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We propose a novel type of umklapp-free lattice (UFL), where umklapp processes are completely absent.
The proposed UFL incorporates cubic long-range nonlinearity, a feature not addressed in previous studies.
In this paper, we derive an analytical expression for the cubic nonlinear coupling constants by imposing
mathematical conditions such that the nonlinear coupling strength between particle pairs decays inversely
with their separation distance. The absence of umklapp processes in the proposed lattice is confirmed through

numerical comparisons with the Fermi-Pasta—Ulam-Tsingou (FPUT) lattice. Furthermore, molecular dynamics
simulations are performed to investigate the thermal conductivity of the proposed lattice in the non-equilibrium
steady state. Compared to the original FPUT lattice, the proposed UFL is closer to ballistic transport. Our results
demonstrate that the umklapp processes induced by cubic nonlinearity are suppressed in the proposed UFL.
Moreover, compared to the UFL with only quartic nonlinearity, truncation of long-range interactions plays a
significant role in the proposed lattice.

1. Introduction

Nonlinear lattice models have been developed to study vibrations,
wave propagation, and energy transport in crystalline solids from
the perspective of nonlinear dynamics [1]. Fermi-Pasta—Ulam-Tsingou
(FPUT) lattice has been constructed to investigate the relationship
between nonlinear interactions in particles and ergodicity [2]. The
study has attracted significant attention for demonstrating periodicity
in temporal evolution as evidence of Poincaré’s recurrence paradox
through numerical simulations, showing that nonlinearity did not nec-
essarily lead to thermal equilibrium or an equal distribution of energy.
Toda [3] constructed another famous lattice with an exponential-type
nonlinear particle interaction. The lattice could be used to construct an
integrable system and contribute to the development of soliton theory
owing to its potential for analytical studies [4].

The temporal evolution of the displacement field of solids in a
continuum can be transformed from Fourier’s representation to wave-
mode system dynamics. Similarly, waves in lattice systems can be
understood in terms of vibration mode dynamics as phonons. Peierls [5]
identified the process in which the law of conservation of momentum
did not hold in the interaction between phonons during umklapp
processes. The process was defined as the origin of thermal resistance,
arising from disturbances in energy transport. Umklapp processes do
not occur in linear lattices, where particle interactions are governed
by a harmonic potential function. In such systems, no energy exchange
takes place among harmonic vibration modes via linear interactions,
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implying that the energy of each phonon remains unchanged. Energy
transport realized by wave propagation is ballistic in linear lattices.
Therefore, the transition from vibration to heat and the resulting heat
conduction, essentially originates from the nonlinearity of the lattice,
where the interaction between phonons is usually significant and the
superposition principle is violated [6].

Regarding problems in the energy transport of lattice systems,
several studies have been conducted to clarify the relationship be-
tween the energy transport and phonon interactions [7-9]. Besides
energy transport with nonlinearity, long-range interactions are also
attached to many interests from experimental systems, such as mag-
netic lattices [10] and quantum systems [11]. Nonlinear lattices with
only nearest-neighbor interactions in homogeneous particle systems
were first investigated in earlier studies, such as FPUT-g [12,13],
FPUT-a [14], and rotor model [15-17]. One extension considers spatial
heterogeneity, such as impurity particles and diatomic Toda lattice [18,
19]. Another extension considers the long-range interactions of parti-
cles [20-22]. Long-range FPUT-p [23-27], and other lattices [28-32]
have been utilized to understand the nonlinear dynamics. For example,
pairwise interaction symmetric lattice (PISL) [33,34] supports the
smooth mobility of discrete breathers [35-37] exhibiting higher ther-
mal conductivity than the original FPUT-a and FPUT-g lattices [28,29].
Bagchi investigated the thermal conductivities of long-range FPUT-g
lattices [23,24], and determined the coupling constant that realized the
maximum thermal conductivity. Wang et al. investigated the thermal
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conductivity of long-range FPUT-g lattice and discussed the role of
discrete breather in thermal transport [38]. However, the mechanism of
thermal resistance has not been fully understood from the perspective
of phonon interactions.

