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1. Introduction

1.1. Quasi-polynomials

Let R be a commutative ring. A function f : Z(-oy — R is called a quasi-polynomial if

there exist a positive integer 71 € Z~( and polynomials ¢ (¢), ..., gn(t) € R[t] such that
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fl@) =g-(q), ifg=r modn (1<r<n).

The positive integer 7 is called a period and each polynomial g, is called the constituent of
f- The quasi-polynomial f has degree d if all the constituents have degree d. Moreover,
the quasi-polynomial f has the gcd-property if the polynomial g, depends on r only
through ged{n, r}. In other words, g,, = g, if ged{n, 1} = ged{n, ra}.

Quasi-polynomials play important roles in many areas of mathematics. They appear
frequently as counting functions (in this case, R = Z). In particular, the following two
notions have been actively studied.

Example 1.1 (The Ehrhart quasi-polynomial). Let P be a rational polytope in R¢. For
q € Z>g, define

Lp(q) = #(¢P NZ").

Then Lp(q) is a quasi-polynomial ([1, Theorem 3.23]), known as the Ehrhart quasi-
polynomial.

Example 1.2 (The characteristic quasi-polynomial). Let L ~ Z° be a lattice and LY =
Homg (L, Z) be the dual lattice. Given ay,...,a, € LY \ {0}, we can associate a hyper-
plane arrangement A := { Hy,..., H, } in R* ~ L ® R, where

Hi={zeL®R|ax)=0}.

For a positive integer g € Z~g, define the mod g complement of the arrangement by

M(A; q) = (L/qL)\Uf{i
={zeL/qL|a;(z)Z0 (modgq) forallie{l,...,n}}.

It is known ([4, Theorem 2.4] and [5, Theorem 3.1] for non-central case) that

Xquasi(A; Q) = #M(A’ q)
is a quasi-polynomial. It is called a characteristic quasi-polynomial.

Roughly speaking, the notion of the characteristic quasi-polynomial is a mod g-version
of the Ehrhart quasi polynomial. However, the characteristic quasi-polynomials possess
some additional properties. First, the constituents g,(¢) (r € {1,...,7}) of the character-
istic quasi-polynomial Xquasi(A; q) satisfy the gcd-property. Second, the first constituent
91(t) (and equivalently, g, (¢) for r coprime to 72) is known to be equal to the charac-
teristic polynomial x(A,t) of the arrangement A (see [7]). Furthermore, g;(t) is the
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characteristic polynomial of the associated toric arrangement [6,11]. The characteris-
tic quasi-polynomial is an important concept, not only in the context of enumerative
problems but also in its connections with arithmetic matroids and toric arrangements
[2,6].

1.2. Equivariant Ehrhart theory

In [10], Stapledon proposed an equivariant version of Ehrhart theory. Let L ~ Z* be a
lattice and let I" be a finite group acting linearly on L via p : I' — GL(L). Let P be a I'-
invariant lattice polytope. For a positive integer ¢ € Z~¢, the group I" acts on the lattice
points gPNL. Let x4 denote the character of this permutation representation. Stapledon
proved representation-theoretic analogues of several classical results in Ehrhart theory.
For example, the map

F:Zso— R(I), q+— F(q) =xqp
is a quasi-polynomial of degree dim P with the leading coefficient V;;II? XR, Where yg is
the regular (standard) character of I" ([10, Theorem 5.7 and Corollary 5.9]). It was also
proved that the number of I'-orbits in ¢P N L is a quasi-polynomial in gq.

Stapledon also proved the following reciprocity. Let F*(q) = xq4p+ be the permuta-
tion representation of the lattice points in the interior of ¢P. Then, from the Ehrhart
reciprocity, the relation

F*(q) = (=1)"™7 det(p) F(~q) (1)

holds. Note that when I is the trivial group, these results recover the classical results in
Ehrhart theory.

1.8. Towards an equivariant version of characteristic quasi-polynomials

It is natural to consider mod g-version of the equivariant Ehrhart quasi-polynomial,
namely, the equivariant characteristic quasi-polynomials for an arrangement invariant
under a group action. In this paper, as a stepping stone to the general case, we do not
consider hyperplanes, and instead focus solely on the mod ¢ permutation representation.
For general arrangement cases, refer to the research [13] by the first author.

