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Abstract
We construct an isomorphism between the�-cohomology and the cohomology of

the fundamental groups of toroidal groups, and get a standard form of p-cocycles,
which was given by Vogt [6] in case of1-cocycles. Using differential forms via the
above isomorphism enables us to obtain new results in higherdimensional cases.
An explicit isomorphism between thěCech cohomology and the cohomology of
the fundamental groups of complex tori is given in [5] (p.14). Our results give a
generalization of this isomorphism to toroidal groups.

1. Introduction

Kazama and the second named author [3] calculated the�-cohomology of toroi-
dal groups using the Fourier expansions of�-closed forms and characterized the to-
roidal groups of cohomologically finite type, namely those having finite-dimensional
cohomology groups. For this purpose, they proved that a toroidal group is of
cohomologically finite type if and only if any�-closed (0,p)-forms on it are�-cohomologous to constant (0,p)-forms. Further, they proved that a toroidal group
which is not of cohomologically finite type has non-Hausdorff topology.

On the other hand, Vogt [6] obtained a standard form (in Theorem 2.2) of the
1-cocycles of the cohomology of the fundamental groups of toroidal groups by solving
difference equations.

In this paper we construct an isomorphism between the�-cohomology and the co-
homology of the fundamental groups of toroidal groups, and get a standard form of
the p-cocycles for all p � 1 (Theorem 2.2). This gives another proof of the above
result of Vogt in case of 1-cocycles and its generalization to the case ofp-cocycles.
Using differential forms via the isomorphism enables us to odtain the new results in
higher dimensional cases. By the isomorphism, any�-closed (0,p)-forms on toroidal
groups correspond top-cocycles which are cohomologous to the standardp-cocycles.
We hope this correspondence could shed some light on the study of cocycles in toroidal
groups which have infinite dimensional cohomology groups. An explicit isomorphism
between thěCech cohomology and the cohomology of the fundamental groups of com-
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plex tori is given in [5] (p.14), and this is valid for toroidal groups. Since our results
include a method of constructing an isomorphism between the�-cohomology and the
cohomology of the fundamental groups of complex tori, theseare regarded as another
approach for the cohomlogy of complex tori.

2. Definition and statement of results

At first, for a toroidal groupX of complex dimensionn, we recall the definition
of the cohomology groupsH p(�1(X), H0(Cn, O)) of �1(X) with values in the additive
group H0(Cn, O) of the holomorphic functions onCn, according to [5] (p.22). We
simply call them the cohomology of the fundamental group of atoroidal groupX.

DEFINITION 1. A connected complex Lie groupX is called a toroidal group if
every holomorphic function onX is constant.

Let n be the complex dimension ofX. Since any toroidal group of complex di-
mensionn is a complex abelian Lie group, there exists a discrete subgroup 0 of Cn

such thatX is isomorphic onto the quotient groupCn=0 and 0 is the fundamental
group of X. Let r = rank0, then n + 1� r � 2n and there exists a basis�1, : : : , �r

for 0. We write 0 = Zf�1, : : : , �r g. The matrix P = [�1, : : : , �r ] is called a period
matrix for Cn=0.

DEFINITION 2. A toroidal groupCn=0 is called of typeq (1� q � n) if rank0 =
n + q.

Let H = H0(Cn, O), C0(0, H ) := H , and Cp(0, H ) := f f j f : 0 p ! Hg, where0 p = 0 � � � � � 0 (p-times). The coboundaryÆ : Cp(0, H )! Cp+1(0, H ) is defined
as follows:

(2.1)

Æ f (�)(z) = f (z + �)� f (z), for p = 0,

Æ f (�0, : : : , �p)(z) = f (�1, : : : , �p)(z + �0)

+
p�1X
i =0

(�1)i +1 f (�0, : : : , �i + �i +1, : : : , �p)(z)

+ (�1)p+1 f (�0, : : : , �p�1)(z), for p > 0,

where�, �0, : : : , �p 2 0. Put

Z p(0, H ) := Ker(Æ), for p � 0,

Bp(0, H ) := Im(Æ), H p(0, H ) := Z p(0, H )=Bp(0, H ), for p > 0,
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and

H0(0, H ) = Z0(0, H ) = H0(Cn=0, O).

DEFINITION 3. We call H p(0, H ) the cohomology of0 with values in H .

Let Cr ,s be the sheaf of germs ofC1(r , s)-forms on a given complex manifold.
Put Dr ,s = H0(Cn, Cr ,s). Then Cp(0, Dr ,s), for p � 0, and the coboundaryÆ are
similary defined. Then� : Cp(0, Dr ,s) ! Cp(0, Dr ,s+1) and �=�zi : Cp(0, Dr ,s) !
Cp(0, Dr ,s) are defined as follows:

(� f )(�1, : : : , �p)(z) := �( f (�1, : : : , �p)(z)),

and

� ��zi
f

�
(�1, : : : , �p)(z) :=

��zi
( f (�1, : : : , �p)(z)),

for f 2 Cp(0, Dr ,s) and �1, : : : , �p 2 0. Then

(2.2) �Æ = Æ� and
��zi
Æ = Æ ��zi

.

By a suitable linear change ofCn, Cn=0 has a period matrix

(2.3) P = [ In, V ],

where In = [e1, : : : , en] is the n� n unit matrix and

(2.4) V = [vi j ; 1� i � n, 1� j � q] = [v1, : : : , vq]

is a n� q matrix. We can assume

(2.5) det Im[vi j ; 1� i , j � q] 6= 0.

Put vi =
p�1ei (q + 1 � i � n), [v1, : : : , vn] = [vi j ; 1 � i � n, 1� j � n] and �i =

Im vi (1� i � n), then�1, : : : , �n are C-linearly independent. Define two coordinates
z1, : : : , zn and t1, : : : , t2n in Cn, where ti 2 R (1� i � 2n) as follows,

(2.6)
z = z1�1 + � � � + zn�n

= t1e1 + � � � + tnen + tn+1v1 + � � � + t2nvn.

