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ARTICLE INFO ABSTRACT
Keywords: K-nearest neighbor (kNN) search is widely applied to low- and high-dimensional tasks, as well as various data
GPU

distributions and distance functions. However, its computational cost increases with the data volume, causing a
bottleneck for many applications. The workload of the existing tree-based methods linearly increases with the
neighbor count k in the worst case. In addition, some tree-based methods only apply to tasks with L2 distances
and may have severe warp divergence when employed on GPUs. Our goal is to develop a general-purpose kNN
method based on cluster sorting to achieve better pruning efficiency compared with tree-based approaches. We
optimize the proposed method to achieve higher performance on tasks with different dimensionalities or distance
functions. The proposed Sort, TraversE, and then Prune (STEP) algorithm is a kNN method that clusters the data
points beforehand. With various 1) numbers of data points, 2) numbers of query points, 3) neighbor counts,
4) dimensions, and 5) distance metrics, the STEP method offers high performance because of the following
aspects. First, our method prunes the data points efficiently by sorting the clusters for each query. Second, we
exploit the single-instruction multiple-threads (SIMT) architecture of the GPU and utilize both coarse- and fine-
grained parallelism to accelerate computation. The proposed method concurrently computes all queries and
minimizes warp divergence by assigning a query to a GPU warp. Third, the STEP method rapidly updates the
kNN results using bitonic operations. Fourth, we proposed an adaptive approach that automatically switches
from the indexing approach to the exhaustive approach to achieve good scalability on high-dimensional data.
Finally, we develop a variant of Gartner’s bounding sphere algorithm so that our indexing method can handle
distance metrics other than the L2 distance. The STEP method achieves a 15.9 times speedup with L2 distances
and a 36.7 times speedup with angular distances compared with other state-of-the-art methods.

k-nearest neighbor
parallel computing.

1. Introduction applicable to tasks with different conditions, such as data volume, di-
mensionality, and distance metrics.

K-nearest neighbor (kNN) search is widely used in many applica- The input of a kNN method contains a set of data points R, a set of

tions such as image processing [1], data mining [2], and geographic
information systems [3]. The implementation of kNN changes depend-
ing on the problem type. Tree-based indexing methods are often used
for collision detection with 2D or 3D data [4]. Exhaustive kNN methods
have been developed as classifiers for high-dimensional feature vectors
[5,6]. In addition, they have been proposed for graph space to solve
road network problems [7,8]. For tasks such as implicit surface defini-
tion [9,10], L2 distances between the points are calculated to perform
the kNN methods. Angular distance is commonly used in computer vi-
sion tasks, such as content-based image retrieval [11]. In string space,
the edit distance between two strings can be used to find the closest
substrings from a database to a query string [12]. Researchers have de-
veloped several specific kNN methods for these applications. However,
we attempt to develop a general-purpose kNN method that is broadly
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query points Q, and the scalar of the neighbor count k. The kNN method
then outputs the exact k nearest data points in R for each query g € Q.
We denote the size of QO and R by m and n, respectively. The elements
of the data and queries are all d-dimensional vectors. The value of d
changes depending on the task, e.g., d = 2 for the geographic data [13]
and d = 128 in some computer vision problems [14]. Notice that this
paper focuses on exact kNN algorithms, and the proposed method as
well as the baselines are all exact kNN solutions.

As the data volume increases, the computational cost of the kNN
computation increases, which becomes a bottleneck for intended appli-
cations. Several GPU-based parallel indexing methods have been pro-
posed based on their sequential version [15-17]. An indexing method
first performs a pre-processing step to build a data structure based on the
data points. Then, the method transfers the queries and the newly built
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data structure to the GPU and computes kNN results. Indexing methods
offer reduced workloads owing to their pruning strategies. However,
we must consider warp divergence [18] because of branching instruc-
tions in the indexing methods. On the other hand, exhaustive methods
can achieve good performance using general matrix multiply (GEMM)
accelerators on GPUs [6,19]. These methods divide the kNN computa-
tion into a distance matrix computation step and a top-k selection step.
The distance matrix computation benefits from the GEMM accelerators,
whereas the top-k selection limits the overall performance. Most exhaus-
tive methods therefore focus on optimizing the performance of the top-k
selection step.

GPU-based approximate nearest neighbor algorithms [20-23] have
been proposed to achieve good scalability on large-scale data while sac-
rificing accuracy. However, exact kNN results are important and neces-
sary in many practical applications, such as kNN searching on financial
data [24] and nearest neighbor classifiers for time series [25]. We con-
centrate on exact kNN solutions in this research.

Existing kNN methods are suitable to specific situations and have
limited performance in other conditions. When searching for one near-
est neighbor, i.e., k = 1, tree-based methods exhibit logarithmic time
complexity against the number of data points n. However, the time com-
plexity linearly increases with the neighbor count k in the worst case.
In addition, some tree-based methods only apply to tasks with specific
distance functions and may have severe warp divergence when imple-
mented on GPUs. Algorithms using space-partitioning data structures,
e.g., k-d tree and octree, only handle tasks using the L2 distance. The
similarity search tree (SS-tree) method relies on clustering instead of
space partitioning, but its pruning efficiency worsens as the data vol-
ume increases [26]. Some indexing approaches adopt clustering meth-
ods to improve pruning efficiency [35,36]. Such methods have time-
consuming pre-processing phases and are hard to achieve intra-query
parallelism. Moreover, pruning strategies in indexing methods become
less effective on high-dimensional data [27]. In contrast, exhaustive
methods have poor performance on low-dimensional data. The curse
of dimensionality has little effect on exhaustive methods because they
work without pruning strategies.

Our goal is to develop a novel kNN method that yields better pruning
efficiency than tree-based methods, especially in the presence of large
k. We further optimize the proposed method to deal with both low-
and high-dimensional data and with all types of distance functions. To
achieve good performance with various (1) number of data points, (2)
number of query points, (3) neighbor counts, (4) dimensions, and (5)
distance metrics, our contributions are as follows:

1. We design a novel kNN algorithm with an efficient pruning strat-
egy to reduce the workload. In the pre-processing step, the method
divides the data points into clusters and computes the distances be-
tween each pair of query and cluster. The method sorts the clusters
for each query beforehand and traverses all clusters. Once the prun-
ing condition is satisfied, the search terminates, and all the remaining
clusters are pruned. The proposed pruning strategy greatly reduces
data access, which improves performance.

2. We exploit the SIMT architecture of the GPU and utilize both
coarse- and fine-grained parallelism. The proposed method com-
putes queries concurrently and assigns a query to a GPU warp of
32 threads. The main goal is to minimize the warp divergence with
fine-grained parallelism. In addition, we developed an out-of-core
approach of the STEP method to handle tasks that exceed the GPU
memory capacity.

3. The proposed method further accelerates the kNN results update pro-
cess. The STEP method batches candidate data points and merges
them into the kNN results in parallel. A warp traverses the clus-
ters and inserts candidate data points into a shared queue. Once the
queue is full, the warp rapidly updates the kNN results using parallel
bitonic sort and merge operations.
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4. To improve the scalability of various dimensions, we design an adap-
tive workflow that switches between indexing and exhaustive ap-
proaches. In low-dimensional cases, the STEP method achieves high
performance using k-means clustering and bounding sphere gener-
ation. For high-dimensional data, the STEP method naively clusters
the data points and computes the exact minimal distances of each
cluster to increase pruning efficiency. In addition, the STEP method
speeds up the computation by initializing the kNN results with the
exact minimal distances.

5. We develop a variant of Gértner’s algorithm [28] that generates exact
bounding sphere results. The proposed method can compute bound-
ing spheres with angular distance, leading to a noticeable speedup
compared with approximate bounding sphere algorithms employed
on high-dimensional data.

The proposed method yields better pruning efficiency than baseline
methods with large k or in high-dimensional cases. On practical datasets,
our method achieves a 15.9 times speedup with L2 distances and a 36.7
times speedup with angular distances compared with the state-of-the-art
methods.

The remainder of this paper is organized as follows. In Section 2,
we introduce related studies regarding GPU-based parallel kNN meth-
ods and sequential kNN algorithms using clustering as pre-processing.
We explain the bounding sphere algorithms embedded in the evaluated
methods in Section 3. We present the proposed parallel k\NN methods in
Section 4. We describe the implementation issues that must be solved
to achieve complete GPU acceleration in Section 5. In Section 6, we
show the experimental results of the proposed and baseline methods.
We present the conclusions of our study in Section 7.