Let I be a finite group and let L ~ Z* be a lattice. Suppose that I" acts linearly on
L. Then the action of I" on L, := L/qL is naturally induced for each ¢ € Z~. Note that,
in the case where I' is the Weyl group and L is a lattice associated with a root system,
there are several known results about L, (e.g. [3,8]), especially for ¢ =1 mod h, where
h is the Coxeter number.

One of our problems is how the permutation character xr, of L, depends on ¢. The
main result of this paper is the following.
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Theorem 1.3 (Theorem 2.6 below). Consider the function F : Zsq — R(I") defined
by ¢ — xr,- Then F is a quasi-polynomial of degree {. Furthermore, F has the ged-
property, the minimum period n, and the leading coefficient of the quasi-polynomial X1,
is %

Note that this result corresponds to [10, Theorem 5.7 and Corollary 5.9].

Let x1,...,x& be irreducible characters of I'. Then xr, can be expressed as

XL, = m(x1; @) - X1+ - +mxk; @) - Xk (2)

with m(xx; ¢) € Z. Theorem 1.3 is equivalent to that each m(y;; ¢) is a Z-valued quasi-
polynomial in ¢ (Corollary 2.2).

For a character A of a 1-dimensional representation of I" and ¢ € Z~, let f1,/r(X; q)
denote the number of I™-orbits on L, whose isotropy subgroup is contained in the sub-
group A~1(1) of I'. Then since fryr(A; @) = m(X; q), we obtain the following results
corresponding to [10, Corollary 5.8] as the corollary of the above theorem.

Corollary 1.4 (Corollary 2.9 below). The function fr,,;r(\; —) : Zso — Z is a quasi-
polynomial of degree £ and it has the ged-property.

There are several relations among these quasi-polynomials. In particular, there is a
reciprocity-type relation between m(x;; ¢) and m(x; ® 0,; ¢q), where §, = detp is a 1-
dimensional representation. More precisely, we obtain the following reciprocity theorem.

Theorem 1.5 (Theorem 2.11 below). The following formula holds for an irreducible char-
acter x; of I':

m(xi ® 6, q) = (—=1)'m(xi; —a)-
This implies the following relation.

Corollary 1.6 (Corollary 2.12 below). The quasi-polynomial F : 7. — R(I") satisfies

F(q) = (=1)*6,F (~q). (3)

Although the formula (3) appears similar to (1), they are different in nature. It is
important to note that (1) represents a reciprocity between F(q) and F*(q), whereas (3)
is a self-duality of F(q).

In section 2.6, we will also provide several explicit examples.
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2. Quasi-polynomiality
2.1. Group action and representation

We recall several notions and basic facts about representations of finite groups [9].

Let I' be a finite group. Let V be a finite-dimensional vector space over C, and let
GL(V) denote the group of linear isomorphisms of V onto itself. A (linear) representation
of I on V is a homomorphism p : I' — GL(V). In this paper, we assume that p is
injective. The space V is called the representation space of p.

The character x, : I' — C of the representation p is the function defined by
v +— trp(y), where tr denotes the trace function. The character x, is constant on
each conjugacy class. A function ¢ : I' — C is called a class function if ¢ is constant
on each conjugacy class. For functions ¢, : I' — C, define the inner product (¢, ) by

(6,9) = # S 60100,

yel
where z denotes the complex conjugate of z € C. Let x1,...,xr be the set of all irre-
ducible characters of I'. Then x1, ..., xx form an orthonormal basis of the space of class

functions. In particular, (x;, x;) = d;;. Thus, if a class function x is expressed as a linear
combination of irreducible characters x = myx1+- - -+mgxx, then we have m; = (x, xi)-

Let I'” be a subgroup of I'. The restriction of a class function x : I' — C to I is
clearly a class function on I/, which is denoted by Resf:, x : I — C. Conversely, for a
class function ¢ : I'" — C, define the induced function Ind:, ¢ : ' — C by

(maf o)) =g > el ). )

nel’
n~tymer’

1
#1"
These two operators are related by the following Frobenius reciprocity:

(x, Indp, w) = (ReS? X w) : (5)

Recall that the representation ring R(I") of I' is @, Z[V']/~, where V runs over all
finite-dimensional representations of I', and ~ is an equivalence relation generated by
[V] ~ [V'] for isomorphic representations V' ~ V' and [V} & V5] ~ [V1] + [V2]. The multi-
plication is defined by [V4] - [Va] = [Vi ® V2]. The character gives a natural isomorphism
of abelian groups

R(I' ~Zx1® - ®Zxy.

