMs, containing 382 rooms and corresponding point clouds

*1 RW = real world, A = augmented from real-world data but does not directly reflect the real world, S = synthetic.
*2 R = raster, V = vector, PC = point cloud. Multiple formats are available if multiple annotations exist.
*3 Availability: √ = has been published on project website or GitHub, ○ = available on request.
*4 GT = ground-truth model, RF = reference model.

X. Liang et al. Automation in Construction 181 (2026) 106584

3

CNN-based methods typically employ cascaded architectures (e.g.,
combining ResNet-34 [60] and U-Net [61]) to extract geometric and
semantic features before generating structured layouts. These pipelines
are particularly effective for drawing analysis and rule-constrained tasks
owning to their high geometric precision and boundary stability. Wu
et al. [28] imposed boundary constraints to produce stable and regular
floor plans. This approach aligns with our previous study [62], which
introduced a spatial constraint strategy to generate floor plans with
greater spatial consistency. The generated plans were exported to
structured Excel sheets and further processed for semi-automated BIM
conversion. However, similar to earlier works [17,45], the semantic and
material diversity remains limited, as generated BIMs continued to rely
on default materials and height parameters.

Despite these advances, existing studies have yet to achieve a unified
and scalable framework for generating semantically and geometrically
valid BIM datasets. A fully automated synthetic BIM dataset pipeline is
needed to overcome data scarcity and support standardized evaluation,
laying the groundwork for benchmark datasets that enable reproducible
cross-method comparison.

3. Methodology

This study presents a deep learning-based framework for automated
BIM dataset generation, aimed at supporting the creation of large-scale,
semantically rich floor plan–BIM pairs. As illustrated in Fig. 1, the
workflow consists of four primary steps: data preparation, data extrac
tion, BIM generation, and annotation. Importantly, each step is designed
in modular, allowing for multiple alternative implementations depend
ing on specific research objectives or software environments.

To enable a fully automated workflow, a four-channel intermediate
image representation is introduced to separately encode geometric
structures, spatial semantics, height information, and material attributes
for each floor plan. Specifically, the content of the first and second
channels is extracted from the generated floor plan using image pro
cessing techniques, while the third and fourth channels contain pre
defined attributes for height information and material semantics,
respectively.

The process begins with the deep learning–based generation of
synthetic floor plans, which serve as the foundational layout for BIM
modeling. Geometric and semantic data are extracted from the gener
ated floor plans using image processing techniques and stored in the first
and second channels of the intermediate file. Since the generated output

is inherently two-dimensional, predefined height and material proper
ties are assigned to the third and fourth channels, respectively. This
intermediate representation is then used as the input to the Revit API for
automated BIM generation. The final output is a multimodal dataset
comprising both BIMs and paired annotated drawings. To further
enhance the utility of the generated BIMs, corresponding annotation
tools are developed for generating 2D drawings in various aspects (e.g.,
floor plans, elevations), providing essential data to facilitate 2D-to-BIM
research.

For demonstration purposes, a modified ResNet-34 [60] and U-Net
[61] combination is employed for floor plan generation, trained on
RPLAN dataset [28], with subsequent modeling and annotation per
formed via the Revit API. This architecture is chosen for its strong per
formance in producing well-structured layouts with stable boundaries,
while Revit API-based BIM generation ensures compatibility with in
dustry standards. The chosen configuration achieves a balance between
generation quality and practical software integration.

The applicability of the proposed framework is fundamentally
determined by the characteristics of the chosen deep learning models
and training datasets. In this study, the RPLAN dataset is used to train
and validate the deep learning model; consequently, the generated floor
plans reflect the structural conventions present in RPLAN—for example,
the inclusion of a living room in every floor plan––as detailed in Section
3.1.1. The applicability of the framework can be further extended in
future research by employing datasets with broader and more diverse
geometric or functional variations.

3.1. Data preparation

Data preparation encompasses the selection of datasets and the
configuration of deep learning networks. As outlined in Section 2, recent
open-source datasets released since 2015 have been reviewed, with their
characteristics analyzed according to data sources and formats. The
advantages and limitations of different neural network architectures for
floor plan generation have also been discussed. Beyond the data
set–network combination adopted in this framework, alternative models
and training datasets can be applied to accommodate varying research
objectives or domain-specific requirements.

3.1.1. Training data
The RPLAN dataset [28] serves as the training data in this frame

work. It is derived from real-world residential building floor plans, with

Fig. 1. Overall workflow of proposed framework.

X. Liang et al. Automation in Construction 181 (2026) 106584

4

common areas (e.g., elevators, staircases) removed, and each residential
unit converted into a rule-based floor plan through algorithmic pro
cessing. The dataset contains over 80,000 floor plans, with all data
points adhere to the following rules:

• Each data point is in RGBA format (four channels: Red, Green, Blue,
and Alpha) in PNG files. The RGB channels represent color infor
mation, while the Alpha channel encodes transparency, controlling
pixel opacity. In this dataset, pixel values across the four channels are
only used for labeling and annotating the images to convey semantic
information.

• There must be a living room on the floor plan.
• The total area of each floor plan ranges from 60 m2 to 120 m2.
• The number of rooms on a floor plan ranges from three to nine, and

the average area of each room is between 10 m2 and 20 m2.
• The ratio of the living room’s area to the whole area is between 0.25

and 0.55.
• Each image datum is 256 × 256 pixels in resolution, representing a

square region of 18 m × 18 m.

Table 2 describes the four channels and the semantic information
encoded in their pixel values. This dataset enables CNNs to learn the
internal spatial relationships and the building boundaries, thereby
generating floor plans that are spatially comparable to those designed by
human architects.

Fig. 2 illustrates the unprocessed raw view and four channels of an
RPLAN data point. In Fig. 2(a), the unprocessed raw view represents the
combined RGBA channels. Fig. 2(b) shows the first channel, which de
picts floor plan boundaries with the front door highlighted in yellow.
Fig. 2(c) presents the second channel, where distinct pixel values
represent various room types and elements, each assigned unique clas
sifications. Fig. 2(d) corresponds to the third channel, used to calculate
the total number of rooms in the floor plan. Fig. 2(e) displays the fourth
channel, identifying and representing the enclosed areas within the
defined boundaries.

3.1.2. Deep learning networks
The framework adopts the combination of two complementary

CNNs: a modified ResNet-34 and a U-Net. The modified ResNet-34 is
designed for predicting the centroid locations of rooms from rasterized
floor plan images. To improve spatial feature representation, the stan
dard ResNet-34 is modified to accept four-channel (RGBA) input images
of 256 × 256 pixels, with the additional channel encoding supplemen
tary semantic or structural information beyond standard RGB. The U-
Net encoder–decoder is employed to predict pixel-level wall structures
between the room centroids identified by the modified ResNet-34. This
division allows the framework to address two distinct yet interrelated
prediction tasks required for automated floor plan generation, as illus
trated in Fig. 3.

3.1.2.1. Room prediction strategy. The room prediction follows a
“living-room-first” strategy in which the position of the living room is
predicted first. This strategy is informed by three primary considerations
derived from the characteristics of the training data: (1) the living room
is an essential element of residential units, (2) it is typically situated
centrally within the floor plan, and (3) it connects to most other rooms
either directly or indirectly. Prioritizing the living room’s location im
proves the accuracy and structural consistency of the generated floor
plans.

3.1.2.2. Iterative room prediction with modified ResNet-34. The task of
room placement is formulated as an iterative localization process, where
the model sequentially predicts the centroid locations of all rooms in the
floor plan, as shown from step 1 to step 3 in Fig. 3. The process begins by
predicting the location of the living room. At each iteration, the modi
fied ResNet-34 receives a multi-channel (RGBA) floor plan image,
updated to reflect the placement of previously predicted rooms. The
network processes this contextual input to regress the centroid co
ordinates and semantic label of the next room to be added. After each
prediction, the layout is updated by marking the new room’s position
and type, and the process continues until a predefined stop criterion is
reached. The stop criterion is determined by training data and hyper
parameters, as discussed in Section 5.2.

3.1.2.3. Wall prediction with U-Net. The U-Net predicts pixel-level wall
structures from a multi-channel image that encodes both the spatial
boundaries and the centroid of all rooms. The centroid points serve as
spatial anchors that guide the network in inferring the logical parti
tioning of space. As a result, the output pixels represent walls that
spatially separate the areas around each predicted room centroid, pro
ducing pixel-accurate wall boundaries that are consistent with the
overall room layout, as demonstrated from step 3 to step 4 in Fig. 3.

3.2. Image processing for data extraction

Image processing techniques are employed to classify and extract
geometric structures and spatial semantics from the floor plans gener
ated by the CNN-based models (input). The extracted results are then
encoded into the first and second channels of the intermediate repre
sentation. The input data are in raster format and are converted into a
three-dimensional matrix (Input) using image processing libraries (e.g.,
Python’s OpenCV), as shown below:

Input ∈ ℝh×w×c, Intermediate = 0 ∈ ℝh×w×c,Mask = 0 ∈ ℝh×w×c, (1)

where h is the height resolution of the input 2D image, w is the width
resolution, and c is the number of channels. Additionally, two
matrices—Intermediate and Mask are initialized as zero matrices of the
same dimension as Input, where Intermediate representing the PNG
output in matrix form and Mask serving to identify different pixel classes
within the image matrix.

Different pixel values in the Input matrix represent distinct building-
related elements, with specific values determined by the CNNs and
training dataset. Each number in the Input matrix is evaluated to

Table 2
Mapping labels and pixel values in training dataset (RPLAN).

Channel Pixel
value

Semantic
information

Description

Channel
1

0 Other Labeling the boundary of the floor plan
127 Exterior wall
255 Front door

Channel
2

0 Living room Labeling the different spaces in the floor
plan1 Master room

2 Kitchen
3 Bathroom
4 Dining room
5 Child room
6 Study room
7 Second room
8 Guest room
9 Balcony
10 Entrance
11 Storage
12 Wall-in
13 External area
14 Exterior wall
15 Front door
16 Interior wall
17 Interior door

Channel
3

0
1 to 9

Non-room area
Different rooms

Distinguishing different rooms starting
from 1; and 0 represents non-room area

Channel
4

0 Exterior area Labeling the areas within the floor plan
255 Interior area

Note: the above numbers indicate the corresponding pixel values.

X. Liang et al. Automation in Construction 181 (2026) 106584

5

determine whether it represents a geometric building component or
spatial semantic information. Pixel values identified as geometric ele
ments are assigned to the Geometry array, whereas values corresponding
to spatial semantics are assigned to the Spatial array. The resulting ar
rays are formalized as follows:

Geometry = {g1, g2,⋯, gn}, Spatial = {s1, s2,⋯, sm} (2)

where g represents the pixel values classified as geometry, n represents
the total number of types of geometry elements, s represents the pixel
values classified as spatial semantics, and m represents the total number
of types of spatial semantics. In this study, the pixel values for gn and sm
are provided in Table 2.

