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 a b s t r a c t

𝐾-nearest neighbor (𝑘NN) search is widely applied to low- and high-dimensional tasks, as well as various data 
distributions and distance functions. However, its computational cost increases with the data volume, causing a 
bottleneck for many applications. The workload of the existing tree-based methods linearly increases with the 
neighbor count 𝑘 in the worst case. In addition, some tree-based methods only apply to tasks with L2 distances 
and may have severe warp divergence when employed on GPUs. Our goal is to develop a general-purpose 𝑘NN 
method based on cluster sorting to achieve better pruning efficiency compared with tree-based approaches. We 
optimize the proposed method to achieve higher performance on tasks with different dimensionalities or distance 
functions. The proposed Sort, TraversE, and then Prune (STEP) algorithm is a 𝑘NN method that clusters the data 
points beforehand. With various 1) numbers of data points, 2) numbers of query points, 3) neighbor counts, 
4) dimensions, and 5) distance metrics, the STEP method offers high performance because of the following 
aspects. First, our method prunes the data points efficiently by sorting the clusters for each query. Second, we 
exploit the single-instruction multiple-threads (SIMT) architecture of the GPU and utilize both coarse- and fine-
grained parallelism to accelerate computation. The proposed method concurrently computes all queries and 
minimizes warp divergence by assigning a query to a GPU warp. Third, the STEP method rapidly updates the 
𝑘NN results using bitonic operations. Fourth, we proposed an adaptive approach that automatically switches 
from the indexing approach to the exhaustive approach to achieve good scalability on high-dimensional data. 
Finally, we develop a variant of Gärtner’s bounding sphere algorithm so that our indexing method can handle 
distance metrics other than the L2 distance. The STEP method achieves a 15.9 times speedup with L2 distances 
and a 36.7 times speedup with angular distances compared with other state-of-the-art methods.

1.  Introduction

K-nearest neighbor (𝑘NN) search is widely used in many applica-
tions such as image processing [1], data mining [2], and geographic 
information systems [3]. The implementation of 𝑘NN changes depend-
ing on the problem type. Tree-based indexing methods are often used 
for collision detection with 2D or 3D data [4]. Exhaustive 𝑘NN methods 
have been developed as classifiers for high-dimensional feature vectors 
[5,6]. In addition, they have been proposed for graph space to solve 
road network problems [7,8]. For tasks such as implicit surface defini-
tion [9,10], L2 distances between the points are calculated to perform 
the 𝑘NN methods. Angular distance is commonly used in computer vi-
sion tasks, such as content-based image retrieval [11]. In string space, 
the edit distance between two strings can be used to find the closest 
substrings from a database to a query string [12]. Researchers have de-
veloped several specific 𝑘NN methods for these applications. However, 
we attempt to develop a general-purpose 𝑘NN method that is broadly 
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applicable to tasks with different conditions, such as data volume, di-
mensionality, and distance metrics.

The input of a 𝑘NN method contains a set of data points 𝑅, a set of 
query points 𝑄, and the scalar of the neighbor count 𝑘. The 𝑘NN method 
then outputs the exact 𝑘 nearest data points in 𝑅 for each query 𝑞 ∈ 𝑄. 
We denote the size of 𝑄 and 𝑅 by 𝑚 and 𝑛, respectively. The elements 
of the data and queries are all 𝑑-dimensional vectors. The value of 𝑑
changes depending on the task, e.g., 𝑑 = 2 for the geographic data [13] 
and 𝑑 = 128 in some computer vision problems [14]. Notice that this 
paper focuses on exact kNN algorithms, and the proposed method as 
well as the baselines are all exact kNN solutions.

As the data volume increases, the computational cost of the 𝑘NN 
computation increases, which becomes a bottleneck for intended appli-
cations. Several GPU-based parallel indexing methods have been pro-
posed based on their sequential version [15–17]. An indexing method 
first performs a pre-processing step to build a data structure based on the 
data points. Then, the method transfers the queries and the newly built 
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data structure to the GPU and computes 𝑘NN results. Indexing methods 
offer reduced workloads owing to their pruning strategies. However, 
we must consider warp divergence [18] because of branching instruc-
tions in the indexing methods. On the other hand, exhaustive methods 
can achieve good performance using general matrix multiply (GEMM) 
accelerators on GPUs [6,19]. These methods divide the 𝑘NN computa-
tion into a distance matrix computation step and a top-𝑘 selection step. 
The distance matrix computation benefits from the GEMM accelerators, 
whereas the top-𝑘 selection limits the overall performance. Most exhaus-
tive methods therefore focus on optimizing the performance of the top-𝑘
selection step.

GPU-based approximate nearest neighbor algorithms [20–23] have 
been proposed to achieve good scalability on large-scale data while sac-
rificing accuracy. However, exact 𝑘NN results are important and neces-
sary in many practical applications, such as 𝑘NN searching on financial 
data [24] and nearest neighbor classifiers for time series [25]. We con-
centrate on exact 𝑘NN solutions in this research.

Existing 𝑘NN methods are suitable to specific situations and have 
limited performance in other conditions. When searching for one near-
est neighbor, i.e., 𝑘 = 1, tree-based methods exhibit logarithmic time 
complexity against the number of data points 𝑛. However, the time com-
plexity linearly increases with the neighbor count 𝑘 in the worst case. 
In addition, some tree-based methods only apply to tasks with specific 
distance functions and may have severe warp divergence when imple-
mented on GPUs. Algorithms using space-partitioning data structures, 
e.g., 𝑘-d tree and octree, only handle tasks using the L2 distance. The 
similarity search tree (SS-tree) method relies on clustering instead of 
space partitioning, but its pruning efficiency worsens as the data vol-
ume increases [26]. Some indexing approaches adopt clustering meth-
ods to improve pruning efficiency [35,36]. Such methods have time-
consuming pre-processing phases and are hard to achieve intra-query 
parallelism. Moreover, pruning strategies in indexing methods become 
less effective on high-dimensional data [27]. In contrast, exhaustive 
methods have poor performance on low-dimensional data. The curse 
of dimensionality has little effect on exhaustive methods because they 
work without pruning strategies.

Our goal is to develop a novel 𝑘NN method that yields better pruning 
efficiency than tree-based methods, especially in the presence of large 
𝑘. We further optimize the proposed method to deal with both low- 
and high-dimensional data and with all types of distance functions. To 
achieve good performance with various (1) number of data points, (2) 
number of query points, (3) neighbor counts, (4) dimensions, and (5) 
distance metrics, our contributions are as follows:

1. We design a novel 𝑘NN algorithm with an efficient pruning strat-
egy to reduce the workload. In the pre-processing step, the method 
divides the data points into clusters and computes the distances be-
tween each pair of query and cluster. The method sorts the clusters 
for each query beforehand and traverses all clusters. Once the prun-
ing condition is satisfied, the search terminates, and all the remaining 
clusters are pruned. The proposed pruning strategy greatly reduces 
data access, which improves performance.

2. We exploit the SIMT architecture of the GPU and utilize both 
coarse- and fine-grained parallelism. The proposed method com-
putes queries concurrently and assigns a query to a GPU warp of 
32 threads. The main goal is to minimize the warp divergence with 
fine-grained parallelism. In addition, we developed an out-of-core 
approach of the STEP method to handle tasks that exceed the GPU 
memory capacity.

3. The proposed method further accelerates the 𝑘NN results update pro-
cess. The STEP method batches candidate data points and merges 
them into the 𝑘NN results in parallel. A warp traverses the clus-
ters and inserts candidate data points into a shared queue. Once the 
queue is full, the warp rapidly updates the 𝑘NN results using parallel 
bitonic sort and merge operations.

4. To improve the scalability of various dimensions, we design an adap-
tive workflow that switches between indexing and exhaustive ap-
proaches. In low-dimensional cases, the STEP method achieves high 
performance using 𝑘-means clustering and bounding sphere gener-
ation. For high-dimensional data, the STEP method naively clusters 
the data points and computes the exact minimal distances of each 
cluster to increase pruning efficiency. In addition, the STEP method 
speeds up the computation by initializing the 𝑘NN results with the 
exact minimal distances.

5. We develop a variant of Gärtner’s algorithm [28] that generates exact 
bounding sphere results. The proposed method can compute bound-
ing spheres with angular distance, leading to a noticeable speedup 
compared with approximate bounding sphere algorithms employed 
on high-dimensional data.

The proposed method yields better pruning efficiency than baseline 
methods with large 𝑘 or in high-dimensional cases. On practical datasets, 
our method achieves a 15.9 times speedup with L2 distances and a 36.7 
times speedup with angular distances compared with the state-of-the-art 
methods.

The remainder of this paper is organized as follows. In Section 2, 
we introduce related studies regarding GPU-based parallel 𝑘NN meth-
ods and sequential 𝑘NN algorithms using clustering as pre-processing. 
We explain the bounding sphere algorithms embedded in the evaluated 
methods in Section 3. We present the proposed parallel 𝑘NN methods in 
Section 4. We describe the implementation issues that must be solved 
to achieve complete GPU acceleration in Section 5. In Section 6, we 
show the experimental results of the proposed and baseline methods. 
We present the conclusions of our study in Section 7.

2.  Related Work

Several existing sequential indexing methods for 𝑘NN search are par-
allelized and implemented on GPUs. The authors in [15] developed a 
parallel 𝑘-d tree approach. This method stores tree nodes in a single 
array and updates 𝑘NN results with on-chip shared memory to reduce 
memory traffic. In [16], an adaptive grid-partitioning method, which 
uses z-order curves to perform 𝑘NN search, was proposed. The authors 
in [29] proposed an indexing method based on a semiconvex hull tree. 
Each node is made from a set of hyperplanes and represents a semi-
convex hull. The method proposed in [17] partitions the data points 
into equally sized bins. The search begins from the bin that contains the 
query and moves to adjacent bins until all nearest neighbors are found. 
The authors further extended the method to handle large datasets that 
exceed the GPU memory capacity [30]. These algorithms use coarse-
grained parallelism, i.e., a GPU thread computes one query, which leads 
to high warp divergence, reducing computing efficiency of GPU com-
puting. We chose the state-of-the-art method [15] using 𝑘-d tree as a 
baseline in our experiment.

