

Title	The quasi-polynomiality of mod q permutation representations for a linear finite group action on a lattice
Author(s)	Uchiumi, Ryo; Yoshinaga, Masahiko
Citation	Journal of Algebra. 2025, 689, p. 501-518
Version Type	VoR
URL	https://hdl.handle.net/11094/103520
rights	This article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Research Paper

The quasi-polynomiality of mod q permutation representations for a linear finite group action on a lattice

Ryo Uchiumi*, Masahiko Yoshinaga

Department of Mathematics, Graduate School of Science, The University of Osaka,
Toyonaka, 560-0043, Japan

ARTICLE INFO

Article history:

Received 20 September 2024

Available online 27 October 2025

Communicated by Gwyn Bellamy

MSC:
05E18
20C10

Keywords:
Quasi-polynomials
Finite groups
Lattices

ABSTRACT

For given linear action of a finite group on a lattice and a positive integer q , we prove that the mod q permutation representation is a quasi-polynomial in q . Additionally, we establish several results that can be considered as mod q -analogues of results by Stapledon for equivariant Ehrhart quasi-polynomials. We also prove a reciprocity-type result for multiplicities of irreducible decompositions.

© 2025 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC license (<http://creativecommons.org/licenses/by-nc/4.0/>).

1. Introduction

1.1. Quasi-polynomials

Let R be a commutative ring. A function $f : \mathbb{Z}_{(>0)} \rightarrow R$ is called a *quasi-polynomial* if there exist a positive integer $\tilde{n} \in \mathbb{Z}_{>0}$ and polynomials $g_1(t), \dots, g_{\tilde{n}}(t) \in R[t]$ such that

* Corresponding author.

E-mail addresses: uchiumi.ryou.1xu@ecs.osaka-u.ac.jp (R. Uchiumi), yoshinaga@math.sci.osaka-u.ac.jp (M. Yoshinaga).

$$f(q) = g_r(q), \quad \text{if } q \equiv r \pmod{\tilde{n}} \quad (1 \leq r \leq \tilde{n}).$$

The positive integer \tilde{n} is called a *period* and each polynomial g_r is called the *constituent* of f . The quasi-polynomial f has degree d if all the constituents have degree d . Moreover, the quasi-polynomial f has the *gcd-property* if the polynomial g_r depends on r only through $\gcd\{\tilde{n}, r\}$. In other words, $g_{r_1} = g_{r_2}$ if $\gcd\{\tilde{n}, r_1\} = \gcd\{\tilde{n}, r_2\}$.

Quasi-polynomials play important roles in many areas of mathematics. They appear frequently as counting functions (in this case, $R = \mathbb{Z}$). In particular, the following two notions have been actively studied.

Example 1.1 (*The Ehrhart quasi-polynomial*). Let \mathcal{P} be a rational polytope in \mathbb{R}^ℓ . For $q \in \mathbb{Z}_{\geq 0}$, define

$$L_{\mathcal{P}}(q) := \#(q\mathcal{P} \cap \mathbb{Z}^\ell).$$

Then $L_{\mathcal{P}}(q)$ is a quasi-polynomial ([1, Theorem 3.23]), known as the Ehrhart quasi-polynomial.

Example 1.2 (*The characteristic quasi-polynomial*). Let $L \simeq \mathbb{Z}^\ell$ be a lattice and $L^\vee := \text{Hom}_{\mathbb{Z}}(L, \mathbb{Z})$ be the dual lattice. Given $\alpha_1, \dots, \alpha_n \in L^\vee \setminus \{0\}$, we can associate a hyperplane arrangement $\mathcal{A} := \{H_1, \dots, H_n\}$ in $\mathbb{R}^\ell \simeq L \otimes \mathbb{R}$, where

$$H_i := \{x \in L \otimes \mathbb{R} \mid \alpha_i(x) = 0\}.$$

For a positive integer $q \in \mathbb{Z}_{>0}$, define the mod q complement of the arrangement by

$$\begin{aligned} M(\mathcal{A}; q) &:= (L/qL) \setminus \bigcup_{i=1}^n \bar{H}_i \\ &= \{\bar{x} \in L/qL \mid \alpha_i(x) \not\equiv 0 \pmod{q} \quad \text{for all } i \in \{1, \dots, n\}\}. \end{aligned}$$

It is known ([4, Theorem 2.4] and [5, Theorem 3.1] for non-central case) that

$$\chi_{\text{quasi}}(\mathcal{A}; q) := \#M(\mathcal{A}; q)$$

is a quasi-polynomial. It is called a characteristic quasi-polynomial.

Roughly speaking, the notion of the characteristic quasi-polynomial is a mod q -version of the Ehrhart quasi polynomial. However, the characteristic quasi-polynomials possess some additional properties. First, the constituents $g_r(t)$ ($r \in \{1, \dots, \tilde{n}\}$) of the characteristic quasi-polynomial $\chi_{\text{quasi}}(\mathcal{A}; q)$ satisfy the gcd-property. Second, the first constituent $g_1(t)$ (and equivalently, $g_r(t)$ for r coprime to \tilde{n}) is known to be equal to the characteristic polynomial $\chi(\mathcal{A}, t)$ of the arrangement \mathcal{A} (see [7]). Furthermore, $g_{\tilde{n}}(t)$ is the

characteristic polynomial of the associated toric arrangement [6,11]. The characteristic quasi-polynomial is an important concept, not only in the context of enumerative problems but also in its connections with arithmetic matroids and toric arrangements [2,6].

1.2. Equivariant Ehrhart theory

In [10], Stapledon proposed an equivariant version of Ehrhart theory. Let $L \simeq \mathbb{Z}^\ell$ be a lattice and let Γ be a finite group acting linearly on L via $\rho : \Gamma \rightarrow \mathrm{GL}(L)$. Let \mathcal{P} be a Γ -invariant lattice polytope. For a positive integer $q \in \mathbb{Z}_{>0}$, the group Γ acts on the lattice points $q\mathcal{P} \cap L$. Let $\chi_{q\mathcal{P}}$ denote the character of this permutation representation. Stapledon proved representation-theoretic analogues of several classical results in Ehrhart theory. For example, the map

$$F : \mathbb{Z}_{>0} \longrightarrow R(\Gamma), \quad q \longmapsto F(q) = \chi_{q\mathcal{P}}$$

is a quasi-polynomial of degree $\dim \mathcal{P}$ with the leading coefficient $\frac{\mathrm{vol} \mathcal{P}}{\#\Gamma} \chi_R$, where χ_R is the regular (standard) character of Γ ([10, Theorem 5.7 and Corollary 5.9]). It was also proved that the number of Γ -orbits in $q\mathcal{P} \cap L$ is a quasi-polynomial in q .

