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 A B S T R A C T

We propose a novel type of umklapp-free lattice (UFL), where umklapp processes are completely absent. 
The proposed UFL incorporates cubic long-range nonlinearity, a feature not addressed in previous studies. 
In this paper, we derive an analytical expression for the cubic nonlinear coupling constants by imposing 
mathematical conditions such that the nonlinear coupling strength between particle pairs decays inversely 
with their separation distance. The absence of umklapp processes in the proposed lattice is confirmed through 
numerical comparisons with the Fermi–Pasta–Ulam–Tsingou (FPUT) lattice. Furthermore, molecular dynamics 
simulations are performed to investigate the thermal conductivity of the proposed lattice in the non-equilibrium 
steady state. Compared to the original FPUT lattice, the proposed UFL is closer to ballistic transport. Our results 
demonstrate that the umklapp processes induced by cubic nonlinearity are suppressed in the proposed UFL. 
Moreover, compared to the UFL with only quartic nonlinearity, truncation of long-range interactions plays a 
significant role in the proposed lattice.
1. Introduction

Nonlinear lattice models have been developed to study vibrations, 
wave propagation, and energy transport in crystalline solids from 
the perspective of nonlinear dynamics [1]. Fermi–Pasta–Ulam–Tsingou 
(FPUT) lattice has been constructed to investigate the relationship 
between nonlinear interactions in particles and ergodicity [2]. The 
study has attracted significant attention for demonstrating periodicity 
in temporal evolution as evidence of Poincaré’s recurrence paradox 
through numerical simulations, showing that nonlinearity did not nec-
essarily lead to thermal equilibrium or an equal distribution of energy. 
Toda [3] constructed another famous lattice with an exponential-type 
nonlinear particle interaction. The lattice could be used to construct an 
integrable system and contribute to the development of soliton theory 
owing to its potential for analytical studies [4].

The temporal evolution of the displacement field of solids in a 
continuum can be transformed from Fourier’s representation to wave-
mode system dynamics. Similarly, waves in lattice systems can be 
understood in terms of vibration mode dynamics as phonons. Peierls [5] 
identified the process in which the law of conservation of momentum 
did not hold in the interaction between phonons during umklapp 
processes. The process was defined as the origin of thermal resistance, 
arising from disturbances in energy transport. Umklapp processes do 
not occur in linear lattices, where particle interactions are governed 
by a harmonic potential function. In such systems, no energy exchange 
takes place among harmonic vibration modes via linear interactions, 
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implying that the energy of each phonon remains unchanged. Energy 
transport realized by wave propagation is ballistic in linear lattices. 
Therefore, the transition from vibration to heat and the resulting heat 
conduction, essentially originates from the nonlinearity of the lattice, 
where the interaction between phonons is usually significant and the 
superposition principle is violated [6].

Regarding problems in the energy transport of lattice systems, 
several studies have been conducted to clarify the relationship be-
tween the energy transport and phonon interactions [7–9]. Besides 
energy transport with nonlinearity, long-range interactions are also 
attached to many interests from experimental systems, such as mag-
netic lattices [10] and quantum systems [11]. Nonlinear lattices with 
only nearest-neighbor interactions in homogeneous particle systems 
were first investigated in earlier studies, such as FPUT-𝛽 [12,13], 
FPUT-𝛼 [14], and rotor model [15–17]. One extension considers spatial 
heterogeneity, such as impurity particles and diatomic Toda lattice [18,
19]. Another extension considers the long-range interactions of parti-
cles [20–22]. Long-range FPUT–𝛽 [23–27], and other lattices [28–32] 
have been utilized to understand the nonlinear dynamics. For example, 
pairwise interaction symmetric lattice (PISL) [33,34] supports the 
smooth mobility of discrete breathers [35–37] exhibiting higher ther-
mal conductivity than the original FPUT-𝛼 and FPUT-𝛽 lattices [28,29]. 
Bagchi investigated the thermal conductivities of long-range FPUT-𝛽
lattices [23,24], and determined the coupling constant that realized the 
maximum thermal conductivity. Wang et al. investigated the thermal 
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conductivity of long-range FPUT-𝛽 lattice and discussed the role of 
discrete breather in thermal transport [38]. However, the mechanism of 
thermal resistance has not been fully understood from the perspective 
of phonon interactions.

Yoshimura et al. recently constructed a nonlinear lattice named 
umklapp free lattice (UFL) [39]. The lattice was constructed to satisfy 
the  symmetry condition, which represents invariance against a 
specific mapping [40]. Mathematical proofs validated the absence of 
umklapp processes in the UFL system dynamics. Furthermore, numer-
ical simulations were performed to verify the absence of umklapp 
processes, which were closely related to ballistic energy transport. 
Only the quartic nonlinear terms were considered in the interparticle 
potential function of the UFL. Expanding the UFL to other orders of 
nonlinearity is crucial to generalize the UFL for understanding the 
effect of umklapp processes on thermal resistance. For example, cubic 
nonlinearity is the lowest nonlinearity and important in understanding 
material properties considering nonlinear dynamics, as harmonicity 
only provides linear theories. In the low-temperature regime, the pos-
sibility of thermal conductivity convergence due to cubic nonlinearity 
has been reported [41].

The aim of this study is to construct a UFL with cubic nonlinearity 
in the interparticle potential function. The construction procedure is 
formulated from the perspective of lattice symmetry, ensuring complete 
suppression of umklapp processes. The absence of umklapp processes is 
verified through numerical simulations of phonon excitations. Further-
more, ballistic energy transport in the proposed UFL is confirmed via 
non-equilibrium molecular dynamics simulations, and the relationship 
between lattice symmetry and thermal transport is discussed.

The remainder of this paper is organized as follows. Section 2 intro-
duces variable transformation and defines symmetry. In Section 3, the 
UFL is constructed by considering the symmetry in a cubic nonlinear 
potential. The numerical evidence that umklapp processes vanish in 
the proposed UFL, is described in Section 4. Ballistic energy transport 
in the proposed UFL is discussed in Section 5 by performing the non-
equilibrium molecular dynamics simulation. Section 6 concludes the 
study.