Other indexing methods use fine-grained parallelism to relieve the 
warp divergence caused by branching and pruning. The buffer 𝑘-d tree 
method [31] builds a variant of the 𝑘-d tree from the data points. The 
method preserves good spatial locality with a small top tree in which 
each leaf node contains multiple data points. Once a query reaches a 
leaf node, it is stored in the leaf buffer. Threads in a thread block con-
currently compute queries in the same leaf buffer. In [26], the authors 
developed a variant of the SS-tree method, which builds the tree using 
𝑘-means clustering beforehand. First, the method finds the nearest leaf 
for each query and initializes the nearest neighbors. Then, the method 
searches the tree using in-order traversal and updates 𝑘NN results. A 
thread block is assigned to a query to parallelize distance computation. 
A drawback of this method is that pruning efficiency depends on the ini-
tialized 𝑘NN results. Notably, the pruning efficiency of indexing meth-
ods decreases as the high-dimensional data increases [27].

In addition to indexing methods, parallel exhaustive 𝑘NN approaches 
also achieve good performance owing to their concurrency mechanisms 
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on the GPU. They mainly comprise two steps: distance matrix compu-
tation and top-𝑘 selection. The authors in [32] proposed a brute force 
𝑘NN approach implemented on an NVIDIA GPU with two CUDA ker-
nels. The first kernel computes the distances between all data points 
and query points. In the second kernel, each thread sorts the distances 
of one query and chooses the first 𝑘 results as the nearest neighbors. In 
[6], the authors optimized the calculation of the distance matrix and im-
proved the performance using the cuBLAS GEMM function. The cuBLAS 
library fully exploits the Tensor Cores on NVIDIA GPUs so that high-
dimensional distance computation can be done efficiently. Therefore, 
the cuBLAS library is widely used in many exhaustive 𝑘NN solutions 
to compute distance matrices. The Sel-𝑘NN method proposed in [19] 
assigns each query to a thread block to enable fine-grained parallelism 
when sorting distances. This method obtains 𝑘NN results efficiently with 
a parallel selection sort. The warp select method [33] is the state-of-the-
art exhaustive 𝑘NN approach. Each query is assigned to a warp after the 
distance matrix computation. Each thread maintains a thread queue in 
registers to store 𝑘NN candidates. Once a thread queue is full, bitonic 
sort and merge operations are performed to update the 𝑘NN results. 
The authors in [34] improved the warp select method by replacing the 
thread queues with a shared queue. We compare the performance of our 
method with the Sel-𝑘NN method [19] and warp select method [33]. 
The main advantage of exhaustive methods is that they compute 𝑘NN 
tasks directly without pre-processing. In addition, they can deal with 
various distance metrics. However, they may have relatively poor per-
formance on low-dimensional data compared with indexing methods.

Besides GPU-oriented parallel 𝑘NN algorithms, the authors in [35] 
proposed a CPU-based sequential 𝑘NN solution that uses clustering 
methods as pre-processing. The method uses 𝑘-means clustering to split 
data points, computes the distances 𝑑rc between data points and their 
centroids, and sorts the data points in descending order. In the searching 
process of one query, the method first calculates the distances 𝑑qc from 
the query to the cluster centers and sorts the clusters in ascending order. 
It then traverses the data points in each cluster and prunes them using 
triangle inequality. In [36], the authors optimized pruning efficiency 
and memory consumption by selecting appropriate centroids without 
harming accuracy. Other methods [37,38] use clustering methods to 
compute approximate 𝑘NN results. These 𝑘NN methods using cluster-
ing methods have several drawbacks: (1) They lack an early stopping 
feature but traverse all clusters. (2) When using triangle inequality, the 
pruning efficiency drops significantly in high-dimensional cases. (3) Al-
though enabling coarse-grained parallelism by assigning queries to dif-
ferent processors is trivial, it is hard to achieve fine-grained parallelism, 
i.e., intra-query parallelism. The reason is they perform pruning sequen-
tially by verifying the triangle inequality of each data point. They thus 
require hundreds of seconds to compute 𝑘NN results for one query on 50 
thousand data points [36]. We addressed these issues in the proposed 
method.

3.  Bounding Sphere Algorithms

In this section, we briefly describe the bounding sphere algorithms. 
They are used to determine the boundaries of clusters in some indexing 
methods. Ritter’s algorithm [39] and Gärtner’s algorithm [28] generate 
approximate and exact bounding spheres, respectively. Notice that the 
proposed methods and the baselines compute exact 𝑘NN results, regard-
less of the quality of bounding spheres.

3.1.  Ritter’s Algorithm

Ritter’s algorithm is an approximate approach to bounding sphere 
generation that outputs a 5%–20% larger bounding sphere than the op-
timum [39]. Given a set of data points, the algorithm determines the 
initial bounding sphere with two distant data points. Then, it iteratively 
adjusts the centroid and radius by traversing all data points and check-
ing their distances. The algorithm is shown in Algorithm 1.

Algorithm 1 Ritter’s Algorithm.
  Input: data point array 𝑅 = {𝑟0, 𝑟1,…, 𝑟𝑛−1}.
  Output: an approximate bounding sphere 𝑏.
1: 𝑟𝑢 = the furthest data point to 𝑟0
2: 𝑟𝑣 = the furthest data point to 𝑟𝑢
3: 𝑟𝑤 = the furthest data point to 𝑟𝑣
4: 𝑏o = the middle point of 𝑟𝑣 and 𝑟𝑤 // centroid
5: 𝑏r = 𝐷𝐼𝑆𝑇 (𝑟𝑣, 𝑟𝑤)∕2 // radius
6: while true do
7:  𝑟𝑖 = the furthest data point to 𝑏o
8:  if 𝐷𝐼𝑆𝑇 (𝑟𝑖, 𝑏o) ≤ 𝑏r then
9:  Break
10:  end if
11:  𝑣 = the unit vector from 𝑏o to 𝑟𝑖
12:  𝑏o = 𝑏o + (𝐷𝐼𝑆𝑇 (𝑟𝑖, 𝑏o) − 𝑏r ) ⋅ 𝑣∕2
13:  𝑏r = (𝑏r +𝐷𝐼𝑆𝑇 (𝑟𝑖, 𝑏o))∕2
14: end while
15: return 𝑏

The SS-tree method employs Ritter’s algorithm to generate bound-
ing spheres for clusters because of its high computational efficiency. 
However, the workload of bounding sphere computation is significantly 
lower than that of 𝑘-means clustering. We can replace the approximate 
bounding sphere algorithm with the exact one to improve the quality of 
bounding spheres, which can enhance pruning efficiency.

3.2.  Gärtner’s Algorithm

Gärtner’s algorithm generates an exact bounding sphere of the in-
put data points [28]. The algorithm iteratively calculates the bound-
ing sphere by adding points to a forced point list 𝐵, which contains all 
points on the boundary of the sphere. In each iteration, Gärtner’s algo-
rithm adds the point having the largest distance to the centroid to the 
beginning of the forced point list. Gärtner’s algorithm is based on the 
move-to-front heuristic [40], as shown in Algorithm 2. The approach 
keeps the data points in an ordered list 𝑅, which gets updated during 
computation. Let 𝑅𝑗 denote the length-𝑗 prefix of the list.

Algorithm 2 Move-To-Front (MTF) Heuristic.
  Input: data point list 𝑅 = {𝑟0, 𝑟1,…, 𝑟𝑠−1}, forced point list 𝐵.
  Output: the minimal bounding sphere 𝑏.
1: 𝑏 = BS_L2(𝐵) // compute the circumsphere of 𝐵
2: // 𝑏o and 𝑏r are the centroid and radius of 𝑏
3: // 𝑑 is the dimensionality of the points
4: if |𝐵| = 𝑑 + 1 then
5:  Return 𝑏
6: end if
7: for 𝑖 = 0 to 𝑠 − 1 do
8:  if 𝐷𝐼𝑆𝑇 (𝑟𝑖, 𝑏o) > 𝑏r then
9:  𝑏 =MTF(𝑅𝑖−1, {𝑟𝑖} ∪ 𝐵)
10:  end if
11: end for
12: Return 𝑏

This approach incrementally computes the bounding sphere by ex-
tending the forced point list 𝐵 in which the points are affinely indepen-
dent. The efficiency originates from the fact that the points far from the 
centroid are moved to the front. Therefore, these points are processed 
early in subsequent recursive calls. The move-to-front heuristic serves 
as a subroutine for small point sets in Gärtner’s algorithm, as shown in 
Algorithm 3.

The authors further optimize the computation of the circumsphere 
in line 1 of Algorithm 2 using matrix operations. However, the matrix 
operation only works with the L2 distance. We develop a variant of the 
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Algorithm 3 Gärtner’s Algorithm.
  Input: data point list 𝑅 = {𝑟0, 𝑟1,…, 𝑟𝑛−1}.
  Output: the minimal bounding sphere 𝑏.
1: 𝑏o = 𝑟0, 𝑏r = −1 // the centroid and radius of 𝑏
2: 𝑠 = 1 // the number of forced points
3: while true do
4:  𝑒 = 0 // check for excess
5:  foreach 𝑟 in 𝑅 do
6:  𝑒 = max(𝑒,𝐷𝐼𝑆𝑇 (𝑟, 𝑏o) − 𝑏r )
7:  𝑟′ = 𝑟 if 𝑒 is updated
8:  end for
9:  if 𝑒 ≤ 0 then
10:  Break // because no data point is outside the sphere
11:  end if
12:  𝐵 = {𝑟′} // 𝐵 gets updated in MTF
13:  𝑏 = MTF(𝑅𝑠, 𝐵) // 𝑅𝑠 is the length-𝑠 prefix of 𝑅
14:  Move 𝑟′ to the front of 𝑅
15:  𝑠 = |𝐵| + 1
16: end while
17: Return 𝑏

Fig. 1. 2D bounding sphere of the data points with angular distances. The 
bounding sphere is defined using the centroid 𝑐o and the radius 𝑐r .

circumsphere computation for angular distances, which is more suitable 
for practical high-dimensional tasks.

