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 A B S T R A C T

Reconstructing the geometry and material properties of translucent objects from images is a challenging 
problem due to the complex light propagation of translucent media and the inherent ambiguity of inverse 
rendering. Therefore, previous works often make the assumption that the objects are opaque or use a simplified 
model to describe translucent objects, which significantly affects the reconstruction quality and limits the 
downstream tasks such as relighting or material editing. We present a novel framework that tackles this 
challenge through a combination of physically grounded and data-driven strategies. At the core of our approach 
is a hybrid rendering supervision scheme that fuses a differentiable physical renderer with a learned neural 
renderer to guide reconstruction. To further enhance supervision, we introduce an augmented loss tailored to 
the neural renderer. Our system takes as input a flash/no-flash image pair, enabling it to disambiguate complex 
light propagation that happens inside translucent objects. We train our model on a large-scale synthetic dataset 
of 117 K scenes and evaluate across both synthetic benchmarks and real-world captures. To mitigate the 
domain gap between synthetic and real data, we contribute a new real-world dataset with ground-truth surface 
normals and fine-tune our model accordingly. Extensive experiments validate the robustness and accuracy of 
our method across diverse scenarios.
1. Introduction

Understanding and correctly reconstructing how translucent mate-
rials interact with light is a fundamental challenge in computer vision 
and graphics. Unlike opaque surfaces, translucent objects exhibit com-
plex light transport phenomena, notably Subsurface Scattering (SSS), 
where photons penetrate the surface, scatter internally, and exit at 
various locations. This leads to a rich variety of appearance effects that 
are hard to model and reconstruct from captured images. Accurately 
recovering the intrinsic components – geometry, material properties, 
and illumination – from images of translucent objects remains a largely 
unsolved and ill-posed problem due to the inherently entangled nature 
of these factors.

Recent advances in inverse rendering have yielded impressive results 
for opaque and even glossy surfaces [1–4]. However, these methods 
assume surface-only reflection models and fail to account for the SSS 
present in translucent objects. Meanwhile, specialized works targeting 
translucent materials have either isolated SSS while ignoring surface 
reflectance [5,6], or relied on simplified representations such as BSS-
RDFs [7,8] that are insufficient for general translucent objects with 
complex light transportations.

To address these limitations, we propose a novel inverse rendering 
framework capable of jointly estimating surface geometry, spatially-
varying reflectance, homogeneous subsurface scattering parameters, 
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and environmental illumination for general translucent objects. Our 
system takes as input a flash/no-flash image pair from a single view-
point, a configuration inspired by recent bidirectional reflectance ac-
quisition techniques [2,10], which helps to disambiguate surface and 
subsurface scattering in image formation.

Key to our approach is the combined use of two renderers: a 
physically-based renderer that models direct surface reflection, and a 
neural renderer trained to approximate the complex indirect scattering 
pathways characteristic of SSS. Both renderers are differentiable so 
that we can train them end-to-end. To further enhance learning, we 
introduce an augmented loss that supervises the neural renderer by 
computing the SSS parameters perturbed re-rendering images.

To support learning and evaluation, we construct a large-scale 
synthetic dataset of over 117,000 translucent scenes, featuring human-
designed 3D objects with physically based BRDF and SSS properties 
under environment maps. Additionally, we curate a real-world bench-
mark comprising 89 translucent objects with ground-truth normal maps 
to evaluate generalization. Since synthetic-to-real transfer remains a 
major hurdle, we perform fine-tuning on the real dataset, mitigating 
the domain gap and significantly improving real-world performance.

Our contributions can be summarized as follows:
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Fig. 1. Inverse rendering results of real-world translucent objects. Our model takes (a) a flash image, (b) a no-flash image, and (c) a mask as input. Then, it 
decomposes them into (d) homogeneous subsurface scattering parameters (denoted as SSS in the figure), (e) surface normal, (f) depth, and (g) spatially-varying 
roughness. We use the predicted parameters to re-render the image that only considers (h) the surface reflectance, and (i) both surface reflectance and subsurface 
scattering. Note that (d) subsurface scattering only contains 7 parameters (3 for extinction coefficient 𝜎𝑡, 3 for volumetric albedo 𝛼, 1 for phase function parameter 
𝑔), we use these parameters to render a sphere using Mitsuba [9] for visualization. Brighter areas in the depth map represent a greater distance, and brighter 
areas in the roughness map represent a rougher surface.
• We tackle the inverse rendering of translucent objects by jointly 
estimating shape, spatially-varying surface reflectance, SSS pa-
rameters, and illumination from a single-view flash/no-flash pair.

• We propose a hybrid rendering architecture combining physically 
accurate surface modeling with a learned neural renderer for SSS.

• We introduce a novel augmented loss strategy to improve the 
supervision of SSS effects.