2. Definition of symmetry in nonlinear lattices

In order to construct the UFL, variable translation and potential 
mapping are introduced following existing studies [34,40]. Considering 
a one-dimensional (1D) nonlinear lattice defined by the Hamiltonian 

(𝒒,𝒑) =
𝑁
∑

𝑛=1

1
2
𝑝2𝑛 +𝛷(𝑞1, 𝑞2,… , 𝑞𝑁 ), (1)

where 𝒒 = (𝑞1, 𝑞2,… , 𝑞𝑁 ) and 𝒑 = (𝑝1, 𝑝2,… , 𝑝𝑁 ), 𝑞𝑛, 𝑝𝑛 ∈ R represent 
displacement from the equilibrium point and momentum of the 𝑛th 
particle, respectively, 𝑁 is an even number and corresponds to the 
number of particles, and 𝛷 ∶ R𝑁 → R is a 𝐶2 function representing 
potential. Assuming that the system has relations 𝑞𝑁+𝑛 = 𝑞𝑛, 𝑝𝑁+𝑛 =
𝑝𝑛, 𝑛 = 1, 2,… , 𝐿 as periodic boundary conditions, where 𝐿 is the 
truncation length corresponding to the range of pairwise interactions. 
Introducing a complex normal mode coordinate 𝑈𝑚, 𝑉𝑚 ∈ C, 𝑚 =
−𝑁h,−𝑁h + 1,… , 𝑁h + 1 via the variable transformation defined by

𝑞𝑛 =
1

√

𝑁

𝑁h+1
∑

𝑚=−𝑁h

𝑈𝑚 exp
(

−i 2𝜋𝑛
𝑁

𝑚
)

, 𝑛 = 1, 2,… , 𝑁, (2)

𝑝𝑛 =
1

√

𝑁

𝑁h+1
∑

𝑚=−𝑁h

𝑉𝑚 exp
(

−i 2𝜋𝑛
𝑁

𝑚
)

, 𝑛 = 1, 2,… , 𝑁, (3)

where 𝑁h = 𝑁∕2 − 1 and i is the imaginary number unit. 𝑉𝑚 is defined 
as a derivative of 𝑈𝑚 with respect to time.

Substituting Eqs.  (2) and (3) into Eq. (1), the Hamiltonian can be 
rewritten in terms of 𝑈𝑚 and 𝑉𝑚 as 

(𝑼 ,𝐕, 𝑈𝑁∕2, 𝑉𝑁∕2) =
𝑁h
∑ 1

2
𝑉𝑚𝑉−𝑚 + 1

2
𝑉 2
𝑁∕2 +𝛷(𝑼 , 𝑈𝑁∕2), (4)
𝑚=−𝑁h

2 
Fig. 1. The nonlinear lattice model for considering the UFL. The cubic long-
range interaction is included. Only the connections related to the blue particles 
are shown.

where 𝑼 = (𝑈−𝑁h
, 𝑈−𝑁h+1,… , 𝑈𝑁h

) and 𝑽 = (𝑉−𝑁h
, 𝑉−𝑁h+1,… , 𝑉𝑁h

).
The potential 𝛷(𝑼 , 𝑈𝑁∕2) can be divided into a 𝑈𝑁∕2-independent 

component 𝛷0(𝑼 ) and a 𝑈𝑁∕2-dependent component (𝑼 , 𝑈𝑁∕2). Fur-
ther, the following map 𝜆 ∶ C𝑁−1 → C𝑁−1 is introduced: 
𝜆 ∶ 𝑈𝑚 → 𝑈𝑚 exp(−i𝑚𝜆), 𝑚 = −𝑁h,−𝑁h + 1,… , 𝑁h (5)

where 𝜆 is an arbitrary number. We define the symmetry in the non-
linear lattice (1) as the invariance of potential 𝛷(𝑼 , 𝑈𝑁∕2) in Eq. (7) 
under the transformation 𝜆 for any 𝜆 ∈ R.

The 𝑈𝑁∕2-independent component 𝛷0(𝑼 ) can be divided into two 
parts as 
𝛷0(𝑼 ) = 𝛷s(𝑼 ) +𝛷a(𝑼 ). (6)

𝛷s(𝑼 ) is defined as the symmetric part and it is invariant for mapping 
𝜆,∀𝜆 ∈ R. The relationship 𝛷s(𝜆𝑼 ) = 𝛷s(𝑼 ) holds for any 𝑼 ∈ C𝑁−1

or 𝜆 ∈ R. 𝛷a(𝑼 ) = 𝛷0(𝑼 ) − 𝛷s(𝑼 ) is defined as the asymmetric part. 
Then, 𝛷(𝑼 , 𝑈𝑁∕2) can be divided into three parts as 

𝛷(𝑼 , 𝑈𝑁∕2) = 𝛷s(𝑼 ) +𝛷a(𝑼 ) + (𝑼 , 𝑈𝑁∕2). (7)

The lattice is symmetrical when the following condition is satisfied: 
𝛷a(𝑼 ) + (𝑼 , 𝑈𝑁∕2) = 0. (8)

As will be discussed in the following section, symmetricity and asym-
metricity correspond to normal and umklapp processes of energy trans-
port, respectively. If Eq. (8) is satisfied, then the nonlinear lattice 
model (1) is defined as the UFL.

3. Construction of a cubic umklapp-free lattice

The UFL with cubic nonlinearity is constructed by considering 
symmetricity in the potential. We focus on a 1D lattice defined by the 
Hamiltonian 

𝐻(𝒒,𝒑) =
𝑁
∑

𝑛=1

1
2
𝑝2𝑛 +

𝑁
∑

𝑛=1

1
2
(

𝑞𝑛+1 − 𝑞𝑛
)2 + 𝛼

𝑁
∑

𝑛=1

𝐿
∑

𝑙=1

1
3
𝑎𝑙
(

𝑞𝑛+𝑙 − 𝑞𝑛
)3 , (9)

where 𝛼 ∈ R denotes the factor of the cubic nonlinear potential. The 
factors 𝑎𝑙 ∈ R, 𝑙 = 1, 2,… , 𝐿 are constants that represent the coupling 
strength between the 𝑟th neighboring particles.

The cubic long-range interaction is considered as shown in Fig.  1. 
Periodic boundary conditions are applied to the system, and the range 
of 𝐿 is restricted to 1 ≤ 𝐿 ≤ 𝑁∕2.