Next, the zero-initialized matrix Mask at position (h,w, c) is updated
based on the classification results from the Input matrix. Specifically, if
the value at Input(h,w, c) is found in the Geometry array, then the cor
responding position in Mask is set to 1; if it belongs to the Spatial array,
then it is assigned a value of 2. This process is formalized as follows:

Mask(h,w, c) =

⎧
⎨

⎩

1, if Input(h,w, c) ∈ Geometry,
2, if Input(h,w, c) ∈ Spatial,
0, otherwise.

(3)

Finally, based on the values in Mask, the zero matrix Intermediate is
updated as follows:

Intermediate(h,w, k) = {Input(h,w, c) |Mask(h,w, c) = k}, k = 1, 2. (4)

When Mask(h,w, c) = 1, the value at Input(h,w, c) is assigned to the
first channel of Intermediate (k = 1), representing Geometry. Similarly,
values belonging to the Spatial array are assigned to the second channel
(k = 2).

Through Eqs. (1)–(4), all geometric and spatial semantic data
extracted from the CNN-generated floor plans are transformed into the
first and second channels of the Intermediate matrix. An example of these
channels is shown in Fig. 4, illustrating the geometric map and spatial
semantics, with pixel values derived from the CNN-generated floor
plans.

3.3. BIM generation

The BIM generation process takes as input the mathematical
parameter set produced in step two (image processing), which describes
the building layout in terms of geometric coordinates, semantic labels,
height values, and material attributes. These parameters can be stored in

Fig. 2. Different views of sample from RPLAN dataset. (a) superimposed RGBA channels; (b) extracted floor plan boundaries; (c) room segmentation represented by
distinct pixel values; (d) mask used for room count calculation; (e) area computation based on enclosed boundaries.

Fig. 3. Workflow of combined networks.

X. Liang et al. Automation in Construction 181 (2026) 106584

6

any structured format (e.g., JSON, CSV/Excel tables, raster channel
encodings) and are independent of any specific BIM platform. The pa
rameters are then mapped to building elements through either platform-
neutral toolchains, such as generating IFC entities via Python with
IfcOpenShell, or through platform-specific APIs (e.g., Autodesk Revit
API, ArchiCAD API) for direct model creation.

To demonstrate this concept, a set of rule-based algorithms was
developed and utilized alongside Revit API in Revit 2024 [63], imple
mented using C# in Visual Studio 2019. These algorithms read the in
termediate four-channel image as input, decode each channel into its
corresponding geometric and semantic attributes, and map them to
Revit building components. To achieve full automation, the algorithms
and the Revit API procedures were integrated into a single executable
script, which was compiled into a dynamic link library (DLL). This DLL is
loaded directly within Revit 2024, enabling the BIM generation process
to run entirely within the native Revit environment without manual
intervention.

3.3.1. Decision-making strategy for semantic completion
Since the generated floor plans are inherently 2D, supplementary

information—such as height values and semantic attributes (e.g., win
dow offsets, wall materials)—must be added before conversion. These
attributes are encoded into the third (height) and fourth (material se
mantics) channels of the intermediate representation.

To overcome the limitations of previous studies in representing se
mantic and dimensional diversity, a custom component library was

developed, with representative entries listed in Tables 3 and 4. The se
mantic completion strategy is governed by the following global heuristic
design rules:

• The first floor of the BIM—referred to as “Level 0”—is set at zero
height.

• Elements belonging to the same category within the same floor plan
have uniform semantic attributes.

• Interior and exterior walls within the same floor plan are assigned
uniform height values.

As an alternative, the material semantics and dimensions presented
in Tables 3 and 4 may be expanded or replaced to suit different research
objectives by the workflow demonstrated in Fig. 5. For example, when
adding a new interior door, the process begins by searching the local
library. If the desired instance is unavailable, then the official Revit li
braries [64]—offering a comprehensive selection of materials and
components for various countries—can be consulted; if the instance
remains unavailable, then resources from the Revit community may be
utilized, or the instance may be created manually as a last resort. Once
the target instance is acquired, its dimensions are verified: if the
required dimensions exist, then the instance can be added to the local
library for API access; otherwise, a similar existing instance may be
modified and saved as a new variant.

3.3.2. Height and semantic completion
The next step is to assign height information to Door, Wall, and

Window in the third channel. Eq. (5) determines the type of architectural
element represented by each pixel in the first channel by querying its
pixel value. Different values are assigned in the third channel repre
senting the corresponding height in the first channel, based on the
component library and global heuristic design rules specified in Section
3.3.1:

Intermediate(h,w, 3) =

⎧
⎨

⎩

0, Intermediate(h,w,1) ∈ Door,
U(28, 30), Intermediate(h,w,1) ∈ Wall,
0 ∪ U(8,10), Intermediate(h,w,1) ∈ Window.

(5)

Because the standard range of pixel values in PNG images is 0 to 255,
this study represents height by multiplying the pixel value by 100 mm;
for example, a wall with a height of 2950 mm would have a pixel value
of 29.5 in the third channel. U(28, 30) is a random number between 28
and 30, representing 2.8–3 m in height. The geometry in the third
channel is identical to that in the first channel in Fig. 4(a), but the pixel
values differ, representing the height of the element.

Revit API can be divided broadly into three main functional modules:
geometric modeling, semantic modeling, and filter and query module.
The geometric modeling module is responsible for creating the basic
geometric shapes of building elements, such as points, lines, and curves.
Building on this foundation, the semantic modeling module assigns at
tributes, properties, and relationships to these geometric shapes,

Fig. 4. First and second channels of intermediate PNG, containing geometries and spatial semantics derived from floor plans generated by convolutional neural
networks (CNNs).

Table 3
Semantics and dimensions of windows and doors.

Category Exterior
door

Interior
door

Sliding
door

Plain
window

French
window

Legend

Length ×
height (mm
× mm)

810 ×
2110
910 ×
2110
1010 ×
2110

810 ×
2010
910 ×
2010
810 ×
2110
910 ×
2110

1700 ×
2000
1700 ×
2100
1800 ×
2000
1800 ×
2100

910 ×
910
910 ×
1210
1360 ×
910
1360 ×
1210
1810 ×
910
1810 ×
1210

2100 ×
2150

Offset (m) 0 0 0 0.8–1 0

X. Liang et al. Automation in Construction 181 (2026) 106584

7

effectively transforming raw geometric models into semantically rich
building components. Notably, the assignment of semantic attributes
must be performed by selecting components from Revit’s library via the
filter and query module. Related operations of the component library are
discussed in Section 3.3.1.

Fig. 6 illustrates an example of creating a plain window instance
listed in Table 3. First, three combined filter conditions (FamilySymbol,
BuiltInCategory, and OST Windows) are applied in the filter and query
module (FilteredElementCollector) to obtain windowType, an array con
taining all window instances that meet these filter conditions.

The second step uses NewFamilyInstance method to create a new
instance in Revit by specifying both the element type and a designated
coordinate. In this example, the fourth element (windowType[3] = Win
dows_Sgl_Plain 1360 × 1210 mm) from the query result and a coordi
nate (point) are specified. This creates a 1360 mm × 1210 mm window
instance at the designated location point in Revit.

The specific material properties of the generated window are built-in
in Revit, as illustrated in Fig. 7. Therefore, the pixel value of the fourth
channel (material map) of the intermediate file is assigned based on

Intermediate(h,w, 4) = {s|Intermediate(h,w,1) ∈ Geometry}, s

∈ {0,1,⋯, n − 1}, (6)

where n is an integer representing the total number of specific building
elements in the current Revit library that meet all filtering conditions,
and s is the assigned pixel value, which is a random integer between
0 and n − 1.

3.3.3. From floor plans to BIMs
The placement of each BIM element is determined by the geometric

coordinates derived from the first channel of the intermediate matrix.
However, in the pixel matrix representing the rasterized image, each
pixel’s coordinates only indicate its position within the matrix without
any real-world distance association. To address this, a scaling factor is
introduced to convert pixel coordinates into actual distances.

In this study, the training dataset used was RPLAN, which consists of
a large collection of real-world floor plans normalized by the dataset’s
authors to a resolution of 256 × 256, representing an actual area of 18 m
× 18 m. This normalization implies that one pixel corresponds to

Table 4
Semantics and dimensions of walls.*1

Category Legend/Semantic information*1 Width (mm) Offset (mm) Height (m)

Exterior wall 310

0 2.8–3215

290

Interior wall 125

100

130

*1 Ext = Exterior, Int = Interior, Partn = Partition, Bwk = Brickwork, Air = Air cavity, Ins = Insulation, DBlk = Dense blockwork, Blk = Blockwork, P=Plaster, Std =
Stud, Gwb = Gypsum wallboard, MStd = Metal stud.

Fig. 5. Workflow for material extension or replacement.

X. Liang et al. Automation in Construction 181 (2026) 106584

8

approximately 70 mm in real-world distance. Because the neural
network trained on this dataset generates floor plans adhering to this
scale, the generated plans approximately follow the same proportion. To
ensure compatibility with the Revit software, which uses millimeters as
its default unit of length but its API operates with imperial units (foot/
ft), a conversion factor f = 70

304.8 is applied. This conversion ensures that
one pixel in the intermediate file accurately represents 70 mm in Revit,
thus maintaining accurate scaling and compatibility between the ras
terized image output and the BIM generation process.

The orientation of each element is determined by the
FacingOrientation parameter, defined as a 3D unit vector and can be
modified. For example, when a door opens to the north, its
FacingOrientation = (0, 1,0); if this parameter is changed to (0, − 1, 0),
then the door’s opening direction is flipped to face south. In this study,
directional orientation is computed by computing the spatial relation
ship between the center point of the living room and directional ele
ments such as doors; directions that are closer to the center point are
defined as “inside,” whereas those farther away are defined as “outside.”

The geometric coordinates in the pixel coordinate system determine

Fig. 6. Generating window instance by Revit API.

Fig. 7. Built-in material properties in Revit.

Fig. 8. Four geometry generation methods and determined geometry types.

X. Liang et al. Automation in Construction 181 (2026) 106584

9

the corresponding position of an element in Revit, while other properties
(such as thickness and width) are defined by the material properties. In
the first channel of the intermediate file, pixels with the same value
represent the same type of building element. From a geometric
perspective, these equal-value pixels can be categorized into four types:
a single point, a line segment, a non-closed polyline, and a closed loop.
These four types correspond to four Revit API classes for BIM element
creation: point-based, line-based, open curve-based, and closed curve-
based, respectively, as described below:

• Point-based elements such as windows and doors are generated using
input 3D point coordinates as the central coordinates at the base of
the geometry, as illustrated in Fig. 8(a). The length, width, and
height of these elements are determined by the selected material
properties.