• We build a large-scale synthetic dataset and a real-world bench-
mark to train and validate our model.

• We demonstrate state-of-the-art performance on both synthetic 
and real translucent objects, supported by fine-tuning to address 
domain shift.

This work is an extended version of Li et al. [11]. Compared to 
the original manuscript, the extensions are (1) an additional real-world 
translucent dataset that contains 89 images with ground truth surface 
normals and (2) a fine-tuning step on the real-world dataset to alleviate 
the domain gap problem. (3) An ablation study using different encoder 
backbones. (4) Adding more comparisons between the latest works.

2. Related work

2.1. Inverse rendering of surface reflectance

So far several efforts have been devoted into estimating depth [12–
14], BRDF [4,10,15–18], and illumination [19–21] separately.

With the rise of deep learning, simultaneous parameter estimation 
has attracted people’s attention. Li et al. [22] introduced the first single-
view method to estimate shape, SVBRDF, and illumination using a 
cascaded network and an in-network rendering layer. This concept has 
been extended to more complex scenarios, such as indoor scene inverse 
rendering using a Residual Appearance Renderer [23] and spatially-
varying lighting [24–26]. Li et al. [27] further extended this to complex 
materials like metal or mirrors. Boss et al. [2] addressed the ambiguity 
under saturated highlights with a two-shot setup. Sang and Chandraker 
[28] combined shape and SVBRDF estimation with relighting using 
both physically-based and neural renderers. Deschaintre et al. [29] 
and Li et al. [30] incorporated polarization into shape and SVBRDF 
estimation. Wu et al. [31] trained models unsupervised, leveraging ro-
tational symmetry. Lichy et al. [32] achieved high-resolution shape and 
material reconstruction using a recursive neural architecture. Recent 
2 
works have introduced diffusion models into inverse rendering to bet-
ter handle ambiguity and multimodal decomposition. RGBX [33] and 
IntrinsicAnything [34] learn generative priors for intrinsic properties 
such as albedo, roughness, and lighting, enabling both decomposition 
and synthesis. Neural LightRig [35] leverages diffusion-based relighting 
to improve normal and BRDF estimation, while Material Anything [36] 
offers end-to-end generation of PBR materials in UV space. Diffu-
sion Posterior Illumination [37] incorporates illumination priors into 
differentiable rendering, enabling ambiguity-aware inverse solutions. 
Our model can be considered as an extension of these methods by 
integrating SSS into the estimation process.

2.2. Inverse rendering of subsurface scattering

Reconstructing translucent materials with subsurface scattering
(SSS) is challenging due to the complex, multipath nature of light 
transport. Early methods [5,38–41] relied on Monte Carlo volume ren-
dering and analysis-by-synthesis optimization, but suffered from high 
computational cost and convergence issues. Later approaches such as 
Che et al. [6] adopted neural networks to predict homogeneous scatter-
ing parameters, enabling faster initialization. However, these methods 
often neglect geometry, lighting, or surface reflectance, and assume 
pure SSS. Recent works address these gaps: Neural Relighting [42] 
combines radiance transfer learning with geometry refinement for 
better relighting; Neural SSS [43] proposes a compact neural BSSRDF 
model for heterogeneous scattering; NeuralTO [44] improves geometry 
reconstruction and view synthesis by modifying radiance fields for 
translucent media. Others focus on appearance editing [45] or material 
transfer from images to 3D models [46]. Our method builds upon these 
by jointly estimating geometry, illumination, surface reflectance, and 
SSS from a single-view flash/no-flash pair, handling both surface and 
subsurface light propagation in a unified framework.

2.3. Differentiable rendering

Differentiable renderers are widely used in the inverse rendering 
domain for applications such as the reconstruction of human face [3,
47], indoor scenes [23,24], buildings [48,49], and single objects [2,22,
28]. However, most of these methods rely on physically-based render-
ers that account only for direct illumination. This limitation hinders 
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Fig. 2. Overview of the proposed model. We use different colors to indicate different functions: green for the estimator, orange for the physically-based renderer, 
and red for the neural renderer. We have 𝐾 augmented loss modules and only show one in the figure. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.)
their ability to produce high-quality images, as they cannot simu-
late effects like soft shadows, inter-reflection, and subsurface scat-
tering. Recent studies have introduced general-purpose differentiable 
renderers [9,50–52] that incorporate indirect illumination. Neverthe-
less, these Monte Carlo path tracing approaches are computationally 
intensive and require significant memory, especially with high reso-
lutions. On the other hand, alternative approaches [22,23,28,53–55] 
have integrated neural networks with direct illumination renderers to 
enable global illumination and scene editing. These methods inspired 
us to develop a renderer-neural network architecture specifically for 
subsurface scattering tasks.