Yoshimura et al. recently constructed a nonlinear lattice named
umklapp free lattice (UFL) [39]. The lattice was constructed to satisfy
the NP symmetry condition, which represents invariance against a
specific mapping [40]. Mathematical proofs validated the absence of
umklapp processes in the UFL system dynamics. Furthermore, numer-
ical simulations were performed to verify the absence of umklapp
processes, which were closely related to ballistic energy transport.
Only the quartic nonlinear terms were considered in the interparticle
potential function of the UFL. Expanding the UFL to other orders of
nonlinearity is crucial to generalize the UFL for understanding the
effect of umklapp processes on thermal resistance. For example, cubic
nonlinearity is the lowest nonlinearity and important in understanding
material properties considering nonlinear dynamics, as harmonicity
only provides linear theories. In the low-temperature regime, the pos-
sibility of thermal conductivity convergence due to cubic nonlinearity
has been reported [41].

The aim of this study is to construct a UFL with cubic nonlinearity
in the interparticle potential function. The construction procedure is
formulated from the perspective of lattice symmetry, ensuring complete
suppression of umklapp processes. The absence of umklapp processes is
verified through numerical simulations of phonon excitations. Further-
more, ballistic energy transport in the proposed UFL is confirmed via
non-equilibrium molecular dynamics simulations, and the relationship
between lattice symmetry and thermal transport is discussed.

The remainder of this paper is organized as follows. Section 2 intro-
duces variable transformation and defines symmetry. In Section 3, the
UFL is constructed by considering the symmetry in a cubic nonlinear
potential. The numerical evidence that umklapp processes vanish in
the proposed UFL, is described in Section 4. Ballistic energy transport
in the proposed UFL is discussed in Section 5 by performing the non-
equilibrium molecular dynamics simulation. Section 6 concludes the
study.

2. Definition of symmetry in nonlinear lattices

In order to construct the UFL, variable translation and potential
mapping are introduced following existing studies [34,40]. Considering
a one-dimensional (1D) nonlinear lattice defined by the Hamiltonian

N

1
H(@.p)= Y, 50, + D1 4. ). )}

n=1

where g = (41.4,....qy5) and p = (p;,pp, ... PN)» dn- Py € R represent
displacement from the equilibrium point and momentum of the nth
particle, respectively, N is an even number and corresponds to the
number of particles, and @ : RV — R is a C? function representing
potential. Assuming that the system has relations qy,, = ¢, Pn4n =
Py n = 1,2,...,L as periodic boundary conditions, where L is the
truncation length corresponding to the range of pairwise interactions.
Introducing a complex normal mode coordinate U,.V, € C,m =
—Ny,—Ny, +1,..., Ny, + 1 via the variable transformation defined by

Np+1

1 .2nn
q, = — E U, exp(—l—m), n=1,2,...,N, 2)
VNS N
1 Np+1 5
.27n
Pp=—= E V;nexp(—lwm), n=12,...,N, 3)

\/ﬁ m=—Ny

where N, = N/2 -1 and i is the imaginary number unit. V,, is defined
as a derivative of U,, with respect to time.

Substituting Eqgs. (2) and (3) into Eq. (1), the Hamiltonian can be
rewritten in terms of U,, and V,, as

Ny
HWU,V, Uy Vo) = Ly v+ +ew.u Q)
WU, V,Un;2. VN = ZN 5Vm _m+§ N2 T WU,Un/2)s
m=—Ny
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Fig. 1. The nonlinear lattice model for considering the UFL. The cubic long-
range interaction is included. Only the connections related to the blue particles
are shown.

where U = (U_y,,U_p, ;- .-, Uy ) and V = (V_n . Vo, 415 -5 Vi, )-

The potential @(U,Uy ;) can be divided into a Uy ,-independent
component &,(U) and a Uy ,-dependent component G(U, Uy ,). Fur-
ther, the following map 7, : CN-! — CN-! is introduced:

T, :U, = U,exp(=imi), m=—-Ny,—-Ny+1,...,Ny (5)

where 1 is an arbitrary number. We define the symmetry in the non-
linear lattice (1) as the invariance of potential &(U,U ) in Eq. (7)
under the transformation 7, for any 4 € R.

The Uy /,-independent component @,(U) can be divided into two
parts as

Po(U) = D(U) + D, (V). )

@,(U) is defined as the symmetric part and it is invariant for mapping
7,,VA € R. The relationship @,(7,U) = &,(U) holds for any U € CN-!
or 4 € R @,(U) = ¢y(U) — ®,(U) is defined as the asymmetric part.
Then, &(U,Uy /,) can be divided into three parts as

DU, Uy ) =PU) + @ (U) + GU, Uy ). )
The lattice is symmetrical when the following condition is satisfied:
D,(U)+GU,Uyp) =0. ®

As will be discussed in the following section, symmetricity and asym-
metricity correspond to normal and umklapp processes of energy trans-
port, respectively. If Eq. (8) is satisfied, then the nonlinear lattice
model (1) is defined as the UFL.