3.1. Derivation of the condition of the symmetry

As a first step to construct the cubic UFL, the condition of the 
symmetry is derived from Eq. (9). Substituting Eq. (2) into Eq. (9), the 
Hamiltonian is represented in terms of 𝑼 , 𝑽 , 𝑈𝑁∕2 and 𝑉𝑁∕2 as
𝐻(𝑼 ,𝑽 , 𝑈𝑁∕2, 𝑉𝑁∕2)

=
𝑁h
∑

𝑚=−𝑁h

1
2

(

𝑉𝑚𝑉−𝑚 + 4 sin2 𝜋𝑚
𝑁

𝑈𝑚𝑈−𝑚

)

+ 𝛼
√

𝑁h
∑

𝑁h
∑

𝑁h
∑

𝑈𝑖𝑈𝑗𝑈𝑘𝐺(𝐿, 𝑖, 𝑗, 𝑘)𝛥(𝑖 + 𝑗 + 𝑘)

3 𝑁 𝑖=−𝑁h 𝑗=−𝑁h 𝑘=−𝑁h
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+ 𝛼

3
√

𝑁

𝑁h
∑

𝑖=−𝑁h

𝑁h
∑

𝑗=−𝑁h

𝑁h
∑

𝑘=−𝑁h

𝑈𝑖𝑈𝑗𝑈𝑘𝐺(𝐿, 𝑖, 𝑗, 𝑘)𝛥(𝑖 + 𝑗 + 𝑘 ±𝑁)

+
𝑉 2
𝑁∕2

2
+ (𝑼 , 𝑈𝑁∕2), (10)

where 

𝐺(𝐿, 𝑖, 𝑗, 𝑘) =
𝐿
∑

𝑙=1
𝑎𝑙𝑔(𝑖)𝑔(𝑗)𝑔(𝑘), (11)

𝑔(𝑚) = exp
(

−i 2𝜋𝑚
𝑁

)

− 1, 𝑚 = −𝑁h,−𝑁h + 1,… , 𝑁h, (12)

𝛥(𝑑) =

{

1 (𝑑 = 0) (13)

0 (otherwise). (14)
 The second and third terms and (𝑼 , 𝑈𝑁∕2) on the right-hand side (RHS) induce three phonon processes.

Assuming that 𝑈𝑁∕2 ≡ 0, 𝑉 2
𝑁∕2∕2 and (𝑼 , 𝑈𝑁∕2) vanish. Then, the 

condition of the symmetry in the nonlinear lattice (9) is given as 
𝐿
∑

𝑙=1
(−1)𝑙𝑎𝑙 sin

𝑙𝑖𝜋
𝑁

sin
𝑙𝑗𝜋
𝑁

sin 𝑙𝑘𝜋
𝑁

= 0, (15)

where 𝑖, 𝑗, 𝑘 ∈ N are any numbers that satisfy 
2 ≤ 𝑖 ≤ 𝑗 ≤ 𝑘 ≤ 𝑁h, 𝑖 + 𝑗 + 𝑘 = 𝑁 (16)

(Appendix  A presents derivation details).
It is worth discussing the physical interpretation of Eq. (15). The 

equation of motion in terms of the complex normal mode coordinates 
𝑈𝑚, derived from the Hamiltonian (10), is expressed as
𝑈̈𝑚 + 4 sin2 𝜋𝑚

𝑁
𝑈𝑚

= 𝛼

3
√

𝑁

𝑁h
∑

𝑖=−𝑁h

𝑁h
∑

𝑗=−𝑁h

𝑈𝑖𝑈𝑗𝐺(𝐿, 𝑖, 𝑗,−𝑚)𝛥(𝑖 + 𝑗 − 𝑚)

+ 𝛼

3
√

𝑁

𝑁h
∑

𝑖=−𝑁h

𝑁h
∑

𝑗=−𝑁h

𝑈𝑖𝑈𝑗𝐺(𝐿, 𝑖, 𝑗,−𝑚)𝛥(𝑖 + 𝑗 − 𝑚 ±𝑁). (17)

The second term on the left-hand side (LHS) of Eq. (17) corresponds to 
the linear force, while the first and second terms on the RHS of Eq. (17) 
describe nonlinear forces. The first term on the RHS indicates normal 
processes, whereas the second term indicates umklapp processes. The 
second term corresponds to the asymmetric part 𝛷a(𝑼 ) in Eq. (6). 
When the Eq. (15) is satisfied, the second term on the RHS vanishes. 
Therefore, the symmetricity in the nonlinear lattice (9) for the map (5) 
corresponds to the vanishing of umklapp processes. Considering the 
condition of the symmetry, Eq. (17) can be rewritten as 

𝑈̈𝑚+4 sin2 𝜋𝑚
𝑁

𝑈𝑚 = 𝛼

3
√

𝑁

𝑁h
∑

𝑖=−𝑁h

𝑁h
∑

𝑗=−𝑁h

𝑈𝑖𝑈𝑗𝐺(𝐿, 𝑖, 𝑗,−𝑚)𝛥(𝑖+ 𝑗−𝑚). (18)

Eq. (15) provides the condition of the symmetry, and it is a set of 
algebraic equations for 𝑎𝑙. If we obtain the set 𝑎𝑙 by solving Eq. (15), 
the symmetric Hamiltonian (10) can be obtained.

In the following subsections, we show that the nonlinear lattice with 
cubic nonlinearity (9) exhibits symmetry for the set of 𝑎𝑙 obtained by 
solving Eq. (15). It is demonstrated that Eq. (15) yields a solution under 
the condition Eq. (16) and 𝐿 = 𝑁∕2. First, the case 𝑁 → ∞ is discussed. 
Subsequently, solutions are obtained to Eq. (15) for a finite 𝑁 .

3.2. Analytical expressions for the set of 𝑎𝑙

For Eq. (15), the following theorem holds. 

Theorem 1. 

𝑎𝑙 =
2 + (−1)𝑙

𝑙
, 𝑙 = 1, 2,… , 𝐿 (19)

satisfies Eq. (15) under the condition Eq. (16) and 𝐿 = 𝑁∕2 at the limit of 
infinity 𝑁 (𝑁 → ∞).
3 
Fig. 2. Change in 𝑎𝑙 based on Eq. (24) for 𝑁 = 512, 1024, 2048. 𝑏𝑙 is also plotted 
for comparison. Solid and dashdot lines correspond to the 𝑎𝑙 and 𝑏𝑙 in the limit 
𝑁 → ∞, respectively.

Proof.  Denoting 𝑖0, 𝑗0, 𝑘0, 𝑁0 ∈ N, such that 𝑖0 + 𝑗0 + 𝑘0 = 𝑁0, 2 ≤ 𝑖0 ≤
𝑗0 ≤ 𝑘0 ≤ 𝑁0∕2−1. Furthermore, considering 𝜂 ∈ N such that 𝑁 = 2𝜂𝑁0. 
Subsequently, by replacing 𝑁 with 2𝜂𝑁0, Eq. (15) can be expressed as 
𝜂𝑁0
∑

𝑙=1

2 + (−1)𝑙

𝑙
(sin 𝑙𝐼 + sin 𝑙𝐽 + sin 𝑙𝐾) = 0, (20)

where 𝐼 = 2𝑖0𝜋∕𝑁0, 𝐽 = 2𝑗0𝜋∕𝑁0, 𝐾 = 2𝑘0𝜋∕𝑁0. 𝜂 → ∞ is equivalent 
to 𝑁 → ∞. Using relations

∞
∑

𝑙=1

sin 𝑥𝑙
𝑙

= 𝜋 − 𝑥
2

, 0 < 𝑥 < 2𝜋 (21)