• Line-based elements such as interior walls are generated using the
input line as the central axis along the length of the geometry’s base,
as shown in Fig. 8(b). The line is defined by a vector from the 3D start
point to the 3D end point. The height and length of the generated
element are specified by input parameters, while the width is
determined by the selected material properties.

• In Revit API, the CurveLoop class is a collection of one or more lines,
curves, or arcs. For elements generated from open curves, each in
dividual component (line, curve, or arc) within CurveLoop is treated
as the central axis along the length of the geometry’s base, following
the same generation method as line-based elements, as depicted in
Fig. 8(c).

• For elements generated from closed curves, the input closed curve is
extruded upward or downward to create geometry, as illustrated in
Fig. 8(d). The thickness of the generated element is determined by
the selected material properties.

Algorithm 1 is a pseudocode that uses the intermediate PNG as an

input parameter and combines the rule-based algorithm and Revit API to
generate a BIM. Specifically, Algorithm 1 takes two input parameters: an
h × w × 4 matrix converted from the intermediate image and a dictio
nary D. The dictionary D is a mapping table with two parameters: a key
and a value: key is a pixel value, and value is the corresponding element
type of this pixel. For example, one data point in D is
{

key = 127, value = ˝ExtWall˝
}

, meaning that if the input number 127

is passed to the dictionary, then it returns the string “ExtWall,” indi
cating that this pixel value represents an exterior wall. This dictionary is
created manually and converted from the mapping relations presented
in Tables 2, 3, and 4. Such a dictionary ensures the scalability of the
proposed framework in the case of different datasets used or the addition
of new element types by adding a key–value pair to the dictionary.

The algorithm begins by iterating through all the pixel values in the
first channel of the matrix. If the value at Intermediate[x, y,0] is not zero,
then this indicates the presence of an architectural element at position
[x, y]. The corresponding height and material attributes of this element
are stored as Intermediate[x, y,3] and Intermediate[x, y, 4], respectively,
while the specific element type is identified using the predefined dic
tionary D. Next, a 3 × 3 mask is applied around the position [x, y,0] to
search for non-zero-pixel values. This local neighborhood is used to
determine whether the pixel belongs to a point, line, open curve, or
closed curve geometric classification, as described in Fig. 8.

This process collects all the necessary parameters required by Revit
API to generate a complete architectural instance. These include the
geometric classification, corresponding geometric coordinates, height
information, and material semantic data.

Algorithm 1. BIM generation using Revit API.

X. Liang et al. Automation in Construction 181 (2026) 106584

10

3.4. Automatic annotation tools

The filter and query module of the BIM software API—in combina
tion with custom scripts—enable the extraction of orientation and di
mensions for individual building elements. These extracted data are
then used to generate dimension annotations in floor plans and
elevations.

Various properties of each element within the BIM can be obtained
via the filter and query module of Revit API. As shown in Fig. 9, filter
and query are used to retrieve the material properties of a door, where
the three highlighted data items are FacingOrientation (the direction in
which the door opens), Point (the generation coordinate), and Name (the
dimensions or identifier). Algorithm 2 is a pseudocode that shows how
to use different combination filter conditions to consult the document
(BIM model) in the current Revit software and generate annotations for
different aspects.

The algorithm begins by using filter and query module to retrieve
material properties for a specific type of building element in the current
BIM. From the querying results, key material properties are extracted,
such as FacingOrientation, Point, and Name. Based on these, a dimension
line can be created that is consistent with the length and orientation of
the element to be annotated.

Next, an offset is specified manually to generate a reference line, RA;
this is a parallel line that matches the length of line but is separated by
the specified offset distance. Finally, RA is annotated with text repre
senting the length of line in millimeters. This approach ensures precise
annotations that are aligned with the geometric and material properties
of the building elements.

Algorithm 2. Generating annotations.

3.5. Generality and cross-platform adaptability of the framework

The proposed framework is designed to be platform-independent and
modular, comprising four key steps: data preparation, data extraction,
BIM generation, and annotation. While the current implementation le
verages a specific combination—namely a modified ResNet-34 and U-
Net for floor plan generation, and the Autodesk Revit API for BIM
modeling and 2D annotation—each step in the workflow supports
interchangeable alternatives depending on the dataset, modeling plat
form, or research objective.

Data preparation relies on data-driven models and is therefore in
dependent of any BIM tool. Data extraction applies image processing
methods to convert the generated floor plan into a structured, machine-
readable mathematical description of the building layout, consisting of
geometric, semantic, height, and material parameters. These parameters
can be stored in structured formats—such as raster images, JSON files,
or spreadsheets—and serve as the direct input for BIM generation.

Regarding BIM generation, the parameter set can be processed via
Python using IfcOpenShell to produce IFC entities or mapped to
platform-specific APIs such as the Autodesk Revit API or the ArchiCAD
API for model creation. Annotation is based on mathematical view
projections of the BIM; using the same platform as in BIM generation
helps to avoid format-conversion overhead and semantic mismatch.

4. Experiments

The experiments reported in this study were designed to evaluate the
proposed framework’s performance in automating the generation of
BIMs and paired annotated 2D drawings from generated floor plans.
Specifically, the experiments aimed to validate three key aspects: (1) the
prediction accuracy of the CNN models, (2) the quality and efficiency of
BIM generation using Revit API, and (3) the effectiveness of the auto
mated annotation tool in producing annotated 2D drawings.

4.1. Implementation details

The networks were trained using PyTorch on an NVIDIA GeForce
RTX 3090 (24G) GPU. The RPLAN dataset, comprising over 80,000
raster images in PNG format, represents residential unit floor plans, and

Fig. 9. Query results for a door displayed in Visual Studio 2019.

X. Liang et al. Automation in Construction 181 (2026) 106584

11

these images were split into training, validation, and test sets in a
70:15:15 ratio. To improve the training efficiency, the images were
converted from PNG to Pickle files, a Python-specific serialized file
format that efficiently stores and quickly loads complex data structures.
This conversion considerably reduced I/O overhead and enhanced
training speed compared to directly loading PNG images. Each Pickle
file included masks for room boundaries, categories, indexes, and inte
rior walls or doors, as well as centroid coordinates for individual room
types calculated using a custom Python script. Training and testing the
two networks took approximately three days.

The first CNN employed was a modified ResNet-34 architecture,
adjusted to handle four-channel RGBA images of 256 × 256 pixels. The
training settings—including a batch size of 16, an initial learning rate of
0.0001, and a weight decay of 0.0001—followed standard practices
from previous CNN-based architectural image analysis studies [58].
Learning rate decay was applied at epochs 30, 60, and 90, based on
empirical findings suggesting improved convergence and reduced risk of
overfitting. This network was trained for 300 epochs because of the
complexity and variability inherent in predicting accurate room
centroid locations from raster images, allowing sufficiently many epochs
for stable convergence.

The second network utilized an encoder–decoder architecture
inspired by U-Net to predict pixel-level wall structures from room
centroid locations generated by the first CNN. Similar to the first
network, this encoder–decoder architecture used a batch size of 16, an
initial learning rate of 0.0001, and weight decay of 0.0001. However,
this network was trained for only 100 epochs because pixel-wise seg
mentation tasks typically converge more quickly because of the direct
pixel-level supervision and the structured nature of the wall predictions
[61]. The learning rate was progressively adjusted after each epoch to
facilitate faster convergence and better model stability.

Both networks were trained independently, and their outputs were
integrated sequentially within the proposed BIM generation pipeline,
substantially enhancing the automation and accuracy of BIM conversion
process.

4.2. Data preparation

Because the output of CNNs is inherently dependent on the training
data, the floor plans generated in this study exhibit characteristics

Fig. 10. Image input and output of networks.

Table 5
Mapping labels and pixel values in CNN-generated floor plans.

Channel Semantic information Pixel value

1 (exterior wall) Exterior wall
Front door

127
255

2 (interior wall) Interior wall 127
3 (spatial semantic) Living room 100

Master room 101
Kitchen 102
Bathroom 103
Dining room 104
Child room 105
Study room 106
Second room 107
Guest room 108
Balcony 109
Entrance 110
Storage
Wall-in

111
112

4 (inside area) Inside area 255
Outside area 0

Note: the above numbers indicate the corresponding pixel values.

X. Liang et al. Automation in Construction 181 (2026) 106584

12

similar to those of the RPLAN training dataset. Specifically, RPLAN
represents an 18 m × 18 m spatial area using a 256 × 256-pixel map,
where each pixel corresponds to approximately 70 mm × 70 mm (about
4.9 × 10− 3 m2). Each floor plan in RPLAN spans 60–120 m2, equivalent
to approximately 12,245–24,490 pixels.

To ensure consistency between the training data and the generated
input representations, a Python-based program was developed to
generate training-aligned synthetic floor plans. The process begins by
initializing a 256 × 256 canvas on which polygonal room boundaries are
drawn using OpenCV, ensuring that the enclosed area falls within the
target pixel range. Each generated floor plan features a unique spatial
configuration and may include non-Manhattan-style boundaries,
ensuring both realism and geometric diversity. As shown in Fig. 10(a),
the generated boundary and the area that it encloses—used as input for
the CNNs—are represented by the first channel (exterior wall) and the
fourth channel (inside area), respectively.

In the input image, only the first and fourth channels contain data,
while the second and third channels are initially empty, as illustrated in
the input data in Fig. 10(a). The first channel represents the building
boundaries, including external walls and the front door, while the fourth
channel contains the areas enclosed by these boundaries.

The iterative generative network generates spatial semantics in the
third channel, and the encoder–decoder network generates internal
walls with noise in the second channel, as shown in the output image
with noise in Fig. 10(b). Finally, a denoising algorithm is applied to the
second channel (interior wall) to remove noise, resulting in the denoised
output shown in Fig. 10(c). These three data share the same set of pixel
value mapping relations as given in Table 5, where specific semantic
information is encoded by pixel values in different channels.

4.3. Data extraction

Fig. 11 illustrates the process of transforming the CNN-generated
floor plan into an intermediate PNG through image processing. In
Fig. 11(a), the denoised floor plan generated by the CNNs is presented,
while Fig. 11(b) shows the synthesized intermediate PNG.

First, the external walls, internal walls, and front doors from the first
and second channels of the CNN-generated floor plan are extracted and
merged into the first channel of the intermediate image. Next, semantic

information from the third and fourth channels is extracted and merged
into the second channel of the intermediate image. The third and fourth
channels of the intermediate image are completed manually to include
height information and material properties, respectively.