3. Construction of a cubic umklapp-free lattice

The UFL with cubic nonlinearity is constructed by considering
symmetricity in the potential. We focus on a 1D lattice defined by the
Hamiltonian

© 1, 2
2
H(q.p) = 2 Pt z 5 (Gns1 = 4,)" +a

n=1 n=1 n

M=
M=

1 3
T4 (qn+l - qn) ’ (9)
11/ 3

where a € R denotes the factor of the cubic nonlinear potential. The
factors a; € R,I = 1,2, ..., L are constants that represent the coupling
strength between the rth neighboring particles.

The cubic long-range interaction is considered as shown in Fig. 1.
Periodic boundary conditions are applied to the system, and the range
of L is restricted to 1 < L < N /2.

3.1. Derivation of the condition of the symmetry

As a first step to construct the cubic UFL, the condition of the
symmetry is derived from Eq. (9). Substituting Eq. (2) into Eq. (9), the
Hamiltonian is represented in terms of U, V, Uy, and Vy , as

HWU. V. Uy Vy )

Ny
=y % (V,,,V_m +4sin? %UMU_,,,)
m=—Ny
Ny N, N,
o

4 Z Z 2 U,U,UG(L,i, j, K)AG + j + k)

3V N i==N, j=—Np, k=—Nj,
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Ni Nh Nh
Z U,UUG(L, i j, K)AG + j + k £ N)
3V N i=—Ny j=—Ny k=—Ny,
2

a

V.
+ L0, Uyp). a0
where
L
G(L,i,j, k) = Y, a1gDg()g k), an
I=1
g(m) = exp (-iz”Tm)-l, m=—Ny,—Ny +1,.... Ny, (12)
1 (d=0) 13)
Ad) =
0 (otherwise). 14

(KHS)stednce ethdedfhihbltemm(mﬁﬂse}(U Uy») on the right-hand side
Assuming that Uy, = 0, N2 /2 and G(U, Uy ) vanish. Then, the
condition of the symmetry in the nonlinear lattice (9) is given as

ljx . lkx
Z 1! =2 §in == sin == =0, 15
-D'aq sm 7 sin N sin N (15)

where i, j, k € N are any numbers that satisfy
2<i<j<k<N, i+j+k=N (16)

(Appendix A presents derivation details).

It is worth discussing the physical interpretation of Eq. (15). The
equation of motion in terms of the complex normal mode coordinates
U,,, derived from the Hamiltonian (10), is expressed as

U, + 45in’ 7;" m

Ny Np
=—— 3 Y UUGL.ij,-mAi+j-m)
3VN i=—Ny j==Ny
Nh Nh
Z 2 U,U;G(L.i.j.~m)AGi + j — m £ N). a7
3V N i=—N, j=—N,

a

The second term on the left-hand side (LHS) of Eq. (17) corresponds to
the linear force, while the first and second terms on the RHS of Eq. (17)
describe nonlinear forces. The first term on the RHS indicates normal
processes, whereas the second term indicates umklapp processes. The
second term corresponds to the asymmetric part @,(U) in Eq. (6).
When the Eq. (15) is satisfied, the second term on the RHS vanishes.
Therefore, the symmetricity in the nonlinear lattice (9) for the map (5)
corresponds to the vanishing of umklapp processes. Considering the
condition of the symmetry, Eq. (17) can be rewritten as

Ny Ny

U +4s1n27;\r]n Z 2

UjG(L, i,j,—m)A(i+j—m). (18)
N i=—Np j=—Ny

Eq. (15) provides the condition of the symmetry, and it is a set of
algebraic equations for g,. If we obtain the set 4, by solving Eq. (15),
the symmetric Hamiltonian (10) can be obtained.

In the following subsections, we show that the nonlinear lattice with
cubic nonlinearity (9) exhibits symmetry for the set of 4, obtained by
solving Eq. (15). It is demonstrated that Eq. (15) yields a solution under
the condition Eq. (16) and L = N /2. First, the case N — oo is discussed.
Subsequently, solutions are obtained to Eq. (15) for a finite N.