2.4. Scene editing

Scene editing is a vast area of research, with recent advancements 
driven largely by deep learning. Numerous studies have focused on 
relighting [3,49,56–59], material editing [60,61] and object manipu-
lation [62–65]. Our work pioneers the editing of scattering parameters 
for translucent objects based on observations from just two images.

3. Methods

In this section, we introduce our proposed inverse rendering frame-
work. Section 3.1 details our input and output modeling. Section 3.2 
describes the neural network used for parameter estimation. In Sec-
tion 3.3, we introduce the two-renderer structure. Section 3.4 discusses 
an augmented loss to enhance the supervision of the neural renderer. 
Section 3.5 presents the loss function. Finally, we detail the fine-tuning 
step in Section 3.6.
3 
3.1. Problem setup

Scene representation To represent geometry, we use a depth map 𝐷
for the rough shape and a normal map 𝑁 for local details. For the 
surface, we adopt a microfacet BSDF model proposed by Walter et al. 
[66], where a roughness map 𝑅 is used to define the surface roughness. 
Homogeneous SSS is modeled using three terms: an extinction coeffi-
cient 𝜎𝑡 controlling optical density, a volumetric albedo 𝛼 determining 
photon scattering or absorption probability during a volume event, and 
a Henyey–Greenstein phase function [67] parameter 𝑔 indicating the 
scattering direction (forward when 𝑔 > 0, backward when 𝑔 < 0, and 
isotropic when 𝑔 = 0). Additionally, we estimate spherical harmonics 
𝑠ℎ to aid the model and predict a flashlight intensity 𝑖 accounting for 
varying flashlight intensities across devices.
Model design Inspired by Aittala et al. [10] and Boss et al. [2], we 
use a flash and no-flash image setup, taking advantage of the different 
visibility of translucent objects under different lighting intensities. 
For example, if we put a bright light on the back of our finger, we 
can clearly see the color of blood. This property facilitates scattering 
parameter estimation and better disentanglement of surface reflectance 
and SSS.

Given a translucent object with an unknown shape, material, and 
illumination, we aim to estimate these parameters simultaneously and 
enable material editing by manipulating the estimated parameters. Fig. 
2 provides an overview of our model. Our inputs are three images: a 
flash image 𝐼𝑓 ∈ R3×256×256, a no-flash image 𝐼 ∈ R3×256×256, and a 
binary mask 𝑀 ∈ R256×256. The estimated parameters for each scene 
are:

• A depth map 𝐷 ∈ R256×256 and a normal map 𝑁 ∈ R3×256×256 to 
represent the shape.
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Fig. 3. Examples of the proposed synthetic dataset: we use the ground truth shape and illumination to visualize SSS parameters.
Fig. 4. Examples of the proposed real-world dataset.

• A roughness map 𝑅 ∈ R256×256 used in the microfacet BSDF 
model.

• The spherical harmonics 𝑠ℎ ∈ R3×9 and a flashlight intensity 
𝑖 ∈ R1 to represent illumination.

• The extinction coefficient 𝜎𝑡 ∈ R3, volumetric albedo 𝛼 ∈ R3, and 
Henyey–Greenstein phase function parameter 𝑔 ∈ R1.

3.2. Parameter estimation

We employ a deep convolutional neural network with a single 
encoder and multiple heads for parameter estimation, treating shape, 
material, and illumination estimation as a multi-task learning problem. 
The encoder extracts features from the input images while each head 
estimates the respective parameters. So, given a flash image 𝐼𝑓 , no-flash 
image 𝐼 , and a binary mask 𝑀 , the estimated physical parameters are: 

𝐷̃, 𝑁̃, 𝑅̃, 𝑠ℎ, 𝑖, 𝜎𝑡, 𝛼̃, 𝑔̃ = 𝑓𝑒(𝐼, 𝐼𝑓 ,𝑀), (1)

where 𝑓𝑒 denotes the estimator. 𝐷̃, 𝑁̃, 𝑅̃, 𝑠ℎ, 𝑖, 𝜎𝑡, 𝛼̃, 𝑔̃ represent the esti-
mated depth, normal, roughness, spherical harmonics coefficient, flash-
light intensity, extinction coefficient, volumetric albedo, and Henyey–
Greenstein phase function parameter (see Fig.  3).

3.3. Physical renderer and neural renderer

Reconstruction loss is commonly used to supervise network training. 
In the inverse rendering field, reconstruction means re-rendering the 
scene with the estimated parameters. Additionally, the renderer must 
be differentiable to propagate the reconstruction loss gradient to the 
estimator.