4.4. BIM generation

The proposed framework employs rule-based algorithms and Revit
API to transfer a CNN-generated floor plan to the corresponding BIM. By
leveraging looping scripts, this process can be fully automated, enabling
batch conversion of multiple floor plans into BIMs. Fig. 12 shows two
CNN-generated floor plans and the corresponding synthetic BIMs.

Furthermore, by tuning the hyperparameters of the CNNs, different
floor plan layouts can be generated from the same boundary input, as
illustrated in Fig. 13. The adjustment of CNN hyperparameters and their
impact on the generation results are discussed in detail in Section 5.2.

Building upon this capability, multi-story buildings can be created
with limited manual intervention. Fig. 14 presents a two-story residen
tial unit, where the base level of the first floor is set to zero (level 0) and
the base level of the second floor is set to 3000 mm (level 1) using Revit
API.

4.5. Annotation tools

This study focuses on three aspects of automatic annotation: grid
generation in floor plans, dimensioning in floor plans, and dimensioning
in elevation views. The automatic annotation toolbox is built upon the
Revit API query and filter functionalities as described in Algorithm 2 in
Section 3.4. Additionally, 2D drawings in different styles can be gener
ated by selecting various built-in rendering modes in Revit. The anno
tated 2D floor plans shown in this section were rendered in the
“Realistic” mode.

Fig. 15 depicts an annotated floor plan with grids and grid di
mensions. Different annotation fonts and sizes can be customized, as
shown in Fig. 16. Fig. 16(a) demonstrates the annotations of grids,
windows, and doors using the “Arial” font in different sizes. In addition,
the toolbox can generate the dimensions of various elements and an
notations for elevation views, as shown in Fig. 16(b).

Fig. 11. Creating intermediate image.

X. Liang et al. Automation in Construction 181 (2026) 106584

13

5. Results and discussion

This section provides a comprehensive evaluation of the proposed
generation framework and the ResBIM dataset. It begins with quanti
tative assessments of model accuracy and a study of key hyper
parameters, followed by an examination of BIM generation quality and
efficiency. The dataset’s characteristics are then analyzed and compared
with existing resources, concluding with a discussion that highlights the
contributions and limitations of this work.

5.1. Quantitative evaluation of model accuracy

For the first network (the modified ResNet-34), the mean absolute
error (MAE) was used to evaluate the predicted room centroid positions
against the GT centroids, with the error measured in pixels. The trained
model achieves an MAE of approximately 5.2 pixels on the test set, along
with a room type classification accuracy of 99 %, indicating strong

performance in the room localization task. Fig. 17 illustrates the training
loss, MAE, and classification accuracy over epochs.

The encoder–decoder network was tasked with pixel-wise wall seg
mentation, where wall pixels accounted for only about 5 % of the total
image area (256 × 256), resulting in a severely imbalanced class dis
tribution. In such cases, commonly used metrics such as IoU tend to
underestimate model performance, as even small misclassifications can
disproportionately affect the IoU score when the target region is sparse.
To address this limitation, the Dice coefficient was used as an evaluation
metric [65]. This Dice score provides a more balanced assessment by
incorporating both precision and recall, making it particularly suitable
for segmentation quality evaluation under extreme class imbalance. The
encoder–decoder network achieved 99 % spatial classification accuracy
around wall regions, with an average Dice score of approximately 0.52,
demonstrating reasonable segmentation capability despite the sparsity
of the target class. The progression of training loss, Dice coefficient, and
accuracy across epochs is shown in Fig. 18.

Fig. 12. Two CNN-generated floor plans (left) and corresponding synthetic BIMs (right).

Fig. 13. Three floor plans with identical boundaries but different spatial layouts.

X. Liang et al. Automation in Construction 181 (2026) 106584

14

5.2. Key hyperparameters and their impacts

The synthetic floor plan generation process relies on several adjust
able hyperparameters, as summarized in Table 6. The parameter
mask size (M) defines the pixel radius of the local search area used
during the feature decoding process; it directly affects the pixel density
of the generated floor plan layout. A smaller value of M produces sparser
representations with lower pixel density, typically resulting in simpler
and more abstract room layouts. In contrast, a larger M expands the
search area, enabling the network to capture finer geometric details and

produce denser, more complex spatial configurations. Therefore, M
serves as a crucial parameter for controlling the granularity of the
reconstructed floor plan.

The parameter room number (R) specifies the number of distinct
room labels that the modified ResNet-34 architecture attempts to
generate, effectively corresponding to the number of rooms in the syn
thesized floor plan. To ensure consistency with the scale and capacity of
the input layout, the network imposes an upper limit on the number of
rooms based on the input floor plan’s area. If R exceeds this predefined
threshold, the actual number of rooms generated is constrained by both

Fig. 14. BIM of two-story residential unit.

Fig. 15. Synthetic BIM (left) and creation of grids and dimensions in its floor plan (right).

X. Liang et al. Automation in Construction 181 (2026) 106584

15

Fig. 16. Creating other types of annotations in different aspects.

Fig. 17. Training loss, mean absolute error (MAE), and classification accuracy over epochs for modified ResNet-34.

Fig. 18. Training loss, Dice coefficient, and accuracy across epochs for encoder–decoder.

X. Liang et al. Automation in Construction 181 (2026) 106584

16

the threshold and the effective spatial resolution governed by M.
Consequently, R and M jointly regulate the spatial and semantic
complexity of the final output.

Fig. 19. illustrates how varying M from 2 to 13 affects the generated
(non-denoised) floorplans under a fixed floor plan boundary with R =
10. In this case, the value of R exceeds the threshold imposed by the
network, as the maximum number of rooms in the training set is 9.
Therefore, the CNNs rely on the value of M to determine the number and
complexity of rooms. When M is between 1 and 6, the generated wall
pixels are sparse, resulting in numerous broken and disconnected
structures. When M ranges from 7 to 10, the model exhibits optimal
convergence, producing clear layouts with minimal noise. However,
when M exceeds 10, the number of wall pixels increases, but many of
them are noise.

Fig. 20. presents the effect of increasing R from 2 to 6 under the same
floor plan boundary, with M fixed at 7 and 9, both within the optimal
convergence range. When R is below the network’s room-number
threshold, it directly determines the number of rooms generated.

Meanwhile, different values of M under the same R produce variations in
room layout and spatial configuration.

Maintaining a consistent boundary is particularly valuable for ap
plications in modular architecture and multi-story building design. By
using different combinations of M and R, the model can generate
different floor plan layouts with varying room counts under the same
boundary constraints, as demonstrated in Section 4.4.

5.3. Quality and efficiency of BIM generation

To ensure the quality of the generated BIMs, Revit API was utilized in
conjunction with Revit’s built-in validation tools to check each con
verted instance systematically according to several key criteria: (1) wall
continuity and integrity—verifying that all interior and exterior walls
are fully connected, closed, and free from gaps, floating segments,
overlaps, or redundant wall sections; (2) opening–host relation
ship—ensuring that each door or window (opening) is correctly asso
ciated with a host wall, with valid position and alignment within the
wall boundaries and thickness; (3) spatial constraints—checking for
door swings or window placements that might result in collisions with
other doors, walls, or windows. During the conversion process, any BIM
model failing to meet these requirements triggered a warning window in
Revit, as illustrated in Fig. 21(a).

In a task that involved generating 1000 floor plans, the trained
networks took an average of 1.2 s to produce one noisy floor plan and
1.6 s to denoise it. On average, the framework generated BIMs at a speed
of approximately six models per minute. In this study, 1100 distinct
boundaries were generated using Python and OpenCV and served as
inputs to the CNNs; correspondingly, the CNNs produced 1100 synthetic
floor plans. When these floor plans were converted into BIMs using Revit
API, 1027 conversions were successful without any warning windows,
resulting in an overall conversion accuracy of 93.4 %. The entire process
took around four hours to complete. The 73 failed conversions were
caused primarily by dimensional errors, excessive pixel density, and
insufficient pixel coverage, as shown in Fig. 21.

Table 6
Key hyperparameters of CNNs.

Parameter
(abbreviation
letter)

Data
type

Recommended
range

Effect on results

mask_size (M) Integer 6–9 The radius of the local search
area. Smaller values lead to
sparser layouts; larger values
result in more detailed and
complex room distributions.

room_num (R) Integer 2–6 The number of room labels
generated by the network
represents the number of
rooms in the generated floor
plan.

Note: This table summarizes the two key hyperparameters. Additional hyper
parameters were tested but showed a minimal effect on the model’s
performance.

Fig. 19. Effects of increasing mask size (M) under a fixed boundary and constant room number (R).

Fig. 20. Effects of increasing R from 2 to 6 on floor plan generation under a fixed boundary, with M set to 7 and 9 (within the optimal convergence range).

X. Liang et al. Automation in Construction 181 (2026) 106584

17

Dimensional errors were encountered during the conversion of CNN-
generated raster floor plans to BIMs. Because these floor plans are pixel-
based, it is necessary to map pixel values to real-world distances; to
maintain scale consistency with the training dataset, in this study each
pixel represents 70 mm in the real world. However, some generated
floor plans included walls with fewer than 10 pixels; this resulted in the
wall length being less than 700 mm, which is smaller than the standard
minimum width of a sliding door in the default Revit library. When
attempting to insert a door into a wall narrower than the door width,
Revit generates an error, preventing proper placement of the door, as
illustrated in Fig. 21(a).

Failures were also observed in the encoder–decoder network. The
encoder–decoder generates walls in the form of discrete pixels,

which—despite containing noise—serve to partition space and define
individual rooms. As analyzed in Section 5.2, if the mask size hyper
parameter is set too small, then the number of wall pixels becomes
insufficient, resulting in broken or disconnected walls after denoising, as
highlighted in Fig. 21(b) and (c). Conversely, if mask size is too large,
then too many wall pixels are produced, which leads to redundant wall
structures after denoising, as highlighted in Fig. 21(d) and (e).

5.4. Characteristics and usage of dataset

ResBIM is a synthetic dataset designed specifically for research in
BIM automation and 2D-to-BIM reconstruction. The dataset comprises
1027 paired samples, each consisting of a fully parametric 3D BIM (RVT

Fig. 21. Three types of failure cases: (a) dimensional error, (b) disconnected walls resulting from small mask size and (c) corresponding denoised output, and (d)
redundant spaces caused by large mask size and (e) denoised result.

Fig. 22. BIM in the ResBIM dataset (left) and corresponding RGB point cloud (right) in CloudCompare.