3.3.  Bounding Spheres with Different Distance Functions

For the clusters calculated with angular distances, we also use the 
phrase “bounding sphere” for convenience, although the shape is more 
like a cone rather than a sphere. An example of a bounding sphere of 
the data points with angular distances is shown in Fig. 1. The centroid 
𝑐o is defined using either a point or a vector. The radius 𝑐r is the an-
gle between 𝑐o and the boundary. A 𝑑-dimensional bounding sphere is 
determined using 𝑑 data points on the boundary when using angular dis-
tances. For the L2 distance, it is trivial to calculate a bounding sphere 
of data points.

The distance between the query 𝑞 and the cluster (or bounding 
sphere) 𝑐 is calculated as follows:
𝐷𝐼𝑆𝑇 (𝑞, 𝑐) = 𝐷𝐼𝑆𝑇 (𝑞, 𝑐o) − 𝑐r , (1)

where 𝑐o is the centroid and 𝑐r is the radius of 𝑐. The distance function 
is represented using 𝐷𝐼𝑆𝑇 (). This applies to any distance function that 
follows the triangle inequality. Examples of computing an L2 distance 
and an angular distance are shown in Fig. 2.

4.  Method

The STEP algorithm is a general-purpose method proposed for 𝑘NN 
search. The computational workflow of the STEP method is shown in 
Fig. 3. The STEP method first clusters the data points during the pre-
processing step. The access order of the clusters is resolved in Phase 1. 
Then, it loops over Phases 2–4 to compute 𝑘NN results. In this section, 
we first introduce the indexing STEP approach for a better understand-

Fig. 2. Computation of the distance 𝐷𝐼𝑆𝑇 (𝑞, 𝑟) from the query point 𝑞 to the 
data point 𝑟 and the distance 𝐷𝐼𝑆𝑇 (𝑞, 𝑐) from 𝑞 to the cluster 𝑐.

Fig. 3. Computation workflow of the STEP method for a single query. The STEP 
method concurrently computes 𝑘NN results for all queries.

ing of the workflow. We bring out the exhaustive variant of the STEP 
method in Section 4.4.

In pre-processing, the STEP method divides data points into 𝑝 groups 
with 𝑘-means clustering. The centroids of the groups are initialized with 
the 𝑘-means++ algorithm [41]. Then, the STEP method generates a 
bounding sphere for each cluster. In addition to the data points, the 
centroids and radii of clusters are transferred to the GPU after pre-
processing.

4.1.  Pruning Strategy

The STEP method maintains a pruning distance throughout the 𝑘NN 
computation, as shown in Fig. 3. The pruning distance is the distance 
between the query point 𝑞 and the furthest data point in its 𝑘NN results. 
The STEP method prunes the data points in a cluster if the data points are 
further than the pruning distance. The relationship between the distance 
from 𝑞 to the data point 𝑟 and one to the cluster 𝑐 is shown via the lemma 
below.
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Algorithm 4 The Indexing STEP Method.
  Input: data point set 𝑅 = {𝑟0, 𝑟1,…, 𝑟𝑛−1}, query set 𝑄 =
{𝑞0, 𝑞1,…, 𝑞𝑚−1}, neighbor count 𝑘, number of clusters 𝑝, size of 
candidate queue 𝑛c.
  Output: 𝑘NN search results 𝑆[𝑚][𝑘] = {}.
1: 𝐶 = {𝑐0, 𝑐1,…, 𝑐𝑝−1} = KmeansClustering(𝑅, 𝑝)
2: foreach query 𝑞𝑖 in 𝑄 in parallel do
3:  𝐷[𝑝] = {} // distances from 𝑞𝑖 to each cluster
4:  foreach cluster 𝑐𝑗 in 𝐶 in parallel do
5:  (𝑐𝑗,o, 𝑐𝑗,r ) = (centroid of 𝑐𝑗 , radius of 𝑐𝑗)
6:  𝐷[𝑗] = 𝐷𝐼𝑆𝑇 (𝑞𝑖, 𝑐𝑗,o) − 𝑐𝑗,r
7:  end for
8:  Sort(𝐷,𝐶)
9:  𝑆[𝑖] = TraverseClusters(𝑅,𝐶,𝐷, 𝑞𝑖, 𝑘, 𝑝, 𝑛c)
10: end for
11: return 𝑆

Lemma 1. 𝐷𝐼𝑆𝑇 (𝑞, 𝑟) ≥ 𝐷𝐼𝑆𝑇 (𝑞, 𝑐),∀𝑟 ∈ 𝑐.

Proof.  When the query lies inside or on the sphere, i.e., 𝐷𝐼𝑆𝑇 (𝑞, 𝑐) ≤ 0, 
the statement holds because 𝐷𝐼𝑆𝑇 (𝑞, 𝑟) is nonnegative. When the query 
lies outside the cluster, i.e., 𝐷𝐼𝑆𝑇 (𝑞, 𝑐) > 0, we have the following rela-
tion because the distance function 𝐷𝐼𝑆𝑇 () follows the triangle inequal-
ity:

𝐷𝐼𝑆𝑇 (𝑞, 𝑟) +𝐷𝐼𝑆𝑇 (𝑟, 𝑐o) ≥ 𝐷𝐼𝑆𝑇 (𝑞, 𝑐o) (2)

Since 𝑟 ∈ 𝑐, the distance between 𝑟 and 𝑐o is not larger than 𝑐r . Con-
sequently,

𝐷𝐼𝑆𝑇 (𝑞, 𝑐) = 𝐷𝐼𝑆𝑇 (𝑞, 𝑐o) − 𝑐r
≤ 𝐷𝐼𝑆𝑇 (𝑞, 𝑐o) −𝐷𝐼𝑆𝑇 (𝑟, 𝑐o)

≤ 𝐷𝐼𝑆𝑇 (𝑞, 𝑟)

(3)

 ∎
The STEP method prunes the data points in the cluster 𝑐 for the query 

𝑞 when the pruning distance is smaller than 𝐷𝐼𝑆𝑇 (𝑞, 𝑐).
In Phase 1, the STEP method computes the distances between a query 

and all clusters. To determine the access order of the clusters, the STEP 
method then sorts the distances using a parallel bitonic sort adopted 
in [33]. The process corresponds to lines 3-8 in Algorithm 4. Sorting 
the clusters is critical in our pruning strategy. When the STEP method 
prunes a cluster 𝑐𝑗 for a query 𝑞 by comparing 𝐷𝐼𝑆𝑇 (𝑞, 𝑐𝑗 ) and the prun-
ing distance (explained later), the remaining clusters regarding the ac-
cess order are all pruned because the data points in them cannot have a 
smaller distance than 𝐷𝐼𝑆𝑇 (𝑞, 𝑐𝑗 ).

In Phase 2-4, the STEP method traverses all clusters based on the ac-
cess order. The pruning strategy is shown as branching in Algorithm 5. 
The if-statement in line 3 prunes clusters, and the one in line 7 prunes 
data points. The array 𝑆′, which is equivalent to the array 𝑆[𝑖] in Algo-
rithm 4, maintains the 𝑘NN results of the query 𝑞𝑖 in ascending order by 
distance. Therefore, the STEP method uses the data point in 𝑆′[𝑘 − 1], 
which stores the furthest data point to 𝑞𝑖, as the pruning distance. The 
STEP method compares the pruning distance with the distance between 
𝑞𝑖 and 𝑐𝑗 before traversing the data points in 𝑐𝑗 . If the pruning distance 
is smaller, all data points in 𝑐𝑗 are further than the current 𝑘NN results 
according to Lemma 1. Therefore, the STEP method prunes 𝑐𝑗 and all 
data points in it because they are irrelevant to the 𝑘NN results. All the 
remaining clusters are pruned simultaneously. It is unnecessary to check 
the pruning condition for the remaining clusters. The STEP method fur-
ther reduces the workload by employing data point pruning (line 7). A 
data point 𝑟𝑡 is inserted into the candidate queue only when the pruning 
distance is larger than the distance between 𝑞𝑖 and 𝑟𝑡.

Notably, the STEP method determines the individual order of clusters 
for each query. Each query traverses the clusters in different orders, and 
the search process of each query is independent of the others. The STEP 
method computes the 𝑘NN results of all queries in parallel.

Algorithm 5 Traverse Clusters.
  Input: data point set 𝑅 = {𝑟0, 𝑟1,…, 𝑟𝑛−1}, sorted cluster indices 𝐶 =
{𝑐0, 𝑟1,…, 𝑐𝑝−1}, sorted cluster distances 𝐷 = {𝑑0, 𝑑1,…, 𝑑𝑝−1}, query 𝑞𝑖, 
neighbor count 𝑘, number of clusters 𝑝, size of candidate queue 𝑛c.
  Output: 𝑘NN search results 𝑆′[𝑘] = {}.
1: 𝑅c[𝑛c] = {} // candidate queue
2: foreach cluster 𝑐𝑗 in 𝐶 do
3:  if 𝐷𝐼𝑆𝑇 (𝑞𝑖, 𝑆′[𝑘 − 1]) ≤ 𝐷[𝑗] then
4:  break
5:  end if
6:  foreach data point 𝑟𝑡 in 𝑐𝑗 do
7:  if 𝐷𝐼𝑆𝑇 (𝑞𝑖, 𝑆′[𝑘 − 1]) > 𝐷𝐼𝑆𝑇 (𝑞𝑖, 𝑟𝑡) then
8:  Insert(𝑅c, 𝑟𝑡)
9:  end if
10:  if 𝑅c is full then
11:  Merge(𝑆′, 𝑅c)
12:  end if
13:  end for
14: end for
15: Merge(𝑆′, 𝑅c) // Merge the remaining candidates
16: return 𝑆′

Fig. 4. Advanced results update process with bitonic sort and merge operations. 
The nearest neighbor count 𝑘 is 8 and the candidate count 𝑛c is 4. A grey block 
represents a parallel step.