2. Related Work

Several existing sequential indexing methods for kNN search are par-
allelized and implemented on GPUs. The authors in [15] developed a
parallel k-d tree approach. This method stores tree nodes in a single
array and updates kNN results with on-chip shared memory to reduce
memory traffic. In [16], an adaptive grid-partitioning method, which
uses z-order curves to perform kNN search, was proposed. The authors
in [29] proposed an indexing method based on a semiconvex hull tree.
Each node is made from a set of hyperplanes and represents a semi-
convex hull. The method proposed in [17] partitions the data points
into equally sized bins. The search begins from the bin that contains the
query and moves to adjacent bins until all nearest neighbors are found.
The authors further extended the method to handle large datasets that
exceed the GPU memory capacity [30]. These algorithms use coarse-
grained parallelism, i.e., a GPU thread computes one query, which leads
to high warp divergence, reducing computing efficiency of GPU com-
puting. We chose the state-of-the-art method [15] using k-d tree as a
baseline in our experiment.

Other indexing methods use fine-grained parallelism to relieve the
warp divergence caused by branching and pruning. The buffer k-d tree
method [31] builds a variant of the k-d tree from the data points. The
method preserves good spatial locality with a small top tree in which
each leaf node contains multiple data points. Once a query reaches a
leaf node, it is stored in the leaf buffer. Threads in a thread block con-
currently compute queries in the same leaf buffer. In [26], the authors
developed a variant of the SS-tree method, which builds the tree using
k-means clustering beforehand. First, the method finds the nearest leaf
for each query and initializes the nearest neighbors. Then, the method
searches the tree using in-order traversal and updates kNN results. A
thread block is assigned to a query to parallelize distance computation.
A drawback of this method is that pruning efficiency depends on the ini-
tialized kNN results. Notably, the pruning efficiency of indexing meth-
ods decreases as the high-dimensional data increases [27].

In addition to indexing methods, parallel exhaustive kNN approaches
also achieve good performance owing to their concurrency mechanisms
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on the GPU. They mainly comprise two steps: distance matrix compu-
tation and top-k selection. The authors in [32] proposed a brute force
kNN approach implemented on an NVIDIA GPU with two CUDA ker-
nels. The first kernel computes the distances between all data points
and query points. In the second kernel, each thread sorts the distances
of one query and chooses the first k results as the nearest neighbors. In
[6], the authors optimized the calculation of the distance matrix and im-
proved the performance using the cuBLAS GEMM function. The cuBLAS
library fully exploits the Tensor Cores on NVIDIA GPUs so that high-
dimensional distance computation can be done efficiently. Therefore,
the cuBLAS library is widely used in many exhaustive kNN solutions
to compute distance matrices. The Sel-kNN method proposed in [19]
assigns each query to a thread block to enable fine-grained parallelism
when sorting distances. This method obtains kNN results efficiently with
a parallel selection sort. The warp select method [33] is the state-of-the-
art exhaustive kNN approach. Each query is assigned to a warp after the
distance matrix computation. Each thread maintains a thread queue in
registers to store kNN candidates. Once a thread queue is full, bitonic
sort and merge operations are performed to update the kNN results.
The authors in [34] improved the warp select method by replacing the
thread queues with a shared queue. We compare the performance of our
method with the Sel-kNN method [19] and warp select method [33].
The main advantage of exhaustive methods is that they compute kNN
tasks directly without pre-processing. In addition, they can deal with
various distance metrics. However, they may have relatively poor per-
formance on low-dimensional data compared with indexing methods.

Besides GPU-oriented parallel kNN algorithms, the authors in [35]
proposed a CPU-based sequential kNN solution that uses clustering
methods as pre-processing. The method uses k-means clustering to split
data points, computes the distances d,, between data points and their
centroids, and sorts the data points in descending order. In the searching
process of one query, the method first calculates the distances d.. from
the query to the cluster centers and sorts the clusters in ascending order.
It then traverses the data points in each cluster and prunes them using
triangle inequality. In [36], the authors optimized pruning efficiency
and memory consumption by selecting appropriate centroids without
harming accuracy. Other methods [37,38] use clustering methods to
compute approximate kNN results. These kNN methods using cluster-
ing methods have several drawbacks: (1) They lack an early stopping
feature but traverse all clusters. (2) When using triangle inequality, the
pruning efficiency drops significantly in high-dimensional cases. (3) Al-
though enabling coarse-grained parallelism by assigning queries to dif-
ferent processors is trivial, it is hard to achieve fine-grained parallelism,
i.e., intra-query parallelism. The reason is they perform pruning sequen-
tially by verifying the triangle inequality of each data point. They thus
require hundreds of seconds to compute kNN results for one query on 50
thousand data points [36]. We addressed these issues in the proposed
method.

3. Bounding Sphere Algorithms

In this section, we briefly describe the bounding sphere algorithms.
They are used to determine the boundaries of clusters in some indexing
methods. Ritter’s algorithm [39] and Gértner’s algorithm [28] generate
approximate and exact bounding spheres, respectively. Notice that the
proposed methods and the baselines compute exact kNN results, regard-
less of the quality of bounding spheres.

3.1. Ritter’s Algorithm

Ritter’s algorithm is an approximate approach to bounding sphere
generation that outputs a 5%-20% larger bounding sphere than the op-
timum [39]. Given a set of data points, the algorithm determines the
initial bounding sphere with two distant data points. Then, it iteratively
adjusts the centroid and radius by traversing all data points and check-
ing their distances. The algorithm is shown in Algorithm 1.
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Algorithm 1 Ritter’s Algorithm.

Input: data point array R = {rg,r,....F,_1}.
Output: an approximate bounding sphere b.
: r, = the furthest data point to r,
: r, = the furthest data point to r,
: r, = the furthest data point to r,
b, = the middle point of r, and r,, // centroid
b, = DIST(r,,r,)/2 // radius
: while true do
r; = the furthest data point to b,
if DIST(r;,b,) < b, then
Break
end if
U = the unit vector from b, to r;
by = by + (DIST(r;, by) — b,) - 5/2
13: b, = (b, + DIST(r;,b,))/2
14: end while
15: return b

Y ONDDAWN
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The SS-tree method employs Ritter’s algorithm to generate bound-
ing spheres for clusters because of its high computational efficiency.
However, the workload of bounding sphere computation is significantly
lower than that of k-means clustering. We can replace the approximate
bounding sphere algorithm with the exact one to improve the quality of
bounding spheres, which can enhance pruning efficiency.

3.2. Gdrtner’s Algorithm

Gértner’s algorithm generates an exact bounding sphere of the in-
put data points [28]. The algorithm iteratively calculates the bound-
ing sphere by adding points to a forced point list B, which contains all
points on the boundary of the sphere. In each iteration, Gértner’s algo-
rithm adds the point having the largest distance to the centroid to the
beginning of the forced point list. Girtner’s algorithm is based on the
move-to-front heuristic [40], as shown in Algorithm 2. The approach
keeps the data points in an ordered list R, which gets updated during
computation. Let R; denote the length-; prefix of the list.

Algorithm 2 Move-To-Front (MTF) Heuristic.
Input: data point list R = {r,r,...,r,_ }, forced point list B.
Output: the minimal bounding sphere b.

1: b= BS_L2(B) // compute the circumsphere of B
2: // b, and b, are the centroid and radius of b
3: // d is the dimensionality of the points

4: if |B| =d + 1 then

5: Return b

6: end if

7: fori=0tos—1do

8 if DIST(r;,b,) > b, then

o: b =MTF(R,_,,{r;} UB)
10: end if
11: end for
12: Return b

This approach incrementally computes the bounding sphere by ex-
tending the forced point list B in which the points are affinely indepen-
dent. The efficiency originates from the fact that the points far from the
centroid are moved to the front. Therefore, these points are processed
early in subsequent recursive calls. The move-to-front heuristic serves
as a subroutine for small point sets in Gartner’s algorithm, as shown in
Algorithm 3.

The authors further optimize the computation of the circumsphere
in line 1 of Algorithm 2 using matrix operations. However, the matrix
operation only works with the L2 distance. We develop a variant of the
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Algorithm 3 Gartner’s Algorithm.

Input: data point list R = {ry,ry,...,r_; }-

Output: the minimal bounding sphere b.

1: b, = ry, b, = —1 // the centroid and radius of b

2: s = 1 // the number of forced points

3: while true do

4 e =0 // check for excess

5: foreach r in R do

6: e = max(e, DIST(r,b,) — b,)

7 r = r if e is updated

8 end for

o: if ¢ < 0 then

10: Break // because no data point is outside the sphere
11: end if

12: B ={r'} // B gets updated in MTF

13: b = MTF(R,, B) // R, is the length-s prefix of R
14: Move ' to the front of R

15: s=|B|+1

16: end while

17: Return b
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Fig. 1. 2D bounding sphere of the data points with angular distances. The
bounding sphere is defined using the centroid ¢, and the radius c,.

circumsphere computation for angular distances, which is more suitable
for practical high-dimensional tasks.