3.2. Analytical expressions for the set of a;
For Eq. (15), the following theorem holds.

Theorem 1.
24 (=1
a = —-,
I}
satisfies Eq. (15) under the condition Eq. (16) and L = N /2 at the limit of
infinity N (N — o).

I=12,...,L 19)
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Fig. 2. Change in g, based on Eq. (24) for N = 512,1024,2048. b, is also plotted
for comparison. Solid and dashdot lines correspond to the g, and b, in the limit
N — oo, respectively.

Proof. Denoting iy, jo, kg, Ny € N, such that iy + jo + kg = Ny,2 < iy <
Jjo < kg £ Ny/2—1. Furthermore, considering # € N such that N = 27 N,,.
Subsequently, by replacing N with 21N, Eq. (15) can be expressed as
nNo i

2+ (-1
y # (sin 1 +sinlJ +sinlK) = 0, (20)
=1
where I = 2iyz/Ny,J = 2jyn/ Ny, K
to N — 0. Using relations

= 2kgn/Ny. n = oo is equivalent

&) .
Z“"[’” =T 0<x<2n @D
Z(_l)lm‘l_x’:_’zﬁ, —r<x<x (22)

the following conclusions are drawn:

- 2+ (=1)

Z#(sinli +sinlJ +sin/K) = 0. (23)
=

Therefore, a; = [2 + (—1)!] /I satisfies Eq. (15) under the conditions of
Eq. (16) and L = N/2 at the limit of infinity N. [J

For finite N, q; is expressed as follows:

72+ (-D']

g =220 (1 =1.2,...,
N tan(z//N)

Derivation details of Eq. (24) are described in Appendix B.

Fig. 2 illustrates the change in g; according to Eq. (24) for N =512,
1024, 2048. The dashed line indicates the value of a; for N — . The
values of a, approach the dashed line asymptotically as N increases.
Compared with Eq. (19), the drop for larger / is observed in Eq. (24).
The drop is explained by the finite-size effect.

The coupling constant for a UFL with cubic nonlinearity is given
by a, ~ I~!. The result contrasts with the coupling constant b, ~ [=2 for
the UFL with quartic nonlinearity, as reported in a previous study [39].
Notably, both ¢, and b, tend to zero as N — oo, indicating a vanishing
coupling constant within the limit. However, b, decreases with an
increasing / more rapidly than with q;. Therefore, cubic nonlinearity
(9) with solutions (24) is affected strongly by the effect of truncation.
Particularly, as discussed in Section 4, the difference in the coupling
constants between a4, and b, affects thermal conductivity for large
system sizes.

N
7—1), anp =0 (24)

4. Vanishing of umklapp processes in cubic and quartic UFLs

In this section, we present the numerical results for phonon in-
teractions and energy transport of the proposed UFL. In addition to
the cubic nonlinearity proposed in Section 3, quartic nonlinearity is
incorporated in our numerical simulations to maintain stability in the
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UFL. It should be noted that the quartic nonlinearity is also used in the
quartic UFL [39] and therefore umklapp processes do not occur.

A numerical simulation is performed to determine the phonon
modes excited by the perturbation of a single normal mode. The
methodology presented in Ref. [42] is used to calculate and charac-
terize these excited modes.

The equation of motion for the UFL is expressed as

dp =dpy1 — 2qn /|

& 22+ (=1)] [

+a Gt = 4n)* = (@ = @)’

1=1 N tan %
N/2-1 gin2 Z 3
3 3
Y — e { [V =]’ -l - Da,]'}
=1 SIn N
sin® & s s
+ﬂT [(‘I,H.N/z =4, — (@, — du_ny2) ] > (25)

where the factors a« and g represent the factors of the cubic and
quartic nonlinear potentials, respectively. The last two terms in the
RHS represent quartic nonlinear terms [39]. The FPUT-« lattice with
the quartic nonlinearity is employed as the comparison model in which
umklapp processes occur:

G =Gns1 = 20, + 4p1
+a [(4n+1 - qn)z - (qn - qnfl)z]

YR Ly . Y T
# Y, — e { [V —a) - [0 - Ve’ }
=1 SIn N
sin’ : ;
H— [(@ueny2 = @) = @y = duen )] » (26)

Periodic boundary conditions are applied to both models. In the fol-
lowing simulation, the temporal evolution of the normal mode is in-
vestigated through the Fourier transform of the particle displacement
g, with a focus on the excited phonon modes arising from umklapp
processes.