4.2.  Advanced Results Update Process

Updating 𝑘NN results is time-consuming for large 𝑘 values. More-
over, it is nontrivial to exploit the parallelism of a max heap on a GPU. 
Our solution is to store 𝑛c candidate data points in a shared queue and 
use bitonic sort and merge operations to update 𝑘NN results once the 
queue is full. The value 𝑛c is a pre-defined constant, and the update 
process is fully parallelized with the threads in a warp to achieve high 
computational efficiency. We achieve parallel insert operations using 
the approach in [34].

Fig. 4 shows the results update process of the proposed method. The 
key idea is to batch 𝑛c candidates and update the 𝑘NN results with 
a single bitonic merge operation. The update process sorts the can-
didate queue and merges it into the already sorted 𝑘NN results with 
three phases. In phase 1, the candidates are sorted with log 𝑛c parallel 
steps. The candidates are merged into the 𝑘NN results with one par-
allel step in phase 2. The method rebuilds the 𝑘NN results in phase 3 
with log 𝑘 parallel steps and flushes the candidate queue. Notice that we 
only need to copy the data points instead of swapping them in phase 
2 because it’s unnecessary to maintain the candidate queue. There are 
𝑂(𝑛c log 𝑛c + 𝑘 log 𝑘) compare & swap/copy operations in total. However, 
the performance of this approach is limited when 𝑘 < 𝑛c because some 
threads will become idle. In practice, we pad the size of the 𝑘NN result 
array to a multiple of 𝑛c.
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Designing an appropriate results update process is a trade-off be-
tween the workload and the update frequency of the pruning distance. 
When we update the 𝑘NN results once a candidate is found, the pruning 
distance is updated immediately so that more data points can be pruned. 
In contrast, the pruning distance is updated less frequently when we 
batch the candidates and merge them into the 𝑘NN results afterward. In 
our approach, the pruning distance is the last element of the sorted 𝑘NN 
result array. Even when a candidate with a smaller distance is inserted 
into the shared queue, the pruning distance will remain untouched. Be-
cause the STEP method prunes both clusters and data points with the 
pruning distance, the update frequency has a noticeable effect on the 
performance. We therefore set the value of 𝑛c to 64 to fully utilize the 
threads in bitonic sort while making the shared queue small enough to 
increase the update frequency.

4.3.  Variant of Gärtner’s Algorithm

We developed a variant of Gärtner’s algorithm [28] to compute 
bounding spheres with angular distances. To compute an exact bound-
ing sphere of the data points in a cluster, we select a set of forced points 
𝐵 and calculate the unique circumsphere to obtain its centroid 𝑐o and 
radius 𝑐r . When the distances from all points to 𝑐o are smaller than 𝑐r , 
the circumsphere is the minimal bounding sphere 𝑀𝐵(𝐵) of the cluster. 
The selection process is omitted from this section.

We assume that 𝐵 contains affinely independent points with di-
mension 𝑑. In this case, the centroid 𝑐o is restricted to the affine hull 
of 𝐵. Therefore, 𝑐o and 𝑐r satisfy the following equations, where 𝐵 =
{𝑟0,…, 𝑟𝑚−1}, 𝑚 = 𝑑:

𝑟𝑇𝑖 𝑐o
||𝑟𝑖|| ⋅ ||𝑐o||

= cos(𝑐r ), 𝑖 = 0,…, 𝑚 − 1,

𝑚−1
∑

𝑖=0
𝜆𝑖

𝑟𝑖
||𝑟𝑖||

= 𝑐o, and

𝑚−1
∑

𝑖=0
𝜆𝑖 = 1.

(4)

The points in 𝐵 are constant during computation. We denote the nor-
malized vectors of the points as follows:

𝑟̂𝑖 =
𝑟𝑖

||𝑟𝑖||
, 𝑖 = 0,…, 𝑚 − 1. (5)

Defining 𝑅𝑖 ∶= 𝑟̂𝑖 − 𝑟̂0 for 𝑖 = 0,…, 𝑚 − 1 and 𝐶o ∶= 𝑐o − 𝑟̂0, we derive 
that:

𝑟̂0𝑐o = 𝑟̂𝑖𝑐o, 𝑖 = 1,…, 𝑚 − 1, (6)

𝑅𝑖𝑐o = 0. (7)

From Eq.  (4) and Eq.  (7), we obtain:
𝑚−1
∑

𝑖=1
𝜆𝑖𝑅𝑖 = 𝐶o, (8)

𝑅𝑇
𝑖 𝐶o = −𝑅𝑇

𝑖 𝑟̂0, 𝑖 = 1,…, 𝑚 − 1. (9)

Substituting 𝐶o with 
∑𝑚−1

𝑖=1 𝜆𝑖𝑅𝑖 in Eq.  (9), we deduce a linear system in 
the variables 𝜆1,…, 𝜆𝑚−1, which can be written as

𝐴B

⎛

⎜

⎜

⎝

𝜆1
⋮

𝜆𝑚−1

⎞

⎟

⎟

⎠

=
⎛

⎜

⎜

⎝

−𝑅𝑇
1 𝑟̂0
⋮

−𝑅𝑇
𝑚−1 𝑟̂0

⎞

⎟

⎟

⎠

, (10)

where 𝐴B[𝑖][𝑗] = 𝑅𝑇
𝑖+1𝑅𝑗+1 because 𝑅𝑇

𝑠 𝑅𝑡 = 𝑅𝑇
𝑡 𝑅𝑠 for 0 ≤ 𝑠, 𝑡 ≤ 𝑚 − 1:

𝐴B ∶=
⎛

⎜

⎜

⎝

𝑅𝑇
1 𝑅1 ⋯ 𝑅𝑇

1 𝑅𝑚−1
⋮ ⋮

𝑅𝑇
1 𝑅𝑚−1 ⋯ 𝑅𝑇

𝑚−1𝑅𝑚−1

⎞

⎟

⎟

⎠

(11)

Eq.  (10) presents a linear system with the format 𝐴𝑥 = 𝑏. Therefore, 
we solve the linear system by computing 𝑥 = 𝐴−1𝑏 to get the values of 

𝜆1,…, 𝜆𝑚−1. Finally, we compute 𝑐o and 𝑐r as follows:

𝑐o =
𝑚−1
∑

𝑖=0
𝜆𝑖 𝑟̂𝑖,

𝑐r = arccos (𝑟̂0
𝑐o

||𝑐o||
),

(12)

where 𝜆0 = 1 −
∑𝑚−1

𝑖=1 𝜆𝑖.

4.4.  Adaptive Workflow in High-Dimensional Cases

For indexing 𝑘NN solutions, the performance drops significantly in 
high-dimensional cases because the distance information between data 
points contributes little to the pruning efficiency due to the curse of 
dimensionality. Besides, on-demand distance computation during the 
search process harms the performance because of the global memory 
access latency on GPUs.

Algorithm 6 The Exhaustive STEP Method.
  Input: data point set 𝑅 = {𝑟0, 𝑟1,…, 𝑟𝑛−1}, query set 𝑄 =
{𝑞0, 𝑞1,…, 𝑞𝑚−1}, neighbor count 𝑘, number of clusters 𝑝, size of 
candidate queue 𝑛c.
  Output: 𝑘NN search results 𝑆[𝑚][𝑘] = {}.
1: 𝐶 = {𝑐0, 𝑐1,…, 𝑐𝑝−1} = NaiveClustering(𝑅, 𝑝)
2: foreach query 𝑞𝑖 in 𝑄 in parallel do
3:  𝐷[𝑝] = {} // distances from 𝑞𝑖 to each cluster
4:  foreach cluster 𝑐𝑗 in 𝐶 in parallel do
5:  𝐷[𝑗] = +∞
6:  foreach data point 𝑟𝑡 in 𝑐𝑗 do
7:  𝐷[𝑗] = min(𝐷𝐼𝑆𝑇 (𝑞𝑖, 𝑟𝑡), 𝐷[𝑗])
8:  end for
9:  end for
10:  Sort(𝐷,𝐶)
11:  𝑆[𝑖] = TraverseClusters(𝑅,𝐶,𝐷, 𝑞𝑖, 𝑘, 𝑝, 𝑛c)
12: end for
13: return 𝑆

To achieve good scalability in high-dimensional cases, we propose an 
adaptive workflow of the STEP method that automatically switches from 
the indexing approach to the exhaustive approach. Algorithm 6 shows 
the exhaustive STEP method. Specifically, the STEP method alters the 
behavior in pre-processing and phase 1 shown in Fig. 3. In addition, 
all distances are computed beforehand in the pre-processing phase. The 
approach switch happens when the number of dimensions is not lower 
than a pre-defined threshold 𝑑t . We suggest fixing 𝑑t to 16 considering 
the GPU hardware features, but we evaluated the two approaches on 
both low- and high-dimensional datasets.

The major issue that weakens the pruning efficiency is the imprecise 
pruning thresholds of clusters, i.e., the radii of bounding spheres. The 
𝑘-means clustering and bounding sphere generation offer good pruning 
efficiency in low dimensions. However, the bounding spheres expand 
rapidly as the number of dimensions increases. A query is often located 
inside most of the bounding spheres when the number of dimensions 
exceeds 16. Such clusters cannot be pruned because their distances to 
the query are 0. But for the data points in a bounding sphere, their 
distances to the query can be far more larger than the sphere’s radius.

We replace the bounding sphere radii with exact minimal distances 
to improve the pruning efficiency. For each query, the STEP method 
computes its distances to all data points in a cluster and sets the min-
imal distance as the pruning threshold of the cluster. This approach 
has three advantages: (1) The meaningful pruning thresholds enable the 
STEP method to prune more clusters in high-dimensional cases. (2) The 
STEP method can directly initialize the 𝑘NN results with the exact min-
imal distances. (3) The STEP method can compute 𝑘NN results with dis-
tance functions that do not follow the triangle inequality. The drawback 
is obvious: the pre-processing becomes query-dependent, which makes 
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the STEP method an exhaustive approach. Nevertheless, the indexing 
and exhaustive approach perform similar numbers of distance computa-
tions when the pruning efficiency is limited. They both compute 𝑂(𝑚𝑛)
distances but the indexing method requires additional branching oper-
ations, which leads to an inferior performance of the indexing method 
on high-dimensional data. Notice that the STEP method stores the com-
puted distances in the GPU global memory and reuses them during the 
search process.

