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a positive integer q, we prove that the mod q permutation 
representation is a quasi-polynomial in q. Additionally, we 
establish several results that can be considered as mod q
analogues of results by Stapledon for equivariant Ehrhart 
quasi-polynomials. We also prove a reciprocity-type result for 
multiplicities of irreducible decompositions.
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1. Introduction

1.1. Quasi-polynomials

Let R be a commutative ring. A function f : Z(>0) → R is called a quasi-polynomial if 
there exist a positive integer ñ ∈ Z>0 and polynomials g1(t), . . . , gñ(t) ∈ R[t] such that
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f(q) = gr(q), if q ≡ r mod ñ (1 ≤ r ≤ ñ).

The positive integer ñ is called a period and each polynomial gr is called the constituent of 
f . The quasi-polynomial f has degree d if all the constituents have degree d. Moreover, 
the quasi-polynomial f has the gcd-property if the polynomial gr depends on r only 
through gcd{ñ, r}. In other words, gr1 = gr2 if gcd{ñ, r1} = gcd{ñ, r2}.

Quasi-polynomials play important roles in many areas of mathematics. They appear 
frequently as counting functions (in this case, R = Z). In particular, the following two 
notions have been actively studied.

Example 1.1 (The Ehrhart quasi-polynomial). Let 𝒫 be a rational polytope in Rℓ. For 
q ∈ Z≥0, define

L𝒫(q) := #(q𝒫 ∩ Zℓ).

Then L𝒫(q) is a quasi-polynomial ([1, Theorem 3.23]), known as the Ehrhart quasi
polynomial.

Example 1.2 (The characteristic quasi-polynomial). Let L ≃ Zℓ be a lattice and L∨ :=
HomZ(L,Z) be the dual lattice. Given α1, . . . , αn ∈ L∨ \ {0}, we can associate a hyper
plane arrangement 𝒜 := { H1, . . . , Hn } in Rℓ ≃ L⊗R, where

Hi := { x ∈ L⊗R | αi(x) = 0 } .

For a positive integer q ∈ Z>0, define the mod q complement of the arrangement by

M(𝒜; q) := (L/qL) \
n ⋃︂

i=1
H̄i

= { ̄x ∈ L/qL | αi(x) ̸≡ 0 (mod q) for all i ∈ {1, . . . , n} } .

It is known ([4, Theorem 2.4] and [5, Theorem 3.1] for non-central case) that

χquasi(𝒜; q) := #M(𝒜; q)

is a quasi-polynomial. It is called a characteristic quasi-polynomial.

Roughly speaking, the notion of the characteristic quasi-polynomial is a mod q-version 
of the Ehrhart quasi polynomial. However, the characteristic quasi-polynomials possess 
some additional properties. First, the constituents gr(t) (r ∈ {1, . . . , ñ}) of the character
istic quasi-polynomial χquasi(𝒜; q) satisfy the gcd-property. Second, the first constituent 
g1(t) (and equivalently, gr(t) for r coprime to ñ) is known to be equal to the charac
teristic polynomial χ(𝒜, t) of the arrangement 𝒜 (see [7]). Furthermore, gñ(t) is the 
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characteristic polynomial of the associated toric arrangement [6,11]. The characteris
tic quasi-polynomial is an important concept, not only in the context of enumerative 
problems but also in its connections with arithmetic matroids and toric arrangements 
[2,6].

1.2. Equivariant Ehrhart theory

In [10], Stapledon proposed an equivariant version of Ehrhart theory. Let L ≃ Zℓ be a 
lattice and let Γ be a finite group acting linearly on L via ρ : Γ → GL(L). Let 𝒫 be a Γ
invariant lattice polytope. For a positive integer q ∈ Z>0, the group Γ acts on the lattice 
points q𝒫∩L. Let χq𝒫 denote the character of this permutation representation. Stapledon 
proved representation-theoretic analogues of several classical results in Ehrhart theory. 
For example, the map

F : Z>0 −→ R(Γ ), q ↦−→ F (q) = χq𝒫

is a quasi-polynomial of degree dim𝒫 with the leading coefficient vol𝒫
#Γ χR, where χR is 

the regular (standard) character of Γ ([10, Theorem 5.7 and Corollary 5.9]). It was also 
proved that the number of Γ -orbits in q𝒫 ∩ L is a quasi-polynomial in q.