Stapledon also proved the following reciprocity. Let $F^*(q) = \chi_{q\mathcal{P}^*}$ be the permutation representation of the lattice points in the interior of $q\mathcal{P}$. Then, from the Ehrhart reciprocity, the relation

$$F^*(q) = (-1)^{\dim \mathcal{P}} \det(\rho) F(-q) \tag{1}$$

holds. Note that when Γ is the trivial group, these results recover the classical results in Ehrhart theory.

1.3. Towards an equivariant version of characteristic quasi-polynomials

It is natural to consider mod q -version of the equivariant Ehrhart quasi-polynomial, namely, the equivariant characteristic quasi-polynomials for an arrangement invariant under a group action. In this paper, as a stepping stone to the general case, we do not consider hyperplanes, and instead focus solely on the mod q permutation representation. For general arrangement cases, refer to the research [13] by the first author.

Let Γ be a finite group and let $L \simeq \mathbb{Z}^\ell$ be a lattice. Suppose that Γ acts linearly on L . Then the action of Γ on $L_q := L/qL$ is naturally induced for each $q \in \mathbb{Z}_{>0}$. Note that, in the case where Γ is the Weyl group and L is a lattice associated with a root system, there are several known results about L_q (e.g. [3,8]), especially for $q \equiv 1 \pmod{h}$, where h is the Coxeter number.

One of our problems is how the permutation character χ_{L_q} of L_q depends on q . The main result of this paper is the following.

Theorem 1.3 (Theorem 2.6 below). Consider the function $F : \mathbb{Z}_{>0} \longrightarrow R(\Gamma)$ defined by $q \longmapsto \chi_{L_q}$. Then F is a quasi-polynomial of degree ℓ . Furthermore, F has the gcd-property, the minimum period \tilde{n} , and the leading coefficient of the quasi-polynomial χ_{L_q} is $\frac{\chi_{\Gamma}}{\#\Gamma}$.

Note that this result corresponds to [10, Theorem 5.7 and Corollary 5.9].

Let χ_1, \dots, χ_k be irreducible characters of Γ . Then χ_{L_q} can be expressed as

$$\chi_{L_q} = m(\chi_1; q) \cdot \chi_1 + \dots + m(\chi_k; q) \cdot \chi_k, \quad (2)$$

with $m(\chi_k; q) \in \mathbb{Z}$. Theorem 1.3 is equivalent to that each $m(\chi_i; q)$ is a \mathbb{Z} -valued quasi-polynomial in q (Corollary 2.2).

For a character λ of a 1-dimensional representation of Γ and $q \in \mathbb{Z}_{>0}$, let $f_{L/\Gamma}(\lambda; q)$ denote the number of Γ -orbits on L_q whose isotropy subgroup is contained in the subgroup $\lambda^{-1}(1)$ of Γ . Then since $f_{L/\Gamma}(\lambda; q) = m(\lambda; q)$, we obtain the following results corresponding to [10, Corollary 5.8] as the corollary of the above theorem.

Corollary 1.4 (Corollary 2.9 below). The function $f_{L/\Gamma}(\lambda; -) : \mathbb{Z}_{>0} \longrightarrow \mathbb{Z}$ is a quasi-polynomial of degree ℓ and it has the gcd-property.

There are several relations among these quasi-polynomials. In particular, there is a reciprocity-type relation between $m(\chi_i; q)$ and $m(\chi_i \otimes \delta_\rho; q)$, where $\delta_\rho = \det \rho$ is a 1-dimensional representation. More precisely, we obtain the following reciprocity theorem.

Theorem 1.5 (Theorem 2.11 below). The following formula holds for an irreducible character χ_i of Γ :

$$m(\chi_i \otimes \delta_\rho; q) = (-1)^\ell m(\chi_i; -q).$$

This implies the following relation.

Corollary 1.6 (Corollary 2.12 below). The quasi-polynomial $F : \mathbb{Z} \longrightarrow R(\Gamma)$ satisfies

$$F(q) = (-1)^\ell \delta_\rho F(-q). \quad (3)$$

Although the formula (3) appears similar to (1), they are different in nature. It is important to note that (1) represents a reciprocity between $F(q)$ and $F^*(q)$, whereas (3) is a self-duality of $F(q)$.

In section 2.6, we will also provide several explicit examples.

2. Quasi-polynomiality

2.1. Group action and representation

We recall several notions and basic facts about representations of finite groups [9].

Let Γ be a finite group. Let V be a finite-dimensional vector space over \mathbb{C} , and let $\mathrm{GL}(V)$ denote the group of linear isomorphisms of V onto itself. A (*linear*) *representation* of Γ on V is a homomorphism $\rho : \Gamma \rightarrow \mathrm{GL}(V)$. In this paper, we assume that ρ is injective. The space V is called the *representation space* of ρ .

The *character* $\chi_\rho : \Gamma \rightarrow \mathbb{C}$ of the representation ρ is the function defined by $\gamma \mapsto \mathrm{tr} \rho(\gamma)$, where tr denotes the trace function. The character χ_ρ is constant on each conjugacy class. A function $\phi : \Gamma \rightarrow \mathbb{C}$ is called a class function if ϕ is constant on each conjugacy class. For functions $\phi, \psi : \Gamma \rightarrow \mathbb{C}$, define the inner product (ϕ, ψ) by

$$(\phi, \psi) = \frac{1}{\#\Gamma} \sum_{\gamma \in \Gamma} \phi(\gamma) \overline{\psi(\gamma)},$$

where \bar{z} denotes the complex conjugate of $z \in \mathbb{C}$. Let χ_1, \dots, χ_k be the set of all irreducible characters of Γ . Then χ_1, \dots, χ_k form an orthonormal basis of the space of class functions. In particular, $(\chi_i, \chi_j) = \delta_{ij}$. Thus, if a class function χ is expressed as a linear combination of irreducible characters $\chi = m_1 \chi_1 + \dots + m_k \chi_k$, then we have $m_i = (\chi, \chi_i)$.