The trivial representation pq is the unit element in R(I"). The character of p; is denoted
by 1.
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Suppose that I' acts on a finite set X. Let CX denote the vector space based on
X, that is, CX = @,y Cx. This gives rise to a natural representation px : I" —
GL(CX), which is called the permutation representation of X. In the case of X = I' with
action defined by the left multiplication, it is called the regular (standard) representation,
denoted by pr. Note that the character yr of the regular representation satisfies the
following.

#I' ify=1,;

0 otherwise.

:
xe =Y xixi,  xw(y) = {
i=1

For x € X, the I'-orbit I'(x) and the isotropy subgroup I', are defined as follows:
I(x)={yreX|yel},
Io={~vel|vz=x}.

2.2. Multiplicities of irreducible decompositions

Let L be a lattice, and {3y, ..., B¢} be a Z-basis of L, that is, L = Z3,®- - -®ZB, ~ 7.
We identify an element = x151 + - - - + x¢f¢ of L with the row vector x = (z1,...,x¢)
of Z*.

Let I' be a finite group. Let p : I' — GL(L) be a group homomorphism. Let us
denote the representation matrix of p(y) by R.,, and we consider the right multiplication,
namely,

p(v): L — L, z+— zR,.

For q € Z~q, define Z, == Z/qZ. We will consider the following g-reduction of z =
(x1,...,20) € 2%

[2lg = ([1lg, - -, [welg) € Zg,

where [z;], = x; + qZ € Z,. We similarly consider the g-reduction of an integer matrix
A = (ay)ij:

[A]g = ([aij]q>ij‘

Let ¢ : Z¢ — Z* be a Z-homomorphism represented by an £ x £ integer matrix A. We
can define the induced morphism ¢, : Zg — Zf; by

x — x[Alg.

Let L, == L/qL ~ (Z/qZ)*". The action of I on L, is induced by p(v), : Ly — L.
Let xr, denote the character of the permutation representation of L,, and consider its
irreducible decomposition:
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Xz, =m(x1; q) - x1+ -+ m(Xk; @) - Xks

where m(x;; ¢) denotes the multiplicity of x; in xr,. Since xr, () is equal to the number
of elements in L, fixed by v € I', we have

m(xi; q) = (Xis XL,) = LF > xi(xe, () = # > xily) - #LY, (6)

ver ver

where L7 = {x € L, | yx = z }. Thus, by studying the properties of #L], we can deter-
mine how m(y;; ¢) depends on g. Note that for the trivial character 1, the multiplicity
m(1; q) represents the number of I'-orbits of Ly, according to Burnside’s lemma.

The fixed point set L7 is expressed as

Li={rely|yvz=21}
={zely|z[R)]qg =2}
={z€Lly|z[Ry—1L]g=0},
where I; is the identity matrix of size {. Therefore, L7 is equal to the kernel of the

induced morphism (p(v) — id),. The cardinality of the kernel of this morphism is known
to be quasi-monomial, as shown in [4]:

Lemma 2.1 ([}, Lemma 2.1]). Let ¢ : Z* — Z* be a Z-homomorphism. Then the
cardinality of the kernel of the induced morphism ¢4 : Zg — Zg s a quasi-monomial
in q. Furthermore, suppose ¢ is represented by a matriz A. Then the quasi-monomial
#ker ¢, can be expressed as

T

#keroy = | [ ecdfe;, a3 | ¢, (7)
j=1
where r :=rank A and ey, ..., e, € L~g, withey | es | -+ | e, are the elementary divisors

of A. Hence, the quasi-monomial # ker ¢, has the gcd-property and the minimum period
er. If r =0, we consider ey to be 1.