Stapledon also proved the following reciprocity. Let F ∗(q) = χq𝒫∗ be the permuta
tion representation of the lattice points in the interior of q𝒫. Then, from the Ehrhart 
reciprocity, the relation

F ∗(q) = (−1)dim𝒫 det(ρ)F (−q) (1)

holds. Note that when Γ is the trivial group, these results recover the classical results in 
Ehrhart theory.

1.3. Towards an equivariant version of characteristic quasi-polynomials

It is natural to consider mod q-version of the equivariant Ehrhart quasi-polynomial, 
namely, the equivariant characteristic quasi-polynomials for an arrangement invariant 
under a group action. In this paper, as a stepping stone to the general case, we do not 
consider hyperplanes, and instead focus solely on the mod q permutation representation. 
For general arrangement cases, refer to the research [13] by the first author.

Let Γ be a finite group and let L ≃ Zℓ be a lattice. Suppose that Γ acts linearly on 
L. Then the action of Γ on Lq := L/qL is naturally induced for each q ∈ Z>0. Note that, 
in the case where Γ is the Weyl group and L is a lattice associated with a root system, 
there are several known results about Lq (e.g. [3,8]), especially for q ≡ 1 mod h, where 
h is the Coxeter number.

One of our problems is how the permutation character χLq
of Lq depends on q. The 

main result of this paper is the following.
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Theorem 1.3 (Theorem   2.6 below). Consider the function F : Z>0 −→ R(Γ ) defined 
by q ↦−→ χLq

. Then F is a quasi-polynomial of degree ℓ. Furthermore, F has the gcd
property, the minimum period ñ, and the leading coefficient of the quasi-polynomial χLq

is χR
#Γ .

Note that this result corresponds to [10, Theorem 5.7 and Corollary 5.9].
Let χ1, . . . , χk be irreducible characters of Γ . Then χLq

can be expressed as

χLq
= m(χ1; q) · χ1 + · · · + m(χk; q) · χk, (2)

with m(χk; q) ∈ Z. Theorem 1.3 is equivalent to that each m(χi; q) is a Z-valued quasi
polynomial in q (Corollary 2.2).

For a character λ of a 1-dimensional representation of Γ and q ∈ Z>0, let fL/Γ (λ; q)
denote the number of Γ -orbits on Lq whose isotropy subgroup is contained in the sub
group λ−1(1) of Γ . Then since fL/Γ (λ; q) = m(λ; q), we obtain the following results 
corresponding to [10, Corollary 5.8] as the corollary of the above theorem.

Corollary 1.4 (Corollary   2.9 below). The function fL/Γ (λ; −) : Z>0 −→ Z is a quasi
polynomial of degree ℓ and it has the gcd-property.

There are several relations among these quasi-polynomials. In particular, there is a 
reciprocity-type relation between m(χi; q) and m(χi ⊗ δρ; q), where δρ = det ρ is a 1
dimensional representation. More precisely, we obtain the following reciprocity theorem.

Theorem 1.5 (Theorem   2.11 below). The following formula holds for an irreducible char
acter χi of Γ :

m(χi ⊗ δρ; q) = (−1)ℓm(χi; −q).

This implies the following relation.

Corollary 1.6 (Corollary   2.12 below). The quasi-polynomial F : Z −→ R(Γ ) satisfies

F (q) = (−1)ℓδρF (−q). (3)

Although the formula (3) appears similar to (1), they are different in nature. It is 
important to note that (1) represents a reciprocity between F (q) and F ∗(q), whereas (3) 
is a self-duality of F (q).

In section 2.6, we will also provide several explicit examples.
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2. Quasi-polynomiality

2.1. Group action and representation

We recall several notions and basic facts about representations of finite groups [9].
Let Γ be a finite group. Let V be a finite-dimensional vector space over C, and let 

GL(V ) denote the group of linear isomorphisms of V onto itself. A (linear) representation 
of Γ on V is a homomorphism ρ : Γ −→ GL(V ). In this paper, we assume that ρ is 
injective. The space V is called the representation space of ρ.

The character χρ : Γ −→ C of the representation ρ is the function defined by 
γ ↦−→ tr ρ(γ), where tr denotes the trace function. The character χρ is constant on 
each conjugacy class. A function ϕ : Γ −→ C is called a class function if ϕ is constant 
on each conjugacy class. For functions ϕ, ψ : Γ −→ C, define the inner product (ϕ, ψ) by

(ϕ, ψ) = 1 
#Γ

∑︂
γ∈Γ

ϕ(γ)ψ(γ),

where z̄ denotes the complex conjugate of z ∈ C. Let χ1, . . . , χk be the set of all irre
ducible characters of Γ . Then χ1, . . . , χk form an orthonormal basis of the space of class 
functions. In particular, (χi, χj) = δij . Thus, if a class function χ is expressed as a linear 
combination of irreducible characters χ = m1χ1+ · · ·+mkχk, then we have mi = (χ, χi).

