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ARTICLE INFO ABSTRACT

Prof. Andrew Hazel We have developed TTNOpt, a software package that utilizes tree tensor networks (TTNs) for quantum spin sys-
tems and high-dimensional data analysis. TTNOpt provides efficient and powerful TTN computations by locally
optimizing the network structure, guided by the entanglement pattern of the target tensors. For quantum spin
systems, TTNOpt searches for the ground state of Hamiltonians with bilinear spin interactions and magnetic
fields, and computes physical properties of these states, including the variational energy, bipartite entanglement
entropy (EE), single-site expectation values, and two-site correlation functions. Additionally, TTNOpt can target
the lowest-energy state within a specified subspace, provided that the Hamiltonian conserves total magnetization.
For high-dimensional data analysis, TTNOpt factorizes complex tensors into TTN states that maximize fidelity
to the original tensors by optimizing the tensors and the network. When a TTN is provided as input, TTNOpt
reconstructs the network based on the EE without referencing the fidelity of the original state. We present three
demonstrations of TTNOpt: (1) Ground-state search for the hierarchical chain model with a system size of 256.
The entanglement patterns of the ground state manifest themselves in a tree structure, and TTNOpt successfully
identifies the tree. (2) Factorization of a quantic tensor of the 22 dimensions representing a three-variable func-
tion where each variant has a weak bit-wise correlation. The optimized TTN shows that its structure isolates the
variables from each other. (3) Reconstruction of the matrix product network representing a 16-variable normal
distribution characterized by a tree-like correlation structure. TTNOpt can reveal hidden correlation structures
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of the covariance matrix.

1. Introduction

Tensors, as multidimensional arrays, are widely used across various
computational sciences, including condensed matter physics, big data
analytics, and machine learning. A fundamental difficulty with manipu-
lating tensors is that the number of tensor elements grows exponentially
with the tensor rank N. One promising approach to overcoming this
challenge is to employ the tensor network (TN) representation (decom-
position), in which the tensor of interest is expressed as a contraction of
small, low-rank tensors [3]. By setting an upper bound y on the dimen-
sions of each index (mode), which is referred to as auxiliary bonds, in
O(N) small tensors during factorization, the total number of elements in
the TN can be reduced to O(N x?) where p reflects the maximum rank of
small tensors. TNs have found broad applications in condensed matter
physics and data science. In the former, high-rank tensors, such as wave
functions and Boltzmann weights, are handled within the TN frame-
work [4,5]. In the latter, TNs are utilized for representing complex data,
including images [6,7]. Further expanding their applications are partic-
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ularly in machine learning [8-10]. Quantic tensors have been used for
enabling the treatment of functions with continuous variables [11,12].
So far, several types of TN structures have been developed, particularly
in the quantum many-body physics [13-16].

PROGRAM SUMMARY
Program Title: TTNOpt
CPC Library link to program files: (to be added by Technical Editor)
Developer’s repository link: Reference [1]
Licensing provisions: Apache 2.0
Programming language: Python
External routines/libraries: Reference [2]
Nature of problem:
Characterizing the entanglement structure of the lowest energy state of
quantum spin systems and of high-dimensional tensor data, for efficient
representation.
Solution method:
Tensor network contractions combined with a variational algorithm
based on the Lanczos method, with automatic structural optimization
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\begin {align}\label {eq:xxz:hamiltonian} H_{\text {XXZ}} &= \sum _{i,j(>i)} J_{ij}\left ( s_i^x s_j^x + s_i^y s_j^y + \Delta ^z_{ij} s_i^z s_j^z \right )~, \\ \label {eq:xyz:hamiltonian} H_{\text {XYZ}} &= \sum _{i,j(>i)} \left (J^x_{ij} s_i^x s_j^x + J^y_{ij} s_i^y s_j^y + J_{ij}^z s_i^z s_j^z\right )~,\end {align}


$\bm s_i =(s^x_i,s^y_i,s^z_i)$


$i$


$N$


$\{J_{ij}, \Delta ^z_{ij}\}$


$\{ J^x_{ij}, J^y_{ij}, J^z_{ij} \}$


$i$


$j$


${\bm s}_i$


\begin {equation}\label {eq:magnetic field} H_{{\rm {h}}_{\alpha }} = \sum _{i} - {\rm {h}}^{\alpha }_i s^\alpha _i~,\end {equation}


\begin {equation}\label {eq:single-ion anisotropy} H_{\rm {D}} = \sum _{i} {\rm {D}}_i (s^z_i)^2 ~,\end {equation}
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\begin {equation}\label {eq:truncated singular values} \Delta = 1 - \sum ^{\chi }_{c=1} (D_c)^2.\end {equation}
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$(H, \bm {E}, o_{\rm c}, \chi _{\rm {init}})$


$\triangleright $


$m = 1$


$\mathfrak {m}$


$c:=0$


$n = 1$


$n_{\max ,m}$


$\bm {E}, \bm {v}, \mathfrak {D}, \bm {\tilde {S}}, \bm {\tilde {H}}, \mathfrak {E}, \mathfrak {S} :=$


$(\bm E, \bm {e}, o_{\rm c},\bm {v}, \mathfrak {D}, \tilde {\bm {S}}, \tilde {\bm {H}},\chi _m)$


$\triangleright $


$\mathfrak {E}, \mathfrak {S}$


$n>1$


${\bm {E}_b} = \bm {E}_b'$


$b \in [0, N_{\rm t}-1]$


$|1 - \frac {\mathfrak {E}_b}{\mathfrak {E}'_b}| < \epsilon _{\rm E}$


$b \in [N, 2N_{\rm t}]$


$|\mathfrak {S}_b - \mathfrak {S}'_b| < \epsilon _{\mathcal {S}}$


$b\in [0,2N_{\rm t}]$


$c := c + 1$


$c > l$


$c := 0$


$\bm {E}' := \bm {E}$


$\mathfrak {E}':=\mathfrak {E}$


$\mathfrak {S}':=\mathfrak {S}$


$\bm v$


$\bm E$


$e_{\rm c}$
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$\bm {E}, \bm {e}$


$\bm {v}$
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$\tilde {\bm S}:$


$\tilde {\bm {H}}:$
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$\chi $
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$\bm E, \bm {e}, o_{\rm c}, \bm {v}, \mathfrak {D}, \tilde {\bm {S}}, \tilde {\bm {H}}, \chi $


$e_{\rm c} := o_{\rm c}$


$\bm {f} := \{0 \mid f_e, {\rm where }~e \in \bm {e} \}$


$\bm {d} :=$


$(\bm {E}, \bm e, e_{\rm c})$


$\mathfrak {E} := \{ \}$


$\triangleright $


$\mathfrak {E}$


$\mathfrak {S} := \{ \}$


$\triangleright $


$\mathfrak {S}$


$(\bm {E}, e_{\rm c}, \bm f) \neq \{\}$


$e'_{\rm c}, t, t', t'' :=$


$(\bm {E}, e_{\rm c}, \bm {f}, \bm {d})$


$\triangleright $


$\left \{f_e = 1 \mid e \in \{ e^{(t'')}_1, e^{(t'')}_2\}\right \}$


$\triangleright $


$E_{t''} = (e^{(t'')}_1, e^{(t'')}_2, e^{(t'')}_3)$


$e_c \neq o_{\rm c}$


$f_{e_{\rm c}} := 1$


$\triangleright $


$e_{\rm c} = e^{(t'')}_{3}$


$\triangleright $


$f_{e_{\rm c}}$


$1$


$v_{t''}$


$\tilde {\Psi }$


$\tilde {\bm S}_{e_{\rm c}}$


$v_{t''}$


$\tilde {\bm {H}}_{e_{\rm c}}$


$v_{t''}$


$\tilde \Psi := v_{t} \circ {\mathfrak {D}} \circ v_{t'}$


$\triangleright $


$\circ $


$\bm {E}_t$


$\bm {E}_{t'}$


$\tilde \Psi , {\rm E} :=$


$(\tilde \Psi , \tilde {\bm S}, \tilde {\bm {H}})$


$\mathfrak {E}_{e'_{\rm c}} := \rm {E}$


$v_t, {\mathfrak {D}}, v_{t'}, \mathcal {S} :=$


$(\tilde {\Psi }, \chi )$


$\mathfrak {S}_{e'_{\rm c}} := \mathcal {S}$


$\triangleright $


$\mathcal {S}$


$r \in \{ e^{(t)}_1,e^{(t)}_2,e^{(t')}_1,e^{(t')}_2\}$


$r \in [0, N-1]$


$\mathcal {S}_{r} :=$


$(\tilde {\Psi }, r)$


$\triangleright $


${\Big [\rho \Big ]}_{p_1p'_1} = \sum \limits _{p_2q_1q_2}{\Big [\tilde \Psi \Big ]}_{p_1p_2q_1q_2}{\Big [\tilde {\Psi }^* \Big ]}_{p'_1p_2q_1q_2}$


$p_1$


$s_r$
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$\rho $


$p_1$


${\Big [\rho \Big ]}_{p_1p'_1} = \sum _c{\Big [{\psi }\Big ]}_{p_1c}{\Big [\Lambda \Big ]}_{c}{\Big [\psi ^* \Big ]}_{cp'_1}$


$\mathcal {S} = -\sum _{c}\Lambda _{c}\ln {\Lambda _{c}}$


$\mathfrak {S}_{r} := \mathcal {S}_{r}$
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$\bm d := \{ 0 \mid d_e, {\rm {where}}~e \in \bm {e}\}$
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$\bm {c} := \{i \in \bm {c} \mid f_i = 0\}$
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$e_{\rm c}'$


$t, t', t''$
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$\bm {c} := \{e \in \bm {c} \mid d_e = d_{\max }\}$


$e'_{\rm c} := c_1$
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$v_{t''}$
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$v_t$
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$v_t$


$v'_t$


$\mathfrak {D}$


$e_c$


$\tilde {H}_{e^{(t)}_1e^{(t)}_2e^{(t')}_1e^{(t')}_2}$
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${\Big [\tilde {\Psi }_{e^{(t)}_1 e^{(t)}_2e^{(t')}_1e^{(t')}_2}\Big ]}_{p_1p_2q_1q_2}$


$\{p_1, p_2, q_1, q_2\}$


$\{e^{(t)}_1, e^{(t)}_2, e^{(t')}_1, e^{(t')}_2 \}$


$\tilde \Psi _{e^{(t)}_1 e^{(t)}_2e^{(t')}_1e^{(t')}_2}$


$(p_1p_2 \mid q_1q_2)$


$(p_1q_2 \mid p_2q_1)$


$(p_1q_1 \mid p_2q_2)$


$O(\chi ^6)$


\begin {align}\label {eq:entanglements} \mathcal {S}^{(p_1p_2\mid q_1q_2)} &= - \sum _{c} (D_c)^2 \ln {(D_c)^2}, \nonumber \\ \mathcal {S}^{(p_1q_2 \mid p_2q_1)} &= - \sum _{c} (D'_c)^2 \ln {(D'_c)^2}, \nonumber \\ \mathcal {S}^{(p_1q_1 \mid p_2q_2)} &= - \sum _{c} (D''_c)^2 \ln {(D''_c)^2},\end {align}


