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Abstract

This paper proposes a nonlinear formation tracking control method using generalized canonical transformations with an adaptive
mechanism for atmospheric drag. This method theoretically guarantees that satellites asymptotically track given reference trajectories
in formation flying under disturbances, including atmospheric drag and the gravitational J2 effect. First, the nonlinear relative orbital
motion is modeled in a port-Hamiltonian system. Second, a specific transformation is constructed for any twice differentiable reference
formation trajectory that converts the system into an error system in the form of a time-varying passive port-Hamiltonian system based
on generalized canonical transformations. Third, a passivity-based asymptotic stabilizing controller and an adaptive mechanism for the
error system are presented, provided that the atmospheric drag coefficient is an unknown constant. Overall, the proposed method guar-
antees that the estimation error of the atmospheric drag coefficient is bounded and that the tracking error for the reference trajectory
converges uniformly asymptotically to zero.
© 2025 The Author(s). Published by Elsevier B.V. on behalf of COSPAR. This is an open access article under the CC BY license (http://

creativecommons.org/licenses/by/4.0/).
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1. Introduction

Formation flying (FF) (Alfriend et al., 2010; Mauro
et al., 2018; Scharf et al., 2004) is a technology that dis-
tributes functions to multiple satellites, which fly in coordi-
nation while controlling their relative positions and
attitudes. Various missions using FF have been proposed
in recent years because FF enables missions that are diffi-
cult to achieve with a single large satellite due to physical
limitations such as satellite size and weight. Examples of
FF missions include the space gravitational wave telescope,
LISA (Danzmann and Riidiger, 2003; Xie et al., 2024) and
DECIGO (Kawamura, 2008) and the infrared space inter-
ferometer, SEIRIOS (Matsuo et al., 2022) and LIFE
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(Quanz et al., 2022). The ongoing PROBA-3 mission
(Llorente et al., 2013) launched in 2024 is a demonstrator
of precise FF, which enables observation of the Sun’s cor-
ona through the creation of an artificial solar eclipse. In
May 2025, it successfully performed its first in-orbit
demonstration (Serrano et al., 2025). In Ref. (Ito, 2024),
the usefulness of the near-circular low Earth orbit (LEO)
as an environment for in-orbit verification of FF technol-
ogy was thoroughly investigated, where the relationship
between the altitude and satellite relative distance for a
small relative perturbation environment is exhibited. Due
to their economical and feasible access, FF missions in
LEO using low-cost nano-satellites have also been planned,
e.g., (Molina et al., 2024). In addition, the ultra-precision
FF technology demonstration project SILVIA has been
proposed to acquire technologies that can be commonly
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Nomenclature

time [s]

n x 1 vector representing the state of the system
m x 1 vector representing the control input

m X 1 vector representing the output
Hamiltonian

Lagrangian

gravitational potential function including the J2
term

n X n skew-symmetric matrix representing the
structure matrix

n X n positive semi-definite symmetric matrix
representing the dissipation matrix

n X m matrix representing the control port

n x 1 vector representing the transformed state
of the error system

transformed Hamiltonian

m X 1 vector representing the transformed out-
put

m x 1 vector representing the transformed con-
trol input

coordinate transformation: R” x R — R”
Hamiltonian transformation: R” x R — R
output transformation: R” x R — R”

input transformation: R” x R — R”

3 x 1 vector representing the position of the
deputy in the ECI frame

3 x 1 vector representing the relative position of
the deputy in the LVLH frame

3 x 1 vector representing a reference relative
position in the LVLH frame

SRTT SR

= ~
o

< m‘ =l 0q

(Qmseqe N

=

T transformation matrix from the LVLH frame to
the ECI frame

w 3 x 1 vector representing the angular velocity of
the LVLH frame to the ECI frame

p 3 x 1 vector representing the conjugate momen-
tum of the deputy in the LVLH frame

u gravitational constant of the Earth [m3/s?]

R, radius of the Earth [m]

Ja J2 coefficient

a semi-major axis [m]

i inclination [rad]

Q right ascension of the ascending node [rad]

0 argument of latitude [rad]

ne mean motion of the chief [rad/s]

P4 atmospheric density [kg/m?]