3.3. Bounding Spheres with Different Distance Functions

For the clusters calculated with angular distances, we also use the
phrase “bounding sphere” for convenience, although the shape is more
like a cone rather than a sphere. An example of a bounding sphere of
the data points with angular distances is shown in Fig. 1. The centroid
. is defined using either a point or a vector. The radius c, is the an-
gle between ¢, and the boundary. A d-dimensional bounding sphere is
determined using d data points on the boundary when using angular dis-
tances. For the L2 distance, it is trivial to calculate a bounding sphere
of data points.

The distance between the query ¢ and the cluster (or bounding
sphere) c is calculated as follows:

o) = Crs (€Y

C,

DIST(q,c)= DIST(q,c

where ¢, is the centroid and c, is the radius of c. The distance function
is represented using DI.ST(). This applies to any distance function that
follows the triangle inequality. Examples of computing an L2 distance
and an angular distance are shown in Fig. 2.

4. Method

The STEP algorithm is a general-purpose method proposed for kNN
search. The computational workflow of the STEP method is shown in
Fig. 3. The STEP method first clusters the data points during the pre-
processing step. The access order of the clusters is resolved in Phase 1.
Then, it loops over Phases 2-4 to compute kNN results. In this section,
we first introduce the indexing STEP approach for a better understand-
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Fig. 2. Computation of the distance DIST(q,r) from the query point ¢ to the
data point r and the distance DIST(q, c) from g to the cluster c.
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Fig. 3. Computation workflow of the STEP method for a single query. The STEP
method concurrently computes kNN results for all queries.

ing of the workflow. We bring out the exhaustive variant of the STEP
method in Section 4.4.

In pre-processing, the STEP method divides data points into p groups
with k-means clustering. The centroids of the groups are initialized with
the k-means+ + algorithm [41]. Then, the STEP method generates a
bounding sphere for each cluster. In addition to the data points, the
centroids and radii of clusters are transferred to the GPU after pre-
processing.

4.1. Pruning Strategy

The STEP method maintains a pruning distance throughout the kANN
computation, as shown in Fig. 3. The pruning distance is the distance
between the query point ¢ and the furthest data point in its kNN results.
The STEP method prunes the data points in a cluster if the data points are
further than the pruning distance. The relationship between the distance
from q to the data point r and one to the cluster ¢ is shown via the lemma
below.
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Algorithm 4 The Indexing STEP Method.

Algorithm 5 Traverse Clusters.

Input: data point set R={ryr,....r,_1}, query set Q=
{d9-41--.- 91}, neighbor count k, number of clusters p, size of
candidate queue n,.

Output: kNN search results S[m][k] = {}.
C=A{cp.cpseonsCpy} = KMEANSCLUSTERING(R, p)
: foreach query ¢; in Q in parallel do

D[p] = {} // distances from ¢; to each cluster

foreach cluster ¢; in C in parallel do
(€¢j0:€jp) = (centroid of c;, radius of cj)
DIjl=DIST(g;,¢;,) — ¢,

end for

SORT(D, C)

S[i] = TRAVERSECLUSTERS(R, C, D, g;, k, p, n.)
end for
: return §

©ONaAWN

—
= O

Lemma 1. DIST(q,r) > DIST(q,c),Vr € c.

Proof. When the query lies inside or on the sphere, i.e., DI.ST(g,c) <0,
the statement holds because DI.ST(g, r) is nonnegative. When the query
lies outside the cluster, i.e., DI ST(q, ¢) > 0, we have the following rela-
tion because the distance function D1.ST() follows the triangle inequal-
ity:

DIST(q.r) + DIST(r,c,) > DIST(q.c,) 2

Since r € ¢, the distance between r and c, is not larger than c,. Con-
sequently,

DIST(q,c) = DIST(q,c,) —c;,
< DIST(q,c,) — DIST(r,c,) 3
< DIST(q,r)
O

The STEP method prunes the data points in the cluster ¢ for the query
g when the pruning distance is smaller than DI ST (g, ¢).

In Phase 1, the STEP method computes the distances between a query
and all clusters. To determine the access order of the clusters, the STEP
method then sorts the distances using a parallel bitonic sort adopted
in [33]. The process corresponds to lines 3-8 in Algorithm 4. Sorting
the clusters is critical in our pruning strategy. When the STEP method
prunes a cluster c; for a query g by comparing DIST(g, ¢;) and the prun-
ing distance (explained later), the remaining clusters regarding the ac-
cess order are all pruned because the data points in them cannot have a
smaller distance than DIST(q, c;).

In Phase 2-4, the STEP method traverses all clusters based on the ac-
cess order. The pruning strategy is shown as branching in Algorithm 5.
The if-statement in line 3 prunes clusters, and the one in line 7 prunes
data points. The array S’, which is equivalent to the array S[i] in Algo-
rithm 4, maintains the kNN results of the query ¢; in ascending order by
distance. Therefore, the STEP method uses the data point in S'[k — 1],
which stores the furthest data point to g;, as the pruning distance. The
STEP method compares the pruning distance with the distance between
g; and c; before traversing the data points in c;. If the pruning distance
is smaller, all data points in ¢; are further than the current kNN results
according to Lemma 1. Therefore, the STEP method prunes c; and all
data points in it because they are irrelevant to the kNN results. All the
remaining clusters are pruned simultaneously. It is unnecessary to check
the pruning condition for the remaining clusters. The STEP method fur-
ther reduces the workload by employing data point pruning (line 7). A
data point r, is inserted into the candidate queue only when the pruning
distance is larger than the distance between ¢; and r,.

Notably, the STEP method determines the individual order of clusters
for each query. Each query traverses the clusters in different orders, and
the search process of each query is independent of the others. The STEP
method computes the kNN results of all queries in parallel.

Input: data point set R = {ry,ry,...,r,_; }, sorted cluster indices C =
{cos 715 Cprt s sorted cluster distances D = {d,. d;, o dy 1}, query g;,
neighbor count k, number of clusters p, size of candidate queue n,.

Output: kNN search results S'[k] = {}.

1: R.n.]={} // candidate queue

2: foreach cluster ¢; in C do

3: if DIST(q;,S'[k —1]) < D[] then

4: break
5: end if
6: foreach data point r, in ¢; do
7: if DIST(q;, S'[k — 1]) > DIST(q;,r,) then
8: INSERT(R,, ;)
9: end if

10: if R is full then

11: MERGE(S’, R.)

12: end if

13: end for

14: end for

15: MERGE(S’, R.) // Merge the remaining candidates
16: return S’

kNN results Candidates
Distances [01/2]4]5(6/8[9] [4]7]8]3]

Compare & Swap

—eo o—o

Phase 1: local sort

—eo

[o]1]2]4]5]6]8]9] [3]4]7]8] Compare & Copy

—
——
—

Phase 2: merge

lo[12]4]5]6[4]3] [3]4]7]8]

— o
— ——° o

Phase 3: rebuild gy — Flgsh
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lo[12[314]4]s]6] [/[/]/1/]

Fig. 4. Advanced results update process with bitonic sort and merge operations.
The nearest neighbor count & is 8 and the candidate count n, is 4. A grey block
represents a parallel step.

4.2. Advanced Results Update Process

Updating kNN results is time-consuming for large k values. More-
over, it is nontrivial to exploit the parallelism of a max heap on a GPU.
Our solution is to store n, candidate data points in a shared queue and
use bitonic sort and merge operations to update kNN results once the
queue is full. The value n, is a pre-defined constant, and the update
process is fully parallelized with the threads in a warp to achieve high
computational efficiency. We achieve parallel insert operations using
the approach in [34].

Fig. 4 shows the results update process of the proposed method. The
key idea is to batch n, candidates and update the kNN results with
a single bitonic merge operation. The update process sorts the can-
didate queue and merges it into the already sorted kNN results with
three phases. In phase 1, the candidates are sorted with logn, parallel
steps. The candidates are merged into the kNN results with one par-
allel step in phase 2. The method rebuilds the kNN results in phase 3
with log k parallel steps and flushes the candidate queue. Notice that we
only need to copy the data points instead of swapping them in phase
2 because it’s unnecessary to maintain the candidate queue. There are
O(n, log n, + klog k) compare & swap/copy operations in total. However,
the performance of this approach is limited when k < n, because some
threads will become idle. In practice, we pad the size of the kNN result
array to a multiple of n,.
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Designing an appropriate results update process is a trade-off be-
tween the workload and the update frequency of the pruning distance.
When we update the kNN results once a candidate is found, the pruning
distance is updated immediately so that more data points can be pruned.
In contrast, the pruning distance is updated less frequently when we
batch the candidates and merge them into the kNN results afterward. In
our approach, the pruning distance is the last element of the sorted kNN
result array. Even when a candidate with a smaller distance is inserted
into the shared queue, the pruning distance will remain untouched. Be-
cause the STEP method prunes both clusters and data points with the
pruning distance, the update frequency has a noticeable effect on the
performance. We therefore set the value of n_ to 64 to fully utilize the
threads in bitonic sort while making the shared queue small enough to
increase the update frequency.