\begin {align}\label {eq:SVDs} {\Big [\tilde \Psi _{{e^{(t)}_1 e^{(t)}_2e^{(t')}_1e^{(t')}_2}}\Big ]}_{p_1p_2q_1q_2} &= \sum _{c} {\Big [U\Big ]}^c_{p_1p_2} {\Big [D\Big ]}_c {\Big [V\Big ]}^c_{q_1q_2}, \nonumber \\ &= \sum _{c} {\Big [U'\Big ]}^c_{p_1q_2}{\Big [D'\Big ]}_c {\Big [V'\Big ]}^c_{p_2q_1}, \nonumber \\ &= \sum _{c} {\Big [U''\Big ]}^c_{p_1q_1} {\Big [D''\Big ]}_c {\Big [V''\Big ]}^c_{p_2q_2},\end {align}


$c$


$\chi ^2$
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$\mathcal {S}_{\rm {min}}$


$\mathcal {S}^{(p_1p_2|q_1q_2)}$


$|\mathcal {S}^{(p_1p_2 \mid q_1q_2)} - \mathcal {S}_{\rm {min}}| < \epsilon _{\mathcal {S}}$


$\epsilon _{\mathcal {S}}$


$\chi $


$\delta _{\mathcal {S}}$


\begin {align}\label {eq:stochastic selection} P^{(p_1p_2 \mid q_1q_2)} &\propto \exp \left [-\mathcal {S}^{(p_1p_2 \mid q_1q_2)} / T \right ]~, \nonumber \\ P^{(p_1q_2 \mid p_2q_1)} &\propto \exp \left [- \mathcal {S}^{(p_1q_2 \mid p_2q_1)} / T\right ]~, \nonumber \\ P^{(p_1q_1 \mid p_2q_2)} &\propto \exp \left [-\mathcal {S}^{(p_1q_1 \mid p_2q_2)} / T\right ]~,\end {align}
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$m>1$
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$\tilde \Psi $
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${\Big [\tilde {\Psi }\Big ]}_{p_1p_2q_1q_2}$


$(p, q) = (t'', t)$


$\{e^{(t)}_1, e^{(t)}_2, e^{(t'')}_1, e^{(t'')}_2\}$


$v_{p}$


$r$


\begin {equation}\label {eq:one site expectation value} \expval {s^{\alpha }_r} = \left \{\begin {array}{ll} \sum \limits _{p_1p_2q_1q_2p'_1} {\Big [ \tilde {\Psi }^{*} \Big ]}_{p_1p_2q_1q_2}{\Big [ \tilde {\Psi } \Big ]}_{p'_1p_2q_1q_2} \left [s^{(\alpha )}_r\right ]_{p_1p'_1} (r = e^{(p)}_1) \\\sum \limits _{p_1p_2q_1q_2p'_2} {\Big [ \tilde {\Psi }^{*} \Big ]}_{p_1p_2q_1q_2} {\Big [ \tilde {\Psi } \Big ]}_{p_1p'_2q_1q_2}\left [s^{(\alpha )}_r\right ]_{p_2p'_2} (r = e^{(p)}_2) \end {array}\right .,\end {equation}


$\alpha \in \{ x, y, z \}$


$r \in {\bm r^{(p)}_1}$


$r' \in {\bm r^{(p)}_2}$


\begin {equation}\label {eq:two site correlation} \expval {s_r^{\alpha }s_{r'}^{\beta }} = \sum _{p_1p_2q_1q_2p'_1p'_2} {\Big [\tilde {\Psi }^{*} \Big ]}_{p_1p_2q_1q_2} {\Big [\tilde {\Psi } \Big ]}_{p'_1p'_2q_1q_2} {\Big [\tilde {S}^{(\alpha )}_{e^{(p)}_1, r} \Big ]}_{p_1p'_1} {\Big [\tilde {S}^{(\beta )}_{e^{(p)}_2, r'} \Big ]}_{p_2p'_2},\end {equation}


$(\alpha , \beta ) \in \{x,y,z\}^{\otimes 2}$
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$(p, q) \in \{(t, t'), (t', t)\}$
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$r$


$(r, r')$


$r \in \{ {\bm r}^{(p)}_{1}, {\bm r}^{(p)}_{2} \}$


$r' \in \{ {\bm r}^{(q)}_{1}, {\bm r}^{(q)}_{2} \}$


$(r, r') = ({\bm r}^{(p)}_{1}, {\bm r}^{(q)}_{1})$


\begin {align}\label {eq:two site correlation origin} \expval {s_r^{(\alpha )}s_{r'}^{(\beta )}} = \sum _{\substack {p_1p_2q_1q_2\\p'_1q'_1}} {\Big [\tilde {\Psi }^{*}\Big ]}_{p_1p_2q_1q_2} {\Big [\tilde {\Psi }\Big ]}_{p'_1p_2q'_1q_2} {\Big [\tilde {S}^{(\alpha )}_{e^{(p)}_{1}, r} \Big ]}_{p_{1}p'_{1}} {\Big [\tilde {S}^{(\beta )}_{e^{(q)}_{1}, r'} \Big ]}_{q_{1}q'_{1}}.\end {align}
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$\Psi $


\begin {equation}\Psi := \frac {\Psi }{\sqrt {\sum \limits _{s_0,\ldots , s_{N-1}} {\Big [\Psi \Big ]}_{s_0, \ldots , s_{N-1}}{\Big [\Psi ^*\Big ]}_{s_0, \ldots , s_{N-1}}}}, \label {Xeqn18-28}\end {equation}
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\begin {equation}\label {eq:environment} \mathcal {E}_{e^{(p)}_1e^{(p)}_2e^{(q)}_1e^{(q)}_2} = \Psi \prod _{i \in [ 0, N_t-1] / \{ p, q \}} \circ ~v^*_i,\end {equation}


$\circ $


$\bm {E}$


\begin {equation}\label {eq:new:psi} {\Big [\tilde {\Psi } \Big ]}_{p_1p_2q_1q_2} := \frac {{\Big [\mathcal {E}\Big ]}_{p_1p_2q_1q_2}}{\sqrt { \sum \limits _{p_1p_2q_1q_2} {\Big [\mathcal {E}\Big ]}_{p_1p_2q_1q_2} {\Big [\mathcal {E}^*\Big ]}_{p_1p_2q_1q_2}}},\end {equation}
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\begin {equation}\label {eq:Hieralchical chain model} H = \sum _{h=0}^{{d}-1} \sum _{i \in I(h)} J \alpha ^h {\bm {s}}_i \cdot {\bm {s}}_{i+1},\end {equation}


$J>0$


$0 < \alpha \leq 1.0$
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\begin {equation}\label {eq:multivariable function} f({\bm {x}}) = \sum _{j=1}^n \cos \left (j {\bm {k}}_{j} \cdot {\bm {x}} \right )~,\end {equation}


$n = 30$


$\bm {x} = (x_1, x_2, x_3) \in [0, 1)^{\otimes 3}$


$\bm {k}_j = (k_{j,1}, k_{j,2}, k_{j,3})$
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\begin {equation}\label {eq:quantics variable} x_i = \sum ^{L}_{l=1} \frac {x_{i,l}}{2^{l}}~,\end {equation}
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(a) (%
Fig. 1. Examples of TTN structures: (a) a matrix product network (MPN) or ten-
sor train, (b) a rainbow structural network, (c) a perfect binary tree (PBT) net-
work, and (d) a general TTN. White circles represent tensors defined in Eq. (10),
while blue ones represent bare sites. Bare sites are arranged from left to right,
following the order of basis states (indices). Arrows indicate tensor indices and
point from the bare sites to the canonical center. These directions correspond
to the domain and codomain of the isometric mapping as Eq. (10). The red
square highlights the singular value tensor at the canonical center. Notably, the
position of the singular value tensor can be arbitrary under gauge transforma-

tions [17,18]. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

of tree tensor networks.

Restrictions:

Applicable to quantum spin systems and data that can be represented as
tensors.

Unusual features:

Adaptive structural reconfiguration of TTNs based on the system’s en-
tanglement pattern.

In this study, we focus on the tree-tensor networks (TTNs) [19-21],
which have no loop in their network structure; see Fig. 1 for the exam-
ples. The tree structure naturally allows us to impose the isometric con-
ditions on tensors, resulting in efficient contraction schemes [14,22,23].
In particular, the isometric conditions guarantee that a TTN can be
brought into the form of Schmidt decomposition across any bipartition
regions A and B:

1) = D" ) Uy DVeglw,) w2 @

pgq c

where U and V are unitaries, and D is the singular values tensor. Here,
TTN state |¥) belongs to the Hilbert space H = H, ® Hp, where { |u/p)A}
and {|y/q)B } are orthonormal bases of the Hilbert spaces H, and Hp,
respectively. This representation makes it possible to take the truncation
of D,. Additionally, the entanglement entropy (EE) of |¥) between A and
B can be calculated as

S =—Tr[palog (pa)] = —Tr [pglog (ps)]
== X(D) log(D,)* , @

where p, = Trz(I¥)(¥|) and pp = Tr ,('¥)(¥)).

While introducing truncation of D, by bounding the dimension of
tensors with ¢ € [1, y] on Eq. (1) reduces computational complexity, it
also leads to a loss of precision in the TTN representation. Therefore,
mitigating the loss of precision due to the finite bond dimension y is a
critical issue in the TN approach.

A promising solution to the problem is to optimize the network
structure. The following examples illustrate the relevance of the net-
work structure to the accuracy of the TTN approach. Let us consider
a quantum state with a one-dimensional (1D) entanglement pattern,
where the entanglement between qubits arranged in 1D is short-ranged
[Fig. 2(a)]. For this state, a Matrix Product Network (MPN) [24,25],
depicted in Fig. 1(a), also known as a tensor train [26], is a reason-
able choice. As a result, MPN-based approaches, such as the density-
matrix renormalization group (DMRG) method [27-29], works well
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Fig. 2. Examples of the entanglement structure of wavefunctions ¥: (a) a state
with a one-dimensional entanglement structure, and (b) a state with a rainbow
bell pairs structure.

for 1D quantum systems. As another example, consider a state in
which Bell-paired qubits are arranged in a rainbow pattern [30,31],
such as ®JN=/12 \/L§(|0)j|1)N+1,j +11);10) 541;) for even N, as shown in
Fig. 2(b). If the MPN is applied to represent this state accurately, the
canonical center in Fig. 1(a) must accommodate an exponentially large
dimension y with respect to N, in order to carry an amount of entangle-
ment equivalent to N /2 Bell pairs. The bonds with a constant dimension
 miss such a large amount of entanglement, resulting in a significant
loss of accuracy. This problem can be resolved by employing a TTN with
the structure shown in Fig. 1(b). Using the TTN with this appropriate
structure reduces the entanglement carried by each bond to that of, at
most, a single Bell pair, allowing the state to be represented accurately
with y = 2.