Proof. Here, we only review quasi-monomiality. For further details, see [4, Lemma 2.1].
Since # ker p, = ¢*/# im p,, we will study # im ¢,. Consider the Smith normal form

€1

SAT = , r=rank A, e1,...,e,EZsg, e1|ea]---]|ep
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where S and T are ¢ x ¢ unimodular matrices. Since unimodularity is preserved under

g-reductions, we may assume that A is a diagonal matrix diag(es,...,e.,0,...,0) from
the outset. Then, for x = (z1,...,z¢) € ZS, we have
oq(x) = ([e1]qz1s - - - [er]q@r, 0, ..., 0)

and hence im ¢, = [e1]4Z4 X - - X [er]qZ4. Therefore,

r

#imp, =
Hj:l ged{e;, ¢}

and we obtain (7). O

Corollary 2.2. The multiplicity m(x:; q) of x: in xr, s a quasi-polynomial in q. More

explicitly,
1 r(7)
m(xi; 4) = ZF >oxitn) - | [ gedders g} | =, (8)
yel’ j=1
where r(7y) == rank (Ry — Iy) and ey 1,...,6qr(y) € Zso with ey | eya |-+ | ey (y), are

the elementary divisors of Ry — I,.
Proof. The equation (8) is given by (6) and (7). O
Next, we present some properties of m(Xi; q).
Proposition 2.3. The quasi-polynomial m(x;; q) has the ged-property with a period
f=lem{ ey () |YET}.
Furthermore, the minimum period of the quasi-polynomial m(1; q) is equal to 7.
Remark 2.4. If y; is not trivial, we do not know whether 7 is the minimum period.

Proof. Let v € I" be an element that is not the identity, and let e, 1,...,€, () be the

elementary divisors of R, — I,. Since e, ; divides i for j € {1,...,7(7)}, we have
r(v) r(v) r(v)
H ng{e’Y,jv q} = H ng{e’Y,ja ﬁ, (I} = H ng {e’y,ja ng{ﬁa q}} .
j=1 j=1 j=1

Hence m(x;; q) depends on ¢ only through ged{#, ¢}, which means that 7 is a period of
m(xi; q)-
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Let g1(t),...,g9a(t) € Z[t] denote the constituents of the quasi-polynomial m(1; gq).
Since 7 is divisible by e, ,.(,y for all v € I', we have

()
1 —r
9a(t) = o1 > ([Ten |t (9)
# yel' \j=1

from equation (8). Suppose that s <@ =lem{e, (4 | v € I' }. Then there exists v € I’
such that ged{e, r(y),5} # €y,r(y). Since ged{e, ;,s} < e, ; for any v € I' and j €
{1,...,r(v)}, we conclude that

r(v)
1 —r
9:(0) = 71 > | [T gedferosh | #770 # ga(t
yel’ 7j=1

by the equations (8) and (9), and hence s is not a period. Therefore, 7 is the minimum
period of m(1; ¢). O

Proposition 2.5. The leading term of the quasi-polynomial m(x;; q) is X;E—(ang,

Proof. Since p is injective, r(y) = 0 holds if and only if 7 is the identity. Therefore, by
xi(1)
O

Corollary 2.2, the leading term of m(x;; q) is ¢* with the coefficient eyl

2.3. Permutation representations

Since each multiplicity m(x;; ¢) is a quasi-polynomial, the quasi-polynomiality of the
function F': ¢ — xr, follows immediately. The following theorem is the main result of
this paper.

Theorem 2.6 (Restatement of Theorem 1.3). Consider the function F : Z~o — R(I")
defined by q — x1,- Then F is a quasi-polynomial of degree L. Furthermore, F' has the
ged-property, the minimum period 1, and the leading coefficient of the quasi-polynomial

XL, 18 %
Proof. By equation (8), we have
F(q) = XL,

k
=Y mlxi @) x
=1

k ()
= # Z Z Xi(7) - H ged{e, ;. ¢} | - xi gt € R(I)[q,

i=1~el j=1



510 R. Uchiumi, M. Yoshinaga / Journal of Algebra 689 (2026) 501-518

hence F is a quasi-polynomial with the ged-property. Since m(x;; ¢) has a period 7
for any i € {1,...,k}, and especially 7 is the minimum period of m(1; q), the quasi-
polynomial F' has the minimum period 7.

