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§ 1. Introduction

Let b^2 be an integer given arbitrarily, and let #=[#].

Λ16~1+α26~2+ , tf/e{0, 1, •••,6—1} be the 6-adic exapnsion of a real number
x, where [x] is the integral part of x. For any block dι ds of (b— adic) digits
dly •• ,rf,e{0, 1, ..-,6—1} of length S, A(x,b,dl^ds\N) denotes the number
of n(l<ίn^N) such that an+i.1=di (i— 1, •••,$). Then x is said to be nor-
mal to base b if limA(xybydl' ds\N)IN=b~s for any s and any block d^ d^

Normality can be defined also in terms of uniform distirbution. For a set
£"c[0, 1) with N elements we define the discrepancy D(E) as

D(E)= sup
o^«<t»^

Further we write

and

D(N, H) =

where {#}=#— [x]. Then we note that

and that x is normal if and only if D(N)=o(N) (cf. [6]). τb(a) denotes the
order of an integer b mod a for any integers a and b with (<z, δ)=l.

It is known that almost all real numbers are normal, however only few meth-
ods have been known to generate normal numbers. Among them, we mention
arithmetic constructions of Stoneham and of Korobov. Historical surveys for
another type of constructions of normal numbers can be found in [6], [8], and
[9]. Stoneham ([10] Theorem 1) found the following normal numbers: Let
#, b be relatively prime integers greater than 1, and let {Zn}n ^ι and {an}n-^ι be
sequences of positive integers with Zn<a", (Zn, ά)= 1, and lim an= °o . Assume
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that α0=Z0=0, and put S(n, 0) = Σ αf τ*(α'') with S(Q, a) = Q. Then the
ί=l

number

Σ^2rfer W

is normal to base &. In particular

/ 1 \ X—ϊ •*•

is normal to base ό. A.N. Korobov ([3] Theorem 1) gave, independently of
Stoneham, similar constructions: Let ajb be relatively prime integers greater

than 1, and let {λΛ}w^ι and {μn}n^ι be strictly increasing sequences of positive
integers with μ^cfa. Then the number

is normal to base b. Recently Wagner ([12] Theorem) constructed rings of nor-
mal numbers for the first time: Let a be an odd prime, b be an integer with

b^2 and ajfb, and let {\n}n^ι and {μn}n^ι be strictly increasing sequences
of pgsitive integers with lim λn/(w^n.1)=lim (logμn)l\n=oo. Then any non-

Λ-*00 n-*00

zero element of the ring generated by

is normal to base b and nonnormal to base ab. The conditions in Wagner's
theorem can be weakened, namely we need to assume only that a, b are relatively
prime integers greater than 1 and lim\n/μn-ι= Hm(logμn)/\n=oo (cf. [1] Theo-

W-*°o «->«»

rem). More recently the author jointly with Shiokawa [2] gave rings of normal
numbers of another type. To prove the normality of nonzero elements of the
rings therein, we need a criterion ([2] Theorem 3) of normal numbers for num-

bers of the form given below, which can be rewritten as in the following: Let

a, b be relatively prime integers greater than 1, and let {λw}n^ι, {μ«}»^ι> and
{^4W}Λ^! be sequences of integers such that λn+ι>λn, μn+ί>μn> aλ»^*μn and

.-ι (2)

for sufficiently large n. Then the number

* = Σ -4ϋr (3)»=ι (Γ»br»

is normal to base b and nonnormal to base ab. In this paper, we give a wide
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class of normal numbers which contains all the normal numbers of Stoneham,
Korobov, Wagner, and ours mentioned above. Moreover, we shall discuss the
disrepancy estimates, transcendency, irrationality measures, and non-Liouville
property of these numbers. As for the proof of the normality, Stoneham's
approach is considerably involved. Korobov's proof is quite different from
that of Stoheham. Our method is an improvement of that of Korobov, by
using Erdϋs-Turdn inequality, as developed in [2],

§2. A class of nromal numbers

Theorem 1. Let a, b be relatively prime integers greater than I, and let
{λn}n^ι> W«a, ond {An} n^ be sequences of integers such that \n+1>\n, μn+1>

for sufficiently large n. Then the number defined by (3) is normal to base b and
nonnormal to base ab.

REMARK 1. Putting An=l, we have Korobov's normal numbers. If
»-l

\n=n, μn=*Σ tfίTa(fl'), and An— Zn— aZn-ly we get Stoneham's Theorem men-
i=l

tioned above, even without the condition lim αΛ— °o (using Lemma 1 below).
»->«>

We remark that if Zn^\ (n: odd), =an— 1 (n: even), An=Zn— aZn^ does not
satisfy (2), but satisfies (4). Any nonzero element in the rings constructed
by Wagner [12] and also by the author and Shiokawa [2] can be written in the
form (3) with {An} satisfying the conditions in Theorem 1 (cf. [1], [2]).