As demonstrated by the above examples, the network structure can
significantly affect the efficiency of the TTN approach [32-36]. Nev-
ertheless, identifying the optimal network structure remains a nontriv-
ial problem, particularly for states with complex entanglement distri-
butions. Several studies have been conducted to develop methods for
determining optimal TTN structures. Many of these works have focused
on optimizing the ordering of qudits in MPNs [37-41], while others have
attempted to explore optimal structures within TTNs [42,43].

An algorithm for searching the optimal TTN structure in variational
calculations of quantum many-body systems has been proposed [44].
This algorithm focuses on a particular bond in the TTN and recombines
the local network structure to minimize the entanglement brought by
that bond. By iterating this procedure while sweeping the entire net-
work, the algorithm explores the TTN with the optimized structure.
This algorithm has been proven effective for several quantum spin mod-
els [45,46], and data science [47].

In this work, we provide a software library for TTN calculations that
includes the optimization of network structures. The library consists of
three main packages:

(1) To perform the variational calculation for the lowest energy state of
quantum spin systems. TTNOpt provides the variational wave func-
tion with the optimized structure in the TTN format. It outputs the
optimized TTN, the variational energy, EE, and truncation error for
each bond in the TTN, as well as the expectation values of various
one- and two-spin functions. TTNOpt can treat a wide range of quan-
tum spin models. Namely, the Hamiltonian terms that can be handled
include the XXZ/XYZ exchange, Dzyaloshinskii-Moriya, and symmet-
ric off-diagonal exchange interactions for arbitrary spin pairs, as well
as external magnetic fields and single-ion anisotropy for arbitrary
spins. The interaction parameters can take different values depend-
ing on pairs or spins. The spin sizes can also be site-dependent. If
the model treated has the U(1) symmetry of conservation of total
magnetization, the user can specify the total magnetization of the
subspace in which the variational calculation is performed.

(2) To factorize or decompose a given high-dimensional tensor into a
TTN with the optimized structure. The user can input the tensor as a
multidimensional function. TTNOpt first decomposes the input ten-
sor into the MPN and then performs the TTN structural optimization
while maximizing the fidelity with the input tensor.

(3) To reconstruct the network of a given TTN. The user can input a ten-
sor represented in the TTN format. TTNOpt performs structural re-
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connection of the network for the TTN from the original input as the
initial TTN. While the TTN structure is optimized through sweeps,
the tensors are only updated by the singular value decomposition
(SVD).

Additionally, TTNOpt contains descriptions of sample calculations to
demonstrate its functionality and practical applications.

The structure of this paper is as follows. In Section 2, we give an
overview of the methods provided by TTNOpt and their basic usage.
We also describe the variables used for the calculation in detail. In Sec-
tion 3, we explain the implemented algorithms in TTNOpt. While the
explanation focuses on the structural optimization procedure proposed
in Ref. [44], we also discuss the numerical techniques for TTN manipu-
lations. Then, we showcase example benchmarks for each implemented
method in Section 4. Finally, Section 5 concludes with an outlook on
TTNOpt and explores prospective avenues for future development.

2. Basic usage of TTNOpt

Here, we provide a detailed explanation of how to use TTNOpt.
This section describes the input files required mainly for ground-state
searches and high-rank tensor factorizations. The sample input files for
the demonstrations discussed in Section 4, including those used for the
network reconstruction, are available in the “sample” directory of the
GitHub repository [1].

2.1. Ground state search

The TTNOpt package has been developed for finite-size spin systems,
including XXZ and XYZ Hamiltonians,

Hyyxz = 2 Jij (sl’.‘s;.‘ + s?’sj.’ +A’.stfsjz.) , 3
i,j(>i)
Hyy; = Z JEsYsY 4 TV sYsY + JEsEst “4)
Xvz = i85 55 S8 sy )
ij(>0)

where s; = (s7, s,.y ,57) Is a spin operator at i th site on an N-site system,
and {J; j,Afj} or {J,.’;,Jé,Jé} are the coupling parameters for the ex-
change interactions between the i th and j th spins. The size of spin s;
can be arbitrary for each site. In addition to the Hamiltonian Egs. (3)
and (4), TTNOpt can treat the interactions including magnetic field

Hy, =) —hfse, 5)
i
single-ion anisotropy
Hp = ZDi(sf)z , (6)
i
Dzyaloshinskii-Moriya (DM) interaction
Hpy, = ), DE(s; X s)" )
i,j(>i)
and symmetric off-diagonal exchange anisotropy
— (o] n <
Hyp, = FZ.(SI. i+ sj) , 8)
i,j(>i)
where a,¢,n € {x,y,z} and a # { # 1.
Regarding the whole Hamiltonian H = Hxxz + X ,e(xy.z) Hn, +
Hp + X eyt Hom, + Zaeir.yz) Hr,» if and only if it meets h = h =

Dy, = Diyj =I = F,.yj =TI}, =0, the Hamiltonian commutes with the op-
erator for the total magnetization of z axis:

M=, ©)

i.e., [H, M] =0, so that the U(1) symmetry is preserved. In this case,
TTNOpt provides a function to calculate the TTNs for the lowest-energy
state within the subspace labeled by M.
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2.1.1. How to set input files

Running the TTNOpt package requires the main input file and, if
necessary, several setting files. The main input file consists of system,
numerics, and output. The meaning of each section and the variables
used there are explained below.

system

This section requires users to specify the information of the Hamil-
tonian for the target system, including the number of spins, spin size,
and interactions in the Hamiltonian. TTNOpt requires users to prepare
a separate file to define the two-site interactions of Eq. (3) or (4). Other
additional terms Egs. (5)—(8) are not necessarily specified if they are not
present in the Hamiltonian. TTNOpt assumes that the input files are in
the “.dat” format.

e N (INTEGER):
The number of spins, N. Thus, TTN wave functions are tensors in
the vector product space of N local spin Hilbert spaces.

» spin_size (REAL or STRING)

The spin sizes s; defined for i € [0, N —1]. If a spin value s is
provided, it is applied uniformly across the entire system, i.e.,
s; = s for all i € [0, N — 1]. Alternatively, if a file path is provided,
TTNOpt imports the file, which must contain two columns: The first
column specifies the site index i, and the second column specifies
the corresponding spin value s;. Note that, in the case that the spin
size is a half-odd integer, TTNOpt does not accept decimal values
for spin settings, and only the fractional representations, such as
1/2 and 3/2, are allowed.

¢ model.type (XXZ or XYZ)
The basic interaction type, XXZ or XYZ interaction, that is respec-
tively given in Eq. (3) or (4).

¢ model.file (STRING)
The coupling parameters for the exchange interactions. Each row
contains two integers and two or three floats, where the first two
columns specify a pair of site indices i, j and subsequent columns
specify the coupling parameters J;, Aj; or J;},Js,.lii. according to
system.model.type.

e MF X (Y, Z) (REAL or STRING)
The magnetic field along the a direction (a = x, y, z) described in
Eq. (5). If a float value h is provided, it is applied uniformly across
the entire system, i.e., h¥ = h for i € [0, N — 1]. Alternatively, if the
path to a file is provided, TTNOpt imports the file, which must con-
tain two columns where the first and second columns specify, respec-
tively, the site i and the corresponding value h.

e SIA (REAL or STRING)
The single-ion anisotropy described in Eq. (6). If a float value D is
provided, the anisotropy is applied uniformly across the entire sys-
tem, i.e., D; = Dfori € [0, N — 1]. Alternatively, if the path to a file is
provided, TTNOpt imports the file, which must contain two columns
where the first and second columns specify, respectively, the site i
and the corresponding value D;.

e DM X (Y, Z) (STRING)
The Dzyaloshinskii-Moriya (DM) interaction described in Eq. (7).
TTNOpt requires a file with three columns to contain two integers
and a real value. The first two columns identify a pair of site indices
i, j, and the last column specifies Df‘/

e SOD X (Y, Z)(STRING)
The symmetric off-diagonal anisotropic exchange interaction de-
scribed in Eq. (8). TTNOpt requires a file with three columns to con-
tain two integers and a real value. The first two columns identify a
pair of site indices i, j, and the last column specifies I“;’/

numerics
This section requires users to specify the conditions and hyperpa-
rameters for the calculation, including the settings for the structural
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optimization algorithm and the maximum bond dimension of the TTN
states.

init_tree (0 or 1)

If this value is set to 0, the initial structure is set to the MPN. If it
is set to 1 and the system size is a power of 2, the initial structure
is set to the perfect binary tree (PBT) structure. Otherwise, the MPN
structure is used by default.

initial bond_dimension (INTEGER)

The maximum bond dimension y;,;, during the preparation of an ini-
tial TTN. The initial tensors are prepared by the real space renormal-
ization group (RSRG) [48,49], where the bond dimension of tensors
is upper-bounded by y;,; (see Section 3.2.2 for details). The value
of y,;; must not be too small to ensure that each tensor contains all
degenerate lowest-energy states of the block Hamiltonian [Eq. (13)
in Section 3.2.1] in the renormalized region belonging to the tensor.
total_magnetization (REAL)

The total magnetization M that defines the subspace in which the
lowest-energy state is computed. This input is used only for the
Hamiltonian with U(1) symmetry. To activate this function, it is not
allowed to use XYZ interaction in system.model.type even if the
user numerically sets J, = J,. Among other terms, those that break
the symmetry are also prohibited.