4.3. Variant of Gdrtner’s Algorithm

We developed a variant of Girtner’s algorithm [28] to compute
bounding spheres with angular distances. To compute an exact bound-
ing sphere of the data points in a cluster, we select a set of forced points
B and calculate the unique circumsphere to obtain its centroid c, and
radius ¢,. When the distances from all points to ¢, are smaller than c,,
the circumsphere is the minimal bounding sphere M B(B) of the cluster.
The selection process is omitted from this section.

We assume that B contains affinely independent points with di-
mension d. In this case, the centroid ¢, is restricted to the affine hull
of B. Therefore, c, and c, satisfy the following equations, where B =
{ros sy }ym=d:

VITCO
———— =cos(¢;), i=0,...m—1,
[rill - el
m—1
Ti

z A; =¢,,and O))
&1

m—1

The points in B are constant during computation. We denote the nor-
malized vectors of the points as follows:

som—1. ()

Defining R; :=#; —#yfori=0,...,m—1and C, := ¢, — 7, we derive
that:

Foco = Ficy, i=1,...,m—1, 6)
Ric, =0. ()

From Eq. (4) and Eq. (7), we obtain:

m—1

> AR =C,, ®)
i=1

RICy=-R"#y, i=1,...m—-1. 9

Substituting C, with Zf";ll A;R; in Eq. (9), we deduce a linear system in
the variables 4,, ..., 4,,_;, which can be written as

A —RT#
AB = : s (10)

T A
Am_1 —Rm_1 7o

where Aglill[j] = R], | R;,, because R' R, = R/ R, for 0 < s, <m—1I:

RTR, RTR,_
Ag = : : an

RT'R,_, Rl R,

Eq. (10) presents a linear system with the format Ax = b. Therefore,
we solve the linear system by computing x = A~'b to get the values of
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Ay, ..., Ap_;- Finally, we compute ¢, and ¢, as follows:
m—1
€ = }‘i F i
i=0 (12)

_ s _Co
¢, = arccos (rom),
0

where 4y =1-Y"" ..

i=1 i

4.4. Adaptive Workflow in High-Dimensional Cases

For indexing kNN solutions, the performance drops significantly in
high-dimensional cases because the distance information between data
points contributes little to the pruning efficiency due to the curse of
dimensionality. Besides, on-demand distance computation during the
search process harms the performance because of the global memory
access latency on GPUs.

Algorithm 6 The Exhaustive STEP Method.
Input: data point set R={ryr,....r,_;}, query set Q=
{4041, ---»qm—1 }, Deighbor count k, number of clusters p, size of
candidate queue n,.
Output: kNN search results S[m][k] = {}.
1: C={cp,cy,---»cp_1} = NAIVECLUSTERING(R, p)
2: foreach query ¢; in Q in parallel do
3 Dip] = {} // distances from g, to each cluster
4 foreach cluster ¢; in C in parallel do
5 D[j] = +o0

6: foreach data point r, in ¢; do

7

8

9

D[j] = min(DIST(g;.r,), D[j])
end for
end for
10: SORT(D, C)
11: S[i] = TRAVERSECLUSTERS(R, C, D, g;, k, p, n.)
12: end for
13: return S

To achieve good scalability in high-dimensional cases, we propose an
adaptive workflow of the STEP method that automatically switches from
the indexing approach to the exhaustive approach. Algorithm 6 shows
the exhaustive STEP method. Specifically, the STEP method alters the
behavior in pre-processing and phase 1 shown in Fig. 3. In addition,
all distances are computed beforehand in the pre-processing phase. The
approach switch happens when the number of dimensions is not lower
than a pre-defined threshold d,. We suggest fixing d; to 16 considering
the GPU hardware features, but we evaluated the two approaches on
both low- and high-dimensional datasets.

The major issue that weakens the pruning efficiency is the imprecise
pruning thresholds of clusters, i.e., the radii of bounding spheres. The
k-means clustering and bounding sphere generation offer good pruning
efficiency in low dimensions. However, the bounding spheres expand
rapidly as the number of dimensions increases. A query is often located
inside most of the bounding spheres when the number of dimensions
exceeds 16. Such clusters cannot be pruned because their distances to
the query are 0. But for the data points in a bounding sphere, their
distances to the query can be far more larger than the sphere’s radius.

We replace the bounding sphere radii with exact minimal distances
to improve the pruning efficiency. For each query, the STEP method
computes its distances to all data points in a cluster and sets the min-
imal distance as the pruning threshold of the cluster. This approach
has three advantages: (1) The meaningful pruning thresholds enable the
STEP method to prune more clusters in high-dimensional cases. (2) The
STEP method can directly initialize the kNN results with the exact min-
imal distances. (3) The STEP method can compute kNN results with dis-
tance functions that do not follow the triangle inequality. The drawback
is obvious: the pre-processing becomes query-dependent, which makes
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the STEP method an exhaustive approach. Nevertheless, the indexing
and exhaustive approach perform similar numbers of distance computa-
tions when the pruning efficiency is limited. They both compute O(mn)
distances but the indexing method requires additional branching oper-
ations, which leads to an inferior performance of the indexing method
on high-dimensional data. Notice that the STEP method stores the com-
puted distances in the GPU global memory and reuses them during the
search process.

To further reduce the pre-processing time, we use a naive cluster-
ing strategy instead of the k-means clustering in the exhaustive STEP
method. The exact minimal distances are more important than the clus-
tering results regarding the pruning efficiency. The STEP method there-
fore performs the clustering most naively by equally dividing the data
points into clusters based on the input order.

5. GPU-Based Implementation

In addition to the parallel algorithm, we performed several optimiza-
tions specific to the GPU architecture. These optimizations can be ap-
plied to other kNN methods. We consider Turing architecture [42] as the
target GPU architecture. The STEP method is implemented using C+ +
and CUDA.

The details of reducing warp divergence and uncoalesced accesses
are discussed in Section 5.1. In Section 5.2, we explain the kernel fission
strategy that increases the occupancy of streaming multiprocessors in
specific situations. We introduce the out-of-core STEP method to handle
large-scale data that exceed the GPU memory capacity in Section 5.3.

Although most of the strategies in Section 5.1 are common tech-
niques, they significantly enhanced the performance of the STEP
method. Kernel fission in Section 5.2 optimized shared memory usage
and slightly made the computation more efficient. The out-of-core strat-
egy in Section 5.3 improves the applicability of the STEP method on
large datasets.

5.1. Reducing Warp Divergence and Uncoalesced Accesses

Each query is assigned to a GPU warp of 32 threads in the STEP
method to reduce warp divergence. When the threads in a warp com-
pute kNN for multiple queries, they may execute different instructions
according to the pruning results of the queries. In such cases, the threads
sequentially execute instructions, which reduces performance. In con-
trast, the threads in a warp execute the same instructions when they
compute for the same query.

Pruning conditions cause no warp divergence in the STEP method
because the threads in a warp are assigned to the same query. Notice
that the STEP method still computes all queries concurrently instead of
dedicating all GPU resources to a single query. In addition, the insertion
and bitonic merge operations in line 8, line 11, and line 15 are fully
parallelized in the STEP method.

To eliminate most of the uncoalesced global memory access, we store
the data in the structure-of-array pattern. The 32 threads in a warp ac-
cess consecutive memory locations in the GPU global memory. In addi-
tion, the STEP method reduces shared memory usage by storing the kNN
results with their indices and distances instead of the coordinates. Before
returning the results in line 11 of Algorithm 4, the STEP method accesses
the global memory with the indices and outputs the coordinates of kNN
results. The uncoalesced global memory access in the STEP method is
mainly caused by this operation.

With the structure-of-array pattern, the STEP method performs a par-
allel distance computation of the clusters without uncoalesced access
in line 6 of Algorithm 4. We also optimized the computation of the
loop in line 6 of Algorithm 5. Specifically, 32 data points in a cluster
are processed in parallel. In the indexing STEP method, the statement
DIST(qg;,r,) in line 7 is moved outside the loop and completed in ad-
vance.
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5.2. Kernel Fission

Kernel fission means separating a CUDA kernel function into two or
more kernels. While kernel fusion is a common optimization technique
to reduce redundant global memory access and kernel launch overhead,
kernel fission improves streaming multiprocessor (SM) occupancy in our
implementation. The capacity of shared memory is fixed on an SM, and
the amount of required shared memory limits the occupancy in the STEP
method. More thread blocks fit into an SM when a block’s shared mem-
ory requirement decreases.