While general-purpose differentiable renderers like Mitsuba [9] are 
available, they pose memory and speed issues on consumer-grade 
GPUs, especially at high resolutions. The reason for that is the com-
putational cost of path tracing is much larger than that of standard 
neural works. For example, differentially rendering a single translucent 
object image with 256 × 256 resolution and 64 samples per pixel (spp) 
requires more than 5 s and 20 GB memory on an RTX3090 GPU. More-
over, the rendering time and memory will increase linearly when spp 
4 
increases. Additionally, rendering SSS requires full 3D shape estimation 
(e.g., a 3D mesh), which is difficult from a single viewpoint. That is 
why we only estimate a normal and a depth map as our geometry 
representation, which is sufficient for rendering surface reflectance but 
not for SSS.

Alternative approaches [2,31] might be using a differentiable ren-
derer that only accounts for direct illumination. This sacrifices some 
reconstruction quality but dramatically improves efficiency. However, 
such a method cannot be applied to a translucent object because SSS 
depends on multiple bounces of light inside the object.

Inspired by the recent advances in image-to-image translation [68,
69], researchers have shown the successful application of neural net-
works for adding indirect illumination [22,53], photorealistic effect [23,
48], or relighting [28,54]. Inspired by them, we propose a two-step 
rendering pipeline to mimic the rendering process of a general-purpose 
differentiable renderer. The first step is a physically-based rendering 
module considering only direct illumination: 
𝐼𝑑 = 𝑓𝑑 (𝐷̃, 𝑁̃, 𝑅̃, 𝑖, 𝑠ℎ), (2)

where 𝑓𝑑 is a physically-based renderer that follow the implementation 
of Sang and Chandraker [28], and it has no trainable parameters. 𝐼𝑑 is 
the re-rendered image that only considers the surface reflectance. The 
second step is a neural renderer 𝑓𝑛 to create the SSS effect: 

𝐼𝑓 = 𝑓𝑛(𝐼𝑑 , 𝑠ℎ, 𝑖, 𝜎𝑡, 𝛼̃, 𝑔̃, 𝐵), (3)

where 𝐼𝑓  is the re-rendered flash image. 𝑓𝑛 is the proposed neural 
renderer, and it consists of 3 parts (See Fig.  2 for reference): a Surface 
encoder, a Scattering encoder, and a decoder. The Surface encoder 
maps the estimated surface reflectance image 𝐼𝑑 into a feature map. In 
addition to the surface reflectance image, we also input the background 
image 𝐵 (masked-out version of 𝐼𝑓 ) to the Surface encoder to pro-
vide high-frequency illumination information. The Scattering encoder 
consists of a few upsampling layers. It maps 𝑠ℎ, 𝑖, 𝜎𝑡, 𝛼̃, 𝑔̃ to a feature 
map. The decoder consists of some Resnet blocks [70] and upsampling 
layers. Our neural renderer’s task can be considered a conditional 
image-to-image translation, where the condition is the SSS parameters.

The advantage of the two-renderer design is that it is naturally 
differentiable. At the same time, the training cost is acceptable. In 
addition, the physically-based renderer can provide physical hints to 
the neural renderer. Because we separate the reconstruction of surface 
reflectance and SSS explicitly, the ambiguity problem can be alleviated.

3.4. Augmented loss

In this subsection, we present an augmented loss to address the hid-
den information problem by using multiple altered images to supervise 
the proposed neural renderer. As discussed in 3.3, we use a two-
renderer structure to compute the reconstruction images, improving 
parameter estimation. However, a well-known problem of reconstruc-
tion loss in deep learning is that neural networks learn to ‘‘hide’’ 
information within them [71], causing the neural renderer to ignore the 
estimated SSS parameters and only reconstruct the input image based 
on the hidden information. If so, the reconstruction loss cannot give 
correct gradients and thus fails to guide the training of the estimator. 
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Table 1
MAE results on 17,140 test scenes. The best three results in each column are highlighted with gold , 
silver , and bronze  backgrounds. 

 Geometry BSDF Illumination SSS
 𝑁 𝐷 𝑅 𝑠ℎ 𝑖 𝜎𝑡 𝛼 𝑔  
 Baseline .0918 .0705 .0811 .1083 .0912 .1670 .1061 .1762 
 2R .0916 .0697 .0811 .1064 .0908 .1675 .1057 .1777 
 2R-AUG .0913 .0699 .0807 .1105 .0893 .1619 .1040 .1703 
 Che et al. [6] – – – – – .1828 .1115 .2123 
 Ours (ResNet) .0894 .0646 .0769 .0989 .0804 .1590 .1002 .1655 
 Ours(Swin2) .0951 .0794 .0781 .0901 .0825 .1594 .0968 .1689 
 Ours(ConvNext2) .0874 .0634 .0868 .1037 .0891 .1781 .1107 .1878 
This undermines the effectiveness of reconstruction loss in guiding the 
estimator training.