When the initial bond dimension y;,; is not sufficiently large, the
RSRG method may fail to construct the initial TTN in the subspace
labeled by the magnetization M. In this case, TTNOpt initializes the
TTN state with a magnetization M’ such that |M’| < |M| and |M’|
is the closest to |M | among the magnetizations that can be spanned
by the RSRG. It then performs warmup calculations while keeping
the TTN state’s bond dimension at y;,; and adjusting M’ as M’ :=
M’ + 1 at the end of each update sweep [50], until the appropriate
initial state with magnetization M is realized.
opt_structure.type (0, 1 or 2)

The method for optimizing the network structure. If the value is 0,
TTNOpt does not optimize the TTN structure. If it is 1, the TTNOpt
performs structural reconstruction by referring to EEs. If the value is
2, TTNOpt selects the structure with the minimum truncation error
[Eq. (24) in Section 3.2.3]. However, when the differences between
the minimum truncation errors are less than 1 x 10~!3, the optimal
structure is determined using EE as a secondary criterion.
opt_structure.temperature (REAL)

An effective temperature T}, which is a positive real number. When
opt_structure.type = 1, the structure is selected stochastically using
this T;, with n_, which is described later in Section 3.2.3. This value
is set to T, = 0 by default, and then TTNOpt chooses the structure
with the minimum EE.

opt_structure.tau (INTEGER)

The decay factor n,, which is a positive integer. When opt_struc-
ture.type = 1 and T}, > 0, it controls the temperature decay accord-
ing to the sweep count n. [See Eq. (23) in Section 3.2.3.] TTNOpt
sets n, to |ny,y, 0/2] by default.

opt_structure.seed (INTEGER)

The random seed for stochastic selection of the structure. [See
Eq. (22) in Section 3.2.3.] TTNOpt sets this value to 0 by default
to ensure that the results are reproducible.

max_bond_dimensions (LIST of INTEGER)

The elements of the list specify the maximum bond dimensions
X = [Xmli<m<m in the TTN, where m is the total number of stages.
At the mth stage, TTNOpt performs sweeps using y := y,, until the
TTN state converges or the number of sweeps reaches n,,,, ., as spec-
ified in numerics.max_num_sweeps. Once the sweeps at stage m are
completed, TTNOpt proceeds to the next stage with y := y,,, and
Max.mt1> Using the TTN state obtained at y = y,, as the initial state.
It is worth noting that the values in y should be arranged in ascend-
ing order. This strategy enables computation with larger y,,, which
requires a higher computational cost, to begin from a well-prepared
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initial state. As a result, the number of sweeps needed for conver-
gence at larger y,, can be reduced. If numerics.opt_structure.type €
{1,2}, the structural optimization is applied only for the sweeps with
x = x;- As for the remaining computation with y = y,, for m > 1,
only tensors are updated while the structure is fixed.
max_num_sweeps (LIST of INTEGER)

The elements of the list specify the maximum number of sweeps
Noax = [Maxmli<mem for each stage of calculations. All elements
Max.m Should be set sufficiently large to achieve the TTN state’s con-
vergence. In this paper, we denote n,, ,, simply as n,,, to represent
the maximum number of sweeps at m th stage unless otherwise spec-
ified.

energy_convergence_threshold (REAL)

The tolerance ey for the convergence of energy. If the relative dif-
ference between each the energy €, calculated by using the Lanc-
zos method for the auxiliary bond b at the current sweep and that
from the previous sweep, @;, is less than the threshold e, i.e.,

max

GI
[1— G—’”| < ¢ for all b, TTNOpt considers that the TTN has been con-
b

verged concerning energy. TTNOpt sets this value to ez = 1 x 1078
by default.

entanglement_convergence_threshold (REAL)

The tolerance ¢ for the convergence of EE. If the difference between
the bipartite EE &, for the bond b at the current sweep as Eq. (2)
and that from the previous sweep, @;, is less than the threshold e,
ie., |&, — @’bl < eg for all bonds b, TTNOpt considers that the EEs of
TTN have been converged. Furthermore, if opt_structure.type is set
to 1 and the EE of the optimal and previous structures differs by less
than e, the structure remains unchanged to avoid inconsequential
fluctuation of the TTN structure at each step of sweeps. TTNOpt sets
this value to eg = 1 x 108 by default.
energy_degeneracy_threshold (REAL)

The threshold 6 used in the preparation of the initial tensors by the
RSRG to determine whether the eigenvalues of a block Hamiltonian
are degenerate. The procedure is detailed in Section 3.2.2. TTNOpt
sets this value to 6; = 1 x 1078 by default.
entanglement_degeneracy_threshold (REAL)

The threshold ¢ used in the SVD to determine whether singular val-
ues are degenerate for updating the local two-tensor. The procedure
is detailed in the last paragraph of Section 3.2.2. TTNOpt sets this
value to 65 = 1 x 1078 by default.

output
This section requires users to specify the physical quantities for

which TTNOpt will generate output files. By default, TTNOpt outputs,
in a file named “basic.csv”, the EEs for all bonds, as well as the varia-
tional energies and truncation errors for the auxiliary bonds, computed
during the final sweep of each stage m € [1, m]. In the “basic.csv” file,
all bonds are identified by two nodes connected by the bond, (i, ") with

ii’

€ [0, N + N, — 1], where N is the number of spins and N, is the num-

ber of tensors. Additionally, TTNOpt saves the set of bond labels E for
the TTN structure in a file named “graph.dat”. The format to describe the
bond labels is explained in the second paragraph of Section 3.1. Users
can save single-site spin expectation values at each site and two-site spin
correlations between any two sites.

dir (STRING)

The location of the directory where the data will be output.
single_site (0 or 1)

If this value equals 1, TTNOpt calculates single-site spin expectation
values and saves them in a file named “single_site.csv”. The file has
four columns where the first column owns site i with i € [0, N — 1]
and the subsequent columns have (s{) with « = x,y,z , where (---)
denotes the expectation value of --- in the ground state. Otherwise,
TTNOpt does not save them.

two_site (0 or 1)

If this value equals 1, TTNOpt calculates two-site spin correlation



R. Watanabe, H. Manabe, T. Hikihara et al.

functions and saves them in a file named “two_site.csv”. The file
has eleven columns where the first two columns own a pair of two
sites i, j with i,j € [0, N — 1] and i < j, and the subsequent columns
have (s;’sf), where (a, f) € {xx,yy, zz,yz, zy, zx, xz, xy, yx }. Other-
wise, TTNOpt does not save them.

2.1.2. Run and results
After preparing all input files described above, users can perform the
calculation as follows:

$ gss input.yml

Here, the results of m th stage of calculation are saved in a subdirectory
“run{m}”, where {m} with m € [1, m] relies on variable expansion of
Python notation, under the directory specified by the output.dir in the
main input file.

2.2. Factorising tensors

The TTNOpt package provides functions to factorize a high-
dimensional tensor ¥ = {¥ .}, with indices sg,...,sy_;, into a
TTN as an efficient data structure. The overall procedure is illustrated
in Fig. 3.

TTNOpt first decomposes the input tensor ¥ into an MPN using se-
quential SVD [Fig. 3(c)] [29] . Users may then choose to transform this
MPN into a TTN (to perform structural optimization) via reconstruction
sweeps [Fig. 3(d)]; this transformation performs local reconstruction of
a tree structure, thereby reducing the bipartite EEs across the TTN in-
ternal bonds. We detail these procedures in Section 3.3.

If the entanglement structure of the input tensor ¥ is not compatible
with the MPN, the TTN obtained from the procedures above may suffer
from low-precision approximations. To address this limitation, TTNOpt
also implements the fidelity-based optimization that directly refers to ¥
[Fig. 3(e)]. Specifically, the fidelity-based optimization updates the ten-
sor elements to maximize the fidelity with ¥, while simultaneously per-
forming the structural optimization. However, since it requires explicit
contractions with ¥ at each update step, it entails a significantly higher
computational cost compared to the reconstruction process [Fig. 3(d)]
alone.

We note that the index order of the input tensor plays a crucial
role in the accuracy of converting ¥ into an MPN [Fig. 3(c)] and sub-
sequently into a TTN [Fig. 3(d)]. In principle, the fidelity-based opti-
mization [Fig. 3(e)] can cope with this issue. However, the index order
might affect the performance of this optimization. In practical calcu-
lations, the optimization may be trapped in a local minimum or en-
counter slow convergence. To mitigate these issues, TTNOpt provides
several structural optimization options. In particular, a probabilistic se-
lection strategy with an effective temperature is effective for avoiding
local traps [46,51].

2.2.1. How to set input files

target

This section requires specifying the directory of the input tensor ¥.
TTNOpt needs users to specify “.npy” format file as tensors.

e tensor (STRING)
The directory name for the file of the input tensor .

numerics
This section requires users to specify the conditions for the calcula-
tion.

e initial bond_dimension (INTEGER)
The initial bond dimension y;,;;. TTNOpt first decomposes ¥ into an
MPN structure with up to this bond dimension y;,;; using the SVD.
¢ opt_structure.type (0, 1 or 2)
This value is applied to local reconstructions in TTN structural
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(a) Factorizing tensors (b) Reconstructing TTNs

tensor TTN
(c)

Sequential SVD

(d)

Reconstruction

Fidelity-based
update

Return Return

Fig. 3. Schematic overview of the procedures for (a) factorizing tensors and (b)
reconstructing TTNs. In (a), TTNOpt performs (c) sequential SVD to construct
an MPN, after which users might either (d) apply reconstruction to this MPN or
proceed directly to (e), where both the tensors and the network structure of the
TTN are optimized to maximize the fidelity with W. TTNOpt also allows using
the optimized TTN obtained in (d) as the input to (e), depicted as a dashed line.
In (b), TTNOpt runs (d) for the given TTN.

optimization. Explantions of this input and the following ones,
opt_structure.temperature, opt_structure.tau, and opt struc-
ture.seed are in Section 2.1.1.

¢ max_sweep_num (INTEGER)
The maximum number of sweeps n,,,, for reconstruction. During the
sweep procedure, we set the bond dimension y as y;,, specified by
initial bond_dimension.

« entanglement_convergence_threshold (REAL)
The entanglement convergence threshold eg, which is explained in
Section 2.1.1. It is noted that this value is used both when TTNOpt
reconstructs the initial MPN into the optimal TTN and updates the
TTN state based on the fidelity with the input tensor V.

e max_truncated_singularvalue (REAL)
This threshold ¢ is used in SVD to reduce the bond dimension while
tolerating a certain loss of accuracy. All singular values satisfying
D;/D; < ¢ are truncated, where D; is the ith singular value sorted
in descending order. By default, ¢ is set to 0, in which case up to y
singular values are retained.

o fidelity.opt_structure.type (0, 1 or 2)
This value is applied when TTNOpt updates the TTN state according
to the fidelity. Explantions of this value and the following inputs,
fidelity.opt_structure.temperature, fidelity.opt_structure.tau, fi-
delity.opt _structure.seed, and fidelity.max_num_sweeps are in
Section 2.1.1. Note that if users set values related to the fidelity-
based optimization in the input file, TTNOpt will update both the
network structure and tensors of the TTN concerning ¥, even if the
TTN structure has already been determined by opt_structure.type.

¢ fidelity.max_bond_dimensions (LIST of INTEGER)
Explanations of this value are detailed in Section 2.1.1. The bond
dimension practically kept can be reduced when a nonzero o is set
in max_trunated_value.

o fidelity.convergence_threshold(REAL)
The tolerance ¢ for the convergence of fidelity. If the difference
between the fidelity F, calculated for auxiliary bond b at the current
sweep and that from the previous sweep, F}, is less than the threshold
€p, i.e., |F, — Fb’l < ep for all auxiliary bonds b, TTNOpt considers
that the TTN has been converged concerning fidelity.
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output

This section requires users to specify the output settings. By default,
TTNOpt outputs properties of TTN in a file named “basic.csv” and TTN
structure in “graph.dat” in the same manner as the ground state search
algorithm. In the “basic.csv”, TTNOpt outputs the EEs for all bonds and
the truncation errors for all auxiliary bonds. TTNOpt also saves the fi-
delity with the input tensor ¥ calculated at each auxiliary bond to a file
named “basic.csv”, if users specify the input file to conduct the update
regarding the fidelity.

In addition to the outputs above, the user can save the tensors, sin-
gular values, and the norm of the tensor ¥, which is used for the nor-
malization of the TTN.