Before applying kernel fission, the STEP method uses a single kernel
to compute from phase 1 to phase 4. The frequently accessed data are
stored in the shared memory because of its low access latency. The STEP
method stores the cluster distances in the shared memory in phase 1.
During phase 2 to phase 4, the kNN results and candidates are stored in
the shared memory. Even when we reuse the shared memory space after
phase 1 with pointer reinterpretation, the occupancy is still limited by
the amount of shared memory. The motivation for kernel fission is that
sorting clusters in phase 1 has a relatively low workload but requires
a large amount of shared memory, especially when the cluster count is
larger than k.

We therefore separate the STEP kernel into two kernels: The first
kernel sorts the clusters and stores the distances in ascending order to-
gether with their cluster indices into the global memory. The second
kernel loads the cluster information to determine the cluster access or-
der and performs the remaining parts of STEP computation.

The merit of kernel fission in the STEP method is increasing the oc-
cupancy when the value of k is smaller than the cluster count. Assuming
the required shared memory amount of cluster sorting is twice as large
as that of the remaining STEP computation, kernel fission doubles the
occupancy of the second kernel when the amount of shared memory
is the bottleneck. The major disadvantage of kernel fission is the ker-
nel launch overhead. The global memory reading and writing are not
redundant because we also need to store the sorted clusters in global
memory before we apply kernel fission.

5.3. Out-of-Core Approach

When implementing the STEP method on a single GPU, the scalabil-
ity is limited by the GPU memory capacity. We therefore proposed an
out-of-core method to improve the scalability on datasets with a large
number of data points and query points.

To compute tasks with a large number of data points, the key idea
is to divide the data points into chunks that fit into the GPU memory
and compute local kNN results. After the STEP method finds the local
results in a chunk, it launches a lightweight GPU kernel to merge them
into the global kNN results. In the lightweight merge kernel, we use
the bitonic operations similar to that in Section 4.2. We pipeline the
our-of-core STEP method with three CUDA streams to overlap the GPU
computation with CPU-GPU data transfer.

In the exhaustive STEP method, the large matrix containing the dis-
tances between query points and data points limits the scalability. While
dividing data points introduces extra overhead because of the additional
merge kernel, splitting independent queries into chunks is sometimes a
reasonable strategy to handle large-scale datasets. However, it is neces-
sary to compute over about 500 queries in parallel to fully utilize GPU
resources when we assign each query to a GPU warp. To this end, the
exhaustive STEP method automatically divides both the query points
and data points into chunks to achieve better performance.

Notice that this strategy can also be utilized to extend the STEP
method to multi-GPU platforms when the problem size exceeds the ca-
pacity of a single GPU. Each GPU node holds a chunk of data points
and computes the local kNN results. Then, a single GPU node collects
all local results and merges them into the global kNN results. Similarly,
when the query count is too small to fill the GPU resources, we can
distribute the chunks to different warp to increase parallelism. Multiple



J. Wang and F. Ino

warps compute the local kNN results for the same query, and one warps
merges the local results into the global kNN results.

6. Experiments

We evaluated the proposed STEP method in terms of GPU compu-
tation time, number of accessed (data) points, and number of retained
(data) points. We used the latter two criteria originating from the av-
erage results of all queries to evaluate pruning efficiency. The accessed
points were the ones read by the warp of its corresponding query. The
retained points were the ones that were not pruned during the search
process. Specifically, the number of retained points in the STEP method
represents the number of data points inserted into the candidate queue.
Our experimental machine had an AMD Ryzen 5 3600 with 32 GB RAM
and an NVIDIA GeForce RTX 3070 GPU with 8 GB VRAM. The size of
GPU shared memory per thread block was 48 KB. We used CUDA 11.7
and GPU Driver 525.147.05 on Ubuntu 22.04.

We compared the proposed method with seven baselines: Sel-kNN
method [19], GPU-based Faiss library [33], CPU-based Faiss library
[33], GPU-based k-d tree method [15], CPU-based k-d tree method [43],
buffer k-d tree method [31], and SS-tree method [26]. The Sel-kNN
method is an exhaustive approach that first computes a distance ma-
trix with GEMM and then obtains the kNN results with a parallel se-
lection sort. The GPU-based Faiss library is a state-of-the-art exhaustive
approach that uses the warp select method. The threads in a warp store
candidates in thread queues and merge them into the kNN results with
bitonic operations. The CPU-based Faiss library, on the other hand, op-
timizes the computation with the BLAS library and SIMD vectorization.
The GPU-based k-d tree method builds a binary tree of the data points
and searches the tree with coarse-grained parallelism. The CPU-based
k-d tree method also enables coarse-grained parallelism with multi-
threading. The buffer k-d tree method constructs a small top k-d tree
in which each leaf contains multiple data points. The SS-tree method
builds the tree with k-means clustering and searches the tree using in-
order traversal. The buffer k-d tree method and the SS-tree method both
use fine-grained parallelism.

The pre-processing time of indexing methods and CPU-GPU data
transfer time were excluded from our experiments. Instead, we provide
qualitative results of the pre-processing time. The k-d tree method and
buffer k-d tree method have relatively less pre-processing times because
they build the index structures with O(n) workloads. In contrast, the
indexing STEP method and SS-tree method require a large amount of
time to perform pre-processing. The workload of k-means clustering is
O(npa), where p is the number of clusters and « is the iteration count
of k-means computation. The pre-processing time of these two methods
is longer than the kNN searching time in many cases, even though we
used a GPU-based k-means library. For instance, the index building time
reaches tens of seconds whereas the searching time is a few seconds.

Because there is no indexing building phase in the exhaustive meth-
ods, all their GPU computation time is included in the experimental re-
sults. Notably, the pre-processing of the exhaustive STEP method does
not involve any clustering progress, except equally dividing the input
data points into clusters. Compared to the time-consuming k-means clus-
tering in the indexing STEP method, clustering in the exhaustive STEP
method is omittable regarding the computation time. The computation
time of the exhaustive STEP method includes all-to-all distance compu-
tation, exact minimal distance search, cluster sorting, and all the follow-
ing phases.

The experimental setups are described in Section 6.1. We compare
the performances of the proposed methods with those of the baseline
methods on random datasets in Section 6.2. We evaluate the methods
in various aspects using different number of query points m, number
of data points n, neighbor counts k, and dimensions d and test the L2
distance and the angular distance in each case. Importantly, the k-d tree
method and buffer k-d tree method can only perform kNN search with
L2 distances. Therefore, we exclude these two methods when conducting
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experiments with angular distances. This is followed by the performance
comparison of the practical datasets in Section 6.3. An ablation study
on the STEP method is conducted in Section 6.4. Then, we analyze the
warp divergence of the methods in Section 6.5. Finally, we evaluate the
sensitivity of the STEP method to the bounding spheres in Section 6.6.

6.1. Experimental Setups

We tuned the parameters of the STEP method using preliminary
experiments. The number of clusters p was set to 512 and 2048 in
the indexing and exhaustive STEP method, respectively. We observed
a considerable drop in pruning efficiency when p < 512. When setting
p > 1024 in the indexing STEP method, the pruning efficiency improves
little, and the occupancy decreases due to a large amount of the required
shared memory. For the exhaustive STEP method, the pruning efficiency
benefits from a larger value of p because the kNN results are initialized
with the exact minimal distance of each cluster. However, sorting clus-
ters becomes time-consuming when p > 2048. The number of threads in
each thread block (or block size) was fixed at 32 because the required
shared memory increases with the block size. Gartner’s algorithm was
used to generate bounding spheres only for tasks with angular distances
because few differences exist among the bounding sphere algorithms
with L2 distances. The parameters of the baseline methods were well
chosen for the experimental GPU.

Randomly generated and practical datasets were used in our eval-
uations. We prepared random datasets using the KISS algorithm [44],
which generates query points and data points with normal distribution.
Six practical datasets were used in our experiments. Open Street Map
(OSM) datasets [13] include construction information from all over the
world uploaded by contributors. We used the two-dimensional coor-
dinates of 72,276 schools and 353,962 shops in the U.S. as the query
points and data points, respectively. ANNSIFT1M [14] is a computer vi-
sion dataset that includes scale-invariant feature transform descriptors
to identify objects in images. The dataset contains 10,000 query points
and 1,000,000 data points of 128 dimensions. The KDDCUP-Bio dataset
[45] includes various scores that describe protein sequences. The goal of
the original task was to predict homologous proteins. The dataset con-
tains 10,000 query points and 139,658 data points of 74 dimensions.
KDDCUP-Phy [45] is a particle physics dataset. The data were collected
in collision experiments with high-energy particle beams. A major prob-
lem in the experiments is to classify particle tracks. The dataset contains
10,000 query points and 100,000 data points of 78 dimensions. All val-
ues in the datasets are nonnegative. GIST [46] is also a computer vision
dataset containing the global image structure tensor descriptors. The
dataset contains 1000 query points and 1,000,000 data points of 960
dimensions. The DEEP10M dataset [47] consists of image embeddings
produced as the outputs from the GoogLeNet model. The dataset con-
tains 10,000 query points and 10,000,000 data points of 96 dimensions.