To prove Theorem 1 we hsall need the following lemmas.

Lemma 1. (cf. [4] Lemma 1 (Remark)). For any relatively prime in-
tegers a and b greater than one, there exists a positive integer nϋ and a rational
number C such that

τb(a") = Ca"

for all integers n with n^

Lemma 2. (cf. [4] Theorem 2). Let a, b, and nQ be as above. For any
integers n^nQ and c with an~nQ^cf we have

Lemma 3. (cf. [5] Lemma 2). With the same conations as in Lemma 2,
we have for any positive integer N ^τb(an),
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Lemma 4. (cf. [6] Theorem 2.5 (Erdϋs-Turάn inequality)). Let E=

{x\, "•> XN\ e [0> 1) Then for any positίev integer M,

M v-i v

Proof of Theorem 1. We shall prove the normality. We may assume that

λβ-ι>max(λι, •••,

-!, •••, μn~2), and

for all Λ^W! for some ΛJ. Letw^Wj. We put

*. = Σ AjΓ
ί=l

where

Σ
ί=l

and τm=τa(dλ»«). For any integer N>μΛl+1 we define w, Aw, and rm by

and

so that we have

Then

N-μn =

D(N)<

Σ3

Here we write e(u)=ei*iu and

, hn<(N-μn)lrn .

,N- μn)+l

(5)

By Lemma 4 with M=Mw=2cλ«-ι/2]~no, we have

Σ»
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£Σ (hmτm+rm)IMm+Σ Σ v-l*£\E*mk(τm,*)\

n Xm

m=n1 V=i M m m*

where

Si = S(^T.+re)/Me, Z2 = (N-μn)IMM,
*»=»ι

n Mm hm-l
^ — "V1 X1 7J"1 X1 I 7Γ (f v 'ϊ I3̂ — 2-i 2Lι v 2-i I -"vwAV 7** Λwy I >

1̂ = ̂  V=l A=0

« Jfw

1*1 = ̂  V=l W

Σ5 = Σ Σ v-1 {'Σ' I EvmHJrm, x)-Evmh(rm, xm) \
ι« = fi1 V=l A=0

It is easily seen that

»-ι ,0"V sf "SΓ* ^ f t »t ^9"•λ„f_1/z /^TN
-* Ί^ x i \/"4f+ι t^m)^ y \ ' /

w=*ι

We shall estimate 23 using Lemma 2. Since tfλ»~λ»-ι/l
/-4lll and

axm~x*-ι\Aia
Xm~~xibμ'm~μ'i(i<im), we have α '̂̂ -i/^β^. For a prime jp and an

integer w, we denote by vp(nί) the integer A for which ph \ n and ph+ljfn. Then

there is a prime/>|^ such that {jp*^}^"^-1/^ ,̂ so that

Furthermor we have

Hence, sihce (α, 6)=1, we have

Namely jpfW^-Ό'/ifB^V1-', and so

β *m-*XvBJ>P»+' . (9)

Therefore we get

^-»(τ., *.) = 0

by Lemma 2, which leads to

Σ3 = 0. (10)
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Similarly we have by Lemma 3 with (9)

E,mhm(rm,

and hence

Finally we shall estimate Σ5. Since \e(x)—e(xm)\ < \x— xm

I E,mh(τm, x)-E,mh(τm, O I ±SI> I x-*m I P

(11)

i, we have

and similarly

\E*mtm(rm, x)-E^mhm(rm, xm)\<ι> .

Hence we obtain by Lemma 1 with (5) that

Mmhm+ ± Mm

< Σ(μm+l-μm)2-(

Therefore it follows from (6), (7), (8), (10), (11), and (12) that

D(N)< Σ (μm+1-μm)2-

(12)

(13)

Here the first term is o( 2] (μ>m+ι—/^«))=o(/^n)=o(ΛΓ), and the second term is also
w = «1

o(N). Furthermore, since aλ»<ζμn, the third term is o(N). Therefore we ob-
tain D(N)=o(N), and the normality to base b is proved. Nonnormality to
base ab can be proved similarly as in the proof of Theorem 2 in [2].

REMARK 2. We can estimate as in [2] the discrepancy of normal numbers

in Theorem 1. Let x be given in Theorem 1. Then for any positive integer N
with μn<N^μn+1 and any block rf1 dr

se {0, 1, •••, b— I } 3 we have by (13)

On the other hand, if ί is sufficiently large, we have for any £<0
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for infinitely many n. This can be proved similarly as in [2] Theorem 1.

EXAMPLE 1. As these estimates are implicit, we give here an example:
Under the same conditions as in Theorem 1, assume further that limλn+1/λn«•*•«>
— α and μn=f(\n)βλn where f(x) is any polynomial with f(m)
Then for any £ >0

and , if s is sufficiently large,

\A(x, b, ̂ -^ N)-Nb~s\

for infinitely many n.