Let Γ ′ be a subgroup of Γ . The restriction of a class function χ : Γ −→ C to Γ ′ is 
clearly a class function on Γ ′, which is denoted by ResΓΓ ′ χ : Γ ′ −→ C. Conversely, for a 
class function φ : Γ ′ −→ C, define the induced function IndΓ

Γ ′ φ : Γ −→ C by

(︂
IndΓ

Γ ′ φ
)︂

(γ) = 1 
#Γ ′

∑︂
η∈Γ

η−1γη∈Γ ′

φ(η−1γη). (4)

These two operators are related by the following Frobenius reciprocity:
(︂
χ, IndΓ

Γ ′ φ
)︂

=
(︂
ResΓΓ ′ χ, φ

)︂
. (5)

Recall that the representation ring R(Γ ) of Γ is 
⨁︁

V Z[V ]/∼, where V runs over all 
finite-dimensional representations of Γ , and ∼ is an equivalence relation generated by 
[V ] ∼ [V ′] for isomorphic representations V ≃ V ′ and [V1 ⊕ V2] ∼ [V1] + [V2]. The multi
plication is defined by [V1] · [V2] = [V1 ⊗ V2]. The character gives a natural isomorphism 
of abelian groups

R(Γ ) ≃ Zχ1 ⊕ · · · ⊕ Zχk.

The trivial representation ρ1 is the unit element in R(Γ ). The character of ρ1 is denoted 
by 1.
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Suppose that Γ acts on a finite set X. Let CX denote the vector space based on 
X, that is, CX =

⨁︁
x∈X Cx. This gives rise to a natural representation ρX : Γ −→

GL(CX), which is called the permutation representation of X. In the case of X = Γ with 
action defined by the left multiplication, it is called the regular (standard) representation, 
denoted by ρR. Note that the character χR of the regular representation satisfies the 
following.

χR =
k∑︂

i=1 
χi(1)χi, χR(γ) =

{︄
#Γ if γ = 1; 
0 otherwise.

For x ∈ X, the Γ -orbit Γ (x) and the isotropy subgroup Γx are defined as follows:

Γ (x) = { γx ∈ X | γ ∈ Γ } ,
Γx = { γ ∈ Γ | γx = x } .

2.2. Multiplicities of irreducible decompositions

Let L be a lattice, and {β1, . . . , βℓ} be a Z-basis of L, that is, L = Zβ1⊕· · ·⊕Zβℓ ≃ Zℓ. 
We identify an element x = x1β1 + · · · + xℓβℓ of L with the row vector x = (x1, . . . , xℓ)
of Zℓ.

Let Γ be a finite group. Let ρ : Γ −→ GL(L) be a group homomorphism. Let us 
denote the representation matrix of ρ(γ) by Rγ , and we consider the right multiplication, 
namely,

ρ(γ) : L −→ L, x ↦−→ xRγ .

For q ∈ Z>0, define Zq := Z/qZ. We will consider the following q-reduction of x =
(x1, . . . , xℓ) ∈ Zℓ:

[x]q := ([x1]q, . . . , [xℓ]q) ∈ Zℓ
q,

where [xi]q = xi + qZ ∈ Zq. We similarly consider the q-reduction of an integer matrix 
A = (aij)ij :

[A]q := ([aij ]q)ij .

Let φ : Zℓ −→ Zℓ be a Z-homomorphism represented by an ℓ× ℓ integer matrix A. We 
can define the induced morphism φq : Zℓ

q −→ Zℓ
q by

x ↦−→ x[A]q.

Let Lq := L/qL ≃ (Z/qZ)ℓ. The action of Γ on Lq is induced by ρ(γ)q : Lq −→ Lq. 
Let χLq

denote the character of the permutation representation of Lq, and consider its 
irreducible decomposition:
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χLq
= m(χ1; q) · χ1 + · · · + m(χk; q) · χk,

where m(χi; q) denotes the multiplicity of χi in χLq
. Since χLq

(γ) is equal to the number 
of elements in Lq fixed by γ ∈ Γ , we have

m(χi; q) = (χi, χLq
) = 1 

#Γ

∑︂
γ∈Γ

χi(γ)χLq
(γ) = 1 

#Γ

∑︂
γ∈Γ

χi(γ) · #Lγ
q , (6)

where Lγ
q := { x ∈ Lq | γx = x }. Thus, by studying the properties of #Lγ

q , we can deter
mine how m(χi; q) depends on q. Note that for the trivial character 1, the multiplicity 
m(1; q) represents the number of Γ -orbits of Lq, according to Burnside’s lemma.