X. Liang et al. Automation in Construction 181 (2026) 106584

18

format) and its corresponding annotated 2D floor plan. All data were
generated and validated using automated workflows in Autodesk Revit
to ensure both consistency and scalability. ResBIM is intended for a wide
range of applications, including multi-platform BIM interoperability,
serving as a foundation for benchmarking 2D-to-BIM algorithms, and the
development of computer vision models for architectural analysis. The
dataset supports a wide range of use cases, including but not limited to
the following.

• Multi-platform compatibility. The BIM generation in this study utilizes
Revit API to produce RVT-format models within Autodesk Revit.
Although RVT is a proprietary format with software dependency,
Revit—as one of the mainstream BIM software solutions in the ar
chitecture, engineering, and construction (AEC) domain—provides
various built-in tools for format conversion and export. Each BIM in
the dataset can be exported seamlessly to the IFC format, enabling
compatibility with multiple platforms.

• 2D-to-BIM evaluation and benchmarking support. ResBIM supports
evaluation across the two major stages of the 2D-to-BIM workflow. In
the data extraction stage, each annotated floor plan provides se
mantic categories, textual labels, and geometric elements, enabling
the measurement of detection rate, pixel- and class-level accuracy,
and OCR accuracy. In the BIM generation stage, each paired BIM
serves as reference data, allowing reconstruction fidelity to be
assessed using widely adopted metrics such as point cloud IoU and
IFC-based component matching. Specifically, since BIMs are
semantically rich 3D representations, they can be directly converted
into IFC files, RGB-preserving point clouds (e.g., PLY), or meshes (e.
g., OBJ). Fig. 22 illustrates an RGB point cloud converted from a BIM
in the ResBIM dataset, used to compute IoU for 2D-to-BIM algo
rithms. Beyond these stage-wise assessments, ResBIM also supports
end-to-end evaluation—from floor plan recognition to the genera
tion of the resulted BIM—enabling comprehensive benchmarking of
accuracy, runtime efficiency, and overall system performance.

• Obtaining various types of 2D drawings. Because BIMs are semantically
rich 3D representations, all BIMs in the dataset can be converted into
various 2D views such as floor plans, elevations, and cross-sections.
Combined with the provided annotation toolbox, these views can be
exported conveniently from Revit with annotations. The resulting 2D
drawings serve multiple research purposes, such as training OCR
models to recognize different font styles or training CNNs to detect
openings in elevation views. As illustrated in Fig. 16 (a) and (b), the
paired floor plan and east elevation view are directly derived from
the BIM model. This also addresses a common limitation highlighted
in previous studies: the lack of annotated elevation drawings with
height information, which has largely restricted 2D-to-BIM data

extraction to planar geometry instead of multi-view representations
[16,42].

5.5. Dataset comparison

To better evaluate the contribution of the proposed ResBIM dataset,
two comparative analyses are presented: (1) against existing floor plan
datasets, and (2) against BIM-based datasets. Numerous large-scale
publicly available point cloud datasets based on real-world building
scans, such as ScanNet [66] and S3DIS [67], have played an important
role in scan-to-BIM and SLAM research. However, because these datasets
provide only point cloud data without corresponding 2D floor plans or
BIMs, they are not applicable to the present 2D-to-BIM task and are
therefore excluded from the dataset comparison.

Table 7 summarizes a comparison between ResBIM and representa
tive floor plan datasets. Among these datasets, real-world floor plans are
often sourced from housing rental companies for marketing purposes.
These drawings typically focus on layout and frequently suffer from
incomplete information or distorted proportions. Fig. 23(a) shows a real-
world plan from the CVC-FP [23] dataset, where room dimensions are
annotated using area values (e.g., 26.18 m2). As a result, the exact
spatial dimensions (e.g., length and width) of each room are difficult to
determine. Fig. 23(b) displays a real-world plan from the SydneyHouse
[24] dataset, where the red-highlighted annotation indicates the living
room size as 6.8 × 4.2 (assuming a rectangular shape). However, the
actual room shape is irregular, and certain rooms such as the laundry
and bathroom lack dimensional annotations altogether.

In many augmented datasets, original elements present in real-world
drawings—such as dimension annotations and furniture—are typically
removed during the augmentation process. As shown in Fig. 23(c), a
floor plan from the Tell2Design [35] dataset illustrates this character
istic. Such augmented floor plans are often created for classification
tasks in computer vision and usually lack textual annotations and rarely
include RF 3D models.

In contrast, ResBIM is generated within Autodesk Revit, which sup
ports customizable dimension annotations at varying levels of detail, as
shown in Fig. 23(d). Because of the 3D nature of a BIM, in addition to
generating floor plans, it can also produce elevation views as shown in
Fig. 16(b)––a data type that remains rare in existing datasets. The RF
BIMs in the dataset allow researchers to evaluate the accuracy and
generalizability of their algorithms using standard metrics such as point-
to-point distance and IoU.

Table 8 compares ResBIM with existing datasets that provide BIMs.
Prior datasets in this category are typically derived from laser-scanned
point clouds of real-world buildings and are designed primarily for
scan-to-BIM tasks. While these datasets offer higher geometric and se
mantic complexity because of their real-world origin, they often lack

Table 7
Related datasets containing floor plans.*1, *2

Dataset Year Data source*1 3D data*2 Annotation type Dimension Furniture Height information

CVC-FP [23] 2015 RW × Text √ √ ×

SydneyHouse [24] 2016 RW × Text √ √ ×

ROBIN [25] 2017 A × × × √ ×

R2V [26] 2017 A × Text, RGB × √ ×

CubiCasa5K [27] 2019 RW × Text × √ ×

RPLAN [28] 2019 A × RGB × × ×

HouseExpo [29] 2020 S × × × × ×

Structure3D [30] 2020 A RF RGB × × √
ZInD [31] 2021 RW × Text √ × ×

FloorPlanCAD [32] 2022 RW × RGB √ √ ×

MLSTRUCT-FP [34] 2023 A × × × × ×

Tell2Design [35] 2023 A × RGB × × ×

MSD [37] 2024 A × RGB × × ×

ResBIM 2025 S RF Text, RGB √ × √

*1 RW = real-world data, A = augmented based on real-world data, S = synthetic data.
*2 RF = reference model.

X. Liang et al. Automation in Construction 181 (2026) 106584

19

paired 2D annotations, limiting their applicability for 2D-to-BIM
research. In contrast, ResBIM is designed specifically for the 2D-to-
BIM task and includes labeled 2D floor plans that are consistent with
the associated BIMs. As a synthetic dataset, ResBIM offers high scal
ability, allowing the data volume to be expanded with minimal manual
effort––an essential property for training large-scale models. While
ResBIM offers high scalability and precise 2D-3D correspondences, it
does not fully replicate the complexity and diversity of real-world
architectural data, a limitation discussed in Section 5.6.

5.6. Discussion

Existing public datasets for 2D-to-BIM research are fragmented. Real-
world floor plan datasets are mainly designed for computer vision tasks
such as image classification or pixel-level parsing and thus lack 3D

models or the annotations needed in AEC workflows. Conversely, BIM-
containing datasets are largely built for scan-to-BIM research and
generally do not provide corresponding 2D drawings. Attempts to
generate synthetic floor plans and convert them into BIMs have been
hindered by the instability of generated layouts, which prevents large-
scale automated production. In addition, semantic and height informa
tion in current 2D-to-BIM workflows is usually assigned through defaults
or manual configuration, restricting dimensional and material diversity.
The absence of annotated elevation views has further confined most
extraction methods to planar geometry, creating a significant gap for
tasks that require accurate and large-scale mapping between 2D and 3D
representations.

ResBIM dataset directly addresses this gap by providing over 1000
paired floor plans and fully parametric BIMs, generated through auto
mated Revit workflows. These pairs enable not only training of

Fig. 23. Comparison of 2D drawings in different datasets.

Table 8
Related datasets containing BIMs.*1, *2

Dataset Year Number of BIMs (areas) Data source*1 3D data*2 2D drawing availability Scalability and extensibility Target task

Indoor PC/BIM [33] 2023 5 (No mention) RW GT × Low Scan-to-BIM
Scan-vs-BIM

BIMNet [38] 2025 25 (8710 m2) RW GT × Low Scan-to-BIM
ResBIM 2025 1 k (12,000 m2) S RF √ High 2D-to-BIM

*1 RW = real-world data, S = synthetic data.
*2 GT = ground-truth model, RF = reference model.

X. Liang et al. Automation in Construction 181 (2026) 106584

20

advanced AI models but also reproducible evaluation of 2D-to-BIM al
gorithms using metrics reliant on RF BIMs. With the accompanying
annotation toolbox, BIMs can be exported into multiple 2D view
s—including floor plans, elevations, and sections—supporting research
in OCR, vision-based recognition, and multi-view reconstruction. In
doing so, ResBIM tackles two critical limitations: the lack of paired 2D-
3D datasets and the absence of annotated elevation views.

Beyond the dataset, the proposed four-step framework introduces
methodological advances. Boundary constraints during floor plan gen
eration stabilize large-scale automated workflows, overcoming the
instability issues reported in earlier data-driven methods (e.g., Section
2.3). The extensible semantic material library enriches variability in
materials, dimensions, and components, moving beyond reliance on
defaults and enabling more representative scenarios. Together, these
design choices make the framework scalable, platform-compatible, and
adaptable across diverse data sources.

By filling a critical data gap, this work lays the groundwork for future
research in automated BIM reconstruction and supports scaling to more
diverse and complex architectural scenarios. Furthermore, the proposed
generation pipeline demonstrates considerable cost-effectiveness in time
and labor. It is capable of generating, denoising, and converting over
1000 floor plans into BIMs within approximately four hours while
maintaining a success rate exceeding 93 %, the framework substantially
reduces manual workloads and modeling time relative to conventional
BIM workflows. As the dataset continues to evolve, including the inte
gration of a wider range of architectural styles and elements, the pro
posed framework has the potential to further drive AI innovation in the
AEC domain.

5.6.1.1. Limitations and positioning. Despite these advantages, certain
limitations remain. The dataset primarily represents residential layouts
with straight walls, which limits applicability to industrial or public
facilities. Elements such as staircases, MEP systems, and façades are also
absent, restricting its use in research targeting these features. Moreover,
synthetic datasets cannot fully capture the drafting irregularities or
noise of real-world drawings, which may affect model generalization.
Nonetheless, as shown in related domains (e.g., RPLAN [28], SUNCG
[68]), synthetic datasets with controlled assumptions can serve as useful
early-stage resources. Accordingly, ResBIM should be viewed as a sup
plementary dataset rather than a replacement for real data, aiming to:
(1) expand data availability in early-stage 2D-to-BIM research, (2) pro
vide a controlled baseline for method comparison, and (3) promote
standardized benchmarking protocols for real or hybrid datasets.