Let Γ' be a subgroup of Γ . The restriction of a class function $\chi : \Gamma \rightarrow \mathbb{C}$ to Γ' is clearly a class function on Γ' , which is denoted by $\mathrm{Res}_{\Gamma'}^{\Gamma} \chi : \Gamma' \rightarrow \mathbb{C}$. Conversely, for a class function $\varphi : \Gamma' \rightarrow \mathbb{C}$, define the *induced function* $\mathrm{Ind}_{\Gamma'}^{\Gamma} \varphi : \Gamma \rightarrow \mathbb{C}$ by

$$\left(\mathrm{Ind}_{\Gamma'}^{\Gamma} \varphi \right) (\gamma) = \frac{1}{\#\Gamma'} \sum_{\substack{\eta \in \Gamma \\ \eta^{-1} \gamma \eta \in \Gamma'}} \varphi(\eta^{-1} \gamma \eta). \quad (4)$$

These two operators are related by the following Frobenius reciprocity:

$$\left(\chi, \mathrm{Ind}_{\Gamma'}^{\Gamma} \varphi \right) = \left(\mathrm{Res}_{\Gamma'}^{\Gamma} \chi, \varphi \right). \quad (5)$$

Recall that the *representation ring* $R(\Gamma)$ of Γ is $\bigoplus_V \mathbb{Z}[V]/\sim$, where V runs over all finite-dimensional representations of Γ , and \sim is an equivalence relation generated by $[V] \sim [V']$ for isomorphic representations $V \simeq V'$ and $[V_1 \oplus V_2] \sim [V_1] + [V_2]$. The multiplication is defined by $[V_1] \cdot [V_2] = [V_1 \otimes V_2]$. The character gives a natural isomorphism of abelian groups

$$R(\Gamma) \simeq \mathbb{Z}\chi_1 \oplus \dots \oplus \mathbb{Z}\chi_k.$$

The trivial representation $\rho_{\mathbf{1}}$ is the unit element in $R(\Gamma)$. The character of $\rho_{\mathbf{1}}$ is denoted by $\mathbf{1}$.

Suppose that Γ acts on a finite set X . Let $\mathbb{C}X$ denote the vector space based on X , that is, $\mathbb{C}X = \bigoplus_{x \in X} \mathbb{C}x$. This gives rise to a natural representation $\rho_X : \Gamma \longrightarrow \mathrm{GL}(\mathbb{C}X)$, which is called the *permutation representation* of X . In the case of $X = \Gamma$ with action defined by the left multiplication, it is called the *regular (standard) representation*, denoted by ρ_R . Note that the character χ_R of the regular representation satisfies the following.

$$\chi_R = \sum_{i=1}^k \chi_i(1) \chi_i, \quad \chi_R(\gamma) = \begin{cases} \#\Gamma & \text{if } \gamma = 1; \\ 0 & \text{otherwise.} \end{cases}$$

For $x \in X$, the Γ -orbit $\Gamma(x)$ and the *isotropy subgroup* Γ_x are defined as follows:

$$\begin{aligned} \Gamma(x) &= \{ \gamma x \in X \mid \gamma \in \Gamma \}, \\ \Gamma_x &= \{ \gamma \in \Gamma \mid \gamma x = x \}. \end{aligned}$$

2.2. Multiplicities of irreducible decompositions

Let L be a lattice, and $\{\beta_1, \dots, \beta_\ell\}$ be a \mathbb{Z} -basis of L , that is, $L = \mathbb{Z}\beta_1 \oplus \dots \oplus \mathbb{Z}\beta_\ell \simeq \mathbb{Z}^\ell$. We identify an element $x = x_1\beta_1 + \dots + x_\ell\beta_\ell$ of L with the row vector $x = (x_1, \dots, x_\ell)$ of \mathbb{Z}^ℓ .

Let Γ be a finite group. Let $\rho : \Gamma \longrightarrow \mathrm{GL}(L)$ be a group homomorphism. Let us denote the representation matrix of $\rho(\gamma)$ by R_γ , and we consider the right multiplication, namely,

$$\rho(\gamma) : L \longrightarrow L, \quad x \longmapsto xR_\gamma.$$

For $q \in \mathbb{Z}_{>0}$, define $\mathbb{Z}_q := \mathbb{Z}/q\mathbb{Z}$. We will consider the following q -reduction of $x = (x_1, \dots, x_\ell) \in \mathbb{Z}^\ell$:

$$[x]_q := ([x_1]_q, \dots, [x_\ell]_q) \in \mathbb{Z}_q^\ell,$$

where $[x_i]_q = x_i + q\mathbb{Z} \in \mathbb{Z}_q$. We similarly consider the q -reduction of an integer matrix $A = (a_{ij})_{ij}$:

$$[A]_q := ([a_{ij}]_q)_{ij}.$$

Let $\varphi : \mathbb{Z}^\ell \longrightarrow \mathbb{Z}^\ell$ be a \mathbb{Z} -homomorphism represented by an $\ell \times \ell$ integer matrix A . We can define the induced morphism $\varphi_q : \mathbb{Z}_q^\ell \longrightarrow \mathbb{Z}_q^\ell$ by

$$x \longmapsto x[A]_q.$$

Let $L_q := L/qL \simeq (\mathbb{Z}/q\mathbb{Z})^\ell$. The action of Γ on L_q is induced by $\rho(\gamma)_q : L_q \longrightarrow L_q$. Let χ_{L_q} denote the character of the permutation representation of L_q , and consider its irreducible decomposition:

$$\chi_{L_q} = m(\chi_1; q) \cdot \chi_1 + \cdots + m(\chi_k; q) \cdot \chi_k,$$

where $m(\chi_i; q)$ denotes the multiplicity of χ_i in χ_{L_q} . Since $\chi_{L_q}(\gamma)$ is equal to the number of elements in L_q fixed by $\gamma \in \Gamma$, we have

$$m(\chi_i; q) = (\chi_i, \chi_{L_q}) = \frac{1}{\#\Gamma} \sum_{\gamma \in \Gamma} \chi_i(\gamma) \overline{\chi_{L_q}(\gamma)} = \frac{1}{\#\Gamma} \sum_{\gamma \in \Gamma} \chi_i(\gamma) \cdot \#L_q^\gamma, \quad (6)$$

where $L_q^\gamma := \{x \in L_q \mid \gamma x = x\}$. Thus, by studying the properties of $\#L_q^\gamma$, we can determine how $m(\chi_i; q)$ depends on q . Note that for the trivial character $\mathbf{1}$, the multiplicity $m(\mathbf{1}; q)$ represents the number of Γ -orbits of L_q , according to Burnside's lemma.