Ac effective area of a satellite [m?]

Cp drag coefficient

my satellite mass [kg]

rprag  atmospheric drag coeflicient

Rp m X m atmospheric drag matrix

Pprag  estimated atmospheric drag coeflicient

Rp m x m estimated atmospheric drag matrix

PDrag  7Drag — "'Drag, €Stimation error

Subscripts

¢ chief satellite

Superscripts

T transpose

x skew-symmetric matrix with dimension 3 x 3
representing the vector product

used for various future FF missions (Ito et al., 2025). The
relative orbital motion between satellites, which is funda-
mental to FF, is governed by a nonlinear equation of
motion. The Clohessy-Wiltshire equations (Clohessy and
Wiltshire, 1960), or Hill’s equations (Hill, 1878) obtained
by linear approximation of the relative orbital motion,
are useful in proximity maneuvers such as autonomous
rendezvous and docking, e.g., JAXA’s ETS-VII (Ohkami
and Kawano, 2003) as an FF of practical importance.
However, control methods that handle nonlinearity are
essential for long-distance and ultra-precise formations,
which are examined in the aforementioned future space
interferometer observations.

Sliding mode control (Itkis, 1976; Shtessel et al., 2013) is
a nonlinear control method suitable for on-board compu-
tation without iterative calculations and is expected to have
high control performance and robustness. In Ref. (Li et al.,
2018), a control method for rendezvous and docking was
proposed that combines the artificial potential function
method with a first-order sliding mode control. This
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method has the advantage of simultaneous collision avoid-
ance and rendezvous and docking control under external
disturbances. In Ref. (Bassetto et al., 2024), an active con-
trol method of drag sails for effective deorbit of LEO
spacecraft is proposed based on sliding mode control.
The proposed method maintains the sail surface normal
in the direction of the velocity vector to maximize the pas-
sive drag effect under orbital and attitude perturbations.
Although these methods both achieve control objectives
and robustness against disturbances, a chattering phe-
nomenon peculiar to the first-order sliding mode control
is observed. Higher-order sliding mode control and termi-
nal sliding mode control have been proposed to prevent
chattering. In Refs. (Hui and Li, 2009; Lawn et al.,
2018), agile formation control methods under disturbances
based on robustness and finite-time convergence with ter-
minal sliding mode control are proposed. The convergence
rate of the terminal sliding mode control increases expo-
nentially as the state approaches the target equilibrium
point, and thus, fast convergence is achieved. However,
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to realize such behavior on the sliding mode manifold,
these methods need to cancel the original dynamics of the
plant system significantly and to choose the design param-
eters carefully.

In contrast, controller design methodologies based on
Hamiltonian systems and their generalizations, port-
Hamiltonian systems (Maschke and van der Schaft, 1992;
van der Schaft, 1996; Duindam et al., 2009), have been
promising in controlling a broad class of practically impor-
tant nonlinear systems. A significant advantage is that the
energy shaping and dissipation can be explicitly considered
because the Hamiltonian, the total energy of the system,
and the interconnection and damping structures of the sys-
tem explicitly appear in the system dynamics. This allows
for energy-efficient control without unnecessarily canceling
the system dynamics because a desired equilibrium point
corresponding to the bottom of the potential can be easily
set, and only factors causing energy increase need to be
compensated. In addition, since the Hamiltonian is a Lya-
punov function candidate, stability analysis for the resul-
tant closed-loop system is also facilitated. In Ref.
(Scheeres et al., 2003), a Hamiltonian-structure-preserving
(HSP) controller is proposed to stabilize the relative
motion to a libration point orbit. This method is also
extended to the time-dependent relative dynamics in (Fu
and Xu, 2019). The HSP control method utilizes the eigen-
structure of the linearized relative dynamics along the tar-
get orbit, which compensates for the projected relative
position along the directions of the stable and unstable
manifolds of the linearized relative motion. This method
has the advantage of stabilizing relative motions using only
information on the relative position; however, controller
design and stability analysis are based on the linearized rel-
ative dynamics and cannot directly handle nonlinearities of
the relative orbital motions that are essential for the afore-
mentioned long-distance formation and ultra-precise for-
mation. The HSP control method can be interpreted as
shaping the potential of a linearized Hamiltonian system.
More generally, systematic methods that transform inter-
connection and damping structures as well as energy shap-
ing while preserving the port-Hamiltonian structure
include IDA-PBC method (Acosta et al., 2005; Ortega
et al., 2002), generalized canonical transformations
(Fujimito et al., 2003; Fujimito and Sugie, 2001), and
kinetic potential energy shaping (KPES) method
(Ferguson et al., 2019). In Ref. (Javanmardi et al., 2020),
a trajectory tracking control of nonlinear relative orbital
motions based on the IDA-PBC method is proposed. The
IDA-PBC method provides an input transformation to a
given target model of a port-Hamiltonian system with ideal
closed-loop characteristics if the so-called matching condi-
tion is satisfied. However, the controller design of this
method for complex systems is sometimes difficult in that
the control performance and transformation should be
simultaneously achieved.