∞
∑

𝑙=1
(−1)𝑙 sin 𝑥𝑙

𝑙
= −𝑥

2
, −𝜋 < 𝑥 < 𝜋 (22)

the following conclusions are drawn: 
∞
∑

𝑙=1

2 + (−1)𝑙

𝑙
(sin 𝑙𝐼 + sin 𝑙𝐽 + sin 𝑙𝐾) = 0. (23)

Therefore, 𝑎𝑙 =
[

2 + (−1)𝑙
]

∕𝑙 satisfies Eq. (15) under the conditions of 
Eq. (16) and 𝐿 = 𝑁∕2 at the limit of infinity 𝑁 . □

For finite 𝑁 , 𝑎𝑙 is expressed as follows: 

𝑎𝑙 =
𝜋[2 + (−1)𝑙]
𝑁 tan(𝜋𝑙∕𝑁)

,
(

𝑙 = 1, 2,… , 𝑁
2

− 1
)

, 𝑎𝑁∕2 = 0 (24)

Derivation details of Eq. (24) are described in Appendix  B.
Fig.  2 illustrates the change in 𝑎𝑙 according to Eq. (24) for 𝑁 = 512, 

1024, 2048. The dashed line indicates the value of 𝑎𝑙 for 𝑁 → ∞. The 
values of 𝑎𝑙 approach the dashed line asymptotically as 𝑁 increases. 
Compared with Eq. (19), the drop for larger 𝑙 is observed in Eq. (24). 
The drop is explained by the finite-size effect.

The coupling constant for a UFL with cubic nonlinearity is given 
by 𝑎𝑙 ≈ 𝑙−1. The result contrasts with the coupling constant 𝑏𝑙 ≈ 𝑙−2 for 
the UFL with quartic nonlinearity, as reported in a previous study [39]. 
Notably, both 𝑎𝑙 and 𝑏𝑙 tend to zero as 𝑁 → ∞, indicating a vanishing 
coupling constant within the limit. However, 𝑏𝑙 decreases with an 
increasing 𝑙 more rapidly than with 𝑎𝑙. Therefore, cubic nonlinearity 
(9) with solutions (24) is affected strongly by the effect of truncation. 
Particularly, as discussed in Section 4, the difference in the coupling 
constants between 𝑎𝑙 and 𝑏𝑙 affects thermal conductivity for large 
system sizes.

4. Vanishing of umklapp processes in cubic and quartic UFLs

In this section, we present the numerical results for phonon in-
teractions and energy transport of the proposed UFL. In addition to 
the cubic nonlinearity proposed in Section 3, quartic nonlinearity is 
incorporated in our numerical simulations to maintain stability in the 
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UFL. It should be noted that the quartic nonlinearity is also used in the 
quartic UFL [39] and therefore umklapp processes do not occur.

A numerical simulation is performed to determine the phonon 
modes excited by the perturbation of a single normal mode. The 
methodology presented in Ref. [42] is used to calculate and charac-
terize these excited modes.

The equation of motion for the UFL is expressed as

𝑞𝑛 =𝑞𝑛+1 − 2𝑞𝑛 + 𝑞𝑛−1

+𝛼
𝑁∕2
∑

𝑙=1

𝜋[2 + (−1)𝑙]
𝑁 tan 𝑙𝜋

𝑁

[

(𝑞𝑛+𝑙 − 𝑞𝑛)2 − (𝑞𝑛 − 𝑞𝑛−𝑙)2
]

+𝛽
𝑁∕2−1
∑

𝑙=1

sin2 𝜋
𝑁

sin2 𝑙𝜋
𝑁

{

[

(−1)𝑙𝑞𝑛+𝑙 − 𝑞𝑛
]3 −

[

𝑞𝑛 − (−1)𝑙𝑞𝑛−𝑙
]3}

+𝛽
sin2 𝜋

𝑁
2

[

(𝑞𝑛+𝑁∕2 − 𝑞𝑛)3 − (𝑞𝑛 − 𝑞𝑛−𝑁∕2)3
]

, (25)

where the factors 𝛼 and 𝛽 represent the factors of the cubic and 
quartic nonlinear potentials, respectively. The last two terms in the 
RHS represent quartic nonlinear terms [39]. The FPUT-𝛼 lattice with 
the quartic nonlinearity is employed as the comparison model in which 
umklapp processes occur:

𝑞𝑛 =𝑞𝑛+1 − 2𝑞𝑛 + 𝑞𝑛−1
+𝛼

[

(𝑞𝑛+1 − 𝑞𝑛)2 − (𝑞𝑛 − 𝑞𝑛−1)2
]

+𝛽
𝑁∕2−1
∑

𝑙=1

sin2 𝜋
𝑁

sin2 𝑙𝜋
𝑁

{

[

(−1)𝑙𝑞𝑛+𝑙 − 𝑞𝑛
]3 −

[

𝑞𝑛 − (−1)𝑙𝑞𝑛−𝑙
]3}

+𝛽
sin2 𝜋

𝑁
2

[

(𝑞𝑛+𝑁∕2 − 𝑞𝑛)3 − (𝑞𝑛 − 𝑞𝑛−𝑁∕2)3
]

, (26)

Periodic boundary conditions are applied to both models. In the fol-
lowing simulation, the temporal evolution of the normal mode is in-
vestigated through the Fourier transform of the particle displacement 
𝑞𝑛 with a focus on the excited phonon modes arising from umklapp 
processes.

Initial conditions are defined as

𝑞𝑛(𝑗) =
2

√

𝑁
cos

2𝑗𝜋𝑛
𝑁

, (27)

𝑞̇𝑛(𝑗) =
2

√

𝑁
𝜔𝑗 sin

2𝑗𝜋𝑛
𝑁

, (28)

where factor 𝑗 is the wave number which satisfies 0 ≤ 𝑗 ≤ 𝑁∕2 −
1, 𝑗 ∈ N, 𝜔𝑗 = sin(𝜋𝑗∕𝑁). We expect umklapp processes arising 
from cubic nonlinearity following the procedure: interaction between 
phonon modes 𝑈𝑗 excited other phonon modes 𝑈𝑖, −𝑁∕2 + 1 ≤ 𝑖 ≤
𝑁∕2 − 1, 𝑖 ∈ N. Wave number of the new normal mode 𝑖 is defined as 
𝑖 = ±2𝑗 (normal processes) or 𝑖 = ±2𝑗 ∓𝑁 (umklapp processes). From 
the definition of 𝑖, umklapp processes only occur for 𝑁∕4 + 1 ≤ 𝑗 ≤
𝑁∕2 − 1.