By Proposition 2.5, the leading term of each multiplicity m(x;; q) is X;—(Fl)qe. Thus,
we have

as the leading term of F'. O
2.4. Number of orbits

In this section, we prove the quasi-polynomiality of the number of I'-orbits. First, we
describe the permutation character x () on the I-orbit I'(x) of x € L.

Lemma 2.7. Let I'(x) denote the I'-orbit of x € Ly. Then we have

X () = #(@)" = (df, 1) (7).

Proof. An element nx of I'(z) is fixed by ~ if and only if =17 fixes z. Thus, the
cardinality of I'(z)” is

_#{nel[n'mel:}

#I(x) ir

On the other hand, it follows directly that the above expression is equal to (Indlpﬂw 1) (7):

r 1 0 _#{mel|ntymel,}
(maf, 1) () = Yo n%; 1~ "ym) = oy :
N~ yner,

For a character A of a 1-dimensional representation of I" and ¢ € Z~o, let f1,/r(X; q)
denote the number of I™-orbits on L, whose isotropy subgroup is contained in the sub-
group A~1(1) of I'. Using the Frobenius reciprocity (5), we obtain the following lemma.

Lemma 2.8. Let A be a character of a 1-dimensional representation of I'. For q € Z~q,
we have

foyr( @) = (A xe,) = m(X; q).

Proof. Note that the second equality is the definition of m(A; q).
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Note that the permutation character xr, can be decomposed into a sum of all per-
mutation characters of I-orbit on L,:

XL, = Z XI(x)-

I'(z) : I'-orbit

By Lemma 2.7 and Frobenius reciprocity (5), we have

()\7XLq) = Z ()\7XF($))

I'(z) : I'-orbit

= > (Amaf)

I'(z) : I'-orbit

I
(]

Res?m A, 1) .
I'(z) : I'-orbit

Since Res?r A is a character of a 1-dimensional representation of I, the orthogonality
of irreducible characters implies that

(Resf, A, 1) = {1 I, € AL (),

0 otherwise.
Therefore, we have (A, xz,) = fr,r(A; ¢). O

Corollary 2.9 (Restatement of Corollary 1./). The function fr,r(N; =) : Zso — Z is
a quasi-polynomial of degree ¢ and it has the ged-property.

Proof. This follows from Corollary 2.2 and Lemma 2.8. O
2.5. Reciprocity for the multiplicities

Let p : I' — GL(L) be a representation and R, the representation matrix of p(7y).
Define the function §, : I' — C by

8p(7) = (=1)",

where 7(y) = rank(R, — I;). The following lemma shows that d,(y) = det R, and that
d, is an irreducible character of I'.

Lemma 2.10 (/10, Lemma 5.5]). Let R € GL,(R) be a real matriz of finite order. Let
r:=rank(R — I,). Then det R = (—1)".

Proof. Since R is finite order, it is diagonalizable (in C), and we can write R = PDP~1,
where P, D € GL,,(C) with D diagonal. Clearly, rank(R — I,,) = rank(D — I,). Thus, r
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is the number of diagonal entries of D that are not equal to 1. Since R is a real matrix,
the set of eigenvalues is closed under complex conjugation. The finiteness of the order
implies that all the eigenvalues have absolute value 1. Therefore, the diagonal entries of
D are as follows (with multiplicities):

p1 P2 q1 =41 g2 =Qq2 q, —q
1P (=1)P2, of', af', o, af*, ..., ad~ @l

with p;,q; € Z and |a;| = 1. Hence, we have
r=p2+2(q a2t +am),
and det D = (—1)P2. Thus, det R = (—1)". O

The quasi-polynomials m(x; ® d,; ¢) and m(x;; ¢) are connected by the following
formula.