In all the evaluated methods, L2 distances were stored in float-type
variables. However, the methods store angular distances in double-type
variables because the values are too small to maintain precision with
the float type. The details of the data types in each dataset are listed in
Table 1. We use L2 distances when evaluating the OSM dataset for con-
venience, although computing the distance between two coordinates
with the Haversine formula offers a better assessment. Notably, the
experimental GPU supports single-precision instructions far more than
double-precision instructions. We show the average results of 10 execu-
tions in all experiments.

6.2. Performance on Random Datasets

We evaluated the methods based on varying numbers of query points
m, number of data points »n, neighbor counts k, and dimensions d. When
one of these four values changes, the other three are fixed to the default
values as shown in Table 2.
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Table 1
Data types in each dataset.

Datasets Coordinates Distances
Random values (L2) Short Float
Random values (angular) Short Double
OSM (L2) Float Float
ANNSIFT (L2) Float Float
KDDCUP-Bio (angular) Float Double
KDDCUP-Phy (angular) Float Double
GIST (L2) Float Float
DEEP10M (L2) Float Float
Table 2
Default values of each parameter.
Query Points Data points Neighbors Dimensions
65536 65536 128 2

Fig. 5 shows the performances of the six methods on randomly gener-
ated datasets with L2 distances. The computation time against the query
count is shown in Fig. 5a. The workload of all the methods increases lin-
early with the number of queries. The numbers of accessed and retained
data points against the query count are demonstrated in Fig. 5b. The in-
creasing query count has little effect on the accessed and retained points.
The number of accessed points in the indexing STEP method is larger
than that in the GPU-based k-d tree method. However, the computa-
tion time of the STEP method is smaller because the GPU-based k-d tree
method shows a severe warp divergence. A similar result was observed
for the SS-tree method in Fig. 5a and 5b. The STEP method achieves a
12.9 times speedup compared with the SS-tree method when the query
count is 21°.

The results against various numbers of data points are shown in
Fig. 5c and 5d. The slopes of the GPU-based k-d tree method and the
buffer k-d tree method are smaller than the other methods regarding
the computation time because the height of the k-d tree increases by 1
when the number of data points doubles itself. The workload increases
logarithmically for these two methods. In contrast, the workload of the
other methods shows a larger increasing rate. Regardless, the accessed
point count of the STEP method increases sublinearly with the number
of data points, and the slope of the retained point count is smaller than
1.3. The STEP method is 13.9 times faster than the GPU-based k-d tree
method when the number of data points is 2'°. When the number of data
points surpasses 224, the computation time of the STEP method exceeds
that of the k-d tree method. The exhaustive STEP method shows limited
performance in Fig. 5a and Fig. 5c because its naive clustering strategy
leads to a low pruning efficiency on 2D data.

Fig. 5e and 5f demonstrate the performance with varying neighbor
counts k. For indexing methods, the numbers of accessed and retained
points increase with the neighbor count. In contrast, the exhaustive
methods, Sel-kNN and exhaustive STEP, always compute the distances
for all pairs of query points and data points. The workload of updat-
ing kNN results increases in all methods. Importantly, the number of
accessed points in the STEP method becomes less than that in the GPU-
based k-d tree method when k is larger than 1024. Although the two k-d
tree-based methods show good performance when the neighbor count is
less than 10, their computation time increases rapidly with the neighbor
count. The computation time of the buffer k-d tree method increases dis-
tinctly when k increases from 256 to 512 because the shared memory
required for kNN results exceeds the GPU threshold. Thus, the buffer
k-d tree method stores the kNN results in the global memory, which
humbles the performance. The two STEP methods show good scalabil-
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ity regarding the neighbor count. The indexing STEP method attains a
28.9 times speedup compared with the SS-tree method when k = 2043.

The results with different dimensions d are illustrated in Fig. 5g and
5h. For the Sel-kNN method and exhaustive STEP method, the value of
d is only related to the distance matrix computation step, of which the
performance is limited by the number of query points and data points.
In addition, the cuBLAS GEMM function has sufficient parallelism on
the dimension. Thus, the value of d has little effect on the computation
time of the exhaustive methods. The pruning efficiency degrades rapidly
for the indexing methods owing to the curse of dimensionality [27].
The accessed point counts of the four indexing methods almost reach
the maximal value of 65536 when d = 16 and remain the same when
d = 32. The slopes of the computation time reduce accordingly when d
increases from 16 to 32. Note that the buffer k-d tree method stores the
kNN results in the global memory because of the restricted shared mem-
ory capacity. The indexing STEP method achieves a 29.6 times speedup
compared with the SS-tree method when d = 8. When d = 32, the ex-
haustive STEP method shows better performance and achieves a 6.1
speedup compared with the SS-tree method.

For the angular distance, all the evaluated methods exhibit simi-
lar behaviors with different numbers of query points, numbers of data
points, and neighbor counts. We observe some differences from the re-
sults with varying dimensions. Fig. 6 shows the performances for an-
gular distances with different numbers of data points and dimensions.
The workload of computing angular distances is larger than that of com-
puting L2 distances. This has very little effect on the Sel-kNN method
and exhaustive STEP method because the distance computation is op-
timized using GEMM. Generally, the retained points of the SS-tree and
indexing STEP methods slightly increase compared with the ones us-
ing L2 distances. However, the accessed points of the indexing STEP
method have a smaller slope with angular distance than that with L2
distance because of the tighter bounding sphere generated by Gértner’s
algorithm. In other words, a tighter bounding sphere increases the num-
ber of pruned clusters in the indexing STEP method using angular dis-
tance. As stated in Section 6.1, Gartner’s algorithm only leads to a perfor-
mance improvement with angular distance and high-dimensional data.
The exhaustive STEP method achieves a 55.6 times speedup when d = 32
compared with the SS-tree method.

The workflow of the exhaustive STEP method and the Sel-kNN
method can be divided into (a) query-dataset distance computation and
(b) top-k selection. In Fig. 6¢, both methods spend about 160 ms com-
puting the distances with GEMM. For top-k selection, the exhaustive
STEP method spends about 50 ms and approximately achieves a 200
times speedup over the Sel-kNN method. Besides the pruning strategy
and the advanced results update process, the exhaustive STEP method
greatly reduces the number of retained points by initializing the kANN
results with the exact minimal distances of the clusters. Consequently,
the exhaustive STEP method updates the kNN results less frequently and
achieves high performance.

6.3. Performance on Practical Datasets

We evaluated the performance of the proposed method on six prac-
tical datasets. We only changed the value of the neighbor count & in the
experiments using practical datasets because the other three parameters
were fixed. In the two-dimensional OSM datasets, the query points and
data points are the latitudes and longitudes of constructions in the U.S.
The computation time as well as accessed points and retained points are
shown in Fig. 7a and 7b. Similar to the case on the random dataset, the
GPU-based k-d tree method is the fastest approach among the evaluated
methods. However, its performance becomes inferior to that of the in-
dexing STEP method when the neighbor count increases to 32. The STEP
method achieves a 15.9 times speedup compared to the GPU-based k-d
tree method when k = 128. Unlike the results on random datasets when
k = 128, the k-d tree method offers better performance than the SS-tree
method. The STEP method achieves a 20.8 times speedup compared
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Fig. 5. Computation time and accessed and retained points on randomly generated datasets with L2 distances.
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Fig. 6. Computation time and accessed and retained points on randomly generated datasets with angular distances.

to the SS-tree method when k = 2048. This speedup is less than the one
achieved on random datasets because the pruning efficiency of the STEP
method decreases. On random datasets, the retained point count of the
STEP method reduces by 67% compared with the value of the SS-tree
method when k = 2048. This ratio becomes 53% on OSM datasets. Dif-
ferent from the normal distribution in the randomly generated datasets,
irregular distributions in practical datasets lead to lower pruning ef-
ficiency and potential load imbalance among clusters. This harms the
performance of the indexing STEP method, and similar phenomena are
found when evaluating the other practical datasets.