The fixed point set Lγ
q is expressed as

Lγ
q = { x ∈ Lq | γx = x }

= { x ∈ Lq | x[Rγ ]q = x }
= { x ∈ Lq | x[Rγ − Iℓ]q = 0 } ,

where Iℓ is the identity matrix of size ℓ. Therefore, Lγ
q is equal to the kernel of the 

induced morphism (ρ(γ) − id)q. The cardinality of the kernel of this morphism is known 
to be quasi-monomial, as shown in [4]:

Lemma 2.1 ([4, Lemma 2.1]). Let φ : Zℓ −→ Zℓ be a Z-homomorphism. Then the 
cardinality of the kernel of the induced morphism φq : Zℓ

q −→ Zℓ
q is a quasi-monomial 

in q. Furthermore, suppose φ is represented by a matrix A. Then the quasi-monomial 
# kerφq can be expressed as

# kerφq =

⎛
⎝ r∏︂

j=1
gcd{ej , q}

⎞
⎠ qℓ−r, (7)

where r := rankA and e1, . . . , er ∈ Z>0, with e1 | e2 | · · · | er, are the elementary divisors 
of A. Hence, the quasi-monomial # kerφq has the gcd-property and the minimum period 
er. If r = 0, we consider e0 to be 1.

Proof. Here, we only review quasi-monomiality. For further details, see [4, Lemma 2.1].
Since # kerφq = qℓ/# imφq, we will study # imφq. Consider the Smith normal form

SAT =

⎛
⎜⎜⎝
e1

. . .
er

O

⎞
⎟⎟⎠ , r = rankA, e1, . . . , er,∈ Z>0, e1 | e2 | · · · | er,
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where S and T are ℓ × ℓ unimodular matrices. Since unimodularity is preserved under 
q-reductions, we may assume that A is a diagonal matrix diag(e1, . . . , er, 0, . . . , 0) from 
the outset. Then, for x = (x1, . . . , xℓ) ∈ Zℓ

q, we have

φq(x) = ([e1]qx1, . . . , [er]qxr, 0, . . . , 0)

and hence imφq = [e1]qZq × · · · × [er]qZq. Therefore,

# imφq = qr∏︁r
j=1 gcd{ej , q} ,

and we obtain (7). □
Corollary 2.2. The multiplicity m(χi; q) of χi in χLq

is a quasi-polynomial in q. More 
explicitly,

m(χi; q) = 1 
#Γ

∑︂
γ∈Γ

χi(γ) ·
⎛
⎝r(γ)∏︂

j=1 
gcd{eγ,j , q}

⎞
⎠ qℓ−r(γ), (8)

where r(γ) := rank (Rγ − Iℓ) and eγ,1, . . . , eγ,r(γ) ∈ Z>0 with eγ,1 | eγ,2 | · · · | eγ,r(γ), are 
the elementary divisors of Rγ − Iℓ.

Proof. The equation (8) is given by (6) and (7). □
Next, we present some properties of m(χi; q).

Proposition 2.3. The quasi-polynomial m(χi; q) has the gcd-property with a period

ñ := lcm { eγ,r(γ) | γ ∈ Γ } .

Furthermore, the minimum period of the quasi-polynomial m(1; q) is equal to ñ.

Remark 2.4. If χi is not trivial, we do not know whether ñ is the minimum period.

Proof. Let γ ∈ Γ be an element that is not the identity, and let eγ,1, . . . , eγ,r(γ) be the 
elementary divisors of Rγ − Iℓ. Since eγ,j divides ñ for j ∈ {1, . . . , r(γ)}, we have

r(γ)∏︂
j=1 

gcd{eγ,j , q} =
r(γ)∏︂
j=1 

gcd{eγ,j , ñ, q} =
r(γ)∏︂
j=1 

gcd {eγ,j , gcd{ñ, q}} .