Theorem 2.11 (Reciprocity theorem, restatement of Theorem 1.5). The following formula
holds for an irreducible character x; of I':

m(xi @ 8p; q) = (—=1)'m(xi; —q)- (10)
Proof. Using (8), we have
1 r(v)
m0 ® 655 4) = 2 > @) - | [] sedlersab | a7
yel J=1
1 m(v)
T H#I D oxiNEY - T sedfes jiad | a7
yel Jj=1
1 m(7)
= (0" ) | [T eedtero=a} | (-0
yel j=1

= (—1)€m(Xi; —q). O

Note that the map F(q) = xr, defined in Theorem 2.6 can be extended to F': Z —
R(I') as a quasi-polynomial.

Corollary 2.12 (Restatement of Corollary 1.6). The quasi-polynomial F : 7 — R(I")
satisfies

F(q) = (—-1)"6,F(—q).
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Proof. By Theorem 2.11, it follows that

k
F(q) =x1, = Zm(xz-; q) - Xi

i=1
k
= (~1)'m(xi ® 6,5 —q) - X
i=1
k

—1)£Zm(xi; —q)(xi ®9,)

I
—

2.6. FExamples

We present some simple examples involving cyclic groups and symmetric groups.

Example 2.13. Let I := Z /6Z be a cyclic group of order 6 generated by o. Let x : I' —

C be the function that sends o to (g := ¢®¥ . Then the irreducible characters of I" are

{X, -+, X% x® = 1}, where 1 is the character of the trivial representation of I". Consider
the action of I" on L := Z? given by

_ (0 1
Ul—)Rg.—<_1 1).

Note that this setting is same as in [10, Example 6.11].
To compute X, we need to compute the rank and the elementary divisors of Ry — Iy
for each i € {1,...,5}. They are as follows:

r(c") =2 forallic{1,...,5}, (eo11,€01 ) = (€55.1,€05.2) = (1,1),

(602,17602,2) = (80'4,1560'4,2) = (1a3)7 (603,17603,2) = (25 2)

Hence, we obtain the multiplicity m(x’;q) as follows:

1

g(q2 —1) ged{6,q} = 1;
Sa 1) ged{6,q) =2
m(x'; ¢) =m(x’; q) = .
g(q2 —3) ged{6,q} = 3;

1
é(qz - 6) ng{G,q} = 67
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1
6((12 —1) ged{6,q} = 1;
1
, \ g(q2 +2) ged{6,q} = 2;
m(x% @) =m(x%a) =4
g(q2 —3) ged{6,q} =3;
1
6‘]2 ng{Ga q} = 63
1
g(q2 —1) ged{6,q} =1;
1
, g(q2 —4) ged{6,q} = 2;
m(x*; a) = 9§ 4
g(q2 +3) ged{6,q} =3;
1
6q2 ng{Ga q} = 67
1
6(q2 +5)  ged{6,q} = 1;
1
g(q2 +8) ged{6,q} =2;
m(1; q) =

1
g(q2 +9)  ged{6,q} =3;

1
6((12 +12) ged{6,q} = 6.

In this case, since 6, = 1, it follows that m(x’; q¢) = m(x?; —q) for j € {1,...,6}.
We also obtain xr,, as

1
6 (qu2 +6(1) — XR) ged{6,q} = 1;
1
G (XRq2 +12(1) +6(x* + x*) — 4XR) ged{6,q} = 2;
XLq B 1 2 3
8 (XRq +12(1) + 6x° — 3XR) ged{6, ¢} = 3;
1
G (XR(J2 +18(1) +6(x* + x* + x*) — 6XR) ged{6,q} =6,

where yg = x + - -- + x° is the regular character of I

Example 2.14. As in the previous example, we consider the cyclic group I' = Z /6Z. The
action of I on L := Z3 is given by

-1 -1 0
c— R, =1 1 0 0 |.
0 0 -1
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By computing in the same way, we obtain the following:

515

rie')=r(c®)=3, r(@®)=r(c")=2  r(®)=1,
(601,17601,27601,3) = (605,17605,27605,3) = (]-7 176)7
(60'2,1760'2,2) = (604,1360‘4,2) = (173)7 603,1 = 27
and
1 3 2
5@ —q¢*—q+1)  ged{6,q} =1;
1
) . g@”*%2fq+% ged{6,q} = 2;
m(x’; @) =m(x’a) =4
g(q3—-q2—-3q4-3) ged{6,q} = 3;
1
g(q3—-2q2—-3q4-6) ged{6, ¢} = 6,
1
5@”+f—q—1) ged{6,q} = 1;
1
) \ 6@”+%2—q—% ged{6, q} = 2;
m(x~; q) =m(x"; q) = L
6(q3+*q24*3q‘*3) ged{6,q} = 3;
1
g(q34-2q2-3q-—(ﬁ ged{6,q} = 6,
1
g(qg—-q24—2q——2) ged{6,q} = 1;
1
, g(q3—-2q2+-2q-4) ged{6,q} = 2;
m(x*; ) = 9§ 4
g(q3—-q2%-6q—-6) ged{6,q} = 3;
1 .
6(q3—-2q2+-6q——12) ged{6, ¢} =6,
1 3 2
g(q +¢*+2¢+2)  ged{6,q} =1,
1
6(q3+—2q24—2q4—4) ged{6,q} = 2;
m(1; q) = 1
6(q3%fq2+76q%*6) ged{6,q} = 3;
1
6(q3+—2q2+—6q—kl2) ged{6,q} = 6.
In this case, §, = x>. Then, we have m(x'; q) = —m(x* —¢) and m(x3 q) =

-m(1; —q).
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We also obtain xr, as follows:

é(XR(]3+((1—X3)—(X15—X24))q2—|—(2(1+X) (X15+x24)) 4
—(2(1=x®)+(x15—x24) ) ged{6, ¢}=1;
)

1
E(XR(]?’JFZ((l*XS)*(Xls X24 )q2+(2 1+X —(x15+X24)

q
—2(2(1—x*)+(x15—x24 ) ged{6, ¢}=2;
XL,= 1
6<XRQS+((1_X3)_(X15_X24 )@ +3(2( 1+X —(x15+x24))4q
—3(2(1—x*)+(x15—x24) ) ged{6, ¢}=3;
1
6(XRQ3+2((1—X3)—(X15—X24))q2+3( (1+X (X15+X24 )q
~6(2(1-x*)+(x15—x21)) ) ged{6,a}=S,

where y15 == x' + x° and a4 :== X% + x*. Since

So(LEX*) = (X*£1), 6,(x15 £ X21) = X2a £ X15,
one can easily verify that Corollary 2.12 holds.

Example 2.15. Let I :== &3 be the symmetric group of degree 3, which is also the Weyl
group of type As. The group I' has three irreducible characters: the trivial character
1, the determinant character § and the character x of the 2-dimensional irreducible
representation. Consider the (co)root lattice L := Z(e; — e2) @ Z(ea — e3). The group I
acts on L as a permutation of { e1, ez, e3 }.

Note that we only need to calculate the rank and the elementary divisors for the
representative of each conjugacy class. Choose the representatives 7 := (1 2) and o =
(1 2 3). The representation matrices are given by

11 0 —1
RT(O 1>’ RG<1 1>

r(r)=1, r(o)=2, er1=1, (es1,e02)=(1,3).

Thus, we have

1
g(q2 +3¢+2) ged{3,q} =1;

1
g(q2 +3¢+6) ged{3,q} =3,
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1

é(q2 —3¢+2) gedf3,q} =1;
m(d; q) = 1
5((12 —3¢+6) ged{3,q} =3,

1

6(2(12 —2) ged{3,q} =1,
mx; ) = { 4

5(2q2 —6) ged{3,q} = 3.

In this case, §, = 6. Hence, we have m(1; ¢) = m(d; —¢) and m(x; q) = m(x; —q).
We also obtain xr, as

1
S(xr@® 431 -0)g+20+0-x)) sedfs.q} = 1;

XLo=9\1/
c(xre? +3(1=0)g+6(1+3-x)) eed{3,q} =3,

where xg = 1 4+ § + 2x. As Haiman mentions in [3, §7.4], the multiplicity m(1; q) is
equal to the Ehrhart quasi-polynomial L;—(q) = #(qA, N L) of the fundamental alcove
A, of type As.

Note that the first author, in [12, §3], computed xr, in the setting where the Weyl
group acts on the coroot lattice L for general classical root systems.
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