Parameters are defined as 𝑁 = 256, 𝛼 = 0.05, and 𝛽 = 0.1. The 
numerical simulation is performed with changing 𝑗 from 0 to 127. The 
simulations are conducted for a short time in time steps of 1.0×10−3 to 
avoid interactions between the excited phonon modes.

Fig.  3 shows the excitations of the phonon modes caused by the 
perturbation of a single mode, as described by Eqs. (27) and (28). 
Red dots correspond to the energy of externally perturbed modes. Blue 
and black dots show the energy of excited modes. Especially, black 
ones shown in Fig.  3(b) correspond to the energy of phonon modes 
arising from the three phonon umklapp processes, respectively. In Fig. 
3(a), the excited phonon modes arising from the umklapp processes are 
not observed. Numerical observation verifies the absence of umklapp 
processes in the UFL.
4 
Fig. 3. Excited phonon modes (𝑖, 𝑥-axis) from externally perturbed phonon 
modes (𝑗, 𝑦-axis) on the UFL (top) and the FPUT lattice (bottom). Red, blue, 
and black dots are separated by the energy spectrum threshold of phonon 
modes: energy spectra of red dots are greater than 10−3, and that of blue 
and black dots are less than 10−3.

5. Ballistic energy transport in cubic and quartic UFLs

The mechanism of energy transport in a 1D lattice has been dis-
cussed based on the scaling law [43] between thermal conductivity 
and the size of systems. Energy transport in materials is known to 
follow Fourier’s law, represented as 𝐽 = −𝜅∇𝑇 , where 𝐽 is the energy 
flux, ∇𝑇  is the temperature gradient, and 𝜅 is the thermal conductiv-
ity. Thermal conductivity is believed to be an intrinsic property of a 
practical material, and it does not depend on the size of the material 
at a macroscopic scale. Conversely, except the rotor model [15–17], 
the anomalous energy transport is observed in 1D nonlinear lattices. 
Theoretical [7,9] and experimental [43–45] studies have shown the 
size dependence of thermal conductivity in 1D lattices. The following 
relation often used to characterize the system is expressed as 
𝜅 ∝ 𝑁𝑐 , (29)

where 𝑁 denotes system size; in 1D lattices, it refers to the number 
of particles. 0 ≤ 𝑐 ≤ 1 represents the degree of size dependence. 
The case 𝑐 = 1 corresponds to ballistic energy transport. In ballistic 
energy transport, the energy flux is independent of 𝑁 . Thus, phonons 
as carriers of energy, propagate from end to end in the lattices without 
losing energy. A linear lattice is an example of ballistic energy transport 
because no phonon interactions take place. In nonlinear lattices, 𝑐
asymptotically approaches 0 for larger 𝑁 . However, classifying the 
thermal conductivity in nonlinear lattices using Eq. (29) is important.

The thermal conductivity of the proposed UFL is numerically in-
vestigated. The numerical simulation model is shown in Fig.  4. In the 
simulation, a finite-size truncated UFL with 𝑁 particles is placed in the 
center. Langevin thermostats are connected to both ends of the lattice 
with fixed boundary conditions. The equation of motion of the model 
is derived as
𝑞𝑛 =𝑞𝑛+1 − 2𝑞𝑛 + 𝑞𝑛−1

+𝛼
𝐿3
∑

𝑙=1

2 + (−1)𝑙

𝑙
[

(𝑞𝑛+𝑙 − 𝑞𝑛)2 − (𝑞𝑛 − 𝑞𝑛−𝑙)2
]

+𝛽
𝐿4
∑

𝑙=1

1
𝑙2

{

[(−1)𝑙𝑞𝑛+𝑙 − 𝑞𝑛]3 − [𝑞𝑛 − (−1)𝑙𝑞𝑛−𝑙]3
}

−𝛾𝑞̇𝑛 + 𝜁𝑛(𝑡) (30)

for 𝑛 ∈ 𝐼H ∪ 𝐼L and
𝑞 =𝑞 − 2𝑞 + 𝑞
𝑛 𝑛+1 𝑛 𝑛−1
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Fig. 4. Illustration of numerical simulation model. Black dotted lines correspond to long-range interactions. Long-range interactions extend to thermostats. Fixed 
boundary conditions are applied to the left ends in the high temperature thermostat, and the right end in the low temperature thermostat, respectively..
+𝛼
𝐿3
∑

𝑙=1

2 + (−1)𝑙

𝑙
[

(𝑞𝑛+𝑙 − 𝑞𝑛)2 − (𝑞𝑛 − 𝑞𝑛−𝑙)2
]

+𝛽
𝐿4
∑

𝑙=1

1
𝑙2

{

[(−1)𝑙𝑞𝑛+𝑙 − 𝑞𝑛]3 − [𝑞𝑛 − (−1)𝑙𝑞𝑛−𝑙]3
}

(31)

for 𝑛 ∈ 𝐼 , where 𝐼H = {1, 2,… , 𝑛0} and 𝐼L = {𝑛0 + 𝑁 + 1, 𝑛0 + 𝑁 +
2,… , 2𝑛0 + 𝑁} represent the sets of particle inducers corresponding 
to the high and low temperature Langevin thermostats, respectively. 
Further, 𝐼 = {𝑛0 + 1, 𝑛0 + 2… , 𝑛0 + 𝑁} represents the set of inducers 
for the truncated UFL. The parameter 𝛾 represents a coefficient. 𝐿3
and 𝐿4 determine truncation length of cubic and quartic long-range 
interactions, respectively. The extensive coupling [30] is employed as 
the connection at the boundary between the thermostats and the center 
part. 𝑛0 is defined as 

𝑛0 =

{

𝑁∕16, (𝑁 ≤ 16𝐿3) (32)

𝐿3. (𝑁 > 16𝐿3) (33)
The term −𝛾𝑞̇𝑛+𝜁𝑛(𝑡) in Eq. (30) represents the Langevin thermostat, 

where 𝛾 > 0 is a constant, 𝑡 > 0 is time, and 𝜁𝑛(𝑡) denotes white Gaussian 
noise. 𝜁𝑛(𝑡) exhibits the following properties: 

⟨𝜁𝑛(𝑡)⟩ = 0, (34)

⟨𝜁𝑛(𝑡)𝜁𝑚(𝑠)⟩ = 2𝛾𝑇 𝛿𝑛,𝑚𝛿(𝑡 − 𝑠), (35)

where 𝑠 > 0 is time, ⟨⋅⟩ represents the operation that averages the over-
realization of 𝜁𝑛(𝑡), 𝛿𝑛,𝑚 is the Kronecker delta, and 𝛿 is the Dirac delta 
function. 𝑇  represents thermostat temperature. The temperatures 𝑇H
and 𝑇L are set as high and low temperature sides, respectively.