Hereafter, we write (z1, : : : , zn) instead ofz1�1 + � � � + zn�n and t (t1, : : : , t2n) instead
of t1e1 + � � � + tnen + tn+1v1 + � � � + t2nvn.



508 M. MUTA AND T. UMENO

We denote byZ� (M, Cr ,s) the space of the�-closedC1(r , s)-forms on a complex
manifold M and by B� (M, Cr ,s) the space of the�-exactC1(r , s)-forms on a complex
manifold M. Then by the Dolbeault theorem, we have

(2.7) H p(M, O) �= H0,p� (M) =
Z� (M, C0,p)

B� (M, C0,p)
.

Let

' =
1

p!

X
1��1,:::,�p�n

'�1����pdz�1 ^ � � � ^ dz�p 2 Z� (Cn=0, C0,p).

Looking at ' as an element ofC0(0, D0,p), Æ'(�)(z) = '(z + �) � '(z) = 0, for any� 2 0. Put

'(0) = '.

We define'(k) 2 Zk(0, D0,p�k), satisfying'(k)(�1, : : : , �k) 2 Z� (Cn, C0,p�k), for each�1, : : : , �k 2 0, inductively onk (1 � k � p). Since'(0) is a �-closed form onCn,
there exists8(0) 2 C0(0, D0,p�1) satisfying

(2.8) '(0) = �8(0).

Put

(2.9) '(1) := Æ8(0).

Then clearlyÆ'(1) = 0, and

(2.10) �'(1)(�) = Æ(�8(0))(�) = Æ'(0)(�) = 0, for � 2 0.

Hence, for each� 2 0, '(1)(�) 2 Z� (Cn, C0,p�1). Assume we get'(k) 2 Zk(0, D0,p�k),
(1� k < p) satisfying'(k)(�1, : : : , �k) 2 Z� (Cn, C0,p�k), for each�1, : : : , �k 2 0. Then
there exists8(k) 2 Ck(0, D0,p�k�1) satisfying

(2.11) '(k)(�1, : : : , �k) = �8(k)(�1, : : : , �k).

Put

(2.12) '(k+1) := Æ8(k),

then

(2.13) �'(k+1)(�1, : : : , �k+1) = Æ'(k)(�1, : : : , �k+1) = 0.
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Thus we get'(k) 2 Zk(0, D0,p�k) satisfying'(k)(�, : : :,�k) 2 Z� (Cn,C0,p�k), 1� k � p.
Since'(p)(�1, : : : , �p) 2 Z� (Cn, C0,0), '(p) 2 Z p(0, H ). We denote by� the mapping
Z� (Cn=0, C0,p)! Z p(0, H ) such that

(2.14)
�(') = ', for p = 0,

= '(p), for p > 0.

Note that the definition of� depends on the choice of8(k) (0� k < p). But we have
the following

Theorem 2.1. Let Cn=0 be a toridal group. Then the mapping� defined by
(2.14) induces an isomorphism for each p,

H0,p� (Cn=0) �= H p(0, H ).

Then we get the following

Theorem 2.2. Let Cn=0 be a toroidal group of type q. Then every f(p) 2
Z p(0, H ) is Æ-cohomologous to a(p) 2 Z p(0, H ) satisfying for all�1, : : : , �p 2 0 and
z = (z1, : : : , zn) 2 Cn,

a(�1, : : : , �p)(z) = a(�1, : : : , �p)(0, : : : , 0, zq+1, : : : , zn).

3. Proof of Theorem 2.1

Before proving Thorem 2.1, we note some facts about cohomology of 0 with val-
ues in Dr ,s = H0(Cn, Cr ,s). Let � : Cn ! Cn=0 be the projection,fVi g be an open
coverings ofCn=0 and fWi g an open subsets ofCn such that

(3.1)

�i = � jWi : Wi ! Vi is a homeomorphism and

��1(Vi ) =
X
�20(Wi + �) is a disjoint union.

At first, we show the following

Proposition 3.1. Let Cn=0 be a toroidal group. Then

H p(0, Dr ,s) = 0, p > 0.

Proof. We take coveringsfVi g and fWi g as in (3.1). Let f 2 Z p(0, Dr ,s). For any
z2 ��1(Vi ), there exists a unique�0 2 0 such thatz2Wi +�0 and��1

i (�(z)) = z��0.
Put for z 2 ��1(Vi )

gi (�1, : : : , �p�1)(z) := f (�0, �1, : : : , �p�1)(��1
i (�(z))).
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Putting��1
i (�(z)) in place of z in (2.1), sinceÆ f = 0, we get for anyz 2 ��1(Vi ),

(3.2)

f (�1, : : : , �p)(z) =
p�1X
j =0

(�1) j f (�0, : : : , � j + � j +1, : : : , �p)(��1
i (�(z)))

+ (�1)p f (�0, : : : , �p�1)(��1
i (�(z)))

= Ægi (�1, : : : , �p)(z).

Let f
i g be a partition of unity subordinate to the coveringfVi g. Put for anyz 2 Cn,

g(�1, : : : , �p�1)(z) :=
X

i


i (�(z))gi (�1, : : : , �p�1)(z).

Then

f (�1, : : : , �p)(z) = Æg(�1, : : : , �p)(z).

Thus the proof is completed.

Then we begin to prove Theorem 2.1. Forp > 1, we need the following

Lemma 3.2. Let Cn=0 be a toroidal group and', '0 2 Z� (Cn=0, C0,p), p > 1.
Suppose two forms'(k) and '0(k) in Zk(0, D0,p�k) are constructed from' and '0
respectively as in(2.11) and (2.12) for 1� k < p.

If ' and '0 are �-cohomologous, then there exists�(k�1) 2 Ck�1(0, D0,p�k�1) sat-
isfying

(3.3) '(k) � '0(k) = �Æ�(k�1).