The fixed point set L_q^γ is expressed as

$$\begin{aligned} L_q^\gamma &= \{x \in L_q \mid \gamma x = x\} \\ &= \{x \in L_q \mid x[R_\gamma]_q = x\} \\ &= \{x \in L_q \mid x[R_\gamma - I_\ell]_q = 0\}, \end{aligned}$$

where I_ℓ is the identity matrix of size ℓ . Therefore, L_q^γ is equal to the kernel of the induced morphism $(\rho(\gamma) - \text{id})_q$. The cardinality of the kernel of this morphism is known to be quasi-monomial, as shown in [4]:

Lemma 2.1 ([4, Lemma 2.1]). *Let $\varphi : \mathbb{Z}^\ell \rightarrow \mathbb{Z}^\ell$ be a \mathbb{Z} -homomorphism. Then the cardinality of the kernel of the induced morphism $\varphi_q : \mathbb{Z}_q^\ell \rightarrow \mathbb{Z}_q^\ell$ is a quasi-monomial in q . Furthermore, suppose φ is represented by a matrix A . Then the quasi-monomial $\#\ker \varphi_q$ can be expressed as*

$$\#\ker \varphi_q = \left(\prod_{j=1}^r \gcd\{e_j, q\} \right) q^{\ell-r}, \quad (7)$$

where $r := \text{rank } A$ and $e_1, \dots, e_r \in \mathbb{Z}_{>0}$, with $e_1 \mid e_2 \mid \cdots \mid e_r$, are the elementary divisors of A . Hence, the quasi-monomial $\#\ker \varphi_q$ has the gcd-property and the minimum period e_r . If $r = 0$, we consider e_0 to be 1.

Proof. Here, we only review quasi-monomiality. For further details, see [4, Lemma 2.1]. Since $\#\ker \varphi_q = q^\ell / \#\text{im } \varphi_q$, we will study $\#\text{im } \varphi_q$. Consider the Smith normal form

$$SAT = \begin{pmatrix} e_1 & & & \\ & \ddots & & \\ & & e_r & \\ & & & O \end{pmatrix}, \quad r = \text{rank } A, \quad e_1, \dots, e_r \in \mathbb{Z}_{>0}, \quad e_1 \mid e_2 \mid \cdots \mid e_r,$$

where S and T are $\ell \times \ell$ unimodular matrices. Since unimodularity is preserved under q -reductions, we may assume that A is a diagonal matrix $\text{diag}(e_1, \dots, e_r, 0, \dots, 0)$ from the outset. Then, for $x = (x_1, \dots, x_\ell) \in \mathbb{Z}_q^\ell$, we have

$$\varphi_q(x) = ([e_1]_q x_1, \dots, [e_r]_q x_r, 0, \dots, 0)$$

and hence $\text{im } \varphi_q = [e_1]_q \mathbb{Z}_q \times \dots \times [e_r]_q \mathbb{Z}_q$. Therefore,

$$\#\text{im } \varphi_q = \frac{q^r}{\prod_{j=1}^r \gcd\{e_j, q\}},$$

and we obtain (7). \square

Corollary 2.2. *The multiplicity $m(\chi_i; q)$ of χ_i in χ_{L_q} is a quasi-polynomial in q . More explicitly,*

$$m(\chi_i; q) = \frac{1}{\#\Gamma} \sum_{\gamma \in \Gamma} \chi_i(\gamma) \cdot \left(\prod_{j=1}^{r(\gamma)} \gcd\{e_{\gamma,j}, q\} \right) q^{\ell - r(\gamma)}, \quad (8)$$

where $r(\gamma) := \text{rank}(R_\gamma - I_\ell)$ and $e_{\gamma,1}, \dots, e_{\gamma,r(\gamma)} \in \mathbb{Z}_{>0}$ with $e_{\gamma,1} \mid e_{\gamma,2} \mid \dots \mid e_{\gamma,r(\gamma)}$, are the elementary divisors of $R_\gamma - I_\ell$.

Proof. The equation (8) is given by (6) and (7). \square

Next, we present some properties of $m(\chi_i; q)$.

Proposition 2.3. *The quasi-polynomial $m(\chi_i; q)$ has the gcd-property with a period*

$$\tilde{n} := \text{lcm} \{ e_{\gamma,r(\gamma)} \mid \gamma \in \Gamma \}.$$

Furthermore, the minimum period of the quasi-polynomial $m(\chi_i; q)$ is equal to \tilde{n} .

Remark 2.4. If χ_i is not trivial, we do not know whether \tilde{n} is the minimum period.

Proof. Let $\gamma \in \Gamma$ be an element that is not the identity, and let $e_{\gamma,1}, \dots, e_{\gamma,r(\gamma)}$ be the elementary divisors of $R_\gamma - I_\ell$. Since $e_{\gamma,j}$ divides \tilde{n} for $j \in \{1, \dots, r(\gamma)\}$, we have

$$\prod_{j=1}^{r(\gamma)} \gcd\{e_{\gamma,j}, q\} = \prod_{j=1}^{r(\gamma)} \gcd\{e_{\gamma,j}, \tilde{n}, q\} = \prod_{j=1}^{r(\gamma)} \gcd\{e_{\gamma,j}, \gcd\{\tilde{n}, q\}\}.$$

Hence $m(\chi_i; q)$ depends on q only through $\gcd\{\tilde{n}, q\}$, which means that \tilde{n} is a period of $m(\chi_i; q)$.

Let $g_1(t), \dots, g_{\tilde{n}}(t) \in \mathbb{Z}[t]$ denote the constituents of the quasi-polynomial $m(\mathbf{1}; q)$. Since \tilde{n} is divisible by $e_{\gamma, r(\gamma)}$ for all $\gamma \in \Gamma$, we have

$$g_{\tilde{n}}(t) = \frac{1}{\#\Gamma} \sum_{\gamma \in \Gamma} \left(\prod_{j=1}^{r(\gamma)} e_{\gamma, j} \right) t^{\ell - r(\gamma)} \quad (9)$$

from equation (8). Suppose that $s < \tilde{n} = \text{lcm} \{ e_{\gamma, r(\gamma)} \mid \gamma \in \Gamma \}$. Then there exists $\gamma \in \Gamma$ such that $\gcd\{e_{\gamma, r(\gamma)}, s\} \neq e_{\gamma, r(\gamma)}$. Since $\gcd\{e_{\gamma, j}, s\} \leq e_{\gamma, j}$ for any $\gamma \in \Gamma$ and $j \in \{1, \dots, r(\gamma)\}$, we conclude that

$$g_s(t) = \frac{1}{\#\Gamma} \sum_{\gamma \in \Gamma} \left(\prod_{j=1}^{r(\gamma)} \gcd\{e_{\gamma, j}, s\} \right) t^{\ell - r(\gamma)} \neq g_{\tilde{n}}(t)$$

by the equations (8) and (9), and hence s is not a period. Therefore, \tilde{n} is the minimum period of $m(\mathbf{1}; q)$. \square

Proposition 2.5. *The leading term of the quasi-polynomial $m(\chi_i; q)$ is $\frac{\chi_i(1)}{\#\Gamma} q^\ell$.*

Proof. Since ρ is injective, $r(\gamma) = 0$ holds if and only if γ is the identity. Therefore, by Corollary 2.2, the leading term of $m(\chi_i; q)$ is q^ℓ with the coefficient $\frac{\chi_i(1)}{\#\Gamma}$. \square

2.3. Permutation representations

Since each multiplicity $m(\chi_i; q)$ is a quasi-polynomial, the quasi-polynomiality of the function $F : q \mapsto \chi_{L_q}$ follows immediately. The following theorem is the main result of this paper.