Fig. 7c and 7d show the results with varying values of k on the
ANNSIFT dataset. The ANNSIFT dataset contains vectors of 128 dimen-
sions and uses the L2 distance metric. Pruning strategies in the indexing
methods hardly work on such high-dimensional data. The accessed point
count of the indexing STEP method increases from 87% to 93% when k
increases. In contrast, the exhaustive STEP method shows good perfor-
mance on such high-dimensional data. The exhaustive STEP method has
a smaller increasing rate of computation time than the Sel-kNN method
because the kNN results are updated efficiently with bitonic operations.
The buffer k-d tree method and SS-tree method are out of memory
when k > 1024 and k > 2048, respectively. The exhaustive STEP method
achieves a 29.0 times speedup compared with the SS-tree method when
k =1024.

On the KDDCUP-Bio dataset containing 74-dimensional data, the
pruning efficiency of the indexing methods is higher than that obtained
on the ANNSIFT datasets. Fig. 7e and 7f show the results with varying
values of k on the KDDCUP-Bio datasets. The accessed point count of
the indexing STEP method is 15% of the total number of data points
when k = 128. The ratio increases to 23% when k = 1024, and the in-
creasing rate is larger than that of the SS-tree method. The exhaustive
STEP method achieves 36.7 times and 24.4 times speedups compared
with the SS-tree method when k = 128 and k = 1024, respectively. The
speedup decreases because the amount of required shared memory in-
creases with the value of k, which limits the occupancy of the exhaustive
STEP method. Fig. 7g and 7h demonstrate the results on the KDDCUP-
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Phy dataset with 74-dimensional data. The results show a similar trend
although the slopes of the computation time of the two indexing meth-
ods are larger because of the higher increasing rate of the retained points
with the value of k. The speedups of the exhaustive STEP method are
24.7 and 27.1 compared with the SS-tree method when k = 128 and
k = 1024, respectively.

From Fig. 7, we conclude that the indexing STEP method is the
fastest approach on low-dimensional datasets when the neighbor count
is larger than 32. For tasks with a small neighbor count using L2 dis-
tances, the GPU-based k-d tree method offers good performance. In high-
dimensional tasks, the exhaustive STEP method demonstrated signifi-
cantly better performance compared to other indexing methods and the
Sel-kNN method.

We compare the performance of the exhaustive STEP method and
the Faiss library on large-scale datasets in Fig. 8. The tree-based baseline
methods (k-d tree, buffer k-d tree, and SS-tree) required too much GPU
memory to store the built tree, leading to out-of-memory issues when
computing on the DEEP10M and GIST datasets. We show the compari-
son in a separate figure because the differences are too small to show in
Section 6.3 which has a wide range of computation time. Notably, the
Faiss library is devoted to high-dimensional datasets. With the default
parameter setting in Table 2, the computation time of the GPU-based
Faiss library is over 200 ms, whereas the indexing STEP method com-
pletes the computation in 10 ms. We only show the computation time
of the Faiss library because the numbers of accessed and retained points
were unavailable.

In Fig. 8a, we illustrate the computation on the ANNSIFT dataset.
When the neighbor count k =1, the performance of the GPU-based
Faiss library is slightly better than that of the STEP method. However,
the speedup of the STEP method over the Faiss library gradually in-
creases with the neighbor count. The speedups are 1.2 and 2.1 when
k =128 and k = 2048, respectively. The neighbor count greatly affects
the streaming multiprocessor’s occupancy in these two methods. In the
STEP method, the occupancy is limited by the size of the required shared
memory because the candidates and kNN results are stored in the shared
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Fig. 7. Computation time and accessed and retained points on (a) and (b) OSM, (c) and (d) ANNSIFT, (e) and (f) KDDCUP-Bio, and (g) and (h) KDDCUP-Phy datasets.
We use L2 distances on OSM and ANNSIFT datasets and angular distances on the other datasets.

12



J. Wang and F. Ino

—A— Exhaustive STEP Faiss (GPU) ~ —4— Faiss (CPU)
10° ”’——0—0—0———0—0—0—0——0
m
E o
o 10°4
£
§ 10
S
©
5
Q 103_
§ 1 %‘.——1‘—_—:—-———‘/‘
102 T T T T T T T T T T T T
1 8 32 64 128 256 512 1024 2048
Neighbor count
(@)
—A— Exhaustive STEP Faiss (GPU) ~ —4— Faiss (CPU)
104
= ¢ 4- +— 4 4 4 4+ 4
E
E 1034
=
C
Q
®
5 1025 & A Ak ——h——h—
o
€
o
o
10! T T T T T T T T T T T T
1 8 32 64 128 256 512 1024 2048
Neighbor count
©)
—&— Exhaustive STEP Faiss (GPU) ~ —#— Faiss (CPU)
g 1054 ¢ 4 4 +4‘\‘/F—0—0
"
£
=
s
o 4 ]
5 10 o
3 e = Ak
£
o
o
103 T T T T T T T T T T T T
1 8 32 64 128 256 512 1024 2048

Neighbor count

(©

Fig. 8. Performance comparison between the exhaustive STEP method and the
Faiss library. We show the computation time on (a) ANNSIFT, (b) GIST, and (c)
DEEP10M datasets with L2 distances.

memory. In contrast, the GPU-based Faiss library stores the candidates
and results in the registers when updating the kNN results. This strat-
egy makes the number of registers the limiter of the occupancy. The
STEP method achieves better scalability on various neighbor counts be-
cause of the efficient results update process. The CPU-based Faiss li-
brary is three orders of magnitude slower than the GPU-based meth-
ods, which shows that it is better to leverage the parallelism of the
GPU to process such a large number of queries with the exhaustive
methods.

For the performance on the GIST dataset with 960-dimensional data
in Fig. 8b, the exhaustive STEP method demonstrates a similar behavior
to that on the ANNSIFT dataset. The STEP method shows good scal-
ability regarding the neighbor count, whereas the performance of the
Faiss library drops with a low value of k. The speedups are 1.9 and 2.1
when k = 128 and k = 2048, respectively. This shows the robustness of
the exhaustive STEP method on high-dimensional datasets.

We use the out-of-core STEP method on the DEEP10M dataset with
96-dimensional data in Fig. 8c. The dataset contains 10 thousand query
points and 10 million data points, which makes the distance matrix size
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Fig. 9. Performance comparison between the indexing STEP method, the GPU-
based k-d tree method, and the CPU-based k-d tree method. We show the com-
putation time on (a) OSM and (b) ANNSIFT datasets with L2 distances.

too large to fit into the GPU memory capacity. The speedups are 0.8
and 1.0 when k = 128 and k = 2048, respectively. The speedup is low
due to the extra local result merging operations in the STEP method.
However, the STEP method achieves similar performance to that of the
GPU-based Faiss library because of its better scalability regarding the
neighbor count. We only evaluated the performance with up to 10 mil-
lion data points because of the limited CPU memory capacity. Never-
theless, our out-of-core extension offers linear scalability regarding the
number of data points. A machine with a large CPU memory capacity
can run the proposed method efficiently.

We also compare the performance of the indexing STEP method,
the GPU-based k-d tree method, and the CPU-based k-d tree method
in Fig. 9. In Fig. 9a, we show the computation time on the OSM dataset.
Both CPU- and GPU-based k-d tree methods are significantly fast when
the neighbor count is 1 because they rapidly reach the nearest neigh-
bor with the binary search. When the neighbor count increases to 128,
the CPU-based k-d tree method achieves better performance than that
of the GPU version. A possible reason is that the GPU version stores the
candidates in the shared memory. When the neighbor count increases,
the amount of the shared memory becomes the bottleneck that limits
the performance. The same issue is also observed in the indexing STEP
method. Fig. 9b demonstrates the computation time on the ANNSIFT
dataset with 128-dimensional data. The tree structure becomes less ef-
ficient in high-dimensional cases. In conclusion, the CPU-based k-d tree
method shows comparable performance with the indexing STEP method
on low-dimensional tasks. The indexing STEP method is more efficient
when the number of dimensions increases.

6.4. Ablation Study

We show the results of the ablation study of the STEP method in
Fig. 10. We compare the STEP method with its five variants. The first
variant is a brute force method, and we show the speedups of the
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Fig. 10. Ablation study of the STEP method with (a) L2 and (b) angular distances. The evaluations are conducted on randomly generated datasets using the default

parameters in Table 2.

other variants against this method. Notably, the brute force method is
different from the Sel-kNN method in that it replaces the GEMM with a
kernel function that assigns each query to a thread and traverses the data
points. The remaining five variants correspond to our five contributions.
The second variant uses the proposed pruning strategy with k-means
clustering and a naive bounding sphere algorithm. A query is assigned
to a thread, and the kNN results are stored in the global memory. We
compare the bounding sphere algorithms in Section 6.6. The third vari-
ant applies fine-grained parallelism that computes kNN for a query with
32 threads in a warp. However, the kNN update is still computed using
one thread. The fourth variant stores the kNN results in shared memory
and merges the candidates in the shared queue with kNN results us-
ing bitonic operations. The fifth variant optimizes the bounding sphere
algorithm to generate the tightest bounding spheres for clusters. The
sixth variant, which is only evaluated with various dimensions, switches
from the indexing approach to the exhaustive approach to achieve good
scalability on high-dimensional data. We evaluate the performance with
different numbers of data points n using L2 distances and that with dif-
ferent dimensions d using angular distances on random datasets. We set
the other parameters based on Table 2.