6. Conclusions

This paper addressed a critical gap in 2D-to-BIM research by intro
ducing a procedural BIM synthesis framework that integrates deep
learning–based floor plan generation with structured 2D-3D mapping.
Alongside the framework, the open-source ResBIM dataset and its
annotation toolbox provide the AEC community with scalable and
reproducible resources for diverse applications. The key contributions
are as follows:

• Unified procedural framework. A scalable pipeline that formalizes the
mapping from 2D drawings to BIMs, integrating deep learning with
rule-based synthesis for large-scale automation.

• Paired 2D-3D dataset. ResBIM offers paired 2D-3D data with detailed
annotations, filling a gap in the literature and providing a dataset
that supports reproducible evaluation of 2D-to-BIM algorithms.

• Open-source tools for reproducibility. Annotation utilities and dataset
design principles that support semantically consistent benchmarks
and foster community-driven research in the AEC domain.

Limitations remain, particularly the dataset’s focus on residential
layouts with rectilinear walls and the synthetic nature of the data, which
cannot fully capture the drafting inconsistencies of real-world drawings.
These constraints may affect model generalization across broader
building typologies and more complex architectural features.

Future work should focus on expanding building typologies, incor
porating complex architectural elements, and integrating more
advanced generative models capable of balancing diversity with geo
metric stability. Broader efforts to establish large-scale annotated
datasets—both synthetic and real—and standardized evaluation pro
tocols will be essential to ensure objective comparison and accelerate
the adoption of automated BIM generation in research and industry.

CRediT authorship contribution statement

Xing Liang: Writing – review & editing, Writing – original draft,
Visualization, Validation, Software, Resources, Methodology, Formal
analysis, Data curation, Conceptualization. Nobuyoshi Yabuki: Writing
– review & editing, Supervision, Project administration. Tomohiro
Fukuda: Writing – review & editing, Supervision, Project
administration.

Declaration of generative AI and AI-assisted technologies in the
writing process

In the process of preparing this work, the authors used ChatGPT to
improve the readability and language of the text. Following the use of
this tool, the authors reviewed and edited the content as necessary and
took full responsibility for the paper’s contents.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability

The data has been already published at https://github.
com/RogerLiang0725/ResBIM.

References

[1] H. El Hafdaoui, A. Khallaayoun, K. Ouazzani, Activity and efficiency of the building
sector in Morocco: a review of status and measures in Ifrane, AIMS Energy (2023)
454–485, https://doi.org/10.3934/energy.2023024.

[2] N.Z. Che-Ghani, N.E. Myeda, A.S. Ali, Efficient operation and maintenance (O&M)
framework in managing stratified residential properties, J. Facil. Manag. (2023)
609–634, https://doi.org/10.1108/JFM-10-2021-0124.

[3] F. Prideaux, R.H. Crawford, K. Allacker, A. Stephan, Approaches for assessing
embodied environmental effects during the building design process, in: IOP Conf
Ser Earth Environ Sci, Institute of Physics, 2023 12053, https://doi.org/10.1088/
1755-1315/1196/1/012053.

[4] M. Deng, C.C. Menassa, V.R. Kamat, From BIM to digital twins: a systematic review
of the evolution of intelligent building representations in the AEC-FM industry,
J. Inf. Technol. Constr. (2021) 58–83, https://doi.org/10.36680/J.
ITCON.2021.005.

[5] Y. Cao, S.N. Kamaruzzaman, N.M. Aziz, Building information Modeling (BIM)
capabilities in the operation and maintenance phase of green buildings: a
systematic review, Buildings (2022) 830, https://doi.org/10.3390/
buildings12060830.

[6] P. Schönfelder, A. Aziz, B. Faltin, M. König, Automating the retrospective
generation of As-is BIM models using machine learning, Autom. Constr. (2023),
https://doi.org/10.1016/j.autcon.2023.104937, 104937.

[7] Q. Lu, X. Xie, J. Heaton, A.K. Parlikad, J. Schooling, From BIM towards digital
twin: Strategy and future development for smart asset management, in: Studies in
Computational Intelligence, Springer Verlag, 2020, pp. 392–404, https://doi.org/
10.1007/978-3-030-27477-1_30.

[8] S.A. Adekunle, C. Aigbavboa, O.A. Ejohwomu, SCAN TO BIM: a systematic
literature review network analysis, in: IOP Conference Series: Materials Science
and Engineering, 2022, p. 12057, https://doi.org/10.1088/1757-899X/1218/1/
012057.

X. Liang et al. Automation in Construction 181 (2026) 106584

21

https://github.com/RogerLiang0725/ResBIM
https://github.com/RogerLiang0725/ResBIM
https://doi.org/10.3934/energy.2023024
https://doi.org/10.1108/JFM-10-2021-0124
https://doi.org/10.1088/1755-1315/1196/1/012053
https://doi.org/10.1088/1755-1315/1196/1/012053
https://doi.org/10.36680/J.ITCON.2021.005
https://doi.org/10.36680/J.ITCON.2021.005
https://doi.org/10.3390/buildings12060830
https://doi.org/10.3390/buildings12060830
https://doi.org/10.1016/j.autcon.2023.104937
https://doi.org/10.1007/978-3-030-27477-1_30
https://doi.org/10.1007/978-3-030-27477-1_30
https://doi.org/10.1088/1757-899X/1218/1/012057
https://doi.org/10.1088/1757-899X/1218/1/012057

[9] Q. Tushar, M.A. Bhuiyan, G. Zhang, T. Maqsood, An integrated approach of BIM-
enabled LCA and energy simulation: the optimized solution towards sustainable
development, J. Clean. Prod. (2021) 125622, https://doi.org/10.1016/j.
jclepro.2020.125622.

[10] M. Kozlovska, S. Petkanic, F. Vranay, D. Vranay, Enhancing energy efficiency and
building performance through BEMS-BIM integration, Energies (2023) 6237,
https://doi.org/10.3390/en16176327.

[11] L. Gimenez, J.L. Hippolyte, S. Robert, F. Suard, K. Zreik, Review: reconstruction of
3D building information models from 2D scanned plans, J. Build. Eng. (2015)
24–35, https://doi.org/10.1016/j.jobe.2015.04.002.

[12] Q. Lu, S. Lee, Image-based technologies for constructing as-is building information
models for existing buildings, J. Comput. Civ. Eng. (2017), https://doi.org/
10.1061/(ASCE)CP.1943-5487.0000652, 4017005.

[13] L. Klein, N. Li, B. Becerik-Gerber, Imaged-based verification of as-built
documentation of operational buildings, Autom. Constr. (2012) 161–171, https://
doi.org/10.1016/j.autcon.2011.05.023.

[14] M. Urbieta, M. Urbieta, T. Laborde, G. Villarreal, G. Rossi, Generating BIM model
from structural and architectural plans using artificial intelligence, J. Build. Eng.
(2023) 107672, https://doi.org/10.1016/j.jobe.2023.107672.

[15] J. Lim, P. Janssen, R. Stouffs, Automated generation of BIM models from 2D CAD
drawings, in: CAADRIA 2018 - 23rd International Conference on Computer-Aided
Architectural Design Research in Asia: Learning, Prototyping and Adapting, The
Association for Computer-Aided Architectural Design Research in Asia (CAADRIA),
2018, pp. 61–70, https://doi.org/10.52842/conf.caadria.2018.2.061.

[16] C. Zhang, Y. Zou, J. Dimyadi, A systematic review of automated BIM modelling for
existing buildings from 2D documentation, in: ISARC. Proceedings of the
International Symposium on Automation and Robotics in Construction, 2021,
pp. 220–226, https://doi.org/10.22260/ISARC2021/0032.

[17] B. Bortoluzzi, I. Efremov, C. Medina, D. Sobieraj, J.J. McArthur, Automating the
creation of building information models for existing buildings, Autom. Constr.
(2019), https://doi.org/10.1016/j.autcon.2019.102838, 102838.

[18] M.K. Dixit, V. Venkatraj, M. Ostadalimakhmalbaf, F. Pariafsai, S. Lavy, Integration
of facility management and building information modeling (BIM), Facilities (2019)
455–483, https://doi.org/10.1108/F-03-2018-0043.

[19] R. Volk, J. Stengel, F. Schultmann, Building information Modeling (BIM) for
existing buildings - literature review and future needs, Autom. Constr. (2014)
109–127, https://doi.org/10.1016/j.autcon.2013.10.023.

[20] P.N. Pizarro, N. Hitschfeld, I. Sipiran, J.M. Saavedra, Automatic floor plan analysis
and recognition, Autom. Constr. (2022), https://doi.org/10.1016/j.
autcon.2022.104348, 104348.

[21] G. Zhang, Y.Q. Chen, A metric for evaluating 3d reconstruction and mapping
performance with no ground truthing, in: International Conference on Image
Processing, ICIP, IEEE Computer Society, 2021, pp. 3178–3182, https://doi.org/
10.1109/ICIP42928.2021.9506329.

[22] N. Abreu, A. Pinto, A. Matos, M. Pires, Procedural point cloud modelling in scan-to-
BIM and scan-vs-BIM applications: a review, ISPRS Int. J. Geo Inf. (2023) 260,
https://doi.org/10.3390/ijgi12070260.

[23] L.-P. de las Heras, O.R. Terrades, S. Robles, G. Sánchez, CVC-FP and SGT: a new
database for structural floor plan analysis and its groundtruthing tool, Int. J. Doc.
Anal. Recognit. (IJDAR) (2015) 15–30, https://doi.org/10.1007/s10032-014-
0236-5.

[24] H. Chu, S. Wang, R. Urtasun, S. Fidler, Housecraft: Building houses from rental ads
and street views, in: Computer Vision–ECCV 2016: 14th European Conference,
Amsterdam, the Netherlands, October 11–14, 2016, Proceedings, Part VI 14,
Springer, Cham, 2016, pp. 500–516, https://doi.org/10.1007/978-3-319-46466-4_
30.

[25] D. Sharma, N. Gupta, C. Chattopadhyay, S. Mehta, Daniel: a deep architecture for
automatic analysis and retrieval of building floor plans, in: 2017 14th IAPR
International Conference on Document Analysis and Recognition (ICDAR), 2017,
pp. 420–425, https://doi.org/10.1109/ICDAR.2017.76.

[26] C. Liu, J. Wu, P. Kohli, Y. Furukawa, Raster-to-vector: revisiting floorplan
transformation, in: Proceedings of the IEEE International Conference on Computer
Vision, 2017, pp. 2195–2203. https://openaccess.thecvf.com/content_ICCV_2017/
papers/Liu_Raster-To-Vector_Revisiting_Floorplan_ICCV_2017_paper.pdf (accessed
June 9, 2025).