¢ dir (STRING)

The location of the directory where the data will be output.
tensors (0 or 1)

If this value is 1, TTNOpt saves optimized tensors as the
“isometry{i}.npy” file with i € [0, N, — 1], singular values tensor in
the “singular_values.npy” file, and norm in the “norm.npy” file. Oth-
erwise, TTNOpt does not save them.

2.2.2. Run and result
After preparing the input files described above, users can perform
the calculation as follows:

$ ft input.yml

Here, the computed results are output in the directory specified by the
output.dir variable in the main input file.

2.3. Reconstruction of TTNs

Motivated by the recent applications of MPNs and tensor train data,
TTNOpt allows users to load a TTN. TTNOpt then reconstructs the net-
work structure of a given TTN [Fig. 3(b) and (d)]. This function is exe-
cuted by reconstruction sweeps introduced in Section 2.2; for the details,
the user can refer to Section 3.3.

This function of TTNopt would be powerful for searching more effi-
cient TTN structures in the sense that each bond carries low EE or has
small bond dimensions.

Users can perform the calculation as follows:

$ ft input.yml

Note that the command to execute this method is identical to the
one used for the factorizing tensors. The users must ensure that the in-
put tensor is consistent with the intended type, which is either a tensor
or a TTN (see the sample input files in Ref. [1]). The variables for the
calculations share the same format as those for the factorizing tensors
method, excluding those relevant to the fidelity-based optimization, de-
scribed in Section 2.2.1.

3. Inplemented algorithms
3.1. Representation of TTNs

The TTNOpt package constructs TTN states from a set of three-leg
isometric tensors v = {vg, vy, ..., vn,; }, where Ny = N —2 is the total

number of tensors [52]. Each isometric tensor [v,.]::?iz forall0 <i < N, -

1, where i, with k € {1,2,3} represents index with bond dimensions Xips
satisfies the following isometric condition:

m
i3s3 _
Z [Uf]iliz [Ui]i|i2 = 5i3ig > (10)
iyip
where v} denotes the complex conjugate of v;, and 6;, i, is the Kronecker

delta. On the isometry [u,-]::i.z, the degrees of freedom y;, is limited by
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Fig. 4. Schematic diagrams of (a) data structure of labels for tensors and edges
around the initial canonical center, i.e., e(s") = e(;'), and (b) local structure sur-
rounding the canonical center e,.

the product of the bond dimensions y;, and y;,, i.e., x;, < x;, %;,- In ad-
dition, TTNOpt practically poses an upper bound y on bond dimensions
for all bonds in the TTN state.

TTNOpt maintains connectivity between tensors as a set of three
bond (edge) labels E = {E,, ... ,EN[_I} where E; = (e(l[),e(zi),eg)), to de-
fine TTN structures. Each edge label e is written as an integer e € [0,2N, ]
where 2N, + 1 is the number of bonds in the TTN. The edge with the la-
bel e = r € [0, N — 1] is connected to the bare spin s,. In this data struc-
ture, two tensors v; and v; that share the same edge label in E; and E;
are connected. There is an unique pair of tensors specified by p and ¢
connected to each other through eg”) and e(f as shown in Fig. 4(a). This
bond is referred to as the canonical center e, defined as e, = eép) = egq)
detailed in Fig. 4(a) and (b). It is important to note that in TTNOpt, e, is
supposed not to be connected to any physical sites, i.e., e, & [0, N — 1].
TTNOpt assumes that up to y elements from the vector D = (D, ..., D ){2)
are assigned on e, where the singular values in D are ordered in de-
scending magnitude as D; > D, > - > D » > 0. Since the truncation
of bond dimensions causes a loss of the norm of TTN states, TTNOpt
rescales the singular values, D, with ¢ € [1, y] as

DC
D, = (11)

Novamr

That is because, within the canonical formulas, the norm of the TTN
state |¥) is described as (¥|¥) = f,=l (D.)*. With these settings,
TTNOpt allows for representing TTN states in mixed canonical form [29]
to manage various calculations efficiently.

3.2. Ground state search

3.2.1. Representation of the Hamiltonian

Conducting the ground-state search requires constructing the effec-
tive Hamiltonian for each renormalized region, which is achieved by
contracting a tensor network composed of the TTN state and the local
Hamiltonian tensors. For a general TTN structure, this procedure differs
from the case of an MPN, where the full contraction with matrix product
operators, whose bond dimension is O(1), can be carried out efficiently
with a computational cost of O(N y3) [29]. TTNOpt preserves the renor-
malized spin operators, S? and S+, at all bonds, enabling efficient eval-
uation of these contractions. Since S~ is the Hermitian conjugate of S+,
it is sufficient to retain only the S§% and S+ operators [27,28]. In fol-
lowing paragraphs, we define the renormalized spin operators on a TTN
and describe their construction, and then show how we construct the
effective Hamiltonians.

To manage the calculation on TTN, we assign a distance de(;) S

[0, N; — 1] to each edge label egi) for all v;, measured from the origin

bond o,, which corresponds to the canonical center of the initialized

TTN and d, =0. Specifically, the value de<,) represents the minimum
3

number of isometries that must be traversed to reach v, from o,. We
also introduce L = {ly,ly,....1; } with I, = (... ,l;’“ | l; €[0,N, —
1]}, where ny is the number of edges whose distances are equal to b, i.e.,

dlé = d’% == d[:b =b). Regarding the maximum distance d,,, the

isometries {v; | e(;) €l,  }are ensured to connect directly to bare sites,
(1)

ie.,e ,eI@ € [0, N — 1]. For example, in the MPN structure as Fig. 1(a),
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in which the origin bond o, is positioned on the midpoint of the system,
{v; | e(l) €lg} correspond to two isometries located at both ends of
the MPN. Additionally, to define L uniquely, we incorporated an order-
ing rule such that I} < lg - < I;* for each I;. We finally introduce a
={ r;(’)l R r;’)z ,r;’;(t k)} within the renormalized
region specified by the edge label e;") , where g(i, k) =

that r(') = r(li) U r;”, since the sets of spins of e(li) and e(zi)

set of spin locatlons r
'), It is trivial
are renormalized
to eg) by v;.

These definitions allow us to consider the following renormalized
spin transformation using the isometry v;:

. !
i3 ~ i R
) 3 (i)
s[5 L, e
$O _ i RN B il 2 12)
Srlig 5 [e0 % Wy
3 M iyl > [v,—] S [Ul*] ’ (rery)
PR i1,ip e orl. . i i7
iyipi) 2 i
where S‘(;?) and 5(;,)») are sandwiched by the isometry v, and its Hermi-
epr ey r

tian conjugate and projected onto the reduced subspace on e(;). If eg) =r,
S© is equal to the bare spin operator s where () € {z,+} indicates the
type of spin operators. We then calculate renormalized spin operators on
de;,-) € d .« by using Eq. (12). Applying the renormalization procedure
of Eq. (12) recursively enables to compose further block-spin operators
on the edges in I;_; with {v; | e(;) €ly} fromd=d , tod=0.

Using the block-spin operators, we can construct the block Hamilto-
nian associated with v; of, for example, the XXZ model of Eq. (3):

int

H i o =HE(:)+HE,)+H(,) 0
‘1% 1 e e,
int — + o— o+ z z z
(ONOE. Z Z (S (i) S o0 + S (') S (l) " + Arr’S (1) S (l) )
rEr({) r’Er(‘) %2

(13)

Then, we get

. i3 i3 . i
[Hcgf)]_/ = Z [Ui], ) [Hé")e(”} o [Uf];i . 14
3 niglyiy 1

4
nt 172
P 112
3 iyigilil 2

The expression in Eq. (14) describes the projection of ﬂg(i)e(i) onto the
172
reduced subspace on 9(3'). The extension to a general Hamiltonian includ-
ing up to two-body interactions is straightforward.
Finally, the superblock-effective Hamiltonian corresponding to two
adjacent tensors {v,, v, | {p,q} = Iy} surrounding the origin bond o, can
be described as:

(7 mt int
Hw PP Dl = Z Z H ot Z N o7 Z H RONON

ke{1,2}) re{p.q) re{p.q} € kk'e{1,2} kGt
(15)

3.2.2. Initializing TTN tensors

Given a TTN structure identified by E, TTNOpt initializes isometric
tensors v using the real-space renormalization group (RSRG) [48,49].
Namely, TTNOpt decides isometries following a recursive sequence from
physical bonds to the canonical center of the initial TTN, o., in the same
order of composing renormalized spin operators by referring to L as
introduced in the previous section.

In order to initialize the isometry v;, TTNOpt requires the full diag-
onalization of ﬁe(li]eg) in Eq. (13). The corresponding eigenvectors u are

then collected in ascending order of their eigenvalues, and we obtain
the element of isometry by

[ ]1112 = [ ][112 ’ (16)
i3

where [u] iy is the i;th eigenvector reshaped into a two-dimensional
tensor indexed by i; and i,. The maximum bond dimension here is
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Xinit» Which is determined by numerics.initial bond_dimension. Con-
sequently, the computational cost of full diagonalization of the block
Hamiltonian is up to O( an)

It is worth noting that TTNOpt selects up to y;,; eigenvectors, ac-
counting for degeneracies arising from symmetries of the system [27,
28]. In the case of degenerate eigenvectors, they are either fully retained
or discarded to maintain symmetry. To detect degeneracies, TTNOpt cal-
culates the L1 norm of energy differences
Ay = ‘ ekl _ ok

TP
3

a7

where eX  is the kth eigenvalue of the block Hamiltonian A (,-) (,) for k

o0
ranging from Xinie — 1 10 0. If A} < 6, where 6 is set by numerics.en-
ergy_degeneracy_threshold, TTNOpt discards the (k + 1)th eigenvec-
tor and updates k := k — 1. The iteration continues until A, > §; and
then the practical bond dimension of i5 is determined as ;(eg,-) =k+1le
[L, Xinit -

Once the RSRG flow is complete, in order to determine singu-
lar values tensor ®, TTNOpt derives the renormalized wave function
li‘eawe_;p)e(]q)e(;,) and bond energy G, from the diagonalization of the su-

perblock Hamiltonian ﬁe(p) o0, @ of Eq. (15) by using the Lanczos
1% % % B
method. TTNOpt then performs the SVD for ¥ as follows:

Z pip2 D, qlqz’ a8)
c

where ¢ is up to ;(; .- TTNOpt takes y’ < y;y, singular values consider-
ing degeneracies of singular values in the same manner as energy de-
generacies while, in this case, TTNOpt compares the relative variation
Af] % with k € [0, ;i — 11, to 65 defined by numerics.entan-
glement_degeneracy_threshold After the bond dimension y,_ is de-
cided, TTNOpt replaces two isometries {v,,v, | {p,q} = Iy} such that

[l =10,

[ ]mz _[ ]qlqz’ 19

with p3, g3 € [0, y,, — 1], and we also obtain the normalized singular val-
ues D with rank y, .