Proof. For'(k) and'0(k), there exist8(k) and80(k) in Ck(0, D0,p�k�1), respective-
ly which satisfy (2.11) and (2.12), 0� k < p. By the assumption, there exists 2
H0(Cn=0, C0,p�1) such that' � '0 = � . We shall prove the lemma by induction on
k. For k = 0, there exists�(0) 2 C0(0, D0,p�2) satisfying

(3.4) 8(0)�80(0) =  + ��(0).

Then

'(1)� '0(1) = Æ��(0) = �Æ�(0).

Thus the lemma is proved fork = 1. Suppose there exists�(k�2) 2 Ck�2(0, D0,p�k)
satisfying

(3.5) '(k�1) � '0(k�1) = �Æ�(k�2),
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for k > 1. Then there exists�(k�1) 2 Ck�1(0, D0,p�k�1) satisfying

(3.6) 8(k�1) �80(k�1) = Æ�(k�2) + ��(k�1).

Then we get

'(k) � '0(k) = �Æ�(k�1).

Hence the lemma is proved fork and the proof is completed.

Then we show the following

Proposition 3.3. Let Cn=0 be a toroidal group. Then the mapping� defined by
(2.14) induces a homomorphism

(3.7) � : H0,p� (Cn=0)! H p(0, H ).

Proof. We may assumep > 0. Let ' and '0 are �-cohomologous in
Z� (Cn=0, C0,p). Suppose'(k) and'0(k) are constructed as in (2.11) and (2.12) by8(k)

and80(k) respectively, 0� k < p. For p = 1, there exists 2 H0(Cn=0,C0,0) satisfying

' � '0 = � .

Since

' = �8(0) and '0 = �80(0),

h := 8(0) �80(0) �  2 C0(0, H ).

Hence

'(1) � '0(1) = Æ8(0) � Æ80(0) = Æh.

Accordingly� defines a homomorphism forp = 1. Next we consider the casep > 1.
By Lemma 3.2, there exists�(p�2) 2 Cp�2(0, D0,0) satisfying

'(p�1) � '0(p�1) = �Æ�(p�2).

Then there existsh 2 Cp�1(0, H ) such that

8(p�1) �80(p�1) = Æ�(p�2) + h.

Hence

'(p) � '0(p) = Æh.

This means� induces a homomorphism (3.7) and the proof is completed.
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Next we show the following

Proposition 3.4. Let Cn=0 be a toroidal group. Then the homomorphism� is
injective.

Proof. We may assumep � 1. Let ', '0 2 Z� (Cn=0, C0,p). Suppose'(k) and'0(k) are constructed as in (2.11) and (2.12) by8(k) and 80(k) respectively, 0� k <
p. Assume'(p) := �' and '0(p) := �'0 are Æ-cohomologous. Then there existsh 2
Cp�1(0, H ) such that

'(p) � '0(p) = Æh.

Then there exists� (p�1) 2 Z p�1(0, D0,0) such that

8(p�1) �80(p�1) = h + � (p�1).

Then

'(p�1) � '0(p�1) = �� (p�1).

In casep = 1, � (0) 2 Z0(0, D0,0) = H0(Cn=0, C0,0). Note that' = '(0) and '0 = '0(0).
Hence' and'0 are�-cohomologous. Ifp> 1, by Proposition 3.1, there exist�(p�2) 2
Cp�2(0, D0,0) such that� (p�1) = Æ�(p�2). Then there exists� (p�2) 2 Z p�2(0, D0,1)
such that

8(p�2) �80(p�2) = ��(p�2) + � (p�2),

and

'(p�2) � '0(p�2) = �� (p�2).

Continuing this way, we have

' � '0 = �� (0).

Since� (0) 2 Z0(0, D0,p�1) = H0(Cn=0, C0,p�1), ' and'0 are �-cohomologous, and the
proof of the proposition is completed.

To complete the proof of Theorem 2.1, we need to show the following

Proposition 3.5. Let Cn=0 be a toroidal group. Then the homomorphism� is
surjective.
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Proof. Let f 2 Z p(0, H ). Then by Proposition 3.1, there exists8(p�1) 2
Cp�1(0, D0,0) such that

f = Æ8(p�1).

Put

'(p�1) := �8(p�1) 2 Cp�1(0, D0,1).

Then Æ'(p�1) = 0, hence there exists8(p�2) 2 Cp�2(0, D0,1) satifying

'(p�1) = Æ8(p�2), if p > 1.

Continuing this way, we get'(0) 2 C0(0, D0,p) and8(0) 2 C0(0, D0,p�1) satisfying

'(0) = �8(0) and Æ'(0) = 0.

Then '(0) 2 Z� (Cn=0, C0,p). By the construction we see�'(0) = f . Hence� is sur-
jective, and the proof is completed.

From Propositions 3.3, 3.4 and 3.5, the proof of Theorem 2.1 is completed.

4. �-cohomology of toroidal groups

In this section, we summarize some facts about�-cohomology of toroidal groups
([3] and [4]) to prove Theorem 2.2.

Let Cn=0 be a toroidal group of typeq with the period matrixP = [ In, V ]. From
(2.6), for i = 1, : : : , n

(4.1) ti =
1

2
p�1

 
� nX

j =1

vi j zj +
nX

j =1

vi j z j

!
, and tn+i =

1

2
p�1

(zi � zi ).