Hence m(χi; q) depends on q only through gcd{ñ, q}, which means that ñ is a period of 
m(χi; q).
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Let g1(t), . . . , gñ(t) ∈ Z[t] denote the constituents of the quasi-polynomial m(1; q). 
Since ñ is divisible by eγ,r(γ) for all γ ∈ Γ , we have

gñ(t) = 1 
#Γ

∑︂
γ∈Γ

⎛
⎝r(γ)∏︂

j=1 
eγ,j

⎞
⎠ tℓ−r(γ) (9)

from equation (8). Suppose that s < ñ = lcm { eγ,r(γ) | γ ∈ Γ }. Then there exists γ ∈ Γ

such that gcd{eγ,r(γ), s} ̸= eγ,r(γ). Since gcd{eγ,j , s} ≤ eγ,j for any γ ∈ Γ and j ∈
{1, . . . , r(γ)}, we conclude that

gs(t) = 1 
#Γ

∑︂
γ∈Γ

⎛
⎝r(γ)∏︂

j=1 
gcd{eγ,j , s}

⎞
⎠ tℓ−r(γ) ̸= gñ(t)

by the equations (8) and (9), and hence s is not a period. Therefore, ñ is the minimum 
period of m(1; q). □
Proposition 2.5. The leading term of the quasi-polynomial m(χi; q) is χi(1)

#Γ q
ℓ.

Proof. Since ρ is injective, r(γ) = 0 holds if and only if γ is the identity. Therefore, by 
Corollary 2.2, the leading term of m(χi; q) is qℓ with the coefficient χi(1)

#Γ . □
2.3. Permutation representations

Since each multiplicity m(χi; q) is a quasi-polynomial, the quasi-polynomiality of the 
function F : q ↦−→ χLq

follows immediately. The following theorem is the main result of 
this paper.

Theorem 2.6 (Restatement of Theorem   1.3). Consider the function F : Z>0 −→ R(Γ )
defined by q ↦−→ χLq

. Then F is a quasi-polynomial of degree ℓ. Furthermore, F has the 
gcd-property, the minimum period ñ, and the leading coefficient of the quasi-polynomial 
χLq

is χR
#Γ .

Proof. By equation (8), we have

F (q) = χLq

=
k∑︂

i=1 
m(χi; q) · χi

= 1 
#Γ

k∑︂
i=1 

∑︂
γ∈Γ

χi(γ) ·
⎛
⎝r(γ)∏︂

j=1 
gcd{eγ,j , q}

⎞
⎠ · χi · qℓ−r(γ) ∈ R(Γ )[q],
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hence F is a quasi-polynomial with the gcd-property. Since m(χi; q) has a period ñ
for any i ∈ {1, . . . , k}, and especially ñ is the minimum period of m(1; q), the quasi
polynomial F has the minimum period ñ.

By Proposition 2.5, the leading term of each multiplicity m(χi; q) is χi(1)
#Γ q

ℓ. Thus, 
we have

k∑︂
i=1 

χi(1)
#Γ 

· χi · qℓ = χR

#Γ
qℓ

as the leading term of F . □
2.4. Number of orbits

In this section, we prove the quasi-polynomiality of the number of Γ -orbits. First, we 
describe the permutation character χΓ (x) on the Γ -orbit Γ (x) of x ∈ Lq.

Lemma 2.7. Let Γ (x) denote the Γ -orbit of x ∈ Lq. Then we have

χΓ (x)(γ) = #Γ (x)γ =
(︂
IndΓ

Γx
1
)︂

(γ).

Proof. An element ηx of Γ (x) is fixed by γ if and only if η−1γη fixes x. Thus, the 
cardinality of Γ (x)γ is

#Γ (x)γ = # { η ∈ Γ | η−1γη ∈ Γx }
#Γx

.

On the other hand, it follows directly that the above expression is equal to 
(︂
IndΓ

Γx
1
)︂

(γ):

(︂
IndΓ

Γx
1
)︂

(γ) = 1 
#Γx

∑︂
η∈Γ

η−1γη∈Γx

1(η−1γη) = # { η ∈ Γ | η−1γη ∈ Γx }
#Γx

. □

For a character λ of a 1-dimensional representation of Γ and q ∈ Z>0, let fL/Γ (λ; q)
denote the number of Γ -orbits on Lq whose isotropy subgroup is contained in the sub
group λ−1(1) of Γ . Using the Frobenius reciprocity (5), we obtain the following lemma.

Lemma 2.8. Let λ be a character of a 1-dimensional representation of Γ . For q ∈ Z>0, 
we have

fL/Γ (λ; q) = (λ, χLq
) = m(λ; q).

Proof. Note that the second equality is the definition of m(λ; q).
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Note that the permutation character χLq
can be decomposed into a sum of all per

mutation characters of Γ -orbit on Lq:

χLq
=

∑︂
Γ (x) : Γ -orbit

χΓ (x).