In contrast, the main contributions of this paper are
four folds:

673

Advances in Space Research 77 (2026) 671-685

1. A port-Hamiltonian representation of the nonlinear rel-
ative orbital motion with the gravitational J2 and atmo-
spheric drag effects;

. A concrete construction of an error system for a given
reference formation trajectory using generalized canoni-
cal transformations;

3. An adaptive mechanism for an unknown atmospheric
drag coefficient; and

. An asymptotic formation tracking controller that stabi-
lizes the error system based on its passivity.

Since the present method can divide the construction of
the error system and its stabilization processes, it offers
good prospects and flexibility in controller design for
asymptotic formation tracking. For the first contribution,
we represent the nonlinear relative orbital motion with the
gravitational J2 effect, which is the gravitational perturba-
tion due to the oblateness of the Earth, and the atmo-
spheric drag in a port-Hamiltonian system with an
additional disturbance term. According to Ref. (Ito
et al., 2021), the gravitational J2 effect and the atmo-
spheric drag are the first and second most significant envi-
ronmental disturbances for the FF in a low Earth orbit.
For the second contribution, we provide a specific gener-
alized canonical transformation that transforms the non-
linear relative orbital motion into an error system in the
form of a time-varying passive port-Hamiltonian system
for any twice differentiable reference formation trajecto-
ries. For the third contribution, we propose an adaptive
mechanism to estimate the coefficient, provided that the
atmospheric drag coefficient is an unknown constant.
Finally, a formation tracking controller is presented by
stabilizing the error system using its passivity and the
adaptive mechanism. The proposed method guarantees
that the estimation error of the atmospheric drag coeffi-
cient is bounded, and the tracking error for the reference
trajectory converges uniformly asymptotically to zero.
From feature (1) and the main theorems described later
(Theorems 2 and 3), the proposed method can handle
any differentiable potential functions; hence, higher-
order gravitational perturbations other than the J2 term
and those from other celestial bodies can easily be
involved. From feature (2) and the main theorems, the
proposed method can also handle arbitrary twice differen-
tiable reference trajectories; hence, not only various for-
mation trajectories but also escape trajectories in an
emergency can be handled in a unified manner. Since
the proposed method is nonlinear formation control with-
out requiring any linear approximations that are imposed
in the conventional methods based on Hill’s solutions or
relative orbital elements (Alfriend et al., 2010; D’Amico
and Montenbruck, 2006; Schaub and Junkins, 2018), it
can be applied to long-distance and ultra-precise forma-
tions necessary for future formation flying space interfer-
ometer missions. In addition, the proposed controller is
scalable independent of the number of satellites, because
it does not require information from other satellites.
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Preliminary reports of this paper appeared as conference
papers (Hamanaka and Satoh, 2023; Satoh, 2021) without
proofs, while the present paper unifies these results and
provides detailed proofs for all lemmas and theorems.
Besides, as a possible linkage between the sliding mode
control and the proposed framework, one of the authors
recently reported an application of a sliding mode con-
troller to stabilize the error system aiming at higher robust-
ness and convergence accuracy in (Tabuchi et al., 2022).
This was accomplished by the separation of construction
and stabilization of the error system in the proposed
framework.