In the Lanczos method, H must be applied to a vector ® in the trun-
cated Hilbert space as many times as the dimension of the Krylov sub-
space. The TTNOpt package calculates H® by applying each term of
Eq. (15) individually to reduce the computational cost. Since each op-
erator has a y x y size, the computational cost of H® scales as O(C y°),
where C is an integer that depends on the number of terms. To further re-
duce computational cost, we adjust the order of summation of spin oper-
ators. For example, when taking Y, ST S", . withg’ > g where

g=|rl.¢’ =

[ ]1711’2‘1142

rer,r’ er’

|r'|, we first apply Y ,/S, . to ® and subsequently

rer

apply S':’ for each r € r. Additionally, TTNOpt utilizes [~] =

P1P24192
’
[Up];lpz [Uq] fll‘lZ [U;];Pz

[v’[;] :: o’ where v,

Z[ ]ml’z[ ]4142/ Z

P11 9ace’
and v, are decided by the RSRG previously applied, as the initial state
for the Lanczos method.

3.2.3. Main procedure

We first show the high-level procedure of the ground state search
method of TTNOpt in Algorithm 1. Given a TTN state with the mixed
canonical form described in Section 3.1 with above v, E, e, and 9D,
TTNOpt updates TTN states based on the two-tensor update method
within a sweep procedure as shown in Algorithm 2. Although the path
of the sweep is not unique, it has to pass through all tensors in TTN
states at least once during a sweep, even if TTN structures are not fixed.
In TTNOpt, we implemented one variety of sweep procedures proposed
in Ref. [44].
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(@) (b) , O .

P P2 p1 p2 ®

p1 P2

q1 q2

q1 q2 q1 q2

Fig. 5. Schematic diagrams of procedures of the two-site tensor update: (a)
the step of selecting the next canonical center denoted as ¢! decided by using
Algorithm 5, (b) the step of contraction within the next canonical region detailed
inlines 12 and 13 of Algorithm 2, where a gray rounded rectangle represents the
region of contracted tensors, (c) renormalized wave function ¥ resulting from
the step (b) that is updated by using the Lanczos method in the ground state
search, and (d),(e), and (f) three possible candidates of SVD of ¥ corresponding
to Eq. (20).

To illustrate Algorithm 2, let us introduce the set of edge labels e =
{0,1,...,2N,}. We assign a flag f, € {0,1} to each bond e € e to track the
path and completion of the sweep. In the algorithm, flags for the bonds
connecting to bare sites are initialized 1, i.e., f, = 1 withe € [0, N — 1].
We also use the bond distances d, from the origin bond o.. The distance
d, is decided based on the Breadth-First Search algorithm described in
Algorithm 3. Furthermore, we define two terminologies: the set of block
spin operators § for all bonds and the set of block Hamiltonians H for
all isometries. Both of these have been initially constructed during the
RSRG procedure. In the TTNOpt package, § and H are implemented as
dictionaries. Here, H stores the block Hamiltonians I:Ie_(],-)e(z,-> with a key

egi> for i € [0, N; — 1] according to the isometry v;. Meanwhile, Sisa
nested dictionary whose elements are indexed by an edge label key e € e.
Each S, stores a dictionary of block spin operators 551 with (-) € {z,+},
where the key r € r, represents a set of physical spin locations associated
with e.

In Algorithm 2, the sweep procedure continues until all flags of bonds
incoming to the renormalized region of the current canonical center e,
are equal to 1. It is worth mentioning that in our algorithm, this situa-
tion always happens when e, returns to the origin bond o, and all flags,
except for f, , are equal to 1. Algorithm 4 is used to detect the edges in-
coming to the renormalized region whose flags are 0. From these edges,
we choose the edge e/, which will be the next canonical center, by using
Algorithm 5.

Let us assume that the bond e/ connects v, and v,, as shown in
Fig. 5(a), and v,» was updated in the previous step. The flagging pro-
cess in Algorithm 2 ensures that f, =1 only if all bonds in the subtree
rooted at the parent tensor v,» have a flag of 1. To update tensors v, and
vy, we have to obtain the renormalized wave function \PE(I,)B(Z,)E(I,/)G(Z,/) by

using the Lanczos method. We note that TTNOpt contracts v,, v}, and
D at e, as described in Fig. 5(a) and (b), and this contracted tensor is
used in the Lanczos method as an initial renormalized wave function.
The Lanczos method requires to compose the superblock Hamiltonian
ﬁeg"e;”eg’”e;”) according to the new canonical region specified by /. Re-

call that the effective Hamiltonians and the block spin operators for all
bonds except those at e, are retained in H and S, respectively. This
means that only S, and H,_ are refreshed by applying v, in Egs. (12)
and (13).
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Algorithm 1 Main procedure of ground state search.

1: Input: H: the definition of the Hamiltonian, E: the list of three-
integer tuples representing edge labels, e: the list of integers of edge
labels, o,: the integer referring to the edge label of the origin, m: the
number of stages of calculations, y;,;: the maximum bond dimen-
sion for initializing tensor, y: the maximum bond dimensions for
each stage of calculations, n,,: the maximum number of sweeps for
each stage of calculations, eg: the threshold for the energies, ¢g: the
shoreshold for the EEs, /: the number of consecutive times TTNOpt
detects the TTN state as converged before terminating the optimiza-
tion. This value is set to 2 by default.

2: function MAIN(H, E, e, 0., M, Yinit> X> Pmaxs €» €55 1)
3 v,®,S, H := INITIALIZE_TTN (H, E, 0., Yinit)
> See Section 3.2.2
4: for m=1to m do
5: c:=0
6: for n =1 to ny,, ,, do
7: E,v.®, 8§ H,6 & :=SWEEP(E, e,0..v,D,S, H, y,) >
G, @ are sets of bond energies and EEs.
8: if n > 1 then
9: if E, = E| for b € [0, N, — 1] then
10: if [1- %| < ¢ for b € [N,2N,] then
11: if |@Z - @]| < eg for b €[0,2N,] then
12: ci=c+1
13: if ¢ > I then
14: Break
15: end if
16: end if
17: end if
18: else
19: c:=0
20: end if
21: end if
22: E' =E
23: ¢ :=C
24: e :=e
25: end for

26: end for
27: end function

After obtaining [‘if O 0 @ (,r)] , where {p,,p,,q,,4q,} are in-
2% 2 dppaa
J !
dices corresponding to edge labels {e e(l’),eg)}, the DEcoM-
POSE_TENSOR function is performed to update tensors and local struc-

ture. For the reconnection of ¥ o o ) o there exist three possible
e ‘e, e e,
17271 2

(OO
1260

index orders: (p;p, | 4192), (P14 | P24y), and (p;q, | p»g,) as shown in
Fig. 5(d)—(f). In DECOMPOSE_TENSOR function, the EEs for all three con-
figuration are computed by performing a full SVD, which has a compu-
tational cost of O(y®). The EEs are given by

S(Pll’zh]l‘lz) I Z(Dc)z In (DC)Z’
¢

SPialpg) = _ Z(Dé)z ln(Dg)z,
c

sale) = — % ()2 In (D, (20)
c
where
LT I 1 G N
"ot = U] [D] [V] ,
e PG4 ¢ et teh i
c c
-2, Pl
- 1> c P241

B ; [U"]:'lq] [D”]c [V"];zqz, @D
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Algorithm 2 Sweep procedure for the ground state search.

1: In/Output: E, e: the variables introduced in Algorithm 1, v: the list
of isometric tensors, ® : the normalized vector containing up to y
singular values, S : the set of block spin operators for all edges, and
H : the set of block Hamiltonian for all isometries.

2: Input: o,: the variables introduced in Algorithm 1, and y: the maxi-
mum bond dimension of TTN.

3: Output: G: the set of bond energies obtained by the Lanczos method,
and ©: the set of EEs obtained from Eq. (20).

4: function SWEEP(E, e,0,,v,D, S, H, 1)

5: e. =0,

6: f :={0] f,,where e € e}

7 d := SET_DISTANCE(E, e, e.)

8 G :={} > Initialize the set of energies €.

9 ©:={} > Initialize the set of EEs &.

10: while CANDIDATE EDGE_INDICES(E, e, f) # {} do

11: el,1,1',1" := LOCAL_ TWO_TENSOR(E, e, f,d)
> See Fig. 5(a).

12: if {fe —1|ece {e‘l"”,e;’”)}} then

> Recall that E,» = (e({”)’ e;’”), eg”)).
13: if e. # o, then
14: fo, =1 > At this point, it satisfies e, = e(;”)
15: end if
16: end if

> If £, becomes 1, it calculates expectation values according to v,
with ¥ obtained at the previous step.

17: Update S, by Eq. (12) with v,
18: Update ILNIeC by Eq. (13) with v,»
19: ¥ = v,0Dou,

> o denotes the contraction of tensors according to the same
indices based on E, and E, . See Figs. 5 (b) and (c).

20: ¥ E :=LaNczos(?, S, H)

21: (ge(’: =E

22: 0,,D,vy,S := DECOMPOSE_TENSOR (¥, y)

23: @eé =S > S is calculated by Eq. (20).
24: forr e {e(lt), (2'), (l'/),e(zr/)} do

25: if r € [0, N — 1] then

26: S, := SITE_EE (P, r) > See Fig. 6.
27: ©, =S,

28: end if

29: end for

30: e, =¢l

31: Update E,, E,

32: d := SET_DISTANCE(E, e, 0,)

33: end while
> Expectation values are calculated using v, and v, which
construct ¥ obtained at the last step.
return E,v,e,®, 5, H,C, &
34: end function

respectively and c is up to y2. TTNOpt then selects the structure with the
smallest EE, if users set opt_structure.type to 1. However, if the mini-
mum EE S, and S®17219192) of the original structure [Fig. 5(d)], satisfy
the condition |S®172l4192) — S . | < e, TTNOpt retains the original con-
nection to avoid insignificant variations in the TTN structure. Here, ¢¢
is defined by numerics.entanglement_convergence_threshold. Once
the optimal structure is determined, TTNOpt truncates any singular val-
ues exceeding the rank y set by numerics.max_bond_dimension, while
accounting for degeneracies in the singular values with 6.

Since the reconnection procedure employed in TTNOpt is local, the
solution may be trapped in local minima, especially in complex systems
such as disordered ones [46,51]. To overcome this problem, TTNOpt
has a function to select a structure based on relative probabilities. The
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(a) (b) (c)
A

Fig. 6. Schematic diagrams of the process of the SITE_EE function. (a) and (b)

represent the calculation of [p] =y [‘i‘] [‘i’*] , where p, here is
PPy prdias P20 4 P\ P21
the index for a bare site s, with r € [0, N — 1]. (c) describes the diagonalization

for p to obtain the EE on the bond p,, i.e., [p] o= > [q/] [A] [W*] } and
np e ¢ 54
S=-Y A InA,.

heat-bath method works by evaluating the EEs for the three possible
reconnections and sampling the one with a distribution given by the
following expression

P@1P219192) exp [_S(PlpzllIlqz)/T] ,
p1alra)) o exp [_s(qulpth)/T] ,

PP1911P202) o exp [_5(/1141 Iﬂztm/T] , (22)
with
T =2""T,, (23)

where an initial temperature 7, and a decay factor n, are set by nu-
merics.opt_structure.temperature and numerics.opt_structure.tau,
respectively, and n € [0, n,,, — 1] represents the sweep number with n,,
assigned by numerics.max_sweep_nums. To achieve the convergence
of the TTN structure during the sweep process, TTNOpt exponentially
decreases T to O (see Ref. [46]).