The truncated UFL is connected to the thermostat at the (𝑛0 + 1)-st 
and (𝑛0+𝑁)-th particles, and there are long-range interactions between 
the truncated UFL and two thermostats. Based on these connections, 
the energy flux 𝐽1 which represents the energy transported from the 
thermostat with 𝑇H to the (𝑛0 + 1)-st one per unit time, is expressed as 

𝐽1 = −

⟨

𝑞̇𝑛0+1
∑

𝑖∈𝐼H

𝐾𝑖,𝑛0+1

⟩

𝜏

, (36)

where ⟨⋅⟩𝜏 represents an operation that averages over a long period 𝜏
for any physical quantity 𝑋(𝑡), ⟨𝑋⟩𝜏 = 𝜏−1 ∫ 𝜏

0 𝑋(𝑡)d𝑡. 𝐾𝑖,𝑗 represents the 
force acting from site 𝑖 to site 𝑗. Similarly, the energy flux 𝐽2, which 
represents the energy transported from the (𝑛0 + 𝑁)-th particle to the 
thermostat with 𝑇L one per unit time, is calculated as 

𝐽2 = −

⟨

𝑞̇𝑛0+𝑁
∑

𝑖∈𝐼L

𝐾𝑛0+𝑁,𝑖

⟩

𝜏

. (37)

The effective energy flux 𝐽 is defined and computed as 

𝐽 = 1
2
(𝐽1 + 𝐽2). (38)

Thermal conductivity 𝜅 is defined as 

𝜅 = 𝐽
𝑇H − 𝑇L

𝑁. (39)

In this study, we only focus on energy transport by phonons. Dis-
crete breathers are known to be excited in various nonlinear lattices 
with strong nonlinearity [24,35–38,46]. In our numerical simulations, 
the nonlinearity is relatively small and therefore it is expected that the 
effect of discrete breathers would be small.
5 
Fig. 5. Relation between thermal conductivity 𝜅 and lattice size 𝑁 . Dashed 
line represents the linear case: 𝛼, 𝛽 = 0, and shows the ballistic energy 
transport.

Numerical simulations are performed to solve Eq. (31), and the 
thermal conductivity 𝜅 is computed for different lattice sizes 𝑁 = 200, 
400, 1000, 2000, 4000, 10000, 20000, 100000. 𝜅 is evaluated after 
every 4.25 × 107 step when the system is considered to reach a non-
equilibrium stationary state. It is also verified that the time average 
of heat fluxes 𝐽1 and 𝐽2 are the same for 𝑁 = 105 after 4.25 × 107

steps passes. The velocity Verlet scheme is employed with a time step 
of 𝛥𝑡 = 1.0 × 10−2, and the parameters are set as 𝛼 = 0.05, 𝛽 = 0.1, 
(𝐿3, 𝐿4) = (10, 200), (200, 200), 𝛾 = 0.2, 𝑇H = 1.2, and 𝑇L = 0.8.

Fig.  5 illustrates the relationship between thermal conductivity 𝜅
and system size 𝑁 . The figure presents two sets of numerical results, 
each corresponding to a different truncation length 𝐿3 for cubic non-
linearity. In addition to the obtained results, data for the linear lattice 
and quartic UFL [39] are considered for comparison.

When considering the case with (𝐿3, 𝐿4) = (10, 200), shown by the 
blue triangle, a noticeable reduction in the rate of increase of thermal 
conductivity 𝜅 with increasing 𝑁 is observed, and the energy transport 
becomes anomalous. We obtain a relation 𝜅 ∝ 𝑁0.538, shown by blue 
dashed line. The 𝜅 value is larger than that in the case of the FPUT-𝛼
lattice, 𝜅 ∝ 𝑁0.4 [14]. In contrast, for the case (𝐿3, 𝐿4) = (200, 200), 
𝜅 increases with 𝜅 ∝ 𝑁0.855, as shown by the red circles and the red 
line. Therefore, thermal transport becomes ballistic asymptotically by 
increasing 𝐿3. Thus, the umklapp processes reduce in the truncated UFL 
as the truncation length increases. Consequently, the numerical results 
verify that the proposed lattice (31) belongs to the family of UFLs that 
support ballistic energy transport.

Next, we focus on the difference between the results for the UFL 
(31) and the UFL with only quartic nonlinearity, which is indicated 
by green squares. Compared with the relation 𝜅 ∝ 𝑁0.855, that of 
the UFL with quartic nonlinearity is near unity within the range of 
𝑁 ≤ 106. The deviation from ballistic transport in the cubic UFL is 
larger than that in the quartic UFL with the same truncation length. 
As discussed in Section 3, 𝑏𝑙 decreases more rapidly with increasing 𝑟
compared to 𝑎 . Consequently, when 𝑟 is fixed, the effect of truncating 
𝑙
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Fig. 6. Temperature profiles plotted vs 𝑛∕𝑁 for two cases (𝐿3, 𝐿4) =
(10, 200), (200, 200). Parameters are 𝑁 = 105, 𝑇H = 1.2, and 𝑇L = 0.8.

the cubic nonlinear potential is more significant than that of truncating 
the quartic nonlinear interaction.

Another possibility of the deviation can be explained from the 
viewpoint of energy current of auto-correlation. Studies have reported 
that asymmetric potentials such as cubic nonlinearity cause rapid de-
cay of energy current auto-correlation and suggest a diffusive energy 
transport [41]. Further, more umklapp processes occur in the cubic 
UFL compared to the quartic UFL owing to the difference in coupling 
constants of nonlinear interactions.

The temperature distributions in full systems for two cases (𝐿3, 𝐿4)
= (10, 200), (200, 200) are shown in Fig.  6, where 𝑁 = 105, 𝑛 is the site 
number of the truncated UFL (1 ≤ 𝑛 ≤ 𝑁), and the temperature 𝑇
for each particle are defined by the time average of kinetic energy. It 
is shown that the temperature gradient away from thermostats close 
to the flat profile as 𝐿3 becomes larger. This change of profile of 
temperatures corresponds to the increase of 𝑐.