By Lemma 2.7 and Frobenius reciprocity (5), we have

(λ, χLq
) =

∑︂
Γ (x) : Γ -orbit

(λ, χΓ (x))

=
∑︂

Γ (x) : Γ -orbit

(︂
λ, IndΓ

Γx
1
)︂

=
∑︂

Γ (x) : Γ -orbit

(︂
ResΓΓx

λ, 1
)︂
.

Since ResΓΓx
λ is a character of a 1-dimensional representation of Γx, the orthogonality 

of irreducible characters implies that

(︂
ResΓΓx

λ, 1
)︂

=
{︄

1 Γx ⊆ λ−1(1);
0 otherwise.

Therefore, we have (λ, χLq
) = fL/Γ (λ; q). □

Corollary 2.9 (Restatement of Corollary   1.4). The function fL/Γ (λ; −) : Z>0 −→ Z is 
a quasi-polynomial of degree ℓ and it has the gcd-property.

Proof. This follows from Corollary 2.2 and Lemma 2.8. □
2.5. Reciprocity for the multiplicities

Let ρ : Γ −→ GL(L) be a representation and Rγ the representation matrix of ρ(γ). 
Define the function δρ : Γ −→ C by

δρ(γ) := (−1)r(γ),

where r(γ) = rank(Rγ − Iℓ). The following lemma shows that δρ(γ) = detRγ and that 
δρ is an irreducible character of Γ .

Lemma 2.10 ([10, Lemma 5.5]). Let R ∈ GLn(R) be a real matrix of finite order. Let 
r := rank(R− In). Then detR = (−1)r.

Proof. Since R is finite order, it is diagonalizable (in C), and we can write R = PDP−1, 
where P,D ∈ GLn(C) with D diagonal. Clearly, rank(R − In) = rank(D − In). Thus, r
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is the number of diagonal entries of D that are not equal to 1. Since R is a real matrix, 
the set of eigenvalues is closed under complex conjugation. The finiteness of the order 
implies that all the eigenvalues have absolute value 1. Therefore, the diagonal entries of 
D are as follows (with multiplicities):

1p1 , (−1)p2 , αq1
1 , αq1

1 , αq2
2 , αq2

2 , . . . , αqm
m , αqm

m ,

with pi, qj ∈ Z and |αj | = 1. Hence, we have

r = p2 + 2(q1 + q2 + · · · + qm),

and detD = (−1)p2 . Thus, detR = (−1)r. □
The quasi-polynomials m(χi ⊗ δρ; q) and m(χi; q) are connected by the following 

formula.

Theorem 2.11 (Reciprocity theorem, restatement of Theorem   1.5). The following formula 
holds for an irreducible character χi of Γ :

m(χi ⊗ δρ; q) = (−1)ℓm(χi; −q). (10)

Proof. Using (8), we have

m(χi ⊗ δρ; q) = 1 
#Γ

∑︂
γ∈Γ

(χi ⊗ δρ)(γ) ·
⎛
⎝r(γ)∏︂

j=1 
gcd{eγ,j , q}

⎞
⎠ qℓ−r(γ)

= 1 
#Γ

∑︂
γ∈Γ

χi(γ)(−1)r(γ) ·
⎛
⎝r(γ)∏︂

j=1 
gcd{eγ,j , q}

⎞
⎠ qℓ−r(γ)

= (−1)ℓ · 1 
#Γ

∑︂
γ∈Γ

χi(γ) ·
⎛
⎝r(γ)∏︂

j=1 
gcd{eγ,j ,−q}

⎞
⎠ (−q)ℓ−r(γ)

= (−1)ℓm(χi; −q). □
Note that the map F (q) = χLq

defined in Theorem 2.6 can be extended to F : Z −→
R(Γ ) as a quasi-polynomial.

Corollary 2.12 (Restatement of Corollary   1.6). The quasi-polynomial F : Z −→ R(Γ )
satisfies

F (q) = (−1)ℓδρF (−q).
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Proof. By Theorem 2.11, it follows that

F (q) = χLq
=

k∑︂
i=1 

m(χi; q) · χi

=
k∑︂

i=1 
(−1)ℓm(χi ⊗ δρ; −q) · χi

= (−1)ℓ
k∑︂

i=1 
m(χi; −q)(χi ⊗ δρ)

= (−1)ℓδρF (−q). □
2.6. Examples

We present some simple examples involving cyclic groups and symmetric groups.