Initial conditions are defined as

2jmn
q,(j) = —= cos jN , 27)

G,(j) = ——=w; sin ——, (28)

where factor j is the wave number which satisfies 0 < j < N/2 —
I, j € N, w; = sin(zj/N). We expect umklapp processes arising
from cubic nonlinearity following the procedure: interaction between
phonon modes U; excited other phonon modes U;, —-N/2+1 <i <
N/2-1, i€ N. Wave number of the new normal mode i is defined as
i = +2j (normal processes) or i = +2j F N (umklapp processes). From
the definition of i, umklapp processes only occur for N/4 +1 < j <
N/2-1.

Parameters are defined as N = 256, a = 0.05, and g = 0.1. The
numerical simulation is performed with changing j from O to 127. The
simulations are conducted for a short time in time steps of 1.0x 10> to
avoid interactions between the excited phonon modes.

Fig. 3 shows the excitations of the phonon modes caused by the
perturbation of a single mode, as described by Egs. (27) and (28).
Red dots correspond to the energy of externally perturbed modes. Blue
and black dots show the energy of excited modes. Especially, black
ones shown in Fig. 3(b) correspond to the energy of phonon modes
arising from the three phonon umklapp processes, respectively. In Fig.
3(a), the excited phonon modes arising from the umklapp processes are
not observed. Numerical observation verifies the absence of umklapp
processes in the UFL.
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(a) UFL o Perturbated e Excited

128

—0128 0 128

(b) FPUT

0
—128 0 128

Fig. 3. Excited phonon modes (i, x-axis) from externally perturbed phonon
modes (j, y-axis) on the UFL (top) and the FPUT lattice (bottom). Red, blue,
and black dots are separated by the energy spectrum threshold of phonon
modes: energy spectra of red dots are greater than 10~3, and that of blue
and black dots are less than 10-3.

5. Ballistic energy transport in cubic and quartic UFLs

The mechanism of energy transport in a 1D lattice has been dis-
cussed based on the scaling law [43] between thermal conductivity
and the size of systems. Energy transport in materials is known to
follow Fourier’s law, represented as J = —x VT, where J is the energy
flux, VT is the temperature gradient, and « is the thermal conductiv-
ity. Thermal conductivity is believed to be an intrinsic property of a
practical material, and it does not depend on the size of the material
at a macroscopic scale. Conversely, except the rotor model [15-17],
the anomalous energy transport is observed in 1D nonlinear lattices.
Theoretical [7,9] and experimental [43-45] studies have shown the
size dependence of thermal conductivity in 1D lattices. The following
relation often used to characterize the system is expressed as

Kk« N¢, (29)

where N denotes system size; in 1D lattices, it refers to the number
of particles. 0 < ¢ < 1 represents the degree of size dependence.
The case ¢ = 1 corresponds to ballistic energy transport. In ballistic
energy transport, the energy flux is independent of N. Thus, phonons
as carriers of energy, propagate from end to end in the lattices without
losing energy. A linear lattice is an example of ballistic energy transport
because no phonon interactions take place. In nonlinear lattices, ¢
asymptotically approaches O for larger N. However, classifying the
thermal conductivity in nonlinear lattices using Eq. (29) is important.

The thermal conductivity of the proposed UFL is numerically in-
vestigated. The numerical simulation model is shown in Fig. 4. In the
simulation, a finite-size truncated UFL with N particles is placed in the
center. Langevin thermostats are connected to both ends of the lattice
with fixed boundary conditions. The equation of motion of the model
is derived as

Gy =Gns1 — 24, + 4y

L .
2+ (—1
+a 2 # [(@nsr — 0)* = (@0 — 44_))?]
=1

Ly
1
+0 2, 5 Al 4 = 0l = [g, = D',
I=1

¥4 + &0 (30)

for ne Iyu I and

An =Ap41 — 2qn +qn-
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Thermostat

Truncated UFL
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Thermostat

Fig. 4. Illustration of numerical simulation model. Black dotted lines correspond to long-range interactions. Long-range interactions extend to thermostats. Fixed
boundary conditions are applied to the left ends in the high temperature thermostat, and the right end in the low temperature thermostat, respectively..