Furthermore, TTNOpt can select the structure with the minimum
truncation error if opt_structure.type is set to 2. Here, the truncation
error is defined as

z

A=1-Y (D). 24
c=1

for (p,p, | q:9,) and similarly for the other decompositions.

As shown in Algorithm 1, the RUN_SWEEP is repeated until the num-
ber of sweeps reaches n,,,, set by numerics.max_num_sweeps or the struc-
ture described by E, variational energies, and EEs have been converged.
TTNOpt saves the variational energy obtained by the Lanczos diagonal-
ization performed at auxiliary bonds in the set G, as well as the EEs
on all bonds, including physical ones, in the set . These values are al-
ways overwritten for the same bonds in the sweep. To check for conver-
gence, TTNOpt computes the difference in variatonal energies and EEs
for all considered bonds with those from the previous sweep, and judges
the convergence with e and e specified by numerics.energy_conver-
gence_threshold and numerics.entanglement_convergence_thresh-
old, respectively.

3.2.4. Calculating expectation values

The TTNOpt package computes expectation values for one and two-
site spin operators in sweep procedures using block spin operators S.
To ensure that the computation covers all bare sites and site pairs with-
out duplication or omission, TTNOpt assumes the structure remains un-
changed during the calculation of the expectation values. Therefore, if
users specify the structural optimization conducted, TTNOpt performs
an additional sweep to calculate the expectation values after the first
update stage, where m = 1, for the TTN with the optimized structure. In
the stages of m > 1, the same calculations are carried out in every sweep
since the structure is fixed.

TTNOpt calculates expectation values using ¥ , (, () ) in Fig. 5(a)
e] e, e 82
at each step. Single-site expectation values are computed when the

renormalized wave function ¥ is directly associated with the corre-
sponding physical site. Two-site expectation values are evaluated at the
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Algorithm 3 Set distances from the edge e using the Breadth-First
Search.
Input: E,e,o.: the variables introduced in Algorithm 1.
Output: d: the list of distances from edge o
1: function SET_DISTANCE(E, e, 0.)
2: for e € e do
3 e :=Ugcpld e €& #e)
4 end for
5: d :={0]d,, where e € e} 1> Initialize entries of distance list as 0
6.
7
8
9

Initialize an empty queue Q
Enqueue o, into Q

while Q is not empty do
Dequeue ¢’ from Q

10: d = der

11: for each neighbor edge u of ¢’ in A, do
12: if d, = 0 then

13: w = de’ +1

14: Enqueue u into Q

15: end if

16: end for

17: end while

18: return d

19: end function

Algorithm 4 Detect candidate edges.

Input: E: the valiable introduced in Algorithm 1, e.: the integer of edge
label of the current canonical center, and f: the list of bools of flag
at each edge label.

Output: c: the list of edge indices

1: function CANDIDATE_EDGE_INDICES(E, e, f)

2: ¢ :=Ue eepeplel e € {€,6), & =e)
adjescent to canonical center.

3: c:={iec]| fi=0}

4: return ¢

5: end function

> Find edges

> Filter by flag f.

Algorithm 5 Select two local tensors connected by the edge with the
largest distance from the initial canonical center.

Input: E, e, f: the variables introduced in Algorithm 4, and d: the list
of integers of distance at each edge

Output: ¢!: the integer of edge label of the next canonical center, , ¢, 1"
the integers of tensor labels.

1: function LOCAL_TWO_TENSOR(E, e, f,d)

2 ¢ := CANDIDATE_EDGE_INDICES(E, e, f)

3 dpax -=max({d, | e € c})

4 c:={e€c|d,=d,,;}

5: e i=¢ > Select the first edge in ¢

6 fori € [0, N, — 1] do

7 if e, € E; A e, € E; then

8

9

ti=i

: end if
10: if e. & E; A€ € E,; then
11: t =i
12: end if
13: if e, € E; A ¢ E; then
14: =i
15: end if
16: end for
17: return (¢/,t,7,1")

18: end function

10
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step where the edge of the canonical center, ¢, lies on the minimal path
connecting the two physical sites. See Algorithm 1 for the details.
Let us denote for simplicity the renormalized wave func-

tion as [‘i’] with (p,q) = (#’,1) and eliminate the subscripts
P249192

" "
{e(l’), eg), e(l’ ),e(Z’ )}. When v, directly connects with the physical site r,
expectation values of spin operators for the site are evaluated by the

following equation

o L PO I B
' pimaal 1pipaa pip
(Sf) _ P1P24192P B ) “ o - (25)
> ‘I’x] [‘I—’] , [s, ] [(r= ep)
PP 0P, nraael nraa PP,
with a € {x, y, z}. The two-site correlation between sites r € r ) and ' €

(2) are obtained by

)

P]Pz‘ll‘lzp/] 11;

S§@

\_‘I'_m 3
’ ! ()
P1P24192 a1t e,

(ses”, ] ,[Sﬁﬁp)) ] ee

el r!
nry T 2 T

with (a, §) € {x, y,z}®?
After completing a sweep, TTNOpt calculates expectation values
concerning the origin bond o, with the renormalized wave function

¥ O e (,I obtained at the final step of sweeps as shown in Fig. 5(b),
B

(c). We denote [li’ 04040 ] eliminating the sub-
&l pman PiP2010

scripts with (p, q) € {(t,t ), (¢, 1)}. Single site expectation values are ob-
tained using the same equation as Eq. (25), which is calculated only in
the case that one (or some) of the bonds {e(p) e;”), e(l”’) (‘”} is connected
directly with a physical site . Regarding two-site correlatlons, TTNOpt
calculates expectation values for all spin pairs that have not yet been
evaluated during the sweeps, using the renormalized wave function as-
sociated with the pair (r, ), where r € {r, o e )} and ' € {r| ro, (")}. For
(p) (q))’

as M

example, in the case of (r,r) = (r]
is evaluated as

the correspondmg contraction

w2 = 3] S0 15,
l’ll’/zq/l‘Iz p1P29192 P24, %2 e [’ll’/l e
7

@7
a4,

In our algorithm, the expectation values are computed at the step
where the distance between the renormalized region in which the wave
function ¥ is obtained and the corresponding physical sites is mini-
mized. This approach stems from the idea that minimizing the number of
renormalization steps for spin operators can reduce the loss of accuracy
induced by truncation. However, it remains an open question whether
the current strategy outperforms the alternative approach in which ex-
pectation values are evaluated using the fixed TTN wavefunction |¥)
after the completion of the sweep.

3.3. Factorizing tensors

Let us assume that a rank-N tensor ¥, is given by target.ten-

sor, and ¥ is normalized as

SSN-1

(28)

50see SN 505+ S N—

which is performed by TTNOpt itself before the factorization. TTNOpt
then proceeds to decompose ¥ by using the sequential SVD into the
MPN form [29] with a bond dimension y; ; specified in numerics.ini-
tial_bond_dimension [Fig. 3(c)]. The tensor is successively factorized
by SVDs from both ends to the center of the MPN. Importantly, in this
process, the SVDs are applied according to the original index order. If
users set numerics.opt_structure.type as 1 or 2, TTNOpt runs sweeps
with reconnection of local structures [Fig. 3(d)], starting from the ini-
tial MPN prepared as above. During these sweeps, TTNOpt applies SVDs
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with y;;, to the renormalized wave function ¥, which is obtained by con-
tracting two tensors as shown in Fig. 3(b). TTNOpt then selects the struc-
ture with the minimum EE from Fig. 5(d)—(f). This process continues un-
til the TTN structure is fixed and the EEs are converged within the value
eg specified by numerics.entanglement_convergence_threshold.

If users specify variables of numerics.fidelity, TTNOpt further opti-
mizes the TTN state based on the fidelity with the original tensor ¥. To
obtain the optimal renormalized wave function ‘i‘e(lp)e(z,,)eame;q), it is neces-

sary to compute the environment é'e(p)e(,,)e(q)e(q) associated with two ten-
17271 2

sors v

, and v, within the canonical region:

ov! (29)

Ew o @@= ,
€ % ¢ 4 !

i€[0,N,~11/{p.q}
where o represents the contraction between tensors with the same in-
dices following E. We directly embed the environment as

= [S]Plpquqz , (30)

2 L] l]
P1P241%2 P1P29192 P1P29192

where we omitted the subscripts on tensors, to locally maximize the
fidelity with W. The contraction of € is performed from the physical
sites to the canonical center, which ensures that the environment tensor
is built step by step while respecting the structure of the network.
TTNOpt performs SVD on ¥ [Eq. (30)] and updates TTN using the
obtained tensors, incorporating structural optimization as specified in
the input file. TTNOpt iterates the sweeps until the TTN state con-
verges with respect to EEs, fidelity, and network structure. The conver-
gence criteria of EE and fidelity are set by the thresholds ¢5 and ey,
specified in numerics.fidelity.convergence entanglement and nu-
merics.fidelity.convergence_threshold, respectively.

[ ]ml’quqz

3.4. Reconstructing TTNs

If the TTN state is loaded by target.tensors, users must specify nu-
merics.max_sweep_num and numerics.opt_structure.type as either 1
or 2. TTNOpt applies sweeps to the TTN to reconstruct its network by us-
ing DECOMPOSE_TENSOR in the same way as described in the first para-
graph of Section 3.3 [Fig. 3(d)]. It is emphasized that TTNOpt retains up
to y;ni: singular values during the SVD, where y;;; is the maximum bond
dimension of the given TTN state. The calculation terminates when the
TTN state has converged concerning both the network structure and the
EE, or when the maximum number of sweeps is reached.

4. Benchmark results
4.1. Hierarchical chain model
To briefly demonstrate the TTNOpt package, we performed the

ground state search for the .S = 1/2 hierarchical chain model [44] with
system size N = 2¢ of an integer d, defined as

d-1
- h
H_z 2 Ja's; - s,
h

=0i€I(h)

BD

where J > 0 is the base coupling constant, and 0 < a < 1.0 is the decay
factor for the coupling strength. In Eq. (31), an integer # € [0,d — 1] rep-
resents the height in the perfect binary tree (PBT) structure, and an inte-
gerset I(h) = {i|i=2"2k+1)—1, where k =0,1,...,2¢47"=1 — 1} spec-
ifies pairs of adjacent sites (i,i + 1) according to the PBT structure, as
illustrated in Fig. 7.