Example 2.13. Let Γ := Z/6Z be a cyclic group of order 6 generated by σ. Let χ : Γ −→
C be the function that sends σ to ζ6 := e

2π
√−1
6 . Then the irreducible characters of Γ are 

{χ, . . . , χ5, χ6 = 1}, where 1 is the character of the trivial representation of Γ . Consider 
the action of Γ on L := Z2 given by

σ ↦−→ Rσ :=
(︃

0 1
−1 1

)︃
.

Note that this setting is same as in [10, Example 6.11].
To compute χLq

, we need to compute the rank and the elementary divisors of Rσi −Iℓ
for each i ∈ {1, . . . , 5}. They are as follows:

r(σi) = 2 for all i ∈ {1, . . . , 5}, (eσ1,1, eσ1,2) = (eσ5,1, eσ5,2) = (1, 1),

(eσ2,1, eσ2,2) = (eσ4,1, eσ4,2) = (1, 3), (eσ3,1, eσ3,2) = (2, 2).

Hence, we obtain the multiplicity m(χj ; q) as follows:

m(χ1; q) = m(χ5; q) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
6(q2 − 1) gcd{6, q} = 1;

1
6(q2 − 4) gcd{6, q} = 2;

1
6(q2 − 3) gcd{6, q} = 3;

1
6(q2 − 6) gcd{6, q} = 6,
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m(χ2; q) = m(χ4; q) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
6(q2 − 1) gcd{6, q} = 1;

1
6(q2 + 2) gcd{6, q} = 2;

1
6(q2 − 3) gcd{6, q} = 3;

1
6q

2 gcd{6, q} = 6,

m(χ3; q) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
6(q2 − 1) gcd{6, q} = 1;

1
6(q2 − 4) gcd{6, q} = 2;

1
6(q2 + 3) gcd{6, q} = 3;

1
6q

2 gcd{6, q} = 6,

m(1; q) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
6(q2 + 5) gcd{6, q} = 1;

1
6(q2 + 8) gcd{6, q} = 2;

1
6(q2 + 9) gcd{6, q} = 3;

1
6(q2 + 12) gcd{6, q} = 6.

In this case, since δρ = 1, it follows that m(χj ; q) = m(χj ; −q) for j ∈ {1, . . . , 6}.
We also obtain χLq

as

χLq
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
6

(︂
χRq

2 + 6(1) − χR

)︂
gcd{6, q} = 1;

1
6

(︂
χRq

2 + 12(1) + 6(χ2 + χ4) − 4χR

)︂
gcd{6, q} = 2;

1
6

(︂
χRq

2 + 12(1) + 6χ3 − 3χR

)︂
gcd{6, q} = 3;

1
6

(︂
χRq

2 + 18(1) + 6(χ2 + χ3 + χ4) − 6χR

)︂
gcd{6, q} = 6,

where χR = χ + · · · + χ6 is the regular character of Γ .

Example 2.14. As in the previous example, we consider the cyclic group Γ = Z/6Z. The 
action of Γ on L := Z3 is given by

σ ↦−→ Rσ :=
(︄−1 −1 0

1 0 0
0 0 −1

)︄
.
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By computing in the same way, we obtain the following:

r(σ1) = r(σ5) = 3, r(σ2) = r(σ4) = 2, r(σ3) = 1,

(eσ1,1, eσ1,2, eσ1,3) = (eσ5,1, eσ5,2, eσ5,3) = (1, 1, 6),

(eσ2,1, eσ2,2) = (eσ4,1, eσ4,2) = (1, 3), eσ3,1 = 2,

and

m(χ1; q) = m(χ5; q) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
6(q3 − q2 − q + 1) gcd{6, q} = 1;

1
6(q3 − 2q2 − q + 2) gcd{6, q} = 2;

1
6(q3 − q2 − 3q + 3) gcd{6, q} = 3;

1
6(q3 − 2q2 − 3q + 6) gcd{6, q} = 6,

m(χ2; q) = m(χ4; q) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
6(q3 + q2 − q − 1) gcd{6, q} = 1;

1
6(q3 + 2q2 − q − 2) gcd{6, q} = 2;

1
6(q3 + q2 − 3q − 3) gcd{6, q} = 3;

1
6(q3 + 2q2 − 3q − 6) gcd{6, q} = 6,

m(χ3; q) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
6(q3 − q2 + 2q − 2) gcd{6, q} = 1;

1
6(q3 − 2q2 + 2q − 4) gcd{6, q} = 2;

1
6(q3 − q2 + 6q − 6) gcd{6, q} = 3;

1
6(q3 − 2q2 + 6q − 12) gcd{6, q} = 6,

m(1; q) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
6(q3 + q2 + 2q + 2) gcd{6, q} = 1;

1
6(q3 + 2q2 + 2q + 4) gcd{6, q} = 2;

1
6(q3 + q2 + 6q + 6) gcd{6, q} = 3;

1
6(q3 + 2q2 + 6q + 12) gcd{6, q} = 6.