Hence

(4.2)

��zi
= � 1

2
p�1

 
nX

j =1

v j i
��t j
� ��tn+i

!
(1� i � q)

=
1

2

� ��ti
�p�1

��tn+i

�
(q + 1� i � n),

and

(4.3)

��zi
=

1

2
p�1

 
nX

j =1

v j i
��t j
� ��tn+i

!
(1� i � q)

=
1

2

� ��ti
+
p�1

��tn+i

�
(q + 1� i � n).
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Let

f (t) =
X

m2Zn+q

f m(t) =
X

m2Zn+q

cm(t200) exp(2�p�1hm, t̃i)
be a C1-function on Cn=0, where t = t (t1, : : : , t2n), t̃ = t (t1, : : : , tn+q), and t200 =
t (tn+q+1, : : : , t2n). For eachm 2 Zn+q, we put

(4.4) Km,i := tmvi �mn+i (1� i � q), and Km := MaxfjKm,i j; 1� i � qg.
If m 6= 0
(4.5)� f m(t)�zi

= ��K m,i c
m(t200) exp(2�p�1hm, t̃ i) (1� i � q)

=
p�1

��mi c
m(t200)� 1

2

�cm(t200)�tn+i

�
exp(2�p�1hm, t̃ i) (q + 1� i � n),

and
(4.6)� f m(t)�zi

= �Km,i c
m(t200) exp(2�p�1hm, t̃ i) (1� i � q)

=
p�1

��mi c
m(t200) +

1

2

�cm(t200)�tn+i

�
exp(2�p�1hm, t̃ i) (q + 1� i � n).

In casem = 0,

(4.7)
� f 0(t)�zi

=
1

2
p�1

�c0(t200)�tn+i
, and

� f 0(t)�zi
= � 1

2
p�1

�c0(t200)�tn+i
.

We have the following ([3], p.95)

Proposition 4.1. A complex abelian Lie groupCn=0 with a period matrix P=
[ In, V ] is a toroidal group if and only if

Km > 0 for any m2 Zn+q n f0g.
For each open subsetU � Cn=0
(4.8) F (U ) :=

�
f j f : C1 in U and

� f�zi
= 0, for i = q + 1, : : : , n

�
.

We denote byF the sheaf defined by the presheavesfF (U )g. Suppose f (t) 2
H0(Cn=0, F ), then from (4.6) and (4.8) we can write

(4.9) f (t) =
X

m2Zn+q

cm exp

 
�2� nX

i =q+1

mi tn+i

!
exp(2�p�1hm, t 0i),
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wherecm are constants satisfying for any real numberR> 0 and any positive integerk,

(4.10) C(k, R) := supfjcmj km0kk Rkm00k; m 2 Zn+qg <1,

where, km0k = maxfjmi j, jmn+i j; 1 � i � qg, and km00k = maxfjm j j; q + 1 � j � ng.
(4.10) is obtained similarly to Lemma 7 in [2] (cf. Proposition 2.1 in [4]).

Conversely, a function satisfying (4.9) and (4.10) is inH0(Cn=0,F ). Let F r ,s the
sheaf of (r , s)-forms with coefficients inF , Z� (Cn=0, F r ,s) the space of the�-closed
F r ,s-forms onCn=0 and B� (Cn=0,F r ,s) the space of the�-exactF r ,s-forms. Then by
[4] (Lemma 2.2), we have

(4.11) H p(Cn=0, O) �= H� (Cn=0, F 0,p) :=
Z� (Cn=0, F 0,p)

B� (Cn=0, F 0,p)
.

Suppose' =
P

m2Zn+q 'm be a�-closedF 0,p-form. Then there exist a unique constant
(0, p)-form

� =
1

p!

X
1��1,:::,�p�q

c�1����pdz�1 ^ � � � ^ dz�p ,

andF (0,p�1)-forms  m satisfying

' = � +
X

m2Zn+q

� m,

where for eachm 2 Zn+qnf0g, 'm = � m and for m = 0, '0 = � + � 0. We note thatP
m2Zn+q  m does not converge generally. Then we have the following (Theorem 4.3

in [1])

Theorem 4.2. Let Cn=0 be a toroidal group of type q with a period matrix P=
[ In, V ]. Then the following conditions are equivalent.
(1) There exists a> 0 satisfying

sup
m2Zn+qnf0g

exp(�akm�k)
Km

<1,

wherekm�k = maxfjmi j; 1� i � ng.
(2)

H p(Cn=0, O) �= p̂

Cfdz1, : : : , dzqg, (1� p � q)

= 0, (p > q).
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5. Proof of Theorem 2.2

Suppose 1� p � q � n are positive integers. Let

�p =
1

p!

X
1�i1,:::,i p�q

�p
i1���i p

dzi1 ^ � � � ^ dzi p

be a holomorphicp-form on Cn. Put

dq�p :=
1

p!

X
1�i1,:::,i p�q

qX
i =1

��p
i1���i p�zi

dzi ^ dzi1 ^ � � � ^ dzi p .

Then we have the following

Lemma 5.1. Suppose dq�p = 0. Then there exists a holomorphic(p � 1)-form�p�1 on Cn satisfying

dq�p�1 = �p.

Proof. Let l := max
�
ik

�� 1� ik � q, 1� k � p, �p
i1���i p
6� 0

	
. We shall prove this

lemma by induction onl . If l = p, we have

�p = �p
12���p dz1 ^ � � � ^ dzp.

Then

dq�p =
qX

i =p+1

��p
12���p�zi

dzi ^ dz1 ^ � � � ^ dzp = 0.

Hence, for p + 1� i � q, we have��p
12���pÆ�zi = 0. Then

�p
12���p(z) = �p

12���p(z1, : : : , zp, 0, : : : , 0, zq+1, : : : , zn).

Put

�p�1
23���p(z) :=

Z z1

0
�p

12���p(� , z2, : : : , zp, 0, : : : , 0, zq+1, : : : , zn) d� ,

and�p�1 := �p�1
23���p(z) dz2 ^ � � � ^ dzp. Then

dq�p�1 = �p.

Assume that the lemma holds forl � 1, l > p and

�p =
1

p!

X
1�i1,:::,i p�l

�p
i1���i p

dzi1 ^ � � � ^ dzi p
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is a holomorphic form onCn such thatdq�p = 0. Since forl +1� i � q, ��p
i1���i p

Æ�zi =
0, we have

�p
i1���i p

(z) = �p
i1���i p

(z1, : : : , zl , 0, : : : , 0, zq+1, : : : , zn).

Put

!i2���i p(z) :=
Z zl

0
�p

li 2���i p
(z1, : : : , zl�1, � , 0, : : : , 0, zq+1, : : : , zn) d� ,

and

! :=
1

(p� 1)!