To further reduce the pre-processing time, we use a naive cluster-
ing strategy instead of the 𝑘-means clustering in the exhaustive STEP 
method. The exact minimal distances are more important than the clus-
tering results regarding the pruning efficiency. The STEP method there-
fore performs the clustering most naively by equally dividing the data 
points into clusters based on the input order.

5.  GPU-Based Implementation

In addition to the parallel algorithm, we performed several optimiza-
tions specific to the GPU architecture. These optimizations can be ap-
plied to other 𝑘NN methods. We consider Turing architecture [42] as the 
target GPU architecture. The STEP method is implemented using C++ 
and CUDA.

The details of reducing warp divergence and uncoalesced accesses 
are discussed in Section 5.1. In Section 5.2, we explain the kernel fission 
strategy that increases the occupancy of streaming multiprocessors in 
specific situations. We introduce the out-of-core STEP method to handle 
large-scale data that exceed the GPU memory capacity in Section 5.3.

Although most of the strategies in Section 5.1 are common tech-
niques, they significantly enhanced the performance of the STEP 
method. Kernel fission in Section 5.2 optimized shared memory usage 
and slightly made the computation more efficient. The out-of-core strat-
egy in Section 5.3 improves the applicability of the STEP method on 
large datasets.

5.1.  Reducing Warp Divergence and Uncoalesced Accesses

Each query is assigned to a GPU warp of 32 threads in the STEP 
method to reduce warp divergence. When the threads in a warp com-
pute 𝑘NN for multiple queries, they may execute different instructions 
according to the pruning results of the queries. In such cases, the threads 
sequentially execute instructions, which reduces performance. In con-
trast, the threads in a warp execute the same instructions when they 
compute for the same query.

Pruning conditions cause no warp divergence in the STEP method 
because the threads in a warp are assigned to the same query. Notice 
that the STEP method still computes all queries concurrently instead of 
dedicating all GPU resources to a single query. In addition, the insertion 
and bitonic merge operations in line 8, line 11, and line 15 are fully 
parallelized in the STEP method.

To eliminate most of the uncoalesced global memory access, we store 
the data in the structure-of-array pattern. The 32 threads in a warp ac-
cess consecutive memory locations in the GPU global memory. In addi-
tion, the STEP method reduces shared memory usage by storing the 𝑘NN 
results with their indices and distances instead of the coordinates. Before 
returning the results in line 11 of Algorithm 4, the STEP method accesses 
the global memory with the indices and outputs the coordinates of 𝑘NN 
results. The uncoalesced global memory access in the STEP method is 
mainly caused by this operation.

With the structure-of-array pattern, the STEP method performs a par-
allel distance computation of the clusters without uncoalesced access 
in line 6 of Algorithm 4. We also optimized the computation of the 
loop in line 6 of Algorithm 5. Specifically, 32 data points in a cluster 
are processed in parallel. In the indexing STEP method, the statement 
𝐷𝐼𝑆𝑇 (𝑞𝑖, 𝑟𝑡) in line 7 is moved outside the loop and completed in ad-
vance.

5.2.  Kernel Fission

Kernel fission means separating a CUDA kernel function into two or 
more kernels. While kernel fusion is a common optimization technique 
to reduce redundant global memory access and kernel launch overhead, 
kernel fission improves streaming multiprocessor (SM) occupancy in our 
implementation. The capacity of shared memory is fixed on an SM, and 
the amount of required shared memory limits the occupancy in the STEP 
method. More thread blocks fit into an SM when a block’s shared mem-
ory requirement decreases.

Before applying kernel fission, the STEP method uses a single kernel 
to compute from phase 1 to phase 4. The frequently accessed data are 
stored in the shared memory because of its low access latency. The STEP 
method stores the cluster distances in the shared memory in phase 1. 
During phase 2 to phase 4, the 𝑘NN results and candidates are stored in 
the shared memory. Even when we reuse the shared memory space after 
phase 1 with pointer reinterpretation, the occupancy is still limited by 
the amount of shared memory. The motivation for kernel fission is that 
sorting clusters in phase 1 has a relatively low workload but requires 
a large amount of shared memory, especially when the cluster count is 
larger than 𝑘.

We therefore separate the STEP kernel into two kernels: The first 
kernel sorts the clusters and stores the distances in ascending order to-
gether with their cluster indices into the global memory. The second 
kernel loads the cluster information to determine the cluster access or-
der and performs the remaining parts of STEP computation.

The merit of kernel fission in the STEP method is increasing the oc-
cupancy when the value of 𝑘 is smaller than the cluster count. Assuming 
the required shared memory amount of cluster sorting is twice as large 
as that of the remaining STEP computation, kernel fission doubles the 
occupancy of the second kernel when the amount of shared memory 
is the bottleneck. The major disadvantage of kernel fission is the ker-
nel launch overhead. The global memory reading and writing are not 
redundant because we also need to store the sorted clusters in global 
memory before we apply kernel fission.

5.3.  Out-of-Core Approach

When implementing the STEP method on a single GPU, the scalabil-
ity is limited by the GPU memory capacity. We therefore proposed an 
out-of-core method to improve the scalability on datasets with a large 
number of data points and query points.

To compute tasks with a large number of data points, the key idea 
is to divide the data points into chunks that fit into the GPU memory 
and compute local 𝑘NN results. After the STEP method finds the local 
results in a chunk, it launches a lightweight GPU kernel to merge them 
into the global 𝑘NN results. In the lightweight merge kernel, we use 
the bitonic operations similar to that in Section 4.2. We pipeline the 
our-of-core STEP method with three CUDA streams to overlap the GPU 
computation with CPU-GPU data transfer.

In the exhaustive STEP method, the large matrix containing the dis-
tances between query points and data points limits the scalability. While 
dividing data points introduces extra overhead because of the additional 
merge kernel, splitting independent queries into chunks is sometimes a 
reasonable strategy to handle large-scale datasets. However, it is neces-
sary to compute over about 500 queries in parallel to fully utilize GPU 
resources when we assign each query to a GPU warp. To this end, the 
exhaustive STEP method automatically divides both the query points 
and data points into chunks to achieve better performance.

Notice that this strategy can also be utilized to extend the STEP 
method to multi-GPU platforms when the problem size exceeds the ca-
pacity of a single GPU. Each GPU node holds a chunk of data points 
and computes the local 𝑘NN results. Then, a single GPU node collects 
all local results and merges them into the global 𝑘NN results. Similarly, 
when the query count is too small to fill the GPU resources, we can 
distribute the chunks to different warp to increase parallelism. Multiple 
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warps compute the local 𝑘NN results for the same query, and one warps 
merges the local results into the global 𝑘NN results.

6.  Experiments

We evaluated the proposed STEP method in terms of GPU compu-
tation time, number of accessed (data) points, and number of retained 
(data) points. We used the latter two criteria originating from the av-
erage results of all queries to evaluate pruning efficiency. The accessed 
points were the ones read by the warp of its corresponding query. The 
retained points were the ones that were not pruned during the search 
process. Specifically, the number of retained points in the STEP method 
represents the number of data points inserted into the candidate queue. 
Our experimental machine had an AMD Ryzen 5 3600 with 32 GB RAM 
and an NVIDIA GeForce RTX 3070 GPU with 8 GB VRAM. The size of 
GPU shared memory per thread block was 48 KB. We used CUDA 11.7 
and GPU Driver 525.147.05 on Ubuntu 22.04.

We compared the proposed method with seven baselines: Sel-𝑘NN 
method [19], GPU-based Faiss library [33], CPU-based Faiss library 
[33], GPU-based 𝑘-d tree method [15], CPU-based 𝑘-d tree method [43], 
buffer 𝑘-d tree method [31], and SS-tree method [26]. The Sel-𝑘NN 
method is an exhaustive approach that first computes a distance ma-
trix with GEMM and then obtains the 𝑘NN results with a parallel se-
lection sort. The GPU-based Faiss library is a state-of-the-art exhaustive 
approach that uses the warp select method. The threads in a warp store 
candidates in thread queues and merge them into the 𝑘NN results with 
bitonic operations. The CPU-based Faiss library, on the other hand, op-
timizes the computation with the BLAS library and SIMD vectorization. 
The GPU-based 𝑘-d tree method builds a binary tree of the data points 
and searches the tree with coarse-grained parallelism. The CPU-based 
𝑘-d tree method also enables coarse-grained parallelism with multi-
threading. The buffer 𝑘-d tree method constructs a small top 𝑘-d tree 
in which each leaf contains multiple data points. The SS-tree method 
builds the tree with 𝑘-means clustering and searches the tree using in-
order traversal. The buffer 𝑘-d tree method and the SS-tree method both 
use fine-grained parallelism.

The pre-processing time of indexing methods and CPU-GPU data 
transfer time were excluded from our experiments. Instead, we provide 
qualitative results of the pre-processing time. The 𝑘-d tree method and 
buffer 𝑘-d tree method have relatively less pre-processing times because 
they build the index structures with 𝑂(𝑛) workloads. In contrast, the 
indexing STEP method and SS-tree method require a large amount of 
time to perform pre-processing. The workload of 𝑘-means clustering is 
𝑂(𝑛𝑝𝛼), where 𝑝 is the number of clusters and 𝛼 is the iteration count 
of 𝑘-means computation. The pre-processing time of these two methods 
is longer than the 𝑘NN searching time in many cases, even though we 
used a GPU-based 𝑘-means library. For instance, the index building time 
reaches tens of seconds whereas the searching time is a few seconds.

Because there is no indexing building phase in the exhaustive meth-
ods, all their GPU computation time is included in the experimental re-
sults. Notably, the pre-processing of the exhaustive STEP method does 
not involve any clustering progress, except equally dividing the input 
data points into clusters. Compared to the time-consuming 𝑘-means clus-
tering in the indexing STEP method, clustering in the exhaustive STEP 
method is omittable regarding the computation time. The computation 
time of the exhaustive STEP method includes all-to-all distance compu-
tation, exact minimal distance search, cluster sorting, and all the follow-
ing phases.