Theorem 2.6 (Restatement of Theorem 1.3). *Consider the function $F : \mathbb{Z}_{>0} \rightarrow R(\Gamma)$ defined by $q \mapsto \chi_{L_q}$. Then F is a quasi-polynomial of degree ℓ . Furthermore, F has the gcd-property, the minimum period \tilde{n} , and the leading coefficient of the quasi-polynomial χ_{L_q} is $\frac{\chi_q(\mathbf{1})}{\#\Gamma}$.*

Proof. By equation (8), we have

$$\begin{aligned} F(q) &= \chi_{L_q} \\ &= \sum_{i=1}^k m(\chi_i; q) \cdot \chi_i \\ &= \frac{1}{\#\Gamma} \sum_{i=1}^k \sum_{\gamma \in \Gamma} \chi_i(\gamma) \cdot \left(\prod_{j=1}^{r(\gamma)} \gcd\{e_{\gamma, j}, q\} \right) \cdot \chi_i \cdot q^{\ell - r(\gamma)} \in R(\Gamma)[q], \end{aligned}$$

hence F is a quasi-polynomial with the gcd-property. Since $m(\chi_i; q)$ has a period \tilde{n} for any $i \in \{1, \dots, k\}$, and especially \tilde{n} is the minimum period of $m(\mathbf{1}; q)$, the quasi-polynomial F has the minimum period \tilde{n} .

By Proposition 2.5, the leading term of each multiplicity $m(\chi_i; q)$ is $\frac{\chi_i(1)}{\#\Gamma} q^\ell$. Thus, we have

$$\sum_{i=1}^k \frac{\chi_i(1)}{\#\Gamma} \cdot \chi_i \cdot q^\ell = \frac{\chi_{\mathbf{R}}}{\#\Gamma} q^\ell$$

as the leading term of F . \square

2.4. Number of orbits

In this section, we prove the quasi-polynomiality of the number of Γ -orbits. First, we describe the permutation character $\chi_{\Gamma(x)}$ on the Γ -orbit $\Gamma(x)$ of $x \in L_q$.

Lemma 2.7. *Let $\Gamma(x)$ denote the Γ -orbit of $x \in L_q$. Then we have*

$$\chi_{\Gamma(x)}(\gamma) = \#\Gamma(x)^\gamma = \left(\text{Ind}_{\Gamma_x}^{\Gamma} \mathbf{1} \right) (\gamma).$$

Proof. An element ηx of $\Gamma(x)$ is fixed by γ if and only if $\eta^{-1}\gamma\eta$ fixes x . Thus, the cardinality of $\Gamma(x)^\gamma$ is

$$\#\Gamma(x)^\gamma = \frac{\#\{\eta \in \Gamma \mid \eta^{-1}\gamma\eta \in \Gamma_x\}}{\#\Gamma_x}.$$

On the other hand, it follows directly that the above expression is equal to $\left(\text{Ind}_{\Gamma_x}^{\Gamma} \mathbf{1} \right) (\gamma)$:

$$\left(\text{Ind}_{\Gamma_x}^{\Gamma} \mathbf{1} \right) (\gamma) = \frac{1}{\#\Gamma_x} \sum_{\substack{\eta \in \Gamma \\ \eta^{-1}\gamma\eta \in \Gamma_x}} \mathbf{1}(\eta^{-1}\gamma\eta) = \frac{\#\{\eta \in \Gamma \mid \eta^{-1}\gamma\eta \in \Gamma_x\}}{\#\Gamma_x}. \quad \square$$

For a character λ of a 1-dimensional representation of Γ and $q \in \mathbb{Z}_{>0}$, let $f_{L/\Gamma}(\lambda; q)$ denote the number of Γ -orbits on L_q whose isotropy subgroup is contained in the subgroup $\lambda^{-1}(1)$ of Γ . Using the Frobenius reciprocity (5), we obtain the following lemma.

Lemma 2.8. *Let λ be a character of a 1-dimensional representation of Γ . For $q \in \mathbb{Z}_{>0}$, we have*

$$f_{L/\Gamma}(\lambda; q) = (\lambda, \chi_{L_q}) = m(\lambda; q).$$

Proof. Note that the second equality is the definition of $m(\lambda; q)$.

Note that the permutation character χ_{L_q} can be decomposed into a sum of all permutation characters of Γ -orbit on L_q :

$$\chi_{L_q} = \sum_{\Gamma(x) : \Gamma\text{-orbit}} \chi_{\Gamma(x)}.$$

By Lemma 2.7 and Frobenius reciprocity (5), we have

$$\begin{aligned} (\lambda, \chi_{L_q}) &= \sum_{\Gamma(x) : \Gamma\text{-orbit}} (\lambda, \chi_{\Gamma(x)}) \\ &= \sum_{\Gamma(x) : \Gamma\text{-orbit}} (\lambda, \text{Ind}_{\Gamma_x}^{\Gamma} \mathbf{1}) \\ &= \sum_{\Gamma(x) : \Gamma\text{-orbit}} (\text{Res}_{\Gamma_x}^{\Gamma} \lambda, \mathbf{1}). \end{aligned}$$

Since $\text{Res}_{\Gamma_x}^{\Gamma} \lambda$ is a character of a 1-dimensional representation of Γ_x , the orthogonality of irreducible characters implies that

$$(\text{Res}_{\Gamma_x}^{\Gamma} \lambda, \mathbf{1}) = \begin{cases} 1 & \Gamma_x \subseteq \lambda^{-1}(1); \\ 0 & \text{otherwise.} \end{cases}$$

Therefore, we have $(\lambda, \chi_{L_q}) = f_{L/\Gamma}(\lambda; q)$. \square

Corollary 2.9 (Restatement of Corollary 1.4). *The function $f_{L/\Gamma}(\lambda; -) : \mathbb{Z}_{>0} \longrightarrow \mathbb{Z}$ is a quasi-polynomial of degree ℓ and it has the gcd-property.*

Proof. This follows from Corollary 2.2 and Lemma 2.8. \square

2.5. Reciprocity for the multiplicities

Let $\rho : \Gamma \longrightarrow \text{GL}(L)$ be a representation and R_{γ} the representation matrix of $\rho(\gamma)$. Define the function $\delta_{\rho} : \Gamma \longrightarrow \mathbb{C}$ by

$$\delta_{\rho}(\gamma) := (-1)^{r(\gamma)},$$

where $r(\gamma) = \text{rank}(R_{\gamma} - I_{\ell})$. The following lemma shows that $\delta_{\rho}(\gamma) = \det R_{\gamma}$ and that δ_{ρ} is an irreducible character of Γ .