X
1�i2,:::,i p�l�1

!i2���i p(z) dzi2 ^ � � � ^ dzi p .

Then

�p � dq! =
1

p!

X
1�i1,:::,i p�l�1

��p
i1���i p
� p

�!i2���i p(z)�zi1

�
dzi1 ^ � � � ^ dzi p .

If we put �0p := �p � dq!, we havedq�0p = dq�p = 0. Then by the induction hy-
pothesis, we have�0p�1 satisfying�0p = dq�0p�1. Hence�p = dq(�0p�1 + !) and the
lemma is proved.

Next, we show� in (2.14) defines a mappingZ� (Cn=0, F 0,p) ! Z p(0, H ) which
induces an isomorphism for eachp � 1,

H� (Cn=0, F 0,p) �= H p(0, H ).

As in (2.7) and (4.11), we have two isomorphisms

I : H p(Cn=0, O) �= H0,p� (Cn=0)

and

J : H p(Cn=0, O) �= H� (Cn=0, F 0,p).

Let fVi g be a Leray covering ofCn=0 for O. Then H p(Cp=0, O) is isomorphic onto
the Čech cohomology

H p(fVi g, O) =
Z p(fVi g, O)

Bp(fVi g, O)
.

We have the following (cf. Proposition 4 in [7] and Lemma 2.4 in [4])
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Lemma 5.2. Suppose fp2 Z p(fVi g,O), '2 Z� (Cn=0,C0,p) and'̂2 Z� (Cn=0,F 0,p)
satisfy

(5.1) I ([ f p]) = ['] and J([ f p]) = [ '̂], for p � 1,

where we denote by[!] the cohomology class of a cocycle!. Then there exists 2
H0(Cn=0, C0,p�1) satisfying

(5.2) ' = '̂ + � .

In particular, if '̂ 2 B� (Cn=0, C0,p), then '̂ 2 B� (Cn=0, F 0,p).

Proof. We also use the symbolÆ as the coboundary for thěCech co-
homology H p(fVi g, S), whereS = O, C0,r or F 0,s, r , s � 0. For f p 2 Z p(fVi g, O),
there exist' p�1 2 Cp�1(fVi g, C0,0) and in casep > 1, a sequence of cochains'k 2
Ck(fVi g, C0,p�k�1), (k = p� 1, p� 2, : : : , 2, 1, 0) such that

(5.3) f p = Æ' p�1, and �'k = Æ'k�1.

Since�'0 is a �-closedC1(0, p)-form on Cn=0, we get

(5.4) I ([ f p]) = [ �'0].

Similary there exist ˆ' p�1 2 Cp�1(fVi g,F 0,0) and in casep> 1, a sequence of cochains'̂k 2 Ck(fVi g, F 0,p�k�1), (k = p� 1, p� 2, : : : , 2, 1, 0) such that

(5.5) f p = Æ'̂ p�1, and �'̂k = Æ'̂k�1.

Then

(5.6) J([ f p]) = [ �'̂0].

From (5.3) and (5.5), in casep = 1,

(5.7) '0� '̂0 2 H0(Cn=0, C0,0).

In casep> 1, we get a sequence of cochains k 2 Ck(fVi g, C0,p�k�2), (k = p�2, p�
3, : : : , 1, 0) such that

(5.8) ' p�1� '̂ p�1 = Æ p�2, and 'k � '̂k � � k = Æ k�1 (k > 0).

Then

(5.9) �'1� �'̂1 = Æ� 0, and '0� '̂0� � 0 2 H0(Cn=0, C0,p�1).
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From (5.7) and (5.9), there exists 0 2 H0(Cn=0, C0,p�1) such that

�'0� �'̂0 = � 0.
Combining this with (5.4) and (5.6), for any'2 Z� (Cn=0,C0,p) and'̂2 Z� (Cn=0,F 0,p)
satisfying (5.1), there exists 2 H0(Cn=0, C0,p�1) which satisfies (5.2). Next, sup-
pose '̂ 2 B� (Cn=0, C0,p). We take f p and ' satisfying (5.1), then by (5.2),' 2
B� (Cn=0, C0,p). Hence f p 2 Bp(fVi g, O) and '̂ 2 B� (Cn=0, F 0,p). Thus the lemma
is proved.

Then we have the following

Lemma 5.3. � in (2.14) defines a mapping Z� (Cn=0, F 0,p)! Z p(0, H ) which
induces an isomorphism for each p� 1,

H� (Cn=0, F 0,p) �= H p(0, H ).

Proof. Suppose ˆ' 2 Z� (Cn=0, F 0,p). Since'̂ 2 Z� (Cn=0, C0,p), �'̂ 2 Z p(0, H )
is defined. Let f 2 Z p(0, H ). Then from Proposition 3.5, there exists' 2
Z� (Cn=0,C0,p) such that�' = f . By Lemma 5.2, there exist ˆ' 2 Z� (Cn=0,F 0,p) and 2 H0(Cn=0, C0,p�1) such that' = '̂+� . Then�' and�'̂ are Æ-cohomologous in
Z p(0, H ). Hence� defines a surjective homomorphismH� (Cn=0,F 0,p)! H p(0, H ).
Suppose�'̂ and�'̂0 are Æ-cohomologous, where ˆ', '̂0 2 Z� (Cn=0, F 0,p). Then by
Proposition 3.4, there exists 2 H0(Cn=0, C0,p�1) such that ˆ' � '̂0 = � . Then by
Lemma 5.2, there existŝ 2 H0(Cn=0, F 0,p�1) such that ˆ' � '̂0 = � ̂ . Hence the
above homomorphism is injective, and the lemma is proved.