[27] A. Kalervo, J. Ylioinas, M. Häikiö, A. Karhu, J. Kannala, Cubicasa5k: a dataset and
an improved multi-task model for floorplan image analysis, in: Image Analysis:
21st Scandinavian Conference, SCIA 2019, Norrköping, Sweden, June 11–13,
2019, Proceedings 21, Springer, Cham, 2019, pp. 28–40, https://doi.org/10.1007/
978-3-030-20205-7_3.

[28] W. Wu, X.M. Fu, R. Tang, Y. Wang, Y.H. Qi, L. Liu, Data-driven interior plan
generation for residential buildings, ACM Trans. Graph. (2019) 1–12, https://doi.
org/10.1145/3355089.3356556.

[29] T. Li, D. Ho, C. Li, D. Zhu, C. Wang, M.Q.-H. Meng, Houseexpo: a large-scale 2d
indoor layout dataset for learning-based algorithms on mobile robots, in: 2020
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
2020, pp. 5839–5846, https://doi.org/10.1109/IROS45743.2020.9341284.

[30] J. Zheng, J. Zhang, J. Li, R. Tang, S. Gao, Z. Zhou, Structured3d: a large photo-
realistic dataset for structured 3d modeling, in: Computer Vision–ECCV 2020: 16th
European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part IX 16,
Springer, Cham, 2020, pp. 519–535, https://doi.org/10.1007/978-3-030-58545-7_
30.

[31] S. Cruz, W. Hutchcroft, Y. Li, N. Khosravan, I. Boyadzhiev, S. Bing Kang, Zillow
indoor dataset: annotated floor plans with 360 o panoramas and 3d room layouts,
in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2021, pp. 2133–2143. https://openaccess.thecvf.com/content/C

VPR2021/papers/Cruz_Zillow_Indoor_Dataset_Annotated_Floor_Plans_With_360de
g_Panoramas_and_CVPR_2021_paper.pdf (accessed June 9, 2025).

[32] Z. Fan, L. Zhu, H. Li, X. Chen, S. Zhu, P. Tan, Floorplancad: a large-scale cad
drawing dataset for panoptic symbol spotting, in: Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2021, pp. 10128–10137. https
://openaccess.thecvf.com/content/ICCV2021/supplemental/Fan_FloorPlanCAD_A
_Large-Scale_ICCV_2021_supplemental.pdf (accessed June 10, 2025).

[33] N. Abreu, R. Souza, A. Pinto, A. Matos, M. Pires, Labelled indoor point cloud
dataset for BIM related applications, Data (2023) 101, https://doi.org/10.3390/
data8060101.

[34] P.N. Pizarro, N. Hitschfeld, I. Sipiran, Large-scale multi-unit floor plan dataset for
architectural plan analysis and recognition, Autom. Constr. (2023), https://doi.
org/10.1016/j.autcon.2023.105132, 105132.

[35] S. Leng, Y. Zhou, M.H. Dupty, W.S. Lee, S.C. Joyce, W. Lu, Tell2Design: a dataset
for language-guided floor plan generation, ArXiv (2023), https://doi.org/
10.48550/arXiv.2311.15941. Preprint.

[36] H. Huang, Z. Qiao, Z. Yu, C. Liu, S. Shen, F. Zhang, H. Yin, SLABIM: a SLAM-BIM
coupled dataset in HKUST main building, ArXiv (2025), https://doi.org/10.48550/
arXiv.2502.16856. Preprint.

[37] C. van Engelenburg, F. Mostafavi, E. Kuhn, Y. Jeon, M. Franzen, M. Standfest,
J. van Gemert, S. Khademi, MSD: A benchmark dataset for floor plan generation of
building complexes, in: European Conference on Computer Vision, Springer, Cham,
2024, pp. 60–75, https://doi.org/10.1007/978-3-031-73636-0_4.

[38] Y. Liu, H. Huang, G. Gao, Z. Ke, S. Li, M. Gu, Dataset and benchmark for as-built
BIM reconstruction from real-world point cloud, Autom. Constr. (2025), https://
doi.org/10.1016/j.autcon.2025.106096, 106096.

[39] B. Yang, B. Liu, D. Zhu, B. Zhang, Z. Wang, K. Lei, Semiautomatic structural BIM-
model generation methodology using CAD construction drawings, J. Comput. Civ.
Eng. (2020), https://doi.org/10.1061/(asce)cp.1943-5487.0000885, 04020006.

[40] R. Tang, Y. Wang, D. Cosker, W. Li, Automatic structural scene digitalization, PLoS
One (2017), https://doi.org/10.1371/journal.pone.0187513 e0187513.

[41] M. Yin, L. Tang, T. Zhou, Y. Wen, R. Xu, W. Deng, Automatic layer classification
method-based elevation recognition in architectural drawings for reconstruction of
3D BIM models, Autom. Constr. (2020) 103082, https://doi.org/10.1016/j.
autcon.2020.103082.

[42] Y. Zhao, X. Deng, H. Lai, Reconstructing BIM from 2D structural drawings for
existing buildings, Autom. Constr. (2021), https://doi.org/10.1016/j.
autcon.2021.103750, 103750.

[43] Y. Byun, B.S. Sohn, ABGS: a system for the automatic generation of building
information models from two-dimensional CAD drawings, Sustainability (2020)
6713, https://doi.org/10.3390/SU12176713.

[44] Q. Lu, L. Chen, S. Li, M. Pitt, Semi-automatic geometric digital twinning for
existing buildings based on images and CAD drawings, Autom. Constr. (2020),
https://doi.org/10.1016/j.autcon.2020.103183, 103183.

[45] S. Feist, L. Jacques de Sousa, L. Sanhudo, J. Poças Martins, Automatic
reconstruction of 3D models from 2D drawings: a state-of-the-art review, Eng
(2024) 784–800, https://doi.org/10.3390/eng5020042.

[46] P. Schönfelder, F. Stebel, N. Andreou, M. König, Deep learning-based text detection
and recognition on architectural floor plans, Autom. Constr. (2024), https://doi.
org/10.1016/j.autcon.2023.105156, 105156.

[47] H. Jang, K. Yu, J.H. Yang, Indoor reconstruction from floorplan images with a deep
learning approach, ISPRS Int. J. Geo Inf. (2020) 65, https://doi.org/10.3390/
ijgi9020065.

[48] J. Seo, H. Park, S. Choo, Inference of drawing elements and space usage on
architectural drawings using semantic segmentation, Appl. Sci. (2020) 1–14,
https://doi.org/10.3390/app10207347.

[49] P. Ghannad, Y.C. Lee, Automated modular housing design using a module
configuration algorithm and a coupled generative adversarial network (CoGAN),
Autom. Constr. (2022) 104234, https://doi.org/10.1016/j.autcon.2022.104234.

[50] L. Chen, Q. Lu, X. Zhao, A semi-automatic image-based object recognition system
for constructing as-is IFC BIM objects based on fuzzy-MAUT, Int. J. Constr. Manag.
(2022) 51–65, https://doi.org/10.1080/15623599.2019.1615754.

[51] J. Rho, H.S. Lee, M. Park, Automated BIM generation using drawing recognition
and line-text extraction, J. Asian Archit. Build. Eng. (2021) 747–759, https://doi.
org/10.1080/13467581.2020.1806071.

[52] P. Ghannad, Y.C. Lee, J. Dimyadi, W. Solihin, Automated BIM data validation
integrating open-standard schema with visual programming language, Adv. Eng.
Inform. (2019) 14–28, https://doi.org/10.1016/j.aei.2019.01.006.

[53] K. Wang, M. Savva, A.X. Chang, D. Ritchie, Deep convolutional priors for indoor
scene synthesis, ACM Trans. Graph. (2018) 1–14, https://doi.org/10.1145/
3197517.3201362.

[54] W. Wu, L. Fan, L. Liu, P. Wonka, MIQP-based layout design for building interiors,
Comput. Graph. Forum. (2018) 511–521, https://doi.org/10.1111/cgf.13380.

[55] N. Nauata, S. Hosseini, K.-H. Chang, H. Chu, C.-Y. Cheng, Y. Furukawa, House-GAN
++: generative adversarial layout refinement network towards intelligent
computational agent for professional architects, in: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2021,
pp. 13632–13641. https://ennauata.github.io/houseganpp/page.html.

[56] A.B. Yenew, B.G. Assefa, E.G. Belay, HouseGanDi: a hybrid approach to strike a
balance of sampling time and diversity in floorplan generation, IEEE Access (2024)
125235–125252, https://doi.org/10.1109/ACCESS.2024.3451406.

[57] J. Liu, Z. Qiu, L. Wang, P. Liu, G. Cheng, Y. Chen, Intelligent floor plan design of
modular high-rise residential building based on graph-constrained generative
adversarial networks, Autom. Constr. (2024) 105264, https://doi.org/10.1016/j.
autcon.2023.105264.