We examined the model with (J,a) = (1.0,0.5) and (1.0, 1.0), where
the system size is N = 256, i.e., d = 8. These settings serve as reason-
able litmus tests since a controls the interaction strength between adja-
cent spins, directly influencing the entanglement structure of the ground
states. It allows for predicting ideal TTN structures: for sufficiently small
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Fig.7. Representation of the hierarchical chain model with N = 8. The physical
sites are ordered from left to right with indices i =0,...,N — 1.

Table 1

Maximum and average of the bond EEs in the op-
timized TTN and MPN when N = 256 witha = 0.5
and 1.0. The EEs on the physical bonds are ex-
cluded from the analysis.

Type Maximum Average
optimized TTN (a = 0.5) 0.1110 0.0618
MPN (a =0.5) 0.6935 0.3730
optimized TTN (a = 1.0) ~ 0.9977 0.9065
MPN (a=1.0) 1.0150 0.9376

a, by the perturbative RSRG approach [49,53], the optimal TTN struc-
ture for the ground state would be the PBT. For a = 1.0, the system is the
uniform Heisenberg chain under the open boundary conditions, and the
optimal TTN structure for the ground state is expected to be an MPN-like
one consisting of the dimer units as shown in Ref. [44].

We ran the variational algorithm with the maximum bond dimension
x =20 to find the optimal TTN structures. This choice of y provides
sufficient accuracy for our discussion, as the truncation errors have been
nearly 1.0 x 10~'5 when « = 0.5, and have remained below 1.0 x 10~°
when « = 1.0. Additionally, we set the maximum number of sweeps to
50 and performed the calculation with 6y = 1 x 10! and 6 = 1 x 10719,
respectively. The remaining parameters used in the calculation can be
found in the input file “samples/ground_state_search/hierarchical”.

We demonstrate that, in either case of « = 0.5 or 1.0, TTNOpt can
achieve the same optimal structures as Ref. [44], where the system up
to N = 128 sites was treated. Furthermore, to show the importance of
TTN structures, we present the bond EEs in the optimized TTN and MPN
in Table 1. It shows that the optimal TTNs reduced both the maximum
and average EEs compared to the case with MPN. The reduction is sig-
nificant, especially in the case of « = 0.5. On the other hand, in « = 1.0,
it is subtle since the MPN and the dimer MPN are similar structurally.

4.2. Multivariable quantics function

Recently, the impact of TTN structures on approximating the gen-
eral tensor data and compressing quantics tensors has been studied [54].
Here, we apply TTNOpt to the compression of the three-variable quan-
tics function employed in Ref. [54] that is written as

fx) =Y cos (jk; - x) , (32)

j=1

where n = 30, x = (x;, X5, x3) € [0,1)® and k; = (kj,l,kjyz,kjﬁ)with k;‘ S
N(0, 1) that is the standard normal distribution. In quantics formulation,
the continous variable x; € [0, 1) with the L-bit precision is described as

Xil

o (33)

g
M-~

where x;; € {0, 1}. It allows the expression of a continuous function f of
m variables as a 2" dimensional tensor. In this paper, we set L = § for all
three variables m = 3 to represent Eq. (32). The function’s heatmap con-
cerning (x;, x,) € [0, 1)®2 with x3 = 0.5 is depicted in Fig. 8 (a). To con-
struct the tensor ¥ of Eq. (32), we employed a one-dimensional variable
ordering, in the same order as the MPN structure shown in Fig. 8(b) that
was generated via the sequential SVD from ¥. The authors of Ref. [54]
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(©)

Fig. 8. (a) The heatmap of the function Eq. (32) at x; = 0.5, where (x,y) := (x;, x,). (b) MPN decomposition of the quantics function Eq. (32) where the red, blue, and
green circles distinguish variants x,, x,, and x;, respectively. (c) TTN structure obtained by the two-site update algorithm in TTNOpt, which optimizes the structure
while maximizing the fidelity with respect to the original functional tensor, starting from the MPN depicted in (b). In both (b) and (c), we omit the drawing of the
canonical center and arrows for clarity. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 9. The definition of the covariance matrix K in this experiment with p =

13

.10

Fig. 10. The tree structure to define the covariance matrix K described in Fig. 9
in the numerical experiment.
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0.2. (b) The heatmap of the matrix elements of K is shown as a reference.

have shown that TTN structures designed to separate each of the three
variables (x|, x,, x3) are reasonable, as Eq. (32) exhibits only weak cor-
relations among them.

In our demonstration, we constructed an MPN representation of the
normalized function in Eq. (32) using sequential SVD with y;,; =4, as
depicted in Fig. 8(b). The resulting MPN was then passed into the TTN
update methods of maximizing the fidelity with [, x5, x3]1 = [4,8,16].
The structural optimization was applied to MPN when y; =4. The
thresholds for the convergence of fidelity and EE were set to e =
1x 10719 and eg = 1 x 10714, respectively.

The TTN structure obtained by TTNOpt is illustrated in Fig. 8(c).
TTNOpt successfully identified a TTN structure that reflects the insight
that the three variables are not correlated in a bit-wise way. Table 2
shows the EEs and fidelities obtained for both the MPN and the opti-
mized TTN. The EEs for the TTN are lower than those from the MPN at
each bond dimension. For instance, at y = 16, the EE of the MPN reaches
0.9745, while that of the TTN remains at 0.6169. It should also be noted
that, when comparing the fidelities of the resulting TTN and the MPN,
the memory footprint of the former is bigger than that of the latter. It
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(b) TTN
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Fig. 11. The initial and final structure of the tree tensor network in the reconstruction. The colors in the edges represent the amount of entanglement entropy.

Table 2

The average bond EEs S and fideli-
ties F = |¥]],, o v*| obtained for
the optimized TTN and the fixed
MPN, respectively. The average EEs
are taken over auxiliary and physi-
cal bonds and rounded to four dec-
imal places. On the other hand, the
average fidelity is taken over auxil-
iary bonds and truncated after the
fifth significant figure.

Type TTN MPN
Sx=4 0.3825 0.5631
S(x=98 0.5378 0.7920
S(x=16) 0.6169 0.9745
F(y=4 0.39408 0.33479
F(y=298) 0.72512 0.57523
F (x =16) 0.99997 0.83884

should also be noted that, concerning the fidelities of the two TNs, the
memory footprint of the resulting TTN exceeds that of the MPN. For
example, at y = 16, the TTN requires approximately 1.65 times more
memory. These results highlight that TTNOpt not only improves com-
pression fidelity but also reveals efficient data sparsity based on the en-
tanglement structure, offering a significant advantage over conventional
MPN-based approaches.

4.3. Multivariate normal distribution

Finally, as an illustrative example of TTN reconstruction, we consider
the TTN representation of a multivariate normal distribution [55]. The
probability density function of a multivariate normal distribution with
mean zero and covariance matrix K is given as follows:

f(x) =exp (—%xTK’lx> , (34)
where x is a D-dimensional vector and the normalization term is omitted
for simplicity. In our demonstration, we set D = 16 and each component
of x is discretized over the range [—5, 5] using L = 4 bits of precision. We
use the covariance matrix K shown in Fig. 9, which is constructed based
on the tree structure illustrated in Fig. 10. The elements of K are defined

13

using a parameter p = 0.2 and decay exponentially with the shortest path
length between the variables on the tree. In this setting, f(x) can be
efficiently represented using a TTN whose geometry corresponds to the
tree graph in Fig. 10.

Building upon this setup, we explore whether automatic structural
optimization can recover the optimal network structure of the multivari-
ate normal distribution with tree-like correlation, following the same
task as in [55]. Each bare bond carries 2* degrees of freedom repre-
senting L-bit precision. Initially, f(x) is constructed as an MPN with
auxiliary bond dimension y = 16 by using the Tensor Cross Interpola-
tion (TCI) method [56-58]. Subsequently, the reconstruction algorithm
is applied, optimizing the TTN structure based on bipartite EEs. During
the sweeps, we use the default values in egy and 6gg.

The resulting TTN is shown in Fig. 11. The optimized structure per-
fectly matches the tree structure in Fig. 10, successfully capturing the
underlying correlations. Moreover, the bipartite EEs on the edges are re-
duced compared to those in the initial MPN. These results demonstrate
that the TTNOpt can detect hidden correlation structures of f(x) and
replace the MPN with the more efficient TTN representation.

5. Summary

We have developed a TTN manipulation package for analyzing the
ground states of quantum spin systems and general tensor data. The
TTNOpt package conducts the local structural reconnection during the
sweep procedures based on two-tensor updates. This enables us to search
for effective and efficient TTN representations, surpassing the simple
MPN structure.

As a demonstration, we first applied the ground state search, includ-
ing the structural optimization, to the hierarchical chain model [44].
We confirmed the resulting TTN and those of EEs are consistent with
those in Ref. [44]. We applied the fidelity-based update method to quan-
tic MPN, representing the three-variable function in Ref. [54], in both
cases, with and without structural optimization. We corroborated that a
well-structured TTN can achieve better convergence in terms of fidelity
when approximating the target data. We lastly applied TTNOpt for MPN,
representing the multi-variable probability density function where the
covariance matrix is explicitly defined by the tree structure [55]. As a
result, the optimized TTN structure could reproduce the same structure
in the covariance relation tree, and we observed a decrease in EEs com-
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pared to the MPN. Here, we note the importance of a comprehensive
performance comparison between the optimized TTN and alternative
TTN architectures, although our benchmarks were limited to an MPN.
For a detailed study on this topic, we refer the reader to Ref. [46].

The prospects of TTNOpt are extending its scope to fermionic systems
and then applying it to quantum chemistry problems. Although molec-
ular systems are not one-dimensional, they have been analyzed using
MPN-based DMRG in many cases. On the other hand, the potential ben-
efits of introducing TTN, depending on molecular structures, especially
in dendritic ones, have also been discussed [59,60]. Combining our
method for time evolution algorithm such as the time-dependent vari-
ational principle (TDVP) [61,62] could also allow for more extended
time evolutions by maintaining structures with low entanglement [63].
It would be implemented by alternatively applying the structural search
sweeps and short-time evolution.

The factorizing tensor method is used not only to reveal the entan-
glement structure of the target data but also, of course, to compress the
data into the TTNs. In particular, if we obtain TTN states that approx-
imate the target quantum states, they can be converted into quantum
circuits. In this scenario, a TTN structure with smaller bond dimensions
would directly reduce the circuit depth [64]. It would be suitable for
enhancing the usability of intermediate-sized quantum circuits [65].

The TCI algorithm [56,57] constructs the MPN that approximates the
function f(x) by accessing the sufficiently large number of input-output
pairs (x, f(x)), rather than explicitly constructing the high-rank tensor ¥
representing f(x). In the TCI, MPN has been used so far, while the use of
TTN opens up the possibility of more efficient data representation. The
extension of TCI to TTN is feasible [54]. However, the integration of
TTN structural optimization into the TCI framework remains a subject
for future research.
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