6. Conclusion

We constructed the UFL with cubic nonlinearity by considering the 
symmetry of interparticle potential. From the perspective of phonon 
interactions, umklapp processes arising from cubic nonlinearity are 
absent in the proposed lattice. The cubic nonlinear coupling strength 
is obtained, and becomes 𝑎𝑙 = [2 + (−1)𝑙]∕𝑙 at the limit of infinity 𝑁
(𝑁 → ∞). Additionally, we confirmed the absence of umklapp pro-
cesses by performing numerical simulation for the temporal evolution 
of phonon modes. Non-equilibrium simulations were then performed 
and the thermal conductivity in the truncated UFL was investigated. 
The thermal conductivity in the proposed lattice increased from 𝜅 ∝
𝑁0.538 to 𝜅 ∝ 𝑁0.855 for varying 𝐿3. Compared to the UFL exhibiting 
only quartic nonlinearity, the proposed lattice shows that truncation 
plays a significant role.
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Appendix A. Derivation details of Eq. (15)

Substituting Eq. (2) into Eq. (9), we have 
𝐻(𝑼 ,𝑽 , 𝑈𝑁∕2, 𝑉𝑁∕2)

= 1
2

𝑁h
∑

𝑚=−𝑁h

(

𝑉𝑚𝑉−𝑚 + 4 sin2 𝜋𝑚
𝑁

𝑈𝑚𝑈−𝑚

)

+ 1
2
(𝑈2

𝑁∕2 + 𝑉 2
𝑁∕2)

+ 𝛼

3𝑁
3
2

𝑁
∑

𝑛=1

𝑁h
∑

𝑖,𝑗,𝑘=−𝑁h

e−i
2𝜋
𝑁 (𝑖+𝑗+𝑘)𝑈𝑖𝑈𝑗𝑈𝑘𝐺(𝐿, 𝑖, 𝑗, 𝑘). (A.1)

The summation of 𝑛 is 𝑁 only when 𝑖+𝑗+𝑘 is a multiple of 𝑁 ; otherwise, 
it is zero. Since −𝑁h ≤ 𝑖 ≤ 𝑗 ≤ 𝑘 ≤ 𝑁h, considering only three cases 
is enough; 𝑖 + 𝑗 + 𝑘 = 0,±𝑁 . Applying the mapping 𝜆 to 𝑈𝑚, 𝑉𝑚 in 
Eq. (A.1) respectively, we have
𝐻(𝜆𝑼 , 𝜆𝑽 , 𝜆𝑈𝑁∕2, 𝜆𝑉𝑁∕2)

= 1
2

𝑁h
∑

𝑚=−𝑁h

(

𝑉𝑚𝑉−𝑚 + 4 sin2 𝜋𝑚
𝑁

𝑈𝑚𝑈−𝑚

)

+ 𝛼

3
√

𝑁

𝑁h
∑

𝑖,𝑗,𝑘=−𝑁h

𝑈𝑖𝑈𝑗𝑈𝑘𝐺(𝐿, 𝑖, 𝑗, 𝑘)𝛥(𝑖 + 𝑗 + 𝑘)

+ 𝛼

3
√

𝑁

𝑁h
∑

𝑖,𝑗,𝑘=−𝑁h

𝑈𝑖𝑈𝑗𝑈𝑘e∓i𝑁𝜆𝐺(𝐿, 𝑖, 𝑗, 𝑘)𝛥(𝑖 + 𝑗 + 𝑘 ±𝑁)

+ 1
2
𝑉 2
𝑁∕2e

−i𝑁𝜆 + (𝜆𝑼 , 𝜆𝑈𝑁∕2). (A.2)

To simplify the problem, we assume that 𝑈𝑁∕2 ≡ 0. Under this condi-
tion, 𝛷s(𝑽 ,𝑼 ) is defined as the part that is invariant for the mapping 
𝜆,∀𝜆 ∈ R, and 𝛷a(𝑼 ) as the rest of the part in Eq. (A.2). Therefore 
Eq. (A.2) can be expressed as 
𝐻(𝜆𝑼 , 𝜆𝑽 ) = 𝛷s(𝑽 ,𝑼 ) +𝛷a(𝑼 ), (A.3)

where

𝛷s(𝑽 ,𝑼 ) = 1
2

𝑁h
∑

𝑚=−𝑁h

(

𝑉𝑚𝑉−𝑚 + 4 sin2 𝜋𝑚
𝑁

𝑈𝑚𝑈−𝑚

)

+ 𝛼

3
√

𝑁

𝑁h
∑

𝑖,𝑗,𝑘=−𝑁h

𝑈𝑖𝑈𝑗𝑈𝑘𝐺(𝐿, 𝑖, 𝑗, 𝑘)𝛥(𝑖 + 𝑗 + 𝑘), (A.4)

𝛷a(𝑼 ) = 𝛼

3
√

𝑁

𝑁h
∑

𝑖,𝑗,𝑘=−𝑁h

𝑈𝑖𝑈𝑗𝑈𝑘e∓i𝑁𝜆𝐺(𝐿, 𝑖, 𝑗, 𝑘)𝛥(𝑖 + 𝑗 + 𝑘 ±𝑁).

(A.5)

𝛷a(𝑼 ) changes depending on 𝜆. Therefore, if Eq. (A.3) is invariant 
under the transformation 𝑇𝜆, then 
𝛷a(𝑼 ) ≡ 0 (A.6)

must hold. 𝑼 in Eq. (A.6) depends on 𝑡. Therefore, the condition is 
equivalent to 
𝐿
∑

𝑙=1
𝐺(𝐿, 𝑖, 𝑗, 𝑘) = 0, 𝑖 + 𝑗 + 𝑘 = ±𝑁. (A.7)

When 𝑖 + 𝑗 + 𝑘 = ±𝑁 , 𝐺(𝐿, 𝑖, 𝑗, 𝑘) can be rewritten as 

𝐺(𝐿, 𝑖, 𝑗, 𝑘) = ∓8i(−1)𝑙 sin 𝜋𝑙𝑖
𝑁

sin
𝜋𝑙𝑗
𝑁

sin 𝜋𝑙𝑘
𝑁

. (A.8)

Therefore, we obtain 
𝐿
∑

(−1)𝑙𝑎𝑙 sin
𝜋𝑙𝑖 sin

𝜋𝑙𝑗
sin 𝜋𝑙𝑘 = 0 (A.9)
𝑙=1 𝑁 𝑁 𝑁
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from Eq. (A.7). Eq. (A.9) is invariant for the translation 𝑖, 𝑗, 𝑘 →
−𝑖,−𝑗,−𝑘. Substituting −𝑖,−𝑗,−𝑘 into Eq. (A.9), we obtain 

−
𝐿
∑

𝑙=1
(−1)𝑙𝑎𝑙 sin

𝜋𝑙𝑖
𝑁

sin
𝜋𝑙𝑗
𝑁

sin 𝜋𝑙𝑘
𝑁

= 0, (A.10)

because sin(−𝜃) = − sin 𝜃, 𝜃 ∈ R, Herein, Eqs. (A.9) and (A.10) holds 
for same 𝑎𝑙. Therefore, we can only consider the case 𝑖 + 𝑗 + 𝑘 = 𝑁 . 
The ranges of 𝑖, 𝑗, 𝑘 are also restricted as 2 ≤ 𝑖 ≤ 𝑗 ≤ 𝑘 ≤ 𝑁h by the 
inequation 
𝑁 = 𝑖 + 𝑗 + 𝑘 ≤ 𝑖 +𝑁 − 2. (A.11)

Finally, the condition of symmetry is expressed as 
𝐿
∑

𝑙=1
(−1)𝑙𝑎𝑙 sin

𝜋𝑙𝑖
𝑁

sin
𝜋𝑙𝑗
𝑁

sin 𝜋𝑙𝑘
𝑁

= 0 (A.12)

under the condition 
𝑖 + 𝑗 + 𝑘 = 𝑁, 2 ≤ 𝑖 ≤ 𝑗 ≤ 𝑘 ≤ 𝑁. (A.13)

If Eq. (A.12) holds, then the nonlinear lattice describing the Hamilto-
nian (9) is called the UFL.