The experimental setups are described in Section 6.1. We compare 
the performances of the proposed methods with those of the baseline 
methods on random datasets in Section 6.2. We evaluate the methods 
in various aspects using different number of query points 𝑚, number 
of data points 𝑛, neighbor counts 𝑘, and dimensions 𝑑 and test the L2 
distance and the angular distance in each case. Importantly, the 𝑘-d tree 
method and buffer 𝑘-d tree method can only perform 𝑘NN search with 
L2 distances. Therefore, we exclude these two methods when conducting 

experiments with angular distances. This is followed by the performance 
comparison of the practical datasets in Section 6.3. An ablation study 
on the STEP method is conducted in Section 6.4. Then, we analyze the 
warp divergence of the methods in Section 6.5. Finally, we evaluate the 
sensitivity of the STEP method to the bounding spheres in Section 6.6.

6.1.  Experimental Setups

We tuned the parameters of the STEP method using preliminary 
experiments. The number of clusters 𝑝 was set to 512 and 2048 in 
the indexing and exhaustive STEP method, respectively. We observed 
a considerable drop in pruning efficiency when 𝑝 < 512. When setting 
𝑝 ≥ 1024 in the indexing STEP method, the pruning efficiency improves 
little, and the occupancy decreases due to a large amount of the required 
shared memory. For the exhaustive STEP method, the pruning efficiency 
benefits from a larger value of 𝑝 because the 𝑘NN results are initialized 
with the exact minimal distance of each cluster. However, sorting clus-
ters becomes time-consuming when 𝑝 > 2048. The number of threads in 
each thread block (or block size) was fixed at 32 because the required 
shared memory increases with the block size. Gärtner’s algorithm was 
used to generate bounding spheres only for tasks with angular distances 
because few differences exist among the bounding sphere algorithms 
with L2 distances. The parameters of the baseline methods were well 
chosen for the experimental GPU.

Randomly generated and practical datasets were used in our eval-
uations. We prepared random datasets using the KISS algorithm [44], 
which generates query points and data points with normal distribution. 
Six practical datasets were used in our experiments. Open Street Map 
(OSM) datasets [13] include construction information from all over the 
world uploaded by contributors. We used the two-dimensional coor-
dinates of 72,276 schools and 353,962 shops in the U.S. as the query 
points and data points, respectively. ANNSIFT1M [14] is a computer vi-
sion dataset that includes scale-invariant feature transform descriptors 
to identify objects in images. The dataset contains 10,000 query points 
and 1,000,000 data points of 128 dimensions. The KDDCUP-Bio dataset 
[45] includes various scores that describe protein sequences. The goal of 
the original task was to predict homologous proteins. The dataset con-
tains 10,000 query points and 139,658 data points of 74 dimensions. 
KDDCUP-Phy [45] is a particle physics dataset. The data were collected 
in collision experiments with high-energy particle beams. A major prob-
lem in the experiments is to classify particle tracks. The dataset contains 
10,000 query points and 100,000 data points of 78 dimensions. All val-
ues in the datasets are nonnegative. GIST [46] is also a computer vision 
dataset containing the global image structure tensor descriptors. The 
dataset contains 1000 query points and 1,000,000 data points of 960 
dimensions. The DEEP10M dataset [47] consists of image embeddings 
produced as the outputs from the GoogLeNet model. The dataset con-
tains 10,000 query points and 10,000,000 data points of 96 dimensions.

In all the evaluated methods, L2 distances were stored in float-type 
variables. However, the methods store angular distances in double-type 
variables because the values are too small to maintain precision with 
the float type. The details of the data types in each dataset are listed in
Table 1. We use L2 distances when evaluating the OSM dataset for con-
venience, although computing the distance between two coordinates 
with the Haversine formula offers a better assessment. Notably, the 
experimental GPU supports single-precision instructions far more than 
double-precision instructions. We show the average results of 10 execu-
tions in all experiments.

6.2.  Performance on Random Datasets

We evaluated the methods based on varying numbers of query points 
𝑚, number of data points 𝑛, neighbor counts 𝑘, and dimensions 𝑑. When 
one of these four values changes, the other three are fixed to the default 
values as shown in Table 2.
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Table 1 
Data types in each dataset.
 Datasets  Coordinates  Distances
 Random values (L2)  Short  Float
 Random values (angular)  Short  Double
 OSM (L2)  Float  Float
 ANNSIFT (L2)  Float  Float
 KDDCUP-Bio (angular)  Float  Double
 KDDCUP-Phy (angular)  Float  Double
 GIST (L2)  Float  Float
 DEEP10M (L2)  Float  Float

Table 2 
Default values of each parameter.
 Query Points  Data points  Neighbors  Dimensions
 65536  65536  128  2

Fig. 5 shows the performances of the six methods on randomly gener-
ated datasets with L2 distances. The computation time against the query 
count is shown in Fig. 5a. The workload of all the methods increases lin-
early with the number of queries. The numbers of accessed and retained 
data points against the query count are demonstrated in Fig. 5b. The in-
creasing query count has little effect on the accessed and retained points. 
The number of accessed points in the indexing STEP method is larger 
than that in the GPU-based 𝑘-d tree method. However, the computa-
tion time of the STEP method is smaller because the GPU-based 𝑘-d tree 
method shows a severe warp divergence. A similar result was observed 
for the SS-tree method in Fig. 5a and 5b. The STEP method achieves a 
12.9 times speedup compared with the SS-tree method when the query 
count is 216.

The results against various numbers of data points are shown in 
Fig. 5c and 5d. The slopes of the GPU-based 𝑘-d tree method and the 
buffer 𝑘-d tree method are smaller than the other methods regarding 
the computation time because the height of the 𝑘-d tree increases by 1 
when the number of data points doubles itself. The workload increases 
logarithmically for these two methods. In contrast, the workload of the 
other methods shows a larger increasing rate. Regardless, the accessed 
point count of the STEP method increases sublinearly with the number 
of data points, and the slope of the retained point count is smaller than 
1.3. The STEP method is 13.9 times faster than the GPU-based 𝑘-d tree 
method when the number of data points is 216. When the number of data 
points surpasses 224, the computation time of the STEP method exceeds 
that of the 𝑘-d tree method. The exhaustive STEP method shows limited 
performance in Fig. 5a and Fig. 5c because its naive clustering strategy 
leads to a low pruning efficiency on 2D data.

Fig. 5e and 5f demonstrate the performance with varying neighbor 
counts 𝑘. For indexing methods, the numbers of accessed and retained 
points increase with the neighbor count. In contrast, the exhaustive 
methods, Sel-𝑘NN and exhaustive STEP, always compute the distances 
for all pairs of query points and data points. The workload of updat-
ing 𝑘NN results increases in all methods. Importantly, the number of 
accessed points in the STEP method becomes less than that in the GPU-
based 𝑘-d tree method when 𝑘 is larger than 1024. Although the two 𝑘-d 
tree-based methods show good performance when the neighbor count is 
less than 10, their computation time increases rapidly with the neighbor 
count. The computation time of the buffer 𝑘-d tree method increases dis-
tinctly when 𝑘 increases from 256 to 512 because the shared memory 
required for 𝑘NN results exceeds the GPU threshold. Thus, the buffer 
𝑘-d tree method stores the 𝑘NN results in the global memory, which 
humbles the performance. The two STEP methods show good scalabil-

ity regarding the neighbor count. The indexing STEP method attains a 
28.9 times speedup compared with the SS-tree method when 𝑘 = 2048.

The results with different dimensions 𝑑 are illustrated in Fig. 5g and 
5h. For the Sel-𝑘NN method and exhaustive STEP method, the value of 
𝑑 is only related to the distance matrix computation step, of which the 
performance is limited by the number of query points and data points. 
In addition, the cuBLAS GEMM function has sufficient parallelism on 
the dimension. Thus, the value of 𝑑 has little effect on the computation 
time of the exhaustive methods. The pruning efficiency degrades rapidly 
for the indexing methods owing to the curse of dimensionality [27]. 
The accessed point counts of the four indexing methods almost reach 
the maximal value of 65536 when 𝑑 = 16 and remain the same when 
𝑑 = 32. The slopes of the computation time reduce accordingly when 𝑑
increases from 16 to 32. Note that the buffer 𝑘-d tree method stores the 
𝑘NN results in the global memory because of the restricted shared mem-
ory capacity. The indexing STEP method achieves a 29.6 times speedup 
compared with the SS-tree method when 𝑑 = 8. When 𝑑 = 32, the ex-
haustive STEP method shows better performance and achieves a 6.1 
speedup compared with the SS-tree method.

For the angular distance, all the evaluated methods exhibit simi-
lar behaviors with different numbers of query points, numbers of data 
points, and neighbor counts. We observe some differences from the re-
sults with varying dimensions. Fig. 6 shows the performances for an-
gular distances with different numbers of data points and dimensions. 
The workload of computing angular distances is larger than that of com-
puting L2 distances. This has very little effect on the Sel-𝑘NN method 
and exhaustive STEP method because the distance computation is op-
timized using GEMM. Generally, the retained points of the SS-tree and 
indexing STEP methods slightly increase compared with the ones us-
ing L2 distances. However, the accessed points of the indexing STEP 
method have a smaller slope with angular distance than that with L2 
distance because of the tighter bounding sphere generated by Gärtner’s 
algorithm. In other words, a tighter bounding sphere increases the num-
ber of pruned clusters in the indexing STEP method using angular dis-
tance. As stated in Section 6.1, Gärtner’s algorithm only leads to a perfor-
mance improvement with angular distance and high-dimensional data. 
The exhaustive STEP method achieves a 55.6 times speedup when 𝑑 = 32
compared with the SS-tree method.

The workflow of the exhaustive STEP method and the Sel-𝑘NN 
method can be divided into (a) query-dataset distance computation and 
(b) top-𝑘 selection. In Fig. 6c, both methods spend about 160 ms com-
puting the distances with GEMM. For top-𝑘 selection, the exhaustive 
STEP method spends about 50 ms and approximately achieves a 200 
times speedup over the Sel-𝑘NN method. Besides the pruning strategy 
and the advanced results update process, the exhaustive STEP method 
greatly reduces the number of retained points by initializing the 𝑘NN 
results with the exact minimal distances of the clusters. Consequently, 
the exhaustive STEP method updates the 𝑘NN results less frequently and 
achieves high performance.