Lemma 2.10 ([10, Lemma 5.5]). *Let $R \in \text{GL}_n(\mathbb{R})$ be a real matrix of finite order. Let $r := \text{rank}(R - I_n)$. Then $\det R = (-1)^r$.*

Proof. Since R is finite order, it is diagonalizable (in \mathbb{C}), and we can write $R = PDP^{-1}$, where $P, D \in \text{GL}_n(\mathbb{C})$ with D diagonal. Clearly, $\text{rank}(R - I_n) = \text{rank}(D - I_n)$. Thus, r

is the number of diagonal entries of D that are not equal to 1. Since R is a real matrix, the set of eigenvalues is closed under complex conjugation. The finiteness of the order implies that all the eigenvalues have absolute value 1. Therefore, the diagonal entries of D are as follows (with multiplicities):

$$1^{p_1}, (-1)^{p_2}, \alpha_1^{q_1}, \bar{\alpha}_1^{q_1}, \alpha_2^{q_2}, \bar{\alpha}_2^{q_2}, \dots, \alpha_m^{q_m}, \bar{\alpha}_m^{q_m},$$

with $p_i, q_j \in \mathbb{Z}$ and $|\alpha_j| = 1$. Hence, we have

$$r = p_2 + 2(q_1 + q_2 + \dots + q_m),$$

and $\det D = (-1)^{p_2}$. Thus, $\det R = (-1)^r$. \square

The quasi-polynomials $m(\chi_i \otimes \delta_\rho; q)$ and $m(\chi_i; q)$ are connected by the following formula.

Theorem 2.11 (*Reciprocity theorem, restatement of Theorem 1.5*). *The following formula holds for an irreducible character χ_i of Γ :*

$$m(\chi_i \otimes \delta_\rho; q) = (-1)^\ell m(\chi_i; -q). \quad (10)$$

Proof. Using (8), we have

$$\begin{aligned} m(\chi_i \otimes \delta_\rho; q) &= \frac{1}{\#\Gamma} \sum_{\gamma \in \Gamma} (\chi_i \otimes \delta_\rho)(\gamma) \cdot \left(\prod_{j=1}^{r(\gamma)} \gcd\{e_{\gamma,j}, q\} \right) q^{\ell-r(\gamma)} \\ &= \frac{1}{\#\Gamma} \sum_{\gamma \in \Gamma} \chi_i(\gamma) (-1)^{r(\gamma)} \cdot \left(\prod_{j=1}^{r(\gamma)} \gcd\{e_{\gamma,j}, q\} \right) q^{\ell-r(\gamma)} \\ &= (-1)^\ell \cdot \frac{1}{\#\Gamma} \sum_{\gamma \in \Gamma} \chi_i(\gamma) \cdot \left(\prod_{j=1}^{r(\gamma)} \gcd\{e_{\gamma,j}, -q\} \right) (-q)^{\ell-r(\gamma)} \\ &= (-1)^\ell m(\chi_i; -q). \quad \square \end{aligned}$$

Note that the map $F(q) = \chi_{L_q}$ defined in Theorem 2.6 can be extended to $F : \mathbb{Z} \rightarrow R(\Gamma)$ as a quasi-polynomial.

Corollary 2.12 (*Restatement of Corollary 1.6*). *The quasi-polynomial $F : \mathbb{Z} \rightarrow R(\Gamma)$ satisfies*

$$F(q) = (-1)^\ell \delta_\rho F(-q).$$

Proof. By Theorem 2.11, it follows that

$$\begin{aligned}
F(q) &= \chi_{L_q} = \sum_{i=1}^k m(\chi_i; q) \cdot \chi_i \\
&= \sum_{i=1}^k (-1)^\ell m(\chi_i \otimes \delta_\rho; -q) \cdot \chi_i \\
&= (-1)^\ell \sum_{i=1}^k m(\chi_i; -q) (\chi_i \otimes \delta_\rho) \\
&= (-1)^\ell \delta_\rho F(-q). \quad \square
\end{aligned}$$

2.6. Examples

We present some simple examples involving cyclic groups and symmetric groups.

Example 2.13. Let $\Gamma := \mathbb{Z}/6\mathbb{Z}$ be a cyclic group of order 6 generated by σ . Let $\chi : \Gamma \rightarrow \mathbb{C}$ be the function that sends σ to $\zeta_6 := e^{\frac{2\pi\sqrt{-1}}{6}}$. Then the irreducible characters of Γ are $\{\chi, \dots, \chi^5, \chi^6 = \mathbf{1}\}$, where $\mathbf{1}$ is the character of the trivial representation of Γ . Consider the action of Γ on $L := \mathbb{Z}^2$ given by

$$\sigma \mapsto R_\sigma := \begin{pmatrix} 0 & 1 \\ -1 & 1 \end{pmatrix}.$$

Note that this setting is same as in [10, Example 6.11].

To compute χ_{L_q} , we need to compute the rank and the elementary divisors of $R_{\sigma^i} - I_\ell$ for each $i \in \{1, \dots, 5\}$. They are as follows:

$$\begin{aligned}
r(\sigma^i) &= 2 \quad \text{for all } i \in \{1, \dots, 5\}, & (e_{\sigma^1,1}, e_{\sigma^1,2}) &= (e_{\sigma^5,1}, e_{\sigma^5,2}) = (1, 1), \\
(e_{\sigma^2,1}, e_{\sigma^2,2}) &= (e_{\sigma^4,1}, e_{\sigma^4,2}) = (1, 3), & (e_{\sigma^3,1}, e_{\sigma^3,2}) &= (2, 2).
\end{aligned}$$

Hence, we obtain the multiplicity $m(\chi^j; q)$ as follows:

$$m(\chi^1; q) = m(\chi^5; q) = \begin{cases} \frac{1}{6}(q^2 - 1) & \gcd\{6, q\} = 1; \\ \frac{1}{6}(q^2 - 4) & \gcd\{6, q\} = 2; \\ \frac{1}{6}(q^2 - 3) & \gcd\{6, q\} = 3; \\ \frac{1}{6}(q^2 - 6) & \gcd\{6, q\} = 6, \end{cases}$$

$$m(\chi^2; q) = m(\chi^4; q) = \begin{cases} \frac{1}{6}(q^2 - 1) & \gcd\{6, q\} = 1; \\ \frac{1}{6}(q^2 + 2) & \gcd\{6, q\} = 2; \\ \frac{1}{6}(q^2 - 3) & \gcd\{6, q\} = 3; \\ \frac{1}{6}q^2 & \gcd\{6, q\} = 6, \end{cases}$$

$$m(\chi^3; q) = \begin{cases} \frac{1}{6}(q^2 - 1) & \gcd\{6, q\} = 1; \\ \frac{1}{6}(q^2 - 4) & \gcd\{6, q\} = 2; \\ \frac{1}{6}(q^2 + 3) & \gcd\{6, q\} = 3; \\ \frac{1}{6}q^2 & \gcd\{6, q\} = 6, \end{cases}$$

$$m(\mathbf{1}; q) = \begin{cases} \frac{1}{6}(q^2 + 5) & \gcd\{6, q\} = 1; \\ \frac{1}{6}(q^2 + 8) & \gcd\{6, q\} = 2; \\ \frac{1}{6}(q^2 + 9) & \gcd\{6, q\} = 3; \\ \frac{1}{6}(q^2 + 12) & \gcd\{6, q\} = 6. \end{cases}$$

In this case, since $\delta_\rho = \mathbf{1}$, it follows that $m(\chi^j; q) = m(\chi^j; -q)$ for $j \in \{1, \dots, 6\}$.