Hereafter we write' 2 Z� (Cn=0, F 0,p) instead of ˆ'. We put F r ,s = H0(Cn, ��F r ,s).
Then Cp(0, F r ,s), for p � 0, and the coboundaryÆ are defined similarly to§2. Let' 2 Z� (Cn=0, F 0,p). Since H p(Cn, ��F r ,s) = 0, for p � 1, we can construct'(k) 2
Zk(0, F0,p�k) for 0 � k � p, using8(k) 2 C0(0, F0,p�k�1) as in (2.11) and (2.12).
Namely

'(0) = ' = �8(0), '(1) = Æ8(0),(5.10)

'(k) = �8(k), and '(k+1) = Æ8(k), for 1� k � p� 1.(5.11)

Then [�'] = ['(p)]. For

' =
1

p!

X
1��1,:::,�p�q

'�1����p dz�1 ^ � � � ^ dz�p 2 Z� (Cn=0, F 0,p),
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put

'i =
�'�zi

:=
1

p!

X
1��1,:::,�p�q

�'�1����p�zi
dz�1 ^ � � � ^ dz�p .

Then we have the following

Lemma 5.4. Let ' 2 Z� (Cn=0, F 0,p), and '(p) 2 Z p(0, H ). Then

'i 2 Z� (Cn=0, F 0,p), and [�'i ] =

��'(p)

�zi

�
, for 1� i � q.

Proof. Since

�'i = �� �'�zi

�
=
��zi

(�') = 0,

we have'i 2 Z� (Cn=0, F 0,p). From (5.10)

(5.12) 'i =
�'�zi

= � �8(0)

�zi
, and '(1)

i := Æ �8(0)

�zi
=
�'(1)

�zi
.

Continuing this for (5.11), we have

(5.13) '(k+1)
i := Æ �8(k)

�zi
=
�'(k+1)

�zi
, for 0� k < p.

Hence [�'i ] =
�'(p)

i

�
= [�'(p)=�zi ] and the lemma is proved.

In the proof of Lemma 5.4,'(p) and '(p)
i are defined by8(k) (0 � k < p) and '(p)

i =�'(p)=�zi . Hereafter we identify'(p)
i with �'(p)=�zi . Then we have the following

Proposition 5.5. Let Cn=0 be a toroidal group of type q. Suppose' 2
Z� (Cn=0, F 0,p). Then'i 2 B� (Cn=0, F 0,p), for 1� i � q. Hence'(p)

i 2 Bp(0, H ).

Proof. Put

' =
1

p!

X
1��1,:::,�p�q

'�1����p dz�1 ^ � � � ^ dz�p 2 Z� (Cn=0, F 0,p),

'�1����p :=
X

m2Zn+q

'm�1����p
,  m�1����p�1

:=
'm

i (m)�1����p�1�Km,i (m)
(m 6= 0),
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and

 m :=
1

(p� 1)!

X
1��1,:::,�p�1�q

 m�1����p�1
dz�1 ^ � � � ^ dz�p�1,

where jKm,i (m)j = Km. Then by (4.6)

'm = � m, for each m 6= 0.

Let

(5.14)

 i ,m�1����p�1
:= �K m,i'm

i (m)�1����p�1

Km,i (m)
, m 6= 0, and

 m
i =

1

(p� 1)!

X
1��1,:::,�p�1�q

 i ,m�1����p�1
dz�1 ^ � � � ^ dz�p�1.

Then by (4.5)

�'m

�zi
= � m

i ,

and applying (5.14) to (4.10), we see i :=
P

m6= 0  m
i converges. Hence

(5.15) 'i = � i .

Then '(p)
i is Æ-exact, and there existsh(p�1)

i 2 Cp�1(0, H ) such that'(p)
i = Æh(p�1)

i .
Hence the proposition is proved.

Further we have the following

Proposition 5.6. Let Cn=0 be a toroidal group of type q. Suppose' 2
Z� (Cn=0, F 0,p).

Then, there exists h(p�1)
i 2 Cp�1(0, H ) such that

'(p)
i = Æh(p�1)

i and
�h(p�1)

i�zj
=
�h(p�1)

j�zi
, for 1� i , j � q.

To prove Proposition 5.6, we need some facts. LetH r ,0 be the space of holomorphic
r -forms onCn. Then Cp(0, H r ,0) and the coboundaryÆ are defined similarly to§2.



522 M. MUTA AND T. UMENO

Lemma 5.7. Let Cn=0 be a toroidal group of type q. Suppose'2 Z� (Cn=0,F 0,p),
and p> 1. Then, there exist

�(p�1) =
qX

i =1

h(p�1)
i dzi 2 Cp�1(0, H1,0)

and

�(p�2) =
1

2

X
1�i , j�q

h(p�2)
i j dzi ^ dzj 2 Cp�2(0, H2,0)

such that

'(p)
i = Æh(p�1)

i , for 1� i � q, and dq�(p�1) = Æ�(p�2).

Proof. Let 1� i � q. From Proposition 5.6, we have i 2 H0(Cn=0, F 0,p�1)
satisfying (5.14) and (5.15). Further, we have8(k) 2 C0(0, F0,p�k�1), (0� k � p� 1)
satisfying (5.10) and (5.11). Then

(5.16) 'i = � �8(0)

�zi
= � i .

Since p > 1, there exists�(0)
i 2 C0(0, F0,p�2) such that

(5.17)
�8(0)

�zi
�  i = ��(0)

i .

Hence

(5.18) '(1)
i = Æ �8(0)

�zi
= Æ��(0)

i = � �8(1)

�zi
.

In casep > 2, there exist�(1)
i 2 C1(0, F0,p�3) such that

(5.19)
�8(1)

�zi
� Æ�(0)

i = ��(1)
i .

Suppose we have�(k�1)
i 2 Ck�1(0, F0,p�k�1) for �(k�2)

i 2 Ck�2(0, F0,p�k), p > 2 and
2� k � p� 1 such that

�8(k�1)

�zi
� Æ�(k�2)

i = ��(k�1)
i .
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Then

'(k)
i = Æ �8(k�1)

�zi
= Æ��(k�1)

i = � �8(k)

�zi
.