6.3.  Performance on Practical Datasets

We evaluated the performance of the proposed method on six prac-
tical datasets. We only changed the value of the neighbor count 𝑘 in the 
experiments using practical datasets because the other three parameters 
were fixed. In the two-dimensional OSM datasets, the query points and 
data points are the latitudes and longitudes of constructions in the U.S. 
The computation time as well as accessed points and retained points are 
shown in Fig. 7a and 7b. Similar to the case on the random dataset, the 
GPU-based 𝑘-d tree method is the fastest approach among the evaluated 
methods. However, its performance becomes inferior to that of the in-
dexing STEP method when the neighbor count increases to 32. The STEP 
method achieves a 15.9 times speedup compared to the GPU-based 𝑘-d 
tree method when 𝑘 = 128. Unlike the results on random datasets when 
𝑘 = 128, the 𝑘-d tree method offers better performance than the SS-tree 
method. The STEP method achieves a 20.8 times speedup compared 
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Fig. 5. Computation time and accessed and retained points on randomly generated datasets with L2 distances.
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Fig. 6. Computation time and accessed and retained points on randomly generated datasets with angular distances.

to the SS-tree method when 𝑘 = 2048. This speedup is less than the one 
achieved on random datasets because the pruning efficiency of the STEP 
method decreases. On random datasets, the retained point count of the 
STEP method reduces by 67% compared with the value of the SS-tree 
method when 𝑘 = 2048. This ratio becomes 53% on OSM datasets. Dif-
ferent from the normal distribution in the randomly generated datasets, 
irregular distributions in practical datasets lead to lower pruning ef-
ficiency and potential load imbalance among clusters. This harms the 
performance of the indexing STEP method, and similar phenomena are 
found when evaluating the other practical datasets.

Fig. 7c and 7d show the results with varying values of 𝑘 on the 
ANNSIFT dataset. The ANNSIFT dataset contains vectors of 128 dimen-
sions and uses the L2 distance metric. Pruning strategies in the indexing 
methods hardly work on such high-dimensional data. The accessed point 
count of the indexing STEP method increases from 87% to 93% when 𝑘
increases. In contrast, the exhaustive STEP method shows good perfor-
mance on such high-dimensional data. The exhaustive STEP method has 
a smaller increasing rate of computation time than the Sel-𝑘NN method 
because the 𝑘NN results are updated efficiently with bitonic operations. 
The buffer 𝑘-d tree method and SS-tree method are out of memory 
when 𝑘 ≥ 1024 and 𝑘 ≥ 2048, respectively. The exhaustive STEP method 
achieves a 29.0 times speedup compared with the SS-tree method when 
𝑘 = 1024.

On the KDDCUP-Bio dataset containing 74-dimensional data, the 
pruning efficiency of the indexing methods is higher than that obtained 
on the ANNSIFT datasets. Fig. 7e and 7f show the results with varying 
values of 𝑘 on the KDDCUP-Bio datasets. The accessed point count of 
the indexing STEP method is 15% of the total number of data points 
when 𝑘 = 128. The ratio increases to 23% when 𝑘 = 1024, and the in-
creasing rate is larger than that of the SS-tree method. The exhaustive 
STEP method achieves 36.7 times and 24.4 times speedups compared 
with the SS-tree method when 𝑘 = 128 and 𝑘 = 1024, respectively. The 
speedup decreases because the amount of required shared memory in-
creases with the value of 𝑘, which limits the occupancy of the exhaustive 
STEP method. Fig. 7g and 7h demonstrate the results on the KDDCUP-

Phy dataset with 74-dimensional data. The results show a similar trend 
although the slopes of the computation time of the two indexing meth-
ods are larger because of the higher increasing rate of the retained points 
with the value of 𝑘. The speedups of the exhaustive STEP method are 
24.7 and 27.1 compared with the SS-tree method when 𝑘 = 128 and 
𝑘 = 1024, respectively.

From Fig. 7, we conclude that the indexing STEP method is the 
fastest approach on low-dimensional datasets when the neighbor count 
is larger than 32. For tasks with a small neighbor count using L2 dis-
tances, the GPU-based 𝑘-d tree method offers good performance. In high-
dimensional tasks, the exhaustive STEP method demonstrated signifi-
cantly better performance compared to other indexing methods and the 
Sel-𝑘NN method.

We compare the performance of the exhaustive STEP method and 
the Faiss library on large-scale datasets in Fig. 8. The tree-based baseline 
methods (k-d tree, buffer k-d tree, and SS-tree) required too much GPU 
memory to store the built tree, leading to out-of-memory issues when 
computing on the DEEP10M and GIST datasets. We show the compari-
son in a separate figure because the differences are too small to show in 
Section 6.3 which has a wide range of computation time. Notably, the 
Faiss library is devoted to high-dimensional datasets. With the default 
parameter setting in Table 2, the computation time of the GPU-based 
Faiss library is over 200 ms, whereas the indexing STEP method com-
pletes the computation in 10 ms. We only show the computation time 
of the Faiss library because the numbers of accessed and retained points 
were unavailable.

In Fig. 8a, we illustrate the computation on the ANNSIFT dataset. 
When the neighbor count 𝑘 = 1, the performance of the GPU-based 
Faiss library is slightly better than that of the STEP method. However, 
the speedup of the STEP method over the Faiss library gradually in-
creases with the neighbor count. The speedups are 1.2 and 2.1 when 
𝑘 = 128 and 𝑘 = 2048, respectively. The neighbor count greatly affects 
the streaming multiprocessor’s occupancy in these two methods. In the 
STEP method, the occupancy is limited by the size of the required shared 
memory because the candidates and 𝑘NN results are stored in the shared
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Fig. 7. Computation time and accessed and retained points on (a) and (b) OSM, (c) and (d) ANNSIFT, (e) and (f) KDDCUP-Bio, and (g) and (h) KDDCUP-Phy datasets. 
We use L2 distances on OSM and ANNSIFT datasets and angular distances on the other datasets.
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Fig. 8. Performance comparison between the exhaustive STEP method and the 
Faiss library. We show the computation time on (a) ANNSIFT, (b) GIST, and (c) 
DEEP10M datasets with L2 distances.

memory. In contrast, the GPU-based Faiss library stores the candidates 
and results in the registers when updating the 𝑘NN results. This strat-
egy makes the number of registers the limiter of the occupancy. The 
STEP method achieves better scalability on various neighbor counts be-
cause of the efficient results update process. The CPU-based Faiss li-
brary is three orders of magnitude slower than the GPU-based meth-
ods, which shows that it is better to leverage the parallelism of the 
GPU to process such a large number of queries with the exhaustive
methods.

For the performance on the GIST dataset with 960-dimensional data 
in Fig. 8b, the exhaustive STEP method demonstrates a similar behavior 
to that on the ANNSIFT dataset. The STEP method shows good scal-
ability regarding the neighbor count, whereas the performance of the 
Faiss library drops with a low value of 𝑘. The speedups are 1.9 and 2.1 
when 𝑘 = 128 and 𝑘 = 2048, respectively. This shows the robustness of 
the exhaustive STEP method on high-dimensional datasets.

We use the out-of-core STEP method on the DEEP10M dataset with 
96-dimensional data in Fig. 8c. The dataset contains 10 thousand query 
points and 10 million data points, which makes the distance matrix size 

Fig. 9. Performance comparison between the indexing STEP method, the GPU-
based 𝑘-d tree method, and the CPU-based 𝑘-d tree method. We show the com-
putation time on (a) OSM and (b) ANNSIFT datasets with L2 distances.

too large to fit into the GPU memory capacity. The speedups are 0.8 
and 1.0 when 𝑘 = 128 and 𝑘 = 2048, respectively. The speedup is low 
due to the extra local result merging operations in the STEP method. 
However, the STEP method achieves similar performance to that of the 
GPU-based Faiss library because of its better scalability regarding the 
neighbor count. We only evaluated the performance with up to 10 mil-
lion data points because of the limited CPU memory capacity. Never-
theless, our out-of-core extension offers linear scalability regarding the 
number of data points. A machine with a large CPU memory capacity 
can run the proposed method efficiently.

We also compare the performance of the indexing STEP method, 
the GPU-based 𝑘-d tree method, and the CPU-based 𝑘-d tree method 
in Fig. 9. In Fig. 9a, we show the computation time on the OSM dataset. 
Both CPU- and GPU-based 𝑘-d tree methods are significantly fast when 
the neighbor count is 1 because they rapidly reach the nearest neigh-
bor with the binary search. When the neighbor count increases to 128, 
the CPU-based 𝑘-d tree method achieves better performance than that 
of the GPU version. A possible reason is that the GPU version stores the 
candidates in the shared memory. When the neighbor count increases, 
the amount of the shared memory becomes the bottleneck that limits 
the performance. The same issue is also observed in the indexing STEP 
method. Fig. 9b demonstrates the computation time on the ANNSIFT 
dataset with 128-dimensional data. The tree structure becomes less ef-
ficient in high-dimensional cases. In conclusion, the CPU-based 𝑘-d tree 
method shows comparable performance with the indexing STEP method 
on low-dimensional tasks. The indexing STEP method is more efficient 
when the number of dimensions increases.