We also obtain χ_{L_q} as

$$\chi_{L_q} = \begin{cases} \frac{1}{6}(\chi_R q^2 + 6(\mathbf{1}) - \chi_R) & \gcd\{6, q\} = 1; \\ \frac{1}{6}(\chi_R q^2 + 12(\mathbf{1}) + 6(\chi^2 + \chi^4) - 4\chi_R) & \gcd\{6, q\} = 2; \\ \frac{1}{6}(\chi_R q^2 + 12(\mathbf{1}) + 6\chi^3 - 3\chi_R) & \gcd\{6, q\} = 3; \\ \frac{1}{6}(\chi_R q^2 + 18(\mathbf{1}) + 6(\chi^2 + \chi^3 + \chi^4) - 6\chi_R) & \gcd\{6, q\} = 6, \end{cases}$$

where $\chi_R = \chi + \dots + \chi^6$ is the regular character of Γ .

Example 2.14. As in the previous example, we consider the cyclic group $\Gamma = \mathbb{Z}/6\mathbb{Z}$. The action of Γ on $L := \mathbb{Z}^3$ is given by

$$\sigma \longmapsto R_\sigma := \begin{pmatrix} -1 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}.$$

By computing in the same way, we obtain the following:

$$r(\sigma^1) = r(\sigma^5) = 3, \quad r(\sigma^2) = r(\sigma^4) = 2, \quad r(\sigma^3) = 1,$$

$$(e_{\sigma^1,1}, e_{\sigma^1,2}, e_{\sigma^1,3}) = (e_{\sigma^5,1}, e_{\sigma^5,2}, e_{\sigma^5,3}) = (1, 1, 6),$$

$$(e_{\sigma^2,1}, e_{\sigma^2,2}) = (e_{\sigma^4,1}, e_{\sigma^4,2}) = (1, 3), \quad e_{\sigma^3,1} = 2,$$

and

$$m(\chi^1; q) = m(\chi^5; q) = \begin{cases} \frac{1}{6}(q^3 - q^2 - q + 1) & \gcd\{6, q\} = 1; \\ \frac{1}{6}(q^3 - 2q^2 - q + 2) & \gcd\{6, q\} = 2; \\ \frac{1}{6}(q^3 - q^2 - 3q + 3) & \gcd\{6, q\} = 3; \\ \frac{1}{6}(q^3 - 2q^2 - 3q + 6) & \gcd\{6, q\} = 6, \end{cases}$$

$$m(\chi^2; q) = m(\chi^4; q) = \begin{cases} \frac{1}{6}(q^3 + q^2 - q - 1) & \gcd\{6, q\} = 1; \\ \frac{1}{6}(q^3 + 2q^2 - q - 2) & \gcd\{6, q\} = 2; \\ \frac{1}{6}(q^3 + q^2 - 3q - 3) & \gcd\{6, q\} = 3; \\ \frac{1}{6}(q^3 + 2q^2 - 3q - 6) & \gcd\{6, q\} = 6, \end{cases}$$

$$m(\chi^3; q) = \begin{cases} \frac{1}{6}(q^3 - q^2 + 2q - 2) & \gcd\{6, q\} = 1; \\ \frac{1}{6}(q^3 - 2q^2 + 2q - 4) & \gcd\{6, q\} = 2; \\ \frac{1}{6}(q^3 - q^2 + 6q - 6) & \gcd\{6, q\} = 3; \\ \frac{1}{6}(q^3 - 2q^2 + 6q - 12) & \gcd\{6, q\} = 6, \end{cases}$$

$$m(\mathbf{1}; q) = \begin{cases} \frac{1}{6}(q^3 + q^2 + 2q + 2) & \gcd\{6, q\} = 1; \\ \frac{1}{6}(q^3 + 2q^2 + 2q + 4) & \gcd\{6, q\} = 2; \\ \frac{1}{6}(q^3 + q^2 + 6q + 6) & \gcd\{6, q\} = 3; \\ \frac{1}{6}(q^3 + 2q^2 + 6q + 12) & \gcd\{6, q\} = 6. \end{cases}$$

In this case, $\delta_\rho = \chi^3$. Then, we have $m(\chi^1; q) = -m(\chi^4; -q)$ and $m(\chi^3; q) = -m(\mathbf{1}; -q)$.

We also obtain χ_{L_q} as follows:

$$\chi_{L_q} = \begin{cases} \frac{1}{6} \left(\chi_R q^3 + ((\mathbf{1} - \chi^3) - (\chi_{15} - \chi_{24})) q^2 + (2(\mathbf{1} + \chi^3) - (\chi_{15} + \chi_{24})) q - (2(\mathbf{1} - \chi^3) + (\chi_{15} - \chi_{24})) \right) & \gcd\{6, q\} = 1; \\ \frac{1}{6} \left(\chi_R q^3 + 2((\mathbf{1} - \chi^3) - (\chi_{15} - \chi_{24})) q^2 + (2(\mathbf{1} + \chi^3) - (\chi_{15} + \chi_{24})) q - 2(2(\mathbf{1} - \chi^3) + (\chi_{15} - \chi_{24})) \right) & \gcd\{6, q\} = 2; \\ \frac{1}{6} \left(\chi_R q^3 + ((\mathbf{1} - \chi^3) - (\chi_{15} - \chi_{24})) q^2 + 3(2(\mathbf{1} + \chi^3) - (\chi_{15} + \chi_{24})) q - 3(2(\mathbf{1} - \chi^3) + (\chi_{15} - \chi_{24})) \right) & \gcd\{6, q\} = 3; \\ \frac{1}{6} \left(\chi_R q^3 + 2((\mathbf{1} - \chi^3) - (\chi_{15} - \chi_{24})) q^2 + 3(2(\mathbf{1} + \chi^3) - (\chi_{15} + \chi_{24})) q - 6(2(\mathbf{1} - \chi^3) + (\chi_{15} - \chi_{24})) \right) & \gcd\{6, q\} = 6, \end{cases}$$

where $\chi_{15} := \chi^1 + \chi^5$ and $\chi_{24} := \chi^2 + \chi^4$. Since

$$\delta_\rho(\mathbf{1} \pm \chi^3) = (\chi^3 \pm \mathbf{1}), \quad \delta_\rho(\chi_{15} \pm \chi_{24}) = \chi_{24} \pm \chi_{15},$$

one can easily verify that Corollary 2.12 holds.