§3. Irrationality measure and transcendency

Stoneham ([10] Theorem 2) proved that the normal number (1) is non-
Liouville and transcendental, if there exist positive constants δ and β such
that 8<anτb(an)/S(n— 1, a)<β. And it is remarked in [2] that

.-i anb<n

(a, b, c^N\ a, &^2; (a, δ) = l; £^α) has the same properties. In this section
we shall give a class of non-Liouville normal numbers containing these examples.

Theorem 2. Make the same assumptions as in Theorem 1. Put £=lim μn+lj

μn and d—\\m μn+l/μn. Assume that £<<χ> and d>l, then x is non-Lioumlle
»•»•*»

and transcendental. More precisely for any 6>0, we have

1

'-Q
-\rnftvf^Λ-^r/(/I-\\\A-9 \ '

for all integers P,Q (^1), and

P ^ i ίl5^
-Q « ̂ .. (̂ )

for infinitely many integers P,Q(^\) with (P, Q)= 1. On the other hand if
c=oot % is a Liouville number.

REMARK 3. Putting μu=S(n—l,a)='Σaiτb(ai) in Theorem 2, we have
i =1

the Stoneham's result ([10] Theorem 2) mentioned above.

EXAMPLE 2. Let a, b, c be integers greater than 1 with (a, b)=l and c^a.
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Then, for any polynomial /(#) withf(m)^N (m^N), the number

V =

is normal to base by nonnormal to base ab, non-Liouville, and transcendental.
Furthermore we have for any £ >0,

for all integers P, Q(^ 1), and

for infinitely many integers P, £)(^1) with (P, Q)=l In this sence Theorem
2, is the best possible.

To prove Theorem 2 we need the following lemmas.

Lemma 5 ([11] Lemma 5). Let θ be real. Suppose that there exist sequen-

ces of integers {pn} and {qn} with limg^oo,, qn?£κ1q1_ι for some constant /c
n->oo

and 7>1 such that for any δ>0

• rδ

for some constants κ2>0 and ?>1. Then for any £>0

θ-±

holds for all integers x,y(^l) with x/y&{pnlqn} (n^N) and for some constant
/c3>0 independent ofn.

For completeness we give here the proof of this lemma.

Proof. Let y be large, and let n=n(y) the least positive integer such that

\qaθ-Pm\<ί\l(2y)

for all m^n. Let x/y (x,y^N) be a rational number with x/y$ipa/q,,} (we

Λ'). Then

I θ-xjy I ̂  I p,lqn-χly I - 1 θ-ρ.lq. I

By the minimality of n, we get

ι/(2y)< I ί -ι0-A-ι
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which implies 2/c2y>qllI.\~s, so that

?n

for any δ>0. Hence

for any £>0 and a constant /c4>0. Therefore, we obtain

I θ-x/y \ ̂  ll(2yqn)>κstfmw

for any £>0 and a constant #2>0.

Lemma 6 (cf. [7] §5 p. 427). Let θ be any real number. If there exist some

constant κ>l and infinite sequence {pn/qn} (n^N,pn^Z,qn^N) such that qn=
qήqή' where each of q'n and q" is a power of an integer independent of n, qn<qn+ι>

_

ίίϊn log ίa+i/log qn< oo , and lim log yί/log qn = 0 ,
»->oo n->°°

θ is transcendental.

Proof of Theorem 2. We write

*„ = Σ Ana~*b-*i = Bna-^b-»n = ̂ Λ/?M ,
ί=l

where pn=Bny qn=aλ«bμ'»ί and set qί=aλ», q'n'=W'». Then for sufficiently large

ft we have

?.<?.«, ϊ.+î ^^^ ̂  ̂ flί*1 , (16)

and

l*-ί./?.l = Σ -4,0-***-"' <*-"•«. (17)
ί = Λ + l

Here for any f >0 it follows that

By (17) we have

l*-ί./?.K?ί(<|-i)

for all w and

I *-*„/?„ K?.-<e-f) (19)

for infinitely many /z. (15) follows from the last inequality. Since d>l, we

get for PIQ${pnlqn} (PeZ, ρe^V),

(20)
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using Lemma 5. On the other hand, since

\X-pnlqn\>&ll

we get by (16)

I *-*./?. I »?«~(c+ε) >

which together with (20) yields (14). The transcendency follows from Lemma

6 with (16), (18), and

log qίllog qn<\n!μn-*Q (n->°o) .

This completes the proof of Theorem 2.

REMARK 4. If c=ϊmι μn+1lμn>2 in Theorem 2, # is transcendental by
w-* <*>

Roth's Theorem and (19), without the condition lim μn+l/μn>ί. In particular,

I would lik/ to express my thanks to Professors lekata Shiokawa and

Jun'ichi Tamυ:a for their valuable advices concerning the paper.
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