Ly /
24+ (-1
vy 2 g, - 00 - (0, - 4,
I=1

Ly
+6 Y, ,lz {114y = 4,1 = g, = =1 g, 7} (31)
I=1

for n € I, where Iy = {1,2,...,ny} and I} = {ny+ N + 1,ny + N +
2,...,2ny + N} represent the sets of particle inducers corresponding
to the high and low temperature Langevin thermostats, respectively.
Further, I = {ny+ 1,ny +2...,ny + N} represents the set of inducers
for the truncated UFL. The parameter y represents a coefficient. L,
and L, determine truncation length of cubic and quartic long-range
interactions, respectively. The extensive coupling [30] is employed as
the connection at the boundary between the thermostats and the center
part. n, is defined as

N/16, (N < 16Ly) 32)
o= { Ly. (N> 16Ly) (33)

The term —yq,+¢,(r) in Eq. (30) represents the Langevin thermostat,
where y > 0 is a constant, 7 > 0 is time, and ¢, (r) denotes white Gaussian
noise. ¢,(t) exhibits the following properties:

(6, (0) =0, (B34
(6u(DGn(9)) = 2YT5,, ,0(1 — 9), (35)

where s > 0 is time, (-) represents the operation that averages the over-
realization of ¢,(1), §,,, is the Kronecker delta, and § is the Dirac delta
function. T represents thermostat temperature. The temperatures Ty
and T; are set as high and low temperature sides, respectively.

The truncated UFL is connected to the thermostat at the (n, + 1)-st
and (ny+ N)-th particles, and there are long-range interactions between
the truncated UFL and two thermostats. Based on these connections,
the energy flux J; which represents the energy transported from the
thermostat with 7j; to the (n, + 1)-st one per unit time, is expressed as

Jy= —<4n0+1 Z Ki,n0+1> > (36)

iely
where (-), represents an operation that averages over a long period =
for any physical quantity X(¢), (X), = v~! /" X(ndr. K, ; represents the
force acting from site i to site j. Similarly, the energy flux J,, which
represents the energy transported from the (n, + N)-th particle to the
thermostat with 7; one per unit time, is calculated as

JZ == <qn0+N Z Kn0+N,i> . (37)
il .

The effective energy flux J is defined and computed as

J= %(J1 +J5). (38)
Thermal conductivity « is defined as
J
= N. 39
"Th-mn ©9

In this study, we only focus on energy transport by phonons. Dis-
crete breathers are known to be excited in various nonlinear lattices
with strong nonlinearity [24,35-38,46]. In our numerical simulations,
the nonlinearity is relatively small and therefore it is expected that the
effect of discrete breathers would be small.

4
10
3
10
~
P -
107} L3=0,L4=256,c=0.99
A (L3, L4)=(10,200),c=0.538
o" ([ (L3, Ls)=(200,200),c=0.855
--- k/N=const., c=1
1
10 > 3 3 3
10 10 10 10
N
Fig. 5. Relation between thermal conductivity x and lattice size N. Dashed
line represents the linear case: a,f# = 0, and shows the ballistic energy
transport.

Numerical simulations are performed to solve Eq. (31), and the
thermal conductivity « is computed for different lattice sizes N = 200,
400, 1000, 2000, 4000, 10000, 20000, 100000. x is evaluated after
every 4.25 x 107 step when the system is considered to reach a non-
equilibrium stationary state. It is also verified that the time average
of heat fluxes J, and J, are the same for N = 10° after 4.25 x 10’
steps passes. The velocity Verlet scheme is employed with a time step
of At = 1.0 x 1072, and the parameters are set as @ = 0.05,§ = 0.1,
(L3, Ly) = (10,200), (200,200), y = 0.2, Ty; = 1.2, and T}, = 0.8.

Fig. 5 illustrates the relationship between thermal conductivity «
and system size N. The figure presents two sets of numerical results,
each corresponding to a different truncation length L; for cubic non-
linearity. In addition to the obtained results, data for the linear lattice
and quartic UFL [39] are considered for comparison.

When considering the case with (Lj, L,) = (10,200), shown by the
blue triangle, a noticeable reduction in the rate of increase of thermal
conductivity k¥ with increasing N is observed, and the energy transport
becomes anomalous. We obtain a relation k¥ «« N%3%, shown by blue
dashed line. The x value is larger than that in the case of the FPUT-a
lattice, ¥ « N%* [14]. In contrast, for the case (L3, Ly) = (200,200),
« increases with k « N9 as shown by the red circles and the red
line. Therefore, thermal transport becomes ballistic asymptotically by
increasing L;. Thus, the umklapp processes reduce in the truncated UFL
as the truncation length increases. Consequently, the numerical results
verify that the proposed lattice (31) belongs to the family of UFLs that
support ballistic energy transport.