Hence if p > 3 and k < p � 1 there exists�(k)
i 2 Ck(0, F0,p�k�2) for �(k�1)

i 2
Ck�1(0, F0,p�k�1) such that

(5.20)
�8(k)

�zi
� Æ�(k�1)

i = ��(k)
i .

From (5.19) and (5.20) we see inductively that (5.20) holds for 1� k � p� 2. Since

'(p�1)
i = Æ �8(p�2)

�zi
= Æ��(p�2)

i = � �8(p�1)

�zi
,

there existsh(p�1)
i 2 Cp�1(0, H ) such that

(5.21)
�8(p�1)

�zi
� Æ�(p�2)

i = h(p�1)
i , and '(p)

i = Æh(p�1)
i , for p > 3.

From (5.18) and (5.19), (5.21) is valid forp > 1. Then

(5.22)
�h(p�1)

j�zi
� �h(p�1)

i�zj
= �Æ���(p�2)

j�zi
� ��(p�2)

i�zj

�
.

Next, we shall describe� i =�zj (1� i , j � q), using (5.14). Put

(5.23)

 j i ,m�1����p�1
:=
� i ,m�1����p�1�zj

= � K m, j K m,i'm
i (m)�1����p�1

Km,i (m)
, m 6= 0, and

 m
ji =

1

(p� 1)!

X
1��1,:::,�p�1�q

 j i ,m�1����p�1
dz�1 ^ � � � ^ dz�p�1.

Then applying (5.23) to (4.10), we see j i :=
P

m6= 0  m
ji converges and

� i�zj
=  j i .

From (5.23), we have m
ji =  m

i j for 1� i , j � q. Hence j i =  i j and

(5.24)
� i�zj
� � j�zi

= 0.
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Hence

(5.25) ����(0)
j�zi
� ��(0)

i�zj

�
= 0.

Then there existsh(0)
i j 2 C0(0, H ) and �(0)

i j 2 C0(0, F0,p�3) (p > 2) such that

(5.26)

��(0)
j�zi
� ��(0)

i�zj
= �h(0)

i j , for p = 2

= ��(0)
i j , for p > 2.

Further from (5.20), we have

(5.27) ����(k)
j�zi
� ��(k)

i�zj

�
= �Æ���(k�1)

j�zi
� ��(k�1)

i�zj

�
(1� k < p� 1).

In casep > 2, from (5.26) and (5.27), we have

(5.28) ����(1)
j�zi
� ��(1)

i�zj

�
= �Æ��(0)

i j .

Hence if p > 3, there exists�(1)
i j 2 C1(0, F0,p�4) such that

(5.29)
��(1)

j�zi
� ��(1)

i�zj
= �Æ�(0)

i j + ��(1)
i j .

Combining (5.29) with (5.27), inductively onk, we get�(k)
i j 2 Ck(0, F0,p�k�3) (1 �

k < p� 2) such that

(5.30)
��(k)

j�zi
� ��(k)

i�zj
= �Æ�(k�1)

i j + ��(k)
i j , for p > 3.

From (5.27) and (5.30), there existsh(p�2)
i j 2 Cp�2(0, H ) such that

(5.31)
��(p�2)

j�zi
� ��(p�2)

i�zj
= �Æ�(p�3)

i j � h(p�2)
i j , for p > 3.

From (5.28), (5.31) is valid forp = 3. In casep > 2, from (5.22) and (5.31), we get

(5.32)
�h(p�1)

j�zi
� �h(p�1)

i�zj
= Æh(p�2)

i j .
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From (5.22) and (5.26), (5.32) is valid forp = 2. Put

�(p�1) :=
qX

i =1

h(p�1)
i dzi , and �(p�2) :=

1

2

X
1�i , j�q

h(p�2)
i j dzi ^ dzj .

Then (5.32) means that

dq�(p�1) = Æ�(p�2),

and the lemma is proved.

Lemma 5.8. Let Cn=0 be a toroidal group of type q and p> 1. Suppose' 2
Z� (Cn=0, F 0,p). Then there exist

h(p�r )
i1���i r 2 Cp�r (0, H ) (1� i1, : : : , i r � q, and r = 1, : : : , p),

which are skew-symmetric in all indices, such that if we put

�(p�r ) =
1

r !

X
1�i1,:::,i r�q

h(p�r )
i1���i r dzi1 ^ � � � ^ dzi r 2 Cp�r (0, H r ,0),

then

'(p)
i = Æh(p�1)

i , i = 1, : : : , q (in case r= 1),(5.33)

dq�(p�r +1) = Æ�(p�r ), r = 2, : : : , p(5.34)

and

dq�(0) = 0 (in case r= p).(5.35)

Proof. By Lemma 5.7, we haveh(p�1)
i 2 Cp�1(0, H ) satisfying (5.33). Suppose

h(p�r +1)
i1���i r�1

2 Cp�r +1(0, H ) is given (r � 2). We claim that for eachr (r � 2), there exist

�(s)
i1���i r�1

2 Cs(0, F0,p�s�r ), for 1 � i1, : : : , i r�1 � q and s = 0, : : : , p� r , which are
skew-symmetric in all indices, satisfying

rX
k=1

(�1)k�1
�h(p�r +1)

i1���îk���i r�zik

= �Æ
 

rX
k=1

(�1)k�1
��(p�r )

i1���îk���i r�zik

!
,(5.36)

�
 

rX
k=1

(�1)k�1
��(0)

i1���îk���i r�zik

!
= 0,(5.37)
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and

�
 

rX
k=1

(�1)k�1
��(s)

i1���îk���i r�zik

!
= �Æ

 
rX

k=1

(�1)k�1
��(s�1)

i1���îk���i r�zik

!
, for 1� s� p� r .(5.38)

In caser = 2, in the proof of Lemma 5.7, we have�(s)
i 2 Cs(0, F0,p�s�2) for 1 �

i � q, and s = 0, : : : , p � 2 satisfying (5.22), (5.25), and (5.27). These conditions
correspond to our claims. Suppose (5.36), (5.37) and (5.38)hold for r (r � 2). Let
p > r . By (5.37), there exists�(0)

i1���i r 2 C0(0, F0,p�r�1) such that

(5.39)
rX

k=1

(�1)k�1
��(0)

i1���îk���i r�zik

= ��(0)
i1���i r .