2. Preliminaries

This section defines the plant system considered in this
paper and introduces transformations preserving the sys-
tem structure, which play an important role in the subse-
quent controller design.

2.1. Port-Hamiltonian systems
A port-Hamilton system (Maschke and van der Schaft,

1992; van der Schaft, 1996; Duindam et al., 2009) is repre-
sented by the following equation:

5= (J (1) = Rolx, 0) 850" 1 g(x, tyu, x(0) = x

ToH(x) T
Ox

(D

y = g(x,1)

where x(¢) € R" and u(¢) € R™ denote the state and the con-
trol input, respectively. y(¢) € R" is defined as a passive
output to the system. The Hamiltonian H(x) € R repre-
sents the total energy of the system and is supposed to be
a sufficiently smooth function. A matrix g(x, ) € R™" rep-
resents the control port, and for all x € R" and ¢ > 0, a
skew-symmetric matrix J(x, ) € R"™" represents the struc-
ture matrix and a symmetric positive semi-definite matrix
Rp(x,t) € R™" represents the dissipation matrix. In what
follows, an n X n positive (semi-) definite matrix A is repre-
sented by 4 > 0,x, (4 = 0,,,), where 0,,, denotes the zero
matrix of size n x n.

According to the literature (Fujimito et al., 2003), we
define a useful property called passivity for the port-
Hamiltonian system (1), though this property can be
defined for a more general input-output mapping (van
der Schaft, 1996,). For a differentiable function V(x,¢)
satisfying V' (x,¢) = V(0,x1,¢) =0, the system (1) is pas-
sive with respect to V if dV/ds<y'u holds for all
x€R" and ¢ > 0. Note that as shown in (van der
Schaft, 1996), a time-invariant port-Hamiltonian system
with a positive semi-definite Hamiltonian is intrinsically
passive with respect to its Hamiltonian. This comes
from

(2)
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If the Hamiltonian is positive definite, Eq. (2) implies that a
negative-feedback of the passive output, namely, u = —Ky
with a positive definite matrix K € R™" renders the origin
of the system locally Lyapunov stable.

2.2. Generalized canonical transformations

In converting a positive semi-definite Hamiltonian into
another positive definite one and performing coordinate
and feedback transformations, the following result is help-
ful to designing such transformations while preserving the
port-Hamiltonian structure. A generalized canonical trans-
formation (Fujimito et al., 2003; Fujimito and Sugie, 2001)
is the following set of transformations:

(x, t)

(x,1) = H(x,t) + U(x,1) |x:¢"l()’c,t)
Y+ a(x, t)|x:<1r1(§,t)

u+ B(x, t)|x:l‘D’1()?‘t)

such that the transformed system is another port-
Hamiltonian system of the form (1) with the new state x,
Hamiltonian H, output y, and input #. Here, a map
@, : R" — R" defined as @,(x) := ®(x,¢) = X is a diffeomor-
phism. In Eq. (3), we utilize the notation ® '(%,7) as
@, (%), that is, ® ' (¥,¢) = @, ' (¥) = x. Besides, a differen-
tiable function U: R” x R — R is a Hamiltonian transfor-
mation, and vector-valued functions « : R" x R — R", and
f: R" x R — R" are the output and input transformations,
respectively.

The following theorem clarifies necessary and sufficient
conditions for generalized canonical transformations:

m| =1

(3)

Sl
Il

Theorem 1. (Fujimito et al., 2003) Consider the port-
Hamiltonian system (1). Necessary and sufficient condi-
tions for the set of transformations (3) to be a generalized
canonical transformation are as follows: There exist a
skew-symmetric matrix P,(x,¢) € R™" and a symmetric
matrix Qg(x,¢) € R™" such that Rp(x,) + Qg(x,t) is pos-

Fig. 1. ECI and LVLH frames.
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itive semi-definite, and the following equations are

satisfied:

oD O ouT IH+U)"

o o (J—RD)a +gﬁ+(PJ_QR)T = Onx1,
(4)

U’

_ %Y
=g o— . ()