Next, we focus on the difference between the results for the UFL
(31) and the UFL with only quartic nonlinearity, which is indicated
by green squares. Compared with the relation ¥ « N85 that of
the UFL with quartic nonlinearity is near unity within the range of
N < 10°. The deviation from ballistic transport in the cubic UFL is
larger than that in the quartic UFL with the same truncation length.
As discussed in Section 3, b; decreases more rapidly with increasing r
compared to g;. Consequently, when r is fixed, the effect of truncating
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Fig. 6. Temperature profiles plotted vs n/N for two cases (L;,L,) =
(10,200), (200, 200). Parameters are N = 10°, Ty; = 1.2, and T; = 0.8.

the cubic nonlinear potential is more significant than that of truncating
the quartic nonlinear interaction.

Another possibility of the deviation can be explained from the
viewpoint of energy current of auto-correlation. Studies have reported
that asymmetric potentials such as cubic nonlinearity cause rapid de-
cay of energy current auto-correlation and suggest a diffusive energy
transport [41]. Further, more umklapp processes occur in the cubic
UFL compared to the quartic UFL owing to the difference in coupling
constants of nonlinear interactions.

The temperature distributions in full systems for two cases (Ls, L,)
= (10,200), (200, 200) are shown in Fig. 6, where N = 10°, n is the site
number of the truncated UFL (I < n < N), and the temperature T
for each particle are defined by the time average of kinetic energy. It
is shown that the temperature gradient away from thermostats close
to the flat profile as L; becomes larger. This change of profile of
temperatures corresponds to the increase of c.

6. Conclusion

We constructed the UFL with cubic nonlinearity by considering the
symmetry of interparticle potential. From the perspective of phonon
interactions, umklapp processes arising from cubic nonlinearity are
absent in the proposed lattice. The cubic nonlinear coupling strength
is obtained, and becomes @, = [2 + (=1)']/! at the limit of infinity N
(N — o). Additionally, we confirmed the absence of umklapp pro-
cesses by performing numerical simulation for the temporal evolution
of phonon modes. Non-equilibrium simulations were then performed
and the thermal conductivity in the truncated UFL was investigated.
The thermal conductivity in the proposed lattice increased from x «
NO338 to k o« N85 for varying L. Compared to the UFL exhibiting
only quartic nonlinearity, the proposed lattice shows that truncation
plays a significant role.
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Appendix A. Derivation details of Eq. (15)

Substituting Eq. (2) into Eq. (9), we have
HWU.V.Uy2: Vo)

Mh
1 .o m 1
=3 X (Vo +asint ZRULUL, )+ SR, + VR )
m=—Ny,
N N
a

S22,
+ N HOUUULGL.L )L K. (A1)

3
3N 2 n=1i,jk=—Ny
The summation of n is N only when i+j+k is a multiple of N; otherwise,
it is zero. Since —N;, < i < j < k < Ny, considering only three cases
is enough; i + j + k = 0,+N. Applying the mapping 7, to U,,.V,, in
Eq. (A.1) respectively, we have

HTU. T\ V. T,Un 2 ThVN )

Mh
1 Z ( s2 Tm
= - V V_,, +4sin —UmU,m)
2m=—Nh N
Nh
+ = Y UUUG(L, i, j k)AG +j + k)
3V N ijk=—N,
Nh
+——= Y UUUETNGL i), k)AG +j+ k£ N)
3V N i,jk=—N,
+ Lv2 WL u TU ) (A.2)
3N Vs TaYUNy2)- ’

To simplify the problem, we assume that Uy, = 0. Under this condi-
tion, @(V,U) is defined as the part that is invariant for the mapping
T,.V4 € R, and @,(U) as the rest of the part in Eq. (A.2). Therefore
Eq. (A.2) can be expressed as

H(TAU, TAV) =o,V,U)+2,U), (A.3)
where
&
. m
o (V. U) =3 _2 (va,m +4sin? WUmU,m)
m=—Ny
Ny
Y UUUGLLj MG+ j +F), (A.4)
3\/?:‘,,‘&:—1\1h
N
a FiNA . S
o, (U) = Y UUUETNG(L, i, j, k)AG + j + k£ N).
34N i,jk=—N,
(A.5)

@,(U) changes depending on A. Therefore, if Eq. (A.3) is invariant
under the transformation T, then
®,U)=0 (A.6)
must hold. U in Eq. (A.6) depends on t. Therefore, the condition is
equivalent to

L
Y G(L,i.j.k)=0, i+j+k==N.