When the number of data points increases in tasks using L2 distances,
the speedup of the second variant, which is optimized only with the
pruning strategy, also increases. The pruning efficiency is enhanced with
a larger number of data points. The fine-grained parallelism accelerates
the computation a step further but reduces the slope of speedup, which
also affects the last two variants. The optimization of the update process
leads to an order of magnitude speedup, whereas the optimization of
the bounding sphere algorithm slightly improves the performance. The
indexing STEP method achieves a 317.4 times speedup compared with
the brute force method.

The situation varies in tasks using angular distances with different
dimensions. The pruning efficiency worsens when the dimension in-
creases. The second variant is 17.5 times faster than the brute force
method when d =2. However, the speedup decreases to 0.7 when
d =128 owing to the curse of dimensionality [27]. The fine-grained
parallelism makes the computation even slower because heavy angu-
lar distances are computed repeatedly when updating kNN results. The
optimization of the update process greatly improves performance by re-
ducing the workload of distance computation and memory traffic. The
optimization of the bounding sphere algorithm also shows consider-
able improvement with high-dimensional data. The accessed point count
reaches the maximal value, which is the number of data points, when
d = 32. Thus, the speedups change insignificantly when d > 32. The re-
sults of the accessed points obtained using the STEP method are shown
in Fig. 6d. After switching from the indexing approach to the exhaustive
approach, the performance decreases when d < 4 due to the unnecessary
distance computations between all pairs of query points and data points.
However, the exhaustive extension leads to a performance improvement
when d > 8 because the exact minimal distances of the clusters greatly
enhance the pruning efficiency. The exhaustive STEP method achieves
a 463.0 times speedup compared with the brute force method.

6.5. Analysis of Warp Divergence

We evaluated the warp divergence of the proposed method using
the average active threads in a warp reported by NVIDIA Nsight Com-
pute [48]. The number of active threads was measured when profiling
a kernel function. Most of the computation in the Sel-kNN method was
performed by calling a GEMM function instead of a kernel function.
The buffer k-d tree method iterates with multiple kernel functions with
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Fig. 12. Comparison of different bounding sphere algorithms in the STEP method. These figures show the speedups as well as accessed and retained points obtained
on (a) and (b) random datasets and (c) and (d) practical datasets with angular distances. We use the naive approach as the baseline of speedup.

different workloads. Thus, we excluded these two methods from our ex-
periments. The methods are evaluated with different numbers of data
points n using L2 distances and with different dimensions d using angu-
lar distances. We set the other parameters based on Table 2.

Fig. 11a shows the average active threads of the three methods with
L2 distances. We exclude the exhaustive STEP method because it is de-
voted to high-dimensional cases. The GPU-based k-d tree method has
less than 9 active threads in a warp in all test cases. In contrast, the
indexing STEP method and SS-tree methods have more than 30 active
threads. When n = 220, the STEP method has 30.7 active threads, which
is 96% of the total threads in a warp. Therefore, the STEP method com-
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putes the kNN in less time compared to the GPU-based k-d tree method
when n = 2%0, as shown in Fig. 5¢c and 5d. Although the numbers of ac-
cessed points and retained points of the STEP method are larger than
those of the GPU-based k-d tree method, the STEP method achieves bet-
ter performance because of more active threads in a warp. For angular
distance, similar behavior is observed, as shown in Fig. 11b. The two in-
dexing methods maintain a large number of average active threads with
varying dimensions. We eliminate most of the warp divergence in the
exhaustive STEP method by setting the number of data points in each
cluster to a multiple of 32. Consequently, all threads are active when
traversing clusters. However, it is unachievable with k-means clustering
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in the indexing STEP method because the number of data points in each
cluster is dependent on the centroid locations.

6.6. Sensitivity to the Bounding Spheres

The analysis of the bounding sphere algorithms is demonstrated in
this section. We only show the results of the STEP method using angular
distances because the bounding sphere algorithms have little effect on
tasks using L2 distances. The results are computed using the indexing
STEP method because the exhaustive approach replaces the bounding
spheres with exact minimal distances. We evaluate the sensitivity to the
bounding spheres using three bounding sphere algorithms. The naive
approach chooses the initial centroid using the same pattern as that in
Ritter’s algorithm. Then, it adjusts the bounding sphere by only enlarg-
ing the radius but not the centroid. Ritter’s algorithm is employed by
the SS-tree method and generates an approximate result that is 5% to
20% larger than the exact bounding sphere. We implement a variant of
Gértner’s algorithm, which generates the exact bounding spheres with
angular distances.

Fig. 12a and 12b illustrate the performance of the STEP method using
the three bounding sphere algorithms employed on random datasets. We
used the results of the naive approach as the baseline. When the num-
ber of dimensions d increases, the STEP method accesses fewer clusters
(or data points) with the exact bounding spheres. A 2.9 times speedup
is achieved with Gartner’s algorithm when d = 8. The speedup drops
when d > 16 because the number of accessed points reaches the maxi-
mal value of 2'¢ for the naive approach and Ritter’s algorithm. We ob-
serve the same results even with a larger number of data points owing
to the normal distribution of the randomly generated datasets. Besides,
Gértner’s and Ritter’s algorithms generate the same bounding spheres
when d = 2. The radii computed by Gartner’s algorithm become smaller
when d > 2.

The results of the three bounding sphere algorithms on the practi-
cal datasets are shown in Fig. 12c and 12d. Different from the results
on random datasets, the pruning strategy using the naive approach still
works well on high-dimensional practical datasets. The STEP method
with Gértner’s algorithm achieves a 2.2 times speedup compared with
that obtained using the naive approach. The STEP method is more sen-
sitive to the quality of bounding spheres on practical datasets than on
randomly generated datasets.

Notably, Gértner’s algorithm sometimes produces more retained
points than Ritter’s algorithm. For instance, the number of retained
points of Gértner’s algorithm is 9% larger than that of Ritter’s algorithm
on the KDDCUP-Bio dataset. The reason is that the candidate count in
each cluster does not always decrease with the cluster order. Sorting
exact bounding spheres may generate suboptimal cluster access orders.
Nevertheless, Gértner’s algorithm offers a higher performance because
of fewer accessed points. In other words, the STEP method prunes more
clusters with the tightest bounding spheres.

7. Conclusion

In this paper, we presented STEP, a general-purpose method for kNN
computation on GPU. We designed a novel clustering-based pruning
strategy as well as its GPU-oriented optimization. To obtain good per-
formance in both low- and high-dimensional cases, the STEP method
switches between the indexing and exhaustive approaches to improve
pruning efficiency. We further accelerate the STEP method by enabling
fine-grained parallelism and integrating bitonic operations into the
updating procedure of kNN candidates. Our method achieves a 15.9
times speedup with L2 distances and a 36.7 times speedup with an-
gular distances compared with the state-of-the-art methods. The pro-
posed method achieves high performance on various randomly gener-
ated datasets and practical datasets, showing its generalizability across
different distance functions and dimensionalities.
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The pre-processing time of the indexing STEP method is sometimes
comparable to or even exceeds the computation time. The workload of
k-means clustering in pre-processing is O(ndpa), where n is the num-
ber of data points, d is the number of dimensions, p is the number of
clusters, and « is the iteration count of k-means computation. We set
p =512 and a = 50 in our experiments. On the other hand, the workload
of searching is O(mndk), where m and k are the query count and neigh-
bor count. The searching time of our default test case, where m = 65536
and k = 128, is similar to the pre-processing time. This indicates that
pre-processing cannot be disregarded when applying the indexing STEP
method to practical cases. The suitable use-cases include (a) multiple
STEP calls using the same dataset and different queries and (b) tasks
with relatively larger m and k. In contrast, the exhaustive STEP method
can be applied to all use-cases thanks to the naive clustering strategy.

Although we focused on exact kNN approaches, there are some po-
tential extensions to achieve efficient approximate nearest neighbor
searching with the STEP method. For instance, the k-means cluster-
ing can be replaced with a space-filling curve approach to reduce pre-
processing time. We can further improve the STEP method’s efficiency
by limiting the number of clusters it accesses. In our future work, we will
extend the STEP method to multi-GPU platforms to improve the scalabil-
ity on large-scale datasets. Besides, we will develop a CPU-based STEP
method that is useful for tasks with a small number of queries.
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