Then by (5.38)

(5.40) �
 

rX
k=1

(�1)k�1
��(1)

i1���îk���i r�zik

!
= �Æ��(0)

i1���i r .
Hence, if p > r + 1, there exists�(1)

i1���i r 2 C1(0, F0,p�r�2) such that

(5.41)
rX

k=1

(�1)k�1
��(1)

i1���îk���i r�zik

= �Æ�(0)
i1���i r + ��(1)

i1���i r .
Continuing this, using (5.38), we get�(s)

i1���i r 2 Cs(0, F0,p�r�s�1), for s = 1,: : :, p�r�1,
such that

(5.42)
rX

k=1

(�1)k�1
��(s)

i1���îk���i r�zik

= �Æ�(s�1)
i1���i r + ��(s)

i1���i r .
From (5.38) and (5.42), there existsh(p�r )

i1���i r 2 Cp�r (0, H ), such that

(5.43)
rX

k=1

(�1)k�1
��(p�r )

i1���îk���i r�zik

= �Æ�(p�r�1)
i1���i r � h(p�r )

i1���i r , for (p > r + 1).

From (5.40), (5.43) is valid forp > r . From (5.36) and (5.43), we have

(5.44)
rX

k=1

(�1)k�1
�h(p�r +1)

i1���îk���i r�zik

= Æh(p�r )
i1���i r (p > r ).
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Namely if h(p�r +1)
i1���i r�1

2 Cp�r +1(0, H ) is given with (5.36), (5.37) and (5.38), then we can

constructh(p�r )
i1���i r 2 Cp�r (0, H ) satisfying (5.44). Then (5.34) holds forr (r � 2). Next

we show (5.36), (5.37) and (5.38) hold forr + 1. From (5.43)

(5.45)
r +1X
k=1

(�1)k�1
�h(p�r )

i1���îk���i r +1�zik

= �Æ r +1X
k=1

(�1)k�1
��(p�r�1)

i1���îk���i r +1�zik

, for p > r .

On the other hand, from (5.39)

(5.46) �
 

r +1X
k=1

(�1)k�1
��(0)

i1���îk���i r +1�zik

!
= 0.

Further from (5.42), fors = 1, : : : , p� r � 1

(5.47) �
 

r +1X
k=1

(�1)k�1
��(s)

i1���îk���i r +1�zik

!
= Æ
 

r +1X
k=1

(�1)k�1
��(s�1)

i1���îk���i r +1�zik

!
.

Thus we haveh(p�r )
i1���i r with (5.36), (5.37) and (5.38) forr + 1. Then similary to get-

ting (5.43), we can constructhp�r�1
i1���i r +1

which satisfies (5.44) in caser + 1. Hence (5.34)
holds for 2� r � p. Next we show (5.35). Sincer = p, from (5.37), we have

pX
k=1

(�1)k�1
��(0)

i1���îk���i p�zik

= h(0)
i1���i p

.

Hence

p+1X
k=1

(�1)k�1
�h(0)

i1���îk���i p+1�zik

= 0.

Thus (5.35) holds forp > 1, and the lemma is proved.

Then we begin to prove Proposision 5.6. In casep = 1, from (5.16),h(0)
i := �8(0)=�zi� i 2 C0(0, H ). Then'(1)

i = Æh(0)
i and

�h(0)
i�zj
� �h(0)

j�zi
=
� i�zj
� � j�zi

= 0.

Hence the proposition holds forp = 1. In casep > 1, by Lemma 5.8, we have holo-
morphic r -forms �(p�r ) (r = 1, : : : , p) satisfying (5.33), (5.34) and (5.35). Hence by
Lemma 5.1, there exists a holomorphic (p� 1)-form 2(0) 2 C0(0, H p�1,0) such that

dq2(0) = �(0).
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Then

dq(�(1) � Æ2(0)) = 0.

Hence, there exists2(1) 2 C1(0, H p�2,0) such that

dq(�(2) � Æ2(1)) = 0.

Continuing this, we get2(p�2) 2 Cp�2(0, H1,0) such that

dq(�(p�1) � Æ2(p�2)) = 0.

Put

�̂(p�1) := �(p�1) � Æ2(p�2) =
qX

i =1

ĥ(p�1)
i dzi .

Then

Æ�̂(p�1) = Æ�(p�1).

Hence

'(p)
i = Æĥ(p�1)

i , and
� ĥ(p�1)

i�zj
=
� ĥ(p�1)

j�zi
.

Hence the proof of the proposition is completed.

Proof of Theorem 2.2. By Lemma 5.3, for everyf (p) 2 Z p(0, H ), there exists' 2 Z� (Cn=0, F 0,p) such that'(p) and f (p) are Æ-cohomologous. It suffices to prove

the theorem for'(p). Then for each 1� i � q, by Proposition 5.6 there existh(p�1)
i 2

Cp�1(0, H ) such that

'(p)
i = Æh(p�1)

i and
�h(p�1)

i�zj
=
�h(p�1)

j�zi
.

Put

�(p�1) =
qX

i =1

h(p�1)
i dzi ,

then dq�(p�1) = 0. Hence by Lemma 5.1, there existsh(p�1) 2 Cp�1(0, H ) such that

dqh(p�1) = �(p�1),
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namely

�h(p�1)

�zi
= h(p�1)

i (1� i � q).

Hence

��zi
Æh(p�1) = '(p)

i =
�'(p)

�zi
.

Put

a(p) := '(p) � Æh(p�1) 2 Z p(0, H ).

Then

�a(p)

�zi
= 0 (1� i � q),

and we complete the proof of Theorem 2.2.
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