6.4.  Ablation Study

We show the results of the ablation study of the STEP method in 
Fig. 10. We compare the STEP method with its five variants. The first 
variant is a brute force method, and we show the speedups of the 
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Fig. 10. Ablation study of the STEP method with (a) L2 and (b) angular distances. The evaluations are conducted on randomly generated datasets using the default 
parameters in Table 2.

other variants against this method. Notably, the brute force method is
different from the Sel-𝑘NN method in that it replaces the GEMM with a 
kernel function that assigns each query to a thread and traverses the data 
points. The remaining five variants correspond to our five contributions. 
The second variant uses the proposed pruning strategy with 𝑘-means 
clustering and a naive bounding sphere algorithm. A query is assigned 
to a thread, and the 𝑘NN results are stored in the global memory. We 
compare the bounding sphere algorithms in Section 6.6. The third vari-
ant applies fine-grained parallelism that computes 𝑘NN for a query with 
32 threads in a warp. However, the 𝑘NN update is still computed using 
one thread. The fourth variant stores the 𝑘NN results in shared memory 
and merges the candidates in the shared queue with 𝑘NN results us-
ing bitonic operations. The fifth variant optimizes the bounding sphere 
algorithm to generate the tightest bounding spheres for clusters. The 
sixth variant, which is only evaluated with various dimensions, switches 
from the indexing approach to the exhaustive approach to achieve good 
scalability on high-dimensional data. We evaluate the performance with 
different numbers of data points 𝑛 using L2 distances and that with dif-
ferent dimensions 𝑑 using angular distances on random datasets. We set 
the other parameters based on Table 2.

When the number of data points increases in tasks using L2 distances, 
the speedup of the second variant, which is optimized only with the 
pruning strategy, also increases. The pruning efficiency is enhanced with 
a larger number of data points. The fine-grained parallelism accelerates 
the computation a step further but reduces the slope of speedup, which 
also affects the last two variants. The optimization of the update process 
leads to an order of magnitude speedup, whereas the optimization of 
the bounding sphere algorithm slightly improves the performance. The 
indexing STEP method achieves a 317.4 times speedup compared with 
the brute force method.

The situation varies in tasks using angular distances with different 
dimensions. The pruning efficiency worsens when the dimension in-
creases. The second variant is 17.5 times faster than the brute force 
method when 𝑑 = 2. However, the speedup decreases to 0.7 when 
𝑑 = 128 owing to the curse of dimensionality [27]. The fine-grained 
parallelism makes the computation even slower because heavy angu-
lar distances are computed repeatedly when updating 𝑘NN results. The
optimization of the update process greatly improves performance by re-
ducing the workload of distance computation and memory traffic. The 
optimization of the bounding sphere algorithm also shows consider-
able improvement with high-dimensional data. The accessed point count 
reaches the maximal value, which is the number of data points, when 
𝑑 = 32. Thus, the speedups change insignificantly when 𝑑 ≥ 32. The re-
sults of the accessed points obtained using the STEP method are shown 
in Fig. 6d. After switching from the indexing approach to the exhaustive 
approach, the performance decreases when 𝑑 ≤ 4 due to the unnecessary 
distance computations between all pairs of query points and data points. 
However, the exhaustive extension leads to a performance improvement 
when 𝑑 ≥ 8 because the exact minimal distances of the clusters greatly 
enhance the pruning efficiency. The exhaustive STEP method achieves 
a 463.0 times speedup compared with the brute force method.

6.5.  Analysis of Warp Divergence

We evaluated the warp divergence of the proposed method using 
the average active threads in a warp reported by NVIDIA Nsight Com-
pute [48]. The number of active threads was measured when profiling 
a kernel function. Most of the computation in the Sel-𝑘NN method was 
performed by calling a GEMM function instead of a kernel function. 
The buffer 𝑘-d tree method iterates with multiple kernel functions with 
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Fig. 11. Average active threads in a warp obtained using the evaluated methods on random datasets with (a) L2 and (b) angular distances.

Fig. 12. Comparison of different bounding sphere algorithms in the STEP method. These figures show the speedups as well as accessed and retained points obtained 
on (a) and (b) random datasets and (c) and (d) practical datasets with angular distances. We use the naive approach as the baseline of speedup.

different workloads. Thus, we excluded these two methods from our ex-
periments. The methods are evaluated with different numbers of data 
points 𝑛 using L2 distances and with different dimensions 𝑑 using angu-
lar distances. We set the other parameters based on Table 2.

Fig. 11a shows the average active threads of the three methods with 
L2 distances. We exclude the exhaustive STEP method because it is de-
voted to high-dimensional cases. The GPU-based 𝑘-d tree method has 
less than 9 active threads in a warp in all test cases. In contrast, the 
indexing STEP method and SS-tree methods have more than 30 active 
threads. When 𝑛 = 220, the STEP method has 30.7 active threads, which 
is 96% of the total threads in a warp. Therefore, the STEP method com-

putes the 𝑘NN in less time compared to the GPU-based 𝑘-d tree method 
when 𝑛 = 220, as shown in Fig. 5c and 5d. Although the numbers of ac-
cessed points and retained points of the STEP method are larger than 
those of the GPU-based 𝑘-d tree method, the STEP method achieves bet-
ter performance because of more active threads in a warp. For angular 
distance, similar behavior is observed, as shown in Fig. 11b. The two in-
dexing methods maintain a large number of average active threads with 
varying dimensions. We eliminate most of the warp divergence in the 
exhaustive STEP method by setting the number of data points in each 
cluster to a multiple of 32. Consequently, all threads are active when 
traversing clusters. However, it is unachievable with 𝑘-means clustering 
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in the indexing STEP method because the number of data points in each 
cluster is dependent on the centroid locations.

6.6.  Sensitivity to the Bounding Spheres

The analysis of the bounding sphere algorithms is demonstrated in 
this section. We only show the results of the STEP method using angular 
distances because the bounding sphere algorithms have little effect on 
tasks using L2 distances. The results are computed using the indexing 
STEP method because the exhaustive approach replaces the bounding 
spheres with exact minimal distances. We evaluate the sensitivity to the 
bounding spheres using three bounding sphere algorithms. The naive 
approach chooses the initial centroid using the same pattern as that in 
Ritter’s algorithm. Then, it adjusts the bounding sphere by only enlarg-
ing the radius but not the centroid. Ritter’s algorithm is employed by 
the SS-tree method and generates an approximate result that is 5% to 
20% larger than the exact bounding sphere. We implement a variant of 
Gärtner’s algorithm, which generates the exact bounding spheres with 
angular distances.

Fig. 12a and 12b illustrate the performance of the STEP method using 
the three bounding sphere algorithms employed on random datasets. We 
used the results of the naive approach as the baseline. When the num-
ber of dimensions 𝑑 increases, the STEP method accesses fewer clusters 
(or data points) with the exact bounding spheres. A 2.9 times speedup 
is achieved with Gärtner’s algorithm when 𝑑 = 8. The speedup drops 
when 𝑑 ≥ 16 because the number of accessed points reaches the maxi-
mal value of 216 for the naive approach and Ritter’s algorithm. We ob-
serve the same results even with a larger number of data points owing 
to the normal distribution of the randomly generated datasets. Besides, 
Gärtner’s and Ritter’s algorithms generate the same bounding spheres 
when 𝑑 = 2. The radii computed by Gärtner’s algorithm become smaller 
when 𝑑 > 2.

The results of the three bounding sphere algorithms on the practi-
cal datasets are shown in Fig. 12c and 12d. Different from the results 
on random datasets, the pruning strategy using the naive approach still 
works well on high-dimensional practical datasets. The STEP method 
with Gärtner’s algorithm achieves a 2.2 times speedup compared with 
that obtained using the naive approach. The STEP method is more sen-
sitive to the quality of bounding spheres on practical datasets than on 
randomly generated datasets.

Notably, Gärtner’s algorithm sometimes produces more retained 
points than Ritter’s algorithm. For instance, the number of retained 
points of Gärtner’s algorithm is 9% larger than that of Ritter’s algorithm 
on the KDDCUP-Bio dataset. The reason is that the candidate count in 
each cluster does not always decrease with the cluster order. Sorting 
exact bounding spheres may generate suboptimal cluster access orders. 
Nevertheless, Gärtner’s algorithm offers a higher performance because 
of fewer accessed points. In other words, the STEP method prunes more 
clusters with the tightest bounding spheres.

7.  Conclusion

In this paper, we presented STEP, a general-purpose method for 𝑘NN 
computation on GPU. We designed a novel clustering-based pruning 
strategy as well as its GPU-oriented optimization. To obtain good per-
formance in both low- and high-dimensional cases, the STEP method 
switches between the indexing and exhaustive approaches to improve 
pruning efficiency. We further accelerate the STEP method by enabling 
fine-grained parallelism and integrating bitonic operations into the 
updating procedure of 𝑘NN candidates. Our method achieves a 15.9 
times speedup with L2 distances and a 36.7 times speedup with an-
gular distances compared with the state-of-the-art methods. The pro-
posed method achieves high performance on various randomly gener-
ated datasets and practical datasets, showing its generalizability across 
different distance functions and dimensionalities.

The pre-processing time of the indexing STEP method is sometimes 
comparable to or even exceeds the computation time. The workload of 
k-means clustering in pre-processing is 𝑂(𝑛𝑑𝑝𝛼), where 𝑛 is the num-
ber of data points, 𝑑 is the number of dimensions, 𝑝 is the number of 
clusters, and 𝛼 is the iteration count of 𝑘-means computation. We set 
𝑝 = 512 and 𝛼 = 50 in our experiments. On the other hand, the workload 
of searching is 𝑂(𝑚𝑛𝑑𝑘), where 𝑚 and 𝑘 are the query count and neigh-
bor count. The searching time of our default test case, where 𝑚 = 65536
and 𝑘 = 128, is similar to the pre-processing time. This indicates that 
pre-processing cannot be disregarded when applying the indexing STEP 
method to practical cases. The suitable use-cases include (a) multiple 
STEP calls using the same dataset and different queries and (b) tasks 
with relatively larger 𝑚 and 𝑘. In contrast, the exhaustive STEP method 
can be applied to all use-cases thanks to the naive clustering strategy.

Although we focused on exact 𝑘NN approaches, there are some po-
tential extensions to achieve efficient approximate nearest neighbor 
searching with the STEP method. For instance, the 𝑘-means cluster-
ing can be replaced with a space-filling curve approach to reduce pre-
processing time. We can further improve the STEP method’s efficiency 
by limiting the number of clusters it accesses. In our future work, we will 
extend the STEP method to multi-GPU platforms to improve the scalabil-
ity on large-scale datasets. Besides, we will develop a CPU-based STEP 
method that is useful for tasks with a small number of queries.
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