Furthermore, when the transformed Hamiltonian satisfies
H(x,t) = H(0,x1,t) =0, the  transformed  port-
Hamiltonian system is passive with respect to H if and only
if the following inequality holds:

75‘(H+ U)+8(H+ U)
ot Ox
ou’ OH+U)'

Remark 1. The condition in Eq. (6) is slightly different
from the original one in Eq. (13) in (Fujimito et al.,
2003) in that the original condition in (Fujimito et al.,
2003) only provides a sufficient condition for passivity of
the transformed system, while Eq. (6) in the present paper
provides a necessary and sufficient condition.

cos Q. cos b, —sin Q. sin 0, cosi,

T(¢) = | sinQ.cos 0, + cos Q. sin 0, cos i,

sin 0, sin i,

3. Port-Hamiltonian representation of nonlinear relative
orbital motion considering atmospheric drag

This study uses two coordinate frames: the ECI and
LVLH frames depicted in Fig. 1. The ECI frame is an
Earth-centered inertial frame. This frame takes the X — Y
plane as the equatorial plane and the origin as the center
of the Earth, with the X axis in the direction of the vernal
equinox, the Z axis in the direction of the north pole per-
pendicular to the equatorial plane, and the Y axis to form
a right-handed orthogonal system. The LVLH frame is a
chief-centered rotational frame. This frame takes the origin
as a chief (a real satellite or a fictitious point), the x axis in
the radial direction pointing from the center of the Earth to
the chief, the z axis in the direction of the orbital angular
momentum vector, and the y axis to form a right-handed
orthogonal system.

Here, we describe the nonlinear relative orbital motion
as a port-Hamiltonian system mentioned in Section 2.1,
where we explicitly consider the gravitational J2 effect

—cosQ,sin 0, — sin Q. cos O, cos i,
—sin Q. sin 0, 4+ cos Q. cos 0. cos i..
cos 0, sin i,
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and atmospheric drag. In the ECI frame, the Lagrangian
Z is given by
2(0.0)=50"0~ ()
_1gTo— [ (1 - 2K (3_22_ ))}
1070 [~ (1 -5 (- 1))
where Q := (X,Y,Z)" € R® denotes the position vector of
the deputy and #(Q) € R denotes the gravitational poten-
tial including the effect of the J2 term with the gravitational
constant of the Earth, p [m?/s?], the radius of the Earth, R,
[m], and the J2 coefficient, J,. Although this paper consid-
ers up to the J2 term, the proposed method can also handle
potential functions including higher-order gravitational
perturbations and those from other celestial bodies.
The coordinate transformation from the LVLH frame

to the ECI frame for the position vector of the deputy is
expressed as

0=T()(q+4q.), (8)

where T(¢) € SO(3) represents the transformation matrix
from the LVLH frame to the ECI frame. The LVLH frame
can be expressed as a rotational sequence given by
(Q,i.,0.) as the (3-1-3) Euler angles from the ECI frame,
where Q. i.,, and 0, denote the right ascension of the
ascending node, inclination, and argument of latitude of
the chief, respectively. Therefore, the transformation
matrix 7(¢) in Eq. (8) is given by the following equation:

(7)

sin Q. sin i,
—cos Q. sini,

COS i,

In what follows, the argument (¢) may be omitted from 7'(¢)
for notational simplicity. It comes from Eq. (8) that

0=T(G+4.+w(qg+4q.)), 9)

where @ € R denotes the angular velocity of the LVLH
frame to the ECI frame, and the relation for the time
derivative of the rotational matrix, that is,

d7(¢) ()0

dr
is used. Here, for a vector & = [¢),&,&]" € R, a skew-
symmetric matrix & € R is given by

0 & &
F=1& 0 =g
-6 &40

Using the Lagrangian % calculated by Eqgs. (7)-(9), the
conjugate momentum p € R* corresponding to ¢ is defined
as
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T

9q
The Legendre transformation leads to the Hamiltonian H
as

=q+4.+0(q+q.) (10)

1 S
HZEPTp—pT(quw (g+q.)+%T(qg+4q,.)).

The atmospheric drag force in the LVLH frame is
expressed as

. AcC M
Some