To address this problem, we enhance the supervision of the neural 
renderer with an augmented loss. Specifically, after the parameters are 
estimated, we edit the estimated SSS parameters and let the Neural 
renderer reconstruct image based on the edited SSS parameters. We 
also render 𝐾 altered images 𝐼𝑘𝑎𝑙𝑡𝑒𝑟 as their ground truth labels to train 
the neural renderer. The altered images have the same parameters as 
the original flash image, except the SSS parameters. Specifically, 𝐼𝑓
and 𝐼𝑘𝑎𝑙𝑡𝑒𝑟 share the same shape, surface reflectance, and illumination, 
but different extinction coefficient, phase function, and volumetric 
albedo. The edited SSS parameters are randomly sampled from the 
same distribution as the original ones: 
𝐼𝑘𝑎𝑙𝑡𝑒𝑟 = 𝑓𝑛(𝐼𝑑 , 𝑠ℎ, 𝑖, 𝜎𝑡 + 𝛿𝜎𝑡 , 𝛼̃ + 𝛿𝛼 , 𝑔̃ + 𝛿𝑔 , 𝐵), (4)

where 𝛿𝜎𝑡 , 𝛿𝛼 , 𝛿𝑔 are the differences between target SSS parameters 
(subsurface scattering parameters of 𝐼𝑘𝑎𝑙𝑡𝑒𝑟) and the estimated ones, 
𝐼𝑘𝑎𝑙𝑡𝑒𝑟 is the reconstructed altered images. This design offers several 
benefits. First, since the input image is not the same as the image to 
be reconstructed, it becomes meaningless for the neural network to 
‘‘hide’’ information from the original input image. Second, the variety 
of input parameters and output images makes the neural renderer 
more sensitive to changes in SSS parameters. These factors help the 
neural renderer guide the estimator more effectively, leading to a 
more accurate estimation of SSS parameters. Considering the time and 
computing resources required to render the training images, we set 
𝐾 = 3 in practice.

3.5. Loss functions

The proposed model is fully supervised and trained end to end, and 
we compute the loss between the estimated parameters their ground 
truths:

𝐿 = 𝐿𝐷 + 𝐿𝑁 + 𝐿𝑅 + 𝐿𝑠ℎ + 𝐿𝑖 (5)
+ 𝐿𝜎𝑡 + 𝐿𝛼 + 𝐿𝑔 + 𝐿𝐼𝑓 +

∑

𝐾
𝐿𝑘
𝑎𝑙𝑡𝑒𝑟,

where 𝐿𝐷, 𝐿𝑁 , 𝐿𝑅, 𝐿𝐼𝑓 , 𝐿
𝑘
𝑎𝑙𝑡𝑒𝑟 stand for the 𝐿1 loss between the esti-

mated depth, normal, roughness, flash image, altered images and their 
ground truth ones. 𝐿𝑠ℎ, 𝐿𝑖, 𝐿𝜎𝑡 , 𝐿𝛼 , 𝐿𝑔 stands for the 𝐿2 loss between the 
estimated spherical harmonics, flashlight intensity, extinction coeffi-
cient, volumetric albedo, Henyey–Greenstein phase function parameter 
and their ground truth ones.

3.6. Real-world data fine-tuning

As briefly mentioned before, a well-known problem of training on 
the synthetic data and testing on the real-world data is the domain gap 
problem. We take two solutions to deal with the domain gap problem in 
this work. The first one is to make the data distribution of synthetic and 
real data as close as possible. Specifically, we design the rendering of 
synthetic images using realistic geometry, material, and illumination, 
which will be discussed in Section 4.1.1. The second one, which will 
5 
be discussed in this section, is an additional fine-tuning step on the 
real-world data.

However, the inherent problem of training on real-world data is 
the lack of ground truth labels. The problem is even escalated with 
translucent objects. Because most measurement methods of geometry 
and material are designed for opaque objects. Directly applying these 
methods to translucent objects usually fails. Nevertheless, we use an 
anti-translucency spray to change all translucent objects to opaque 
and use a 3D scanner to measure the ground-truth geometries (details 
can be found in Section 4.1.2). Finally, we use the constructed real-
world dataset with ground truth surface normals to finetune our model. 
During the finetuning, only the Normal head is continually trained, 
and the other parts of the Estimator, and the Neural Renderer, are 
frozen. Due to the lack of so many ground truth parameters, we can 
only compute the reconstruction loss 𝐿𝐼𝑓  and the surface normal loss 
𝐿𝑁 . As a consequence, the loss function during the finetuning step is: 

𝐿𝑓𝑡 = 𝐿𝑁 + 𝐿𝐼𝑓 (6)

4. Experiments

We introduce our dataset in Section 4.1. In Section 4.2, we compare 
our model with an existing inverse scattering work [6]. We conduct 
an ablation study and report the quantitative and qualitative results in 
Section 4.3. In Section 4.4 we show the results of SSS parameter editing 
application. Finally, in Section 4.5, we show the improvement of the 
model after the finetuning step.