(A.7)
=1
When i+ j + k=+N, G(L,i, j, k) can be rewritten as

G(L,i,j, k)= F8i(—=1) sin %ll sin % sin %’k (A.8)
Therefore, we obtain

< li nlj lk

Z(—l)’a, sin 2 sin 22 sin 2K — ¢ (A.9)
e NN N
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from Eq. (A.7). Eq. (A.9) is invariant for the translation i,j,k —
—i,—j,—k. Substituting —i,—j, —k into Eq. (A.9), we obtain
nlj . wlk

- Z( l)lal sin —I sin — sin — =0,

~ ~ (A.10)

because sin(—0) = —sind,0 € R, Herein, Egs. (A.9) and (A.10) holds
for same a;. Therefore, we can only consider the case i + j + k = N.
The ranges of i, j, k are also restricted as 2 < i < j < k < N, by the
inequation

N=i+j+k<i+N-2. (A.11)
Finally, the condition of symmetry is expressed as
l xlj . wlk
N i in ™Y =0 A12
Z( ) a; sin sin N sin — N ( )
under the condition
i+j+k=N, 2<i<j<k<N. (A.13)

If Eq. (A.12) holds, then the nonlinear lattice describing the Hamilto-
nian (9) is called the UFL.

Appendix B. Details of g, for finite N

Consider the nonlinear term in the equation of motion, given by

< 2+ (-1
R L

I=1

@) = (@, — 4,-)°] - (B.1)
The spatial periodic solution is imposed on Eq. (B.1) to satisfy the
relation g,y (@) = g,4(1) for n,m € Z,t € R, where N is a positive
even number. Substituting the relationship into Eq. (B.1), we obtain

2+ (=1H+mN 2 2+ (=1)H+mN )
mz‘f”z; I +mN e = an) MZ‘B; I +mN @y = )™
(B.2)
As N is even, (=1)"V =1 holds and
2+ (— l)
MZBIZ Tl (R D Ry (B.3)
is obtained. The RHS of Eq. (B.3) can be divided into three parts:
N/2-1 o
24+ ( !
Z Z I+ mN ( Gn+1 — qn)z - (qn - qn—l)2]
N 0
24+ (=1 2 2
+ " [@gs — ) = @y — 40
I=NZ/2+1 IE) I'+mN
o 2+ (-1N/? ) )
+ 2::) NZEmN [@nen2 = @) = @y = Guen )] - (B.4)

Evidently, the third sum of the RHS vanishes because (g, > - 4,)* =
(Gp = dun /2) due to the N-periodicity of the system. Addltlonally, the
final component / = in the second sum of the RHS of Eq. (B.4)
vanishes because g,y = q,_y = 4,-

Further, we define I’ = N —I and substitute the value into the second
sum of the RHS of Eq. (B.4) as

N/2-1
24+ ( 1!
Z 2:4 I +mN ( An+1 — Qn)z - (qn - q,,_[)z]
N/2 1 o N—l'
2 1
+ Z 2 +_(l/ _: mN [(qn+N—I/ - qn)2 - (11,, - qn—N+//)2] . (B~5)

I'=1 m=
Consider the relations (-)N =1, (-1)™" = (=1)", gy, n_r = gp» and
Gp_N+1r = dupp; then, rewriting I’ — I. By combining the first and second
sums in Eq. (B.5), we have
N/2-1 o

24 (-1
-2 3 22O g0~ G- 0, (B.6)
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Using the formula

[

m
Y e
X+m mooo &= X

m=—co

L zcot X, (B.7)
n

we obtain the final result as

N a2+ (-1))

PP Slerm A7)0 _ 2_
&= g} N tan (zl/N) (@ = 4" = (@,

—a,.)7]. (B.8)

The result indicates that, in a finite periodic lattice, the coefficient g,
is given by

_al+ D N _
a = N tanGel /N’ I=12,.., 1. (B.9)

As N is an even number, ay /, =0 holds.
Data availability

No data was used for the research described in the article.
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