Appendix B. Details of 𝒂𝒍 for finite 𝑵

Consider the nonlinear term in the equation of motion, given by 

𝑞𝑛 =
∞
∑

𝑙=1

2 + (−1)𝑙

𝑙
[

(𝑞𝑛+𝑙 − 𝑞𝑛)2 − (𝑞𝑛 − 𝑞𝑛−𝑙)2
]

. (B.1)

The spatial periodic solution is imposed on Eq. (B.1) to satisfy the 
relation 𝑞𝑛±(𝑙+𝑚𝑁)(𝑡) = 𝑞𝑛+𝑙(𝑡) for 𝑛, 𝑚 ∈ Z, 𝑡 ∈ R, where 𝑁 is a positive 
even number. Substituting the relationship into Eq. (B.1), we obtain 

𝑞𝑛 =
∞
∑

𝑚=0

𝑁
∑

𝑙=1

2 + (−1)𝑙+𝑚𝑁

𝑙 + 𝑚𝑁
(𝑞𝑛+𝑙 − 𝑞𝑛)2 −

∞
∑

𝑚=0

𝑁
∑

𝑙=1

2 + (−1)𝑙+𝑚𝑁

𝑙 + 𝑚𝑁
(𝑞𝑛 − 𝑞𝑛−𝑙)2.

(B.2)

As 𝑁 is even, (−1)𝑚𝑁 = 1 holds and 

𝑞𝑛 =
∞
∑

𝑚=0

𝑁
∑

𝑙=1

2 + (−1)𝑙

𝑙 + 𝑚𝑁
[

(𝑞𝑛+𝑙 − 𝑞𝑛)2 − (𝑞𝑛 − 𝑞𝑛−𝑙)2
]

(B.3)

is obtained. The RHS of Eq. (B.3) can be divided into three parts:

𝑞𝑛 =
𝑁∕2−1
∑

𝑙=1

∞
∑

𝑚=0

2 + (−1)𝑙

𝑙 + 𝑚𝑁
[

(𝑞𝑛+𝑙 − 𝑞𝑛)2 − (𝑞𝑛 − 𝑞𝑛−𝑙)2
]

+
𝑁
∑

𝑙=𝑁∕2+1

∞
∑

𝑚=0

2 + (−1)𝑙

𝑙 + 𝑚𝑁
[

(𝑞𝑛+𝑙 − 𝑞𝑛)2 − (𝑞𝑛 − 𝑞𝑛−𝑙)2
]

+
∞
∑

𝑚=0

2 + (−1)𝑁∕2

𝑁∕2 + 𝑚𝑁
[

(𝑞𝑛+𝑁∕2 − 𝑞𝑛)2 − (𝑞𝑛 − 𝑞𝑛−𝑁∕2)2
]

. (B.4)

Evidently, the third sum of the RHS vanishes because (𝑞𝑛+𝑁∕2 − 𝑞𝑛)2 =
(𝑞𝑛 − 𝑞𝑛−𝑁∕2)2 due to the 𝑁-periodicity of the system. Additionally, the 
final component 𝑙 = 𝑁 in the second sum of the RHS of Eq. (B.4) 
vanishes because 𝑞𝑛+𝑁 = 𝑞𝑛−𝑁 = 𝑞𝑛.

Further, we define 𝑙′ = 𝑁−𝑙 and substitute the value into the second 
sum of the RHS of Eq. (B.4) as

𝑞𝑛 =
𝑁∕2−1
∑

𝑙=1

∞
∑

𝑚=0

2 + (−1)𝑙

𝑙 + 𝑚𝑁
[

(𝑞𝑛+𝑙 − 𝑞𝑛)2 − (𝑞𝑛 − 𝑞𝑛−𝑙)2
]

+
𝑁∕2−1
∑

𝑙′=1

∞
∑

𝑚=0

2 + (−1)𝑁−𝑙′

𝑁 − 𝑙′ + 𝑚𝑁
[

(𝑞𝑛+𝑁−𝑙′ − 𝑞𝑛)2 − (𝑞𝑛 − 𝑞𝑛−𝑁+𝑙′ )2
]

. (B.5)

Consider the relations (−1)𝑁 = 1, (−1)−𝑙′ = (−1)𝑙′ , 𝑞𝑛+𝑁−𝑙′ = 𝑞𝑛−𝑙′ , and 
𝑞𝑛−𝑁+𝑙′ = 𝑞𝑛+𝑙′ ; then, rewriting 𝑙′ → 𝑙. By combining the first and second 
sums in Eq. (B.5), we have 

𝑞𝑛 =
𝑁∕2−1
∑

∞
∑ 2 + (−1)𝑙 [

(𝑞𝑛+𝑙 − 𝑞𝑛)2 − (𝑞𝑛 − 𝑞𝑛−𝑙)2
]

. (B.6)

𝑙=1 𝑚=−∞ 𝑙 + 𝑚𝑁
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Using the formula 
∞
∑

𝑚=−∞

1
𝑥 + 𝑚

= lim
𝑚→∞

𝑚
∑

𝑛=−𝑚

1
𝑥 + 𝑛

= 𝜋 cot 𝜋𝑥, (B.7)

we obtain the final result as 

𝑞𝑛 =
𝑁∕2−1
∑

𝑙=1

𝜋[2 + (−1)𝑙]
𝑁 tan (𝜋𝑙∕𝑁)

[

(𝑞𝑛+𝑙 − 𝑞𝑛)2 − (𝑞𝑛 − 𝑞𝑛−𝑙)2
]

. (B.8)

The result indicates that, in a finite periodic lattice, the coefficient 𝑎𝑙
is given by 

𝑎𝑙 =
𝜋[2 + (−1)𝑙]
𝑁 tan(𝜋𝑙∕𝑁)

, 𝑙 = 1, 2,… , 𝑁
2

− 1. (B.9)

As 𝑁 is an even number, 𝑎𝑁∕2 = 0 holds.

Data availability

No data was used for the research described in the article.
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