4.1. Datasets

4.1.1. Synthetic data
Collecting a large number of real-world translucent objects with 

measurements of shape, surface reflectance, and SSS parameters is 
time-consuming. However, training data is essential for deep neural 
networks. To address this, we created a large-scale synthetic dataset 
through photorealistic rendering. However, as briefly mentioned ear-
lier, the difference between the distribution of synthetic data and 
real-world data introduces the domain gap problem. We carefully de-
signed the rendered images to mitigate the domain difference between 
the synthetic and real data. This section details the preparation of assets 
for rendering, including 3D objects, BSDF maps, subsurface scattering 
parameters, and illumination.
3D objects Previous works [2,22,28] have synthesized 3D objects using 
the Domain Randomized method by assembling simple shapes like 
spheres, cylinders, and cones. We collected human-created 3D objects 
from ShapeNet [72] and some other public resources for greater shape 
complexity and diversity. Some ShapeNet objects had flipped surface 
normals, resulting in black pixels when intersecting with light. We 
used a script to delete these objects, retaining 5847 3D objects. All 
objects were scaled to fit within a 50 cm cube, placed at the origin, 
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Fig. 5. We paint the object with an anti-translucency spray and use a 3D 
scanner to capture the GT geometry of translucent objects.

and randomly rotated, scaled, and translated during rendering. We used 
5000 objects for training and 857 for testing.

Roughness and bump maps To create meaningful surface reflectance 
patterns, we collected surface reflectance maps from open-source web-
sites, each containing a bump map and a roughness map. Using
Blender’s ‘‘smart UV mapping’’ function [73], we applied these maps 
to the objects. The bump map was used to modify the surface normals 
for a more realistic appearance. All roughness and bump maps were 
randomly resized before applying them to the object. We collected 2745 
surface reflectance maps, using 2470 for training and 275 for testing.

IoR To reduce the ambiguity problem in inverse rendering, we set the 
IoR to a constant value (1.5046), which is typical for many common 
materials like glass (1.5046), amber (1.55), and polyethylene (1.49).

Subsurface scattering parameters Following the previous work [6], 
we randomly sampled the subsurface scattering parameters from a 
uniform distribution with extinction coefficient 𝜎𝑡 ∈ [0, 32], volumetric 
albedo 𝛼 ∈ [0.3, 0.95], and Henyey–Greenstein phase function parameter 
𝑔 ∈ [0, 0.9].

Illumination To replicate complex real-world lighting conditions, we 
used environment maps from the Laval Indoor HDR dataset [19], which 
consists of 2357 high-resolution indoor panoramas. During rendering, 
pitch and roll were fixed, with only the yaw axis rotated. We computed 
a 3 × 9 Spherical Harmonics coefficient for each environment map to 
supervise our model. We used 1500 environment maps for training and 
857 for testing. Initially, we used a point light to simulate the flashlight 
but observed severe noise with smooth objects. Instead, we used a small 
sphere area light with a 10 cm radius placed 10 cm behind the camera. 
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To account for varying flashlight intensities in different devices, we 
used random radiance values between 35 to 75 W m−2sr−1.

Rendering For each scene, we used Mitsuba2 [9] to render five images: 
flash image, no-flash image, and three altered images. Each scene 
included a randomly selected object, normal map, roughness map, 
environment map, and subsurface scattering parameters. The camera 
was placed 70 cm away from the origin on the positive 𝑧-axis, looking at 
the origin. For the flash image, a small area light source simulated the 
camera flashlight. For the no-flash image, the area light was removed, 
and the camera’s look-at direction was slightly altered to simulate 
camera shake. The subsurface scattering parameters were edited for the 
three altered images. Additionally, we rendered ground truth depth, 
normal, roughness, and binary masks for intermediate supervision. We 
generated a total of 100,000 training scenes and 17,140 test scenes.

4.1.2. Real data
For a more comprehensive test of our model, we also constructed 

a real-world dataset consisting of several common translucent objects. 
We also measured the ground truth surface normal for each scene. 
However, even if we only focus on measuring the surface normals of 
translucent objects, it is still not easy. Existing works [74,75] measure 
the geometry using 3D scanners and register the measured geometry 
and the image to the same coordinate system using an image-to-
geometry alignment method [76]. However, neither the 3D geometry 
measuring nor the geometry registration are designed for translucent 
objects. We solved the geometry measuring problem by using an anti-
translucency spray (See Fig.  5) and measured the geometry using 
a REVEPOINT POP 2 scanner. For the geometry registration prob-
lem. According to the existing method [76], the object position is 
optimized by computing the loss of the image space between the 
re-rendered one and the camera-captured one. However, during the 
re-rendering, the material and illumination are unknown. Therefore, 
they used a standard illumination and material and proposed a novel 
mutual information loss that is robust to the change of illumination 
and material. Although the proposed mutual information may work for 
opaque objects, translucent objects have more ambiguities. Moreover, 
their rendering system is not differentiable, and they used a quadric 
approximation, which can be slow and inaccurate. Instead, we used 
Mitsuba [77] for the rendering and computed the loss on the silhouette 
space to optimize the position. Finally, we obtained 80 training scenes 
and 9 test scenes. Each scene contains a flash photo, a no-flash photo, a 
manually created binary mask, and a ground truth surface normal. We 
show a few examples of the constructed real-world data in Fig.  4.