X. Liang et al. Automation in Construction 181 (2026) 106584

22

https://doi.org/10.1016/j.jclepro.2020.125622
https://doi.org/10.1016/j.jclepro.2020.125622
https://doi.org/10.3390/en16176327
https://doi.org/10.1016/j.jobe.2015.04.002
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000652
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000652
https://doi.org/10.1016/j.autcon.2011.05.023
https://doi.org/10.1016/j.autcon.2011.05.023
https://doi.org/10.1016/j.jobe.2023.107672
https://doi.org/10.52842/conf.caadria.2018.2.061
https://doi.org/10.22260/ISARC2021/0032
https://doi.org/10.1016/j.autcon.2019.102838
https://doi.org/10.1108/F-03-2018-0043
https://doi.org/10.1016/j.autcon.2013.10.023
https://doi.org/10.1016/j.autcon.2022.104348
https://doi.org/10.1016/j.autcon.2022.104348
https://doi.org/10.1109/ICIP42928.2021.9506329
https://doi.org/10.1109/ICIP42928.2021.9506329
https://doi.org/10.3390/ijgi12070260
https://doi.org/10.1007/s10032-014-0236-5
https://doi.org/10.1007/s10032-014-0236-5
https://doi.org/10.1007/978-3-319-46466-4_30
https://doi.org/10.1007/978-3-319-46466-4_30
https://doi.org/10.1109/ICDAR.2017.76
https://openaccess.thecvf.com/content_ICCV_2017/papers/Liu_Raster-To-Vector_Revisiting_Floorplan_ICCV_2017_paper.pdf
https://openaccess.thecvf.com/content_ICCV_2017/papers/Liu_Raster-To-Vector_Revisiting_Floorplan_ICCV_2017_paper.pdf
https://doi.org/10.1007/978-3-030-20205-7_3
https://doi.org/10.1007/978-3-030-20205-7_3
https://doi.org/10.1145/3355089.3356556
https://doi.org/10.1145/3355089.3356556
https://doi.org/10.1109/IROS45743.2020.9341284
https://doi.org/10.1007/978-3-030-58545-7_30
https://doi.org/10.1007/978-3-030-58545-7_30
https://openaccess.thecvf.com/content/CVPR2021/papers/Cruz_Zillow_Indoor_Dataset_Annotated_Floor_Plans_With_360deg_Panoramas_and_CVPR_2021_paper.pdf
https://openaccess.thecvf.com/content/CVPR2021/papers/Cruz_Zillow_Indoor_Dataset_Annotated_Floor_Plans_With_360deg_Panoramas_and_CVPR_2021_paper.pdf
https://openaccess.thecvf.com/content/CVPR2021/papers/Cruz_Zillow_Indoor_Dataset_Annotated_Floor_Plans_With_360deg_Panoramas_and_CVPR_2021_paper.pdf
https://openaccess.thecvf.com/content/ICCV2021/supplemental/Fan_FloorPlanCAD_A_Large-Scale_ICCV_2021_supplemental.pdf
https://openaccess.thecvf.com/content/ICCV2021/supplemental/Fan_FloorPlanCAD_A_Large-Scale_ICCV_2021_supplemental.pdf
https://openaccess.thecvf.com/content/ICCV2021/supplemental/Fan_FloorPlanCAD_A_Large-Scale_ICCV_2021_supplemental.pdf
https://doi.org/10.3390/data8060101
https://doi.org/10.3390/data8060101
https://doi.org/10.1016/j.autcon.2023.105132
https://doi.org/10.1016/j.autcon.2023.105132
https://doi.org/10.48550/arXiv.2311.15941
https://doi.org/10.48550/arXiv.2311.15941
https://doi.org/10.48550/arXiv.2502.16856
https://doi.org/10.48550/arXiv.2502.16856
https://doi.org/10.1007/978-3-031-73636-0_4
https://doi.org/10.1016/j.autcon.2025.106096
https://doi.org/10.1016/j.autcon.2025.106096
https://doi.org/10.1061/(asce)cp.1943-5487.0000885
https://doi.org/10.1371/journal.pone.0187513
https://doi.org/10.1016/j.autcon.2020.103082
https://doi.org/10.1016/j.autcon.2020.103082
https://doi.org/10.1016/j.autcon.2021.103750
https://doi.org/10.1016/j.autcon.2021.103750
https://doi.org/10.3390/SU12176713
https://doi.org/10.1016/j.autcon.2020.103183
https://doi.org/10.3390/eng5020042
https://doi.org/10.1016/j.autcon.2023.105156
https://doi.org/10.1016/j.autcon.2023.105156
https://doi.org/10.3390/ijgi9020065
https://doi.org/10.3390/ijgi9020065
https://doi.org/10.3390/app10207347
https://doi.org/10.1016/j.autcon.2022.104234
https://doi.org/10.1080/15623599.2019.1615754
https://doi.org/10.1080/13467581.2020.1806071
https://doi.org/10.1080/13467581.2020.1806071
https://doi.org/10.1016/j.aei.2019.01.006
https://doi.org/10.1145/3197517.3201362
https://doi.org/10.1145/3197517.3201362
https://doi.org/10.1111/cgf.13380
https://ennauata.github.io/houseganpp/page.html
https://doi.org/10.1109/ACCESS.2024.3451406
https://doi.org/10.1016/j.autcon.2023.105264
https://doi.org/10.1016/j.autcon.2023.105264

[58] Z. Li, F. Liu, W. Yang, S. Peng, J. Zhou, A survey of convolutional neural networks:
analysis, applications, and prospects, IEEE Trans. Neural Netw. Learn. Syst. (2022)
6999–7019, https://doi.org/10.1109/TNNLS.2021.3084827.

[59] A. Krizhevsky, I. Sutskever, G.E. Hinton, ImageNet classification with deep
convolutional neural networks, Commun. ACM (2017) 84–90, https://doi.org/
10.1145/3065386.

[60] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2016, pp. 770–778. https://openaccess.thecvf.com/content_cvpr_2016/p
apers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf (accessed June 10,
2025).

[61] O. Ronneberger, P. Fischer, T. Brox, U-net: convolutional networks for biomedical
image segmentation, in: International Conference on Medical Image Computing
and Computer-Assisted Intervention, 2015, pp. 234–241, https://doi.org/10.1007/
978-3-319-24574-4_28.

[62] X. Liang, N. Yabuki, T. Fukuda, Generating a dataset of 3D BIM models of
condominium units using deep learning, in: 10th International Conference on
Innovative Production and Construction (IPC2024), Curtin University and East
China Jiaotong University, Perth, Australia, 2024, pp. 71–80, in: https://icipc2024
.com/wp-content/uploads/2024/07/ipc2024-conference-proceedings-2.pdf
(accessed June 9, 2025).

[63] Revit API Docs. https://www.revitapidocs.com/, 2025 (accessed June 9, 2025).

[64] Revit Libraires. https://manage.autodesk.com/products/RVT?version=2026&plat
form=WIN64&language=EINT, 2025 (accessed June 9, 2025).

[65] F. Milletari, N. Navab, S.-A. Ahmadi, V-net: fully convolutional neural networks for
volumetric medical image segmentation, in: 2016 Fourth International Conference
on 3D Vision (3DV), IEEE, 2016, pp. 565–571, https://doi.org/10.1109/
3DV.2016.79.

[66] A. Dai, A.X. Chang, M. Savva, M. Halber, T. Funkhouser, M. Nießner, ScanNet:
Richly-annotated 3D reconstructions of indoor scenes, in: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2017, pp. 5828–5839. htt
ps://openaccess.thecvf.com/content_cvpr_2017/papers/Dai_ScanNet_Richly-Ann
otated_3D_CVPR_2017_paper.pdf (accessed June 10, 2025).

[67] Q. Xu, X. Sun, C.-Y. Wu, P. Wang, U. Neumann, Grid-GCN for fast and scalable
point cloud learning, in: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2020, pp. 5661–5670. https://openaccess.thecvf.
com/content_CVPR_2020/papers/Xu_Grid-GCN_for_Fast_and_Scalable_Point_Cloud_
Learning_CVPR_2020_paper.pdf (accessed June 10, 2025).

[68] S. Song, F. Yu, A. Zeng, A.X. Chang, M. Savva, T. Funkhouser, Semantic scene
completion from a single depth image, in: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2017, pp. 1746–1754. https:
//openaccess.thecvf.com/content_cvpr_2017/papers/Song_Semantic_Scene_C
ompletion_CVPR_2017_paper.pdf (accessed August 11, 2025).

X. Liang et al. Automation in Construction 181 (2026) 106584

23

https://doi.org/10.1109/TNNLS.2021.3084827
https://doi.org/10.1145/3065386
https://doi.org/10.1145/3065386
https://openaccess.thecvf.com/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf
https://openaccess.thecvf.com/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/978-3-319-24574-4_28
https://icipc2024.com/wp-content/uploads/2024/07/ipc2024-conference-proceedings-2.pdf
https://icipc2024.com/wp-content/uploads/2024/07/ipc2024-conference-proceedings-2.pdf
https://www.revitapidocs.com/
https://manage.autodesk.com/products/RVT?version=2026&platform=WIN64&language=EINT
https://manage.autodesk.com/products/RVT?version=2026&platform=WIN64&language=EINT
https://doi.org/10.1109/3DV.2016.79
https://doi.org/10.1109/3DV.2016.79
https://openaccess.thecvf.com/content_cvpr_2017/papers/Dai_ScanNet_Richly-Annotated_3D_CVPR_2017_paper.pdf
https://openaccess.thecvf.com/content_cvpr_2017/papers/Dai_ScanNet_Richly-Annotated_3D_CVPR_2017_paper.pdf
https://openaccess.thecvf.com/content_cvpr_2017/papers/Dai_ScanNet_Richly-Annotated_3D_CVPR_2017_paper.pdf
https://openaccess.thecvf.com/content_CVPR_2020/papers/Xu_Grid-GCN_for_Fast_and_Scalable_Point_Cloud_Learning_CVPR_2020_paper.pdf
https://openaccess.thecvf.com/content_CVPR_2020/papers/Xu_Grid-GCN_for_Fast_and_Scalable_Point_Cloud_Learning_CVPR_2020_paper.pdf
https://openaccess.thecvf.com/content_CVPR_2020/papers/Xu_Grid-GCN_for_Fast_and_Scalable_Point_Cloud_Learning_CVPR_2020_paper.pdf
https://openaccess.thecvf.com/content_cvpr_2017/papers/Song_Semantic_Scene_Completion_CVPR_2017_paper.pdf
https://openaccess.thecvf.com/content_cvpr_2017/papers/Song_Semantic_Scene_Completion_CVPR_2017_paper.pdf
https://openaccess.thecvf.com/content_cvpr_2017/papers/Song_Semantic_Scene_Completion_CVPR_2017_paper.pdf

	Fully automated synthetic BIM dataset generation using a deep learning-based framework
	1 Introduction
	2 Related work
	2.1 Data extraction and BIM generation
	2.2 2D-to-BIM evaluation
	2.3 AI-driven synthetic BIM generation

	3 Methodology
	3.1 Data preparation
	3.1.1 Training data
	3.1.2 Deep learning networks
	3.1.2.1 Room prediction strategy
	3.1.2.2 Iterative room prediction with modified ResNet-34
	3.1.2.3 Wall prediction with U-Net

	3.2 Image processing for data extraction
	3.3 BIM generation
	3.3.1 Decision-making strategy for semantic completion
	3.3.2 Height and semantic completion
	3.3.3 From floor plans to BIMs

	3.4 Automatic annotation tools
	3.5 Generality and cross-platform adaptability of the framework

	4 Experiments
	4.1 Implementation details
	4.2 Data preparation
	4.3 Data extraction
	4.4 BIM generation
	4.5 Annotation tools

	5 Results and discussion
	5.1 Quantitative evaluation of model accuracy
	5.2 Key hyperparameters and their impacts
	5.3 Quality and efficiency of BIM generation
	5.4 Characteristics and usage of dataset
	5.5 Dataset comparison
	5.6 Discussion
	undefined
	5.6.1.1 Limitations and positioning

	6 Conclusions
	CRediT authorship contribution statement
	Declaration of generative AI and AI-assisted technologies in the writing process
	Declaration of competing interest
	Data availability
	References