In this case, δρ = χ3. Then, we have m(χ1; q) = −m(χ4; −q) and m(χ3; q) =
−m(1; −q).
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We also obtain χLq
as follows:

χLq
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
6

(︂
χRq

3+
(︁
(1−χ3)−(χ15−χ24)

)︁
q2+

(︁
2(1+χ3)−(χ15+χ24)

)︁
q

−(︁
2(1−χ3)+(χ15−χ24)

)︁)︂
gcd{6, q}=1;

1
6

(︂
χRq

3+2
(︁
(1−χ3)−(χ15−χ24)

)︁
q2+

(︁
2(1+χ3)−(χ15+χ24)

)︁
q

−2
(︁
2(1−χ3)+(χ15−χ24)

)︁)︂
gcd{6, q}=2;

1
6

(︂
χRq

3+
(︁
(1−χ3)−(χ15−χ24)

)︁
q2+3

(︁
2(1+χ3)−(χ15+χ24)

)︁
q

−3
(︁
2(1−χ3)+(χ15−χ24)

)︁)︂
gcd{6, q}=3;

1
6

(︂
χRq

3+2
(︁
(1−χ3)−(χ15−χ24)

)︁
q2+3

(︁
2(1+χ3)−(χ15+χ24)

)︁
q

−6
(︁
2(1−χ3)+(χ15−χ24)

)︁)︂
gcd{6, q}=6,

where χ15 := χ1 + χ5 and χ24 := χ2 + χ4. Since

δρ(1 ± χ3) = (χ3 ± 1), δρ(χ15 ± χ24) = χ24 ± χ15,

one can easily verify that Corollary 2.12 holds.

Example 2.15. Let Γ := 𝔖3 be the symmetric group of degree 3, which is also the Weyl 
group of type A2. The group Γ has three irreducible characters: the trivial character 
1, the determinant character δ and the character χ of the 2-dimensional irreducible 
representation. Consider the (co)root lattice L := Z(e1 − e2)⊕Z(e2 − e3). The group Γ
acts on L as a permutation of { e1, e2, e3 }.

Note that we only need to calculate the rank and the elementary divisors for the 
representative of each conjugacy class. Choose the representatives τ := (1 2) and σ :=
(1 2 3). The representation matrices are given by

Rτ =
(︃−1 1

0 1

)︃
, Rσ =

(︃
0 −1
1 −1

)︃

Thus, we have

r(τ) = 1, r(σ) = 2, eτ,1 = 1, (eσ,1, eσ,2) = (1, 3).

Therefore, we obtain

m(1; q) =

⎧⎪⎨
⎪⎩

1
6(q2 + 3q + 2) gcd{3, q} = 1;

1
6(q2 + 3q + 6) gcd{3, q} = 3,
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m(δ; q) =

⎧⎪⎨
⎪⎩

1
6(q2 − 3q + 2) gcd{3, q} = 1;

1
6(q2 − 3q + 6) gcd{3, q} = 3,

m(χ; q) =

⎧⎪⎨
⎪⎩

1
6(2q2 − 2) gcd{3, q} = 1;

1
6(2q2 − 6) gcd{3, q} = 3.

In this case, δρ = δ. Hence, we have m(1; q) = m(δ; −q) and m(χ; q) = m(χ; −q).
We also obtain χLq

as

χLq
=

⎧⎪⎪⎨
⎪⎪⎩

1
6

(︂
χRq

2 + 3(1− δ)q + 2(1 + δ − χ)
)︂

gcd{3, q} = 1;

1
6

(︂
χRq

2 + 3(1− δ)q + 6(1 + δ − χ)
)︂

gcd{3, q} = 3,

where χR = 1 + δ + 2χ. As Haiman mentions in [3, §7.4], the multiplicity m(1; q) is 
equal to the Ehrhart quasi-polynomial LA◦(q) = #(qA◦ ∩ L) of the fundamental alcove 
A◦ of type A2.

Note that the first author, in [12, §3], computed χLq
in the setting where the Weyl 

group acts on the coroot lattice L for general classical root systems.
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