4.2. State-of-the-art comparison

4.2.1. Material estimation comparison
To the best of our knowledge, we are the first to address the inverse 

rendering problem for translucent objects that involve both surface 
reflectance and SSS. Comparing our method to those focusing solely 
on pure surface reflectance, such as [2,22], is not easy. Although 
these methods predict parameters like surface roughness, they rely on 
the coloration affected by ‘‘diffuse albedo’’, a parameter of the BRDF. 
In contrast, our scene representation models surface reflection and 
refraction using BSDF and SSS using the Radiative Transport Equation 
(RTE). This difference means that in our model, the coloration is 
influenced by the volumetric albedo, extinction coefficient, and phase 
function, making it impossible to train pure surface reflectance methods 
on our dataset. Therefore, we chose to compare our model with a pure 
SSS method proposed by Che et al. [6]. Their method requires an edge 
map as an additional input for the neural network. Following their 
procedure, we generated edge maps for our dataset and trained their 
model using the same hyperparameters as our method. We report the 
Mean Absolute Error (MAE) in Table  1, and provide a visual comparison 
in Fig.  6. Due to the lack of ground truth parameter references, we only 
present results for synthetic data. Our observations indicate that their 
method struggles to estimate reasonable SSS parameters because of the 
highly ambiguous scene representation.
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Fig. 6. Visual comparison with [6]. We use two visualizations, which are ‘‘SSS’’ and ‘‘SSS+BSDF’’ to show the parameter estimation results. ‘‘SSS’’ is rendered 
by the GT illumination, shape, and predicted SSS. ‘‘SSS+BSDF’’ is rendered by the GT illumination, shape, BSDF, and predicted SSS. Images in red rectangles are 
input images. Error maps are in the upper right corner. SSIM and PSNR values are in the upper left corner.

Fig. 7. Visual results of ablation study on the synthetic dataset. For visualization, we use the ground truth shape and illumination to render the image of the 
estimated SubSurface Scattering parameters (denoted as SSS in the figure).

Fig. 8. SSS parameter editing results. The 3rd row is the input images. We randomly edit the scattering parameters before inputting them into the neural renderer. 
The 2nd row is the estimated images, and we show their ground truth images in the 1st row.
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Fig. 9. Finetuning results of the surface normal estimation and comparison between the existing works. Numbers on the top left stand for the mean angular error 
between estimated normals and GT normals. The best results are highlighted in red. Finetuning results come from Ours(ConvNext) model.
4.2.2. Normal estimation comparison
Although we cannot compare the material estimation results with 

the pure surface reflection models due to the different material mod-
eling, the estimated surface normals can still be compared. Thus, 
we conduct a surface normal estimation comparison to the existing 
methods. We selected two representative works, Stable Normal [78] 
and Neural LightRig [35], that can estimate high-fidelity normals to 
be our competitors. Results are demonstrated in Fig.  9. It is observed 
that although our method cannot defeat the latest work for the normal 
estimation, it outperforms these works after fine-tuning. This result is 
consistent with our expectations. These diffusion-based methods are 
usually pre-trained on a large-scale dataset; thus, they usually have 
a better generalization ability to real-world scenes. In contrast, our 
synthetic dataset is relatively small; therefore, it requires an additional 
fine-tuning stage. Nevertheless, it is observed that after the fine-tuning, 
our method has a better performance due to the consideration of 
complex light propagation for translucent objects.