Example 2.15. Let $\Gamma := \mathfrak{S}_3$ be the symmetric group of degree 3, which is also the Weyl group of type A_2 . The group Γ has three irreducible characters: the trivial character $\mathbf{1}$, the determinant character δ and the character χ of the 2-dimensional irreducible representation. Consider the (co)root lattice $L := \mathbb{Z}(e_1 - e_2) \oplus \mathbb{Z}(e_2 - e_3)$. The group Γ acts on L as a permutation of $\{e_1, e_2, e_3\}$.

Note that we only need to calculate the rank and the elementary divisors for the representative of each conjugacy class. Choose the representatives $\tau := (1 \ 2)$ and $\sigma := (1 \ 2 \ 3)$. The representation matrices are given by

$$R_\tau = \begin{pmatrix} -1 & 1 \\ 0 & 1 \end{pmatrix}, \quad R_\sigma = \begin{pmatrix} 0 & -1 \\ 1 & -1 \end{pmatrix}$$

Thus, we have

$$r(\tau) = 1, \quad r(\sigma) = 2, \quad e_{\tau,1} = 1, \quad (e_{\sigma,1}, e_{\sigma,2}) = (1, 3).$$

Therefore, we obtain

$$m(\mathbf{1}; q) = \begin{cases} \frac{1}{6}(q^2 + 3q + 2) & \gcd\{3, q\} = 1; \\ \frac{1}{6}(q^2 + 3q + 6) & \gcd\{3, q\} = 3, \end{cases}$$

$$m(\delta; q) = \begin{cases} \frac{1}{6}(q^2 - 3q + 2) & \gcd\{3, q\} = 1; \\ \frac{1}{6}(q^2 - 3q + 6) & \gcd\{3, q\} = 3, \end{cases}$$

$$m(\chi; q) = \begin{cases} \frac{1}{6}(2q^2 - 2) & \gcd\{3, q\} = 1; \\ \frac{1}{6}(2q^2 - 6) & \gcd\{3, q\} = 3. \end{cases}$$

In this case, $\delta_\rho = \delta$. Hence, we have $m(\mathbf{1}; q) = m(\delta; -q)$ and $m(\chi; q) = m(\chi; -q)$.

We also obtain χ_{L_q} as

$$\chi_{L_q} = \begin{cases} \frac{1}{6}(\chi_R q^2 + 3(1 - \delta)q + 2(1 + \delta - \chi)) & \gcd\{3, q\} = 1; \\ \frac{1}{6}(\chi_R q^2 + 3(1 - \delta)q + 6(1 + \delta - \chi)) & \gcd\{3, q\} = 3, \end{cases}$$

where $\chi_R = \mathbf{1} + \delta + 2\chi$. As Haiman mentions in [3, §7.4], the multiplicity $m(\mathbf{1}; q)$ is equal to the Ehrhart quasi-polynomial $L_{\overline{A_\circ}}(q) = \#(q\overline{A_\circ} \cap L)$ of the fundamental alcove $\overline{A_\circ}$ of type A_2 .

Note that the first author, in [12, §3], computed χ_{L_q} in the setting where the Weyl group acts on the coroot lattice L for general classical root systems.

Acknowledgments

The first author was supported by JST SPRING, Grant Number JPMJSP2138. The second author was partially supported by JSPS KAKENHI, Grant Number JP23H00081.

Data availability

No data was used for the research described in the article.

References

- [1] M. Beck, S. Robins, *Computing the Continuous Discretely, Undergraduate Texts in Mathematics*, Springer, 2007.
- [2] M. D’Adderio, L. Moci, Arithmetic matroids, the Tutte polynomial and toric arrangements, *Adv. Math.* 232 (2013) 335–367, <https://doi.org/10.1016/j.aim.2012.09.001>.
- [3] M.D. Haiman, Conjectures on the quotient ring by diagonal invariants, *J. Algebr. Comb.* 3 (1994) 17–76, <https://doi.org/10.1023/A:1022450120589>.
- [4] H. Kamiya, A. Takemura, H. Terao, Periodicity of hyperplane arrangements with integral coefficients modulo positive integers, *J. Algebr. Comb.* 27 (3) (2008) 317–330, <https://doi.org/10.1007/s10801-007-0091-2>.
- [5] H. Kamiya, A. Takemura, H. Terao, Periodicity of non-central integral arrangements modulo positive integers, *Ann. Comb.* 15 (3) (2011) 449–464, <https://doi.org/10.1007/s00026-011-0105-6>.
- [6] Y. Liu, T.N. Tran, M. Yoshinaga, *G*-Tutte polynomials and abelian Lie group arrangements, *Int. Math. Res. Not.* (1) (2021) 152–190, <https://doi.org/10.1093/imrn/rnz092>.

- [7] P. Orlik, H. Terao, *Arrangements of Hyperplanes*, Grundlehren der Mathematischen Wissenschaften, vol. 300, Springer-Verlag, Berlin, 1992, xviii+325 pp.
- [8] B. Rhoades, Parking structures: fuss analogs, *J. Algebr. Comb.* 40 (2014) 417–473, <https://doi.org/10.1007/s10801-013-0494-1>.
- [9] J.-P. Serre, *Linear Representations of Finite Groups*, Springer, 1977.
- [10] A. Stapledon, Equivariant Ehrhart theory, *Adv. Math.* 226 (4) (2011) 3622–3654, <https://doi.org/10.1016/j.aim.2010.10.019>.
- [11] T.N. Tran, M. Yoshinaga, Combinatorics of certain abelian Lie group arrangements and chromatic quasi-polynomials, *J. Comb. Theory, Ser. A* 165 (2019) 258–272, <https://doi.org/10.1016/j.jcta.2019.02.003>.
- [12] R. Uchiumi, Permutation representations of classical Weyl groups on mod q lattices, in: Proceedings of the 37th Conference on Formal Power Series and Algebraic Combinatorics (Sapporo), Sémin. Lothar. Comb. 93B (2025) #156.
- [13] R. Uchiumi, The characteristic quasi-polynomials of hyperplane arrangements with actions of finite groups, arXiv:2508.10236 [math], 2025.