4.3. Ablation study

4.3.1. Model design
We conducted ablation studies to evaluate the impact of each 

component of our proposed model. We began with a Baseline model, 
which uses the same estimator as our Full model but only recon-
structs the input scene using a neural network. Essentially, this baseline 
model functions as an autoencoder. Next, we divided the reconstruc-
tion process into two steps: a physically-based renderer to reconstruct 
the surface reflectance and a neural renderer to create multi-bounce 
illumination and the SSS effect. We refer to this as the ‘‘2R’’ model. 
We then introduced the augmented loss to the ‘‘2R’’ model, labeling 
it ‘‘2R-AUG’’. Finally, we achieved the Full model by incorporating the 
two-shot setting into ‘‘2R-AUG’’. The MAE results for the synthetic data 
from all experiments are reported in Table  1. The ‘‘2R" model outper-
formed the Baseline model in most metrics, particularly in illumination 
accuracy, confirming that explicitly separating surface reflectance and 
SSS reduces ambiguity. Although ‘‘2R’’ and ‘‘2R-AUG’’ performed simi-
larly in geometry, illumination, and surface reflectance, the augmented 
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loss improved the SSS parameters’ results. The comparison between 
‘‘2R-AUG’’ and the Full model demonstrates that the two-shot setting 
further reduces ambiguity. Fig.  7 shows visual comparisons, highlight-
ing that the Full model’s SSS images closely resemble the ground 
truth, while other models are less stable. Additionally, the Full model’s 
estimation of environment illumination is more accurate due to the 
two-shot setting. To demonstrate the flexibility of our model, we tested 
it on several common real-world translucent objects, as illustrated in 
Fig.  1. The results show that our model can estimate reasonable SSS 
parameters.

4.3.2. Backbone search
To investigate the impact of the encoder backbone on our model’s 

performance, we conducted extensive experiments using three repre-
sentative architectures: ResNet-52 [70], ConvNeXt V2-Base [79], and 
Swin Transformer V2-Base [80]. These backbones were chosen due to 
their popularity and effectiveness in various vision tasks. Importantly, 
we selected architectures with comparable parameter counts to ensure 
a fair comparison of feature extraction capabilities.

As summarized in Table  1, we found that all three backbones 
yielded similar overall performance in our framework. Notably, Con-
vNeXt V2 achieved marginally better results in normal and depth 
estimation tasks. We hypothesize that this improvement arises from 
its hybrid design, which blends the inductive biases of convolutional 
networks with architectural modernizations inspired by vision trans-
formers. These characteristics allow ConvNeXt V2 to retain strong gen-
eralization even when trained on limited data, while benefiting from 
a more flexible and expressive architecture compared to traditional 
CNNs.

On the other hand, the Swin Transformer V2 backbone did not show 
significant improvement over the CNN-based backbones. A likely rea-
son is that vision transformers, including Swin Transformer, are known 
to be data-hungry and often require large-scale pretraining to fully 
leverage their potential. In contrast, convolutional networks possess 
strong spatial inductive biases, which make them more suitable for 
tasks with relatively limited training data. Our findings are consistent 
with conclusions drawn in prior work on vision transformers [81,82], 
where transformers outperform CNNs primarily when trained with 
extensive datasets and longer training schedules.
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Fig. 10. Comparison of with or without pre-training on the synthetic data. The 
vertical axis represents the mean angular error between the estimated surface 
normals and their ground truths. The horizontal axis represents the number of 
finetuning epochs.

4.4. Material editing

Given a translucent object with an unknown shape, illumination, 
and material, we show that the proposed inverse rendering framework 
can edit translucent objects based on the given SSS parameters. Fig.  8 
shows the editing results.

4.5. Finetuning analysis

We show the experimental results of the finetuning step in this 
section. After training on the synthetic data, we continue to finetune the 
model on the real-world data for 200 epochs. Fig.  9 demonstrates the 
contribution of the proposed finetuning step. As shown in the figure, 
without finetuning, the model tends to estimate a flat surface, and the 
problem is alleviated after several finetuning steps. In addition, we 
conducted an ablation study by comparing the training with or without 
the pretraining on the synthetic data. We show the results in Fig.  10. 
From the figure, we can observe that the training is much more stable 
compared to training from scratches.

5. Conclusions and limitations

In this paper, we made the first attempt to jointly estimate shape, 
spatially varying surface reflectance, homogeneous SSS, and illumi-
nation from a flash and no-flash image pair. The proposed two-shot, 
two-renderer, and augmented loss reduced the ambiguity of inverse 
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rendering and improved the parameter estimation. We also constructed 
a large-scale synthetic dataset of fully labeled translucent objects and a 
real-world dataset with ground truth surface normals. In addition, we 
demonstrated that our pipeline is also capable of SSS parameter editing. 
Finally, we demonstrated that the model performance can be further 
improved and robust to the domain gap by adding a finetuning step 
using real-world data.

The proposed method still has some limitations. First, to reduce the 
ambiguity problem, we set the IoR to be constant and do not estimate 
it. However, IoR affects light transmission through object boundaries 
and thus influences the SSS. For some materials with large or small 
IoR, our model may not work. Second, our model does not support 
relighting and novel-view synthesis. Unlike pure surface reconstruction 
models, the estimated normals can be easily applied to physically-based 
renderers for relighting or novel-view synthesis. Rendering translucent 
objects requires a full 3D estimation (e.g., mesh), including the backside 
information. However, estimating the complete geometry is difficult for 
the single-view reconstruction method. Solving these challenges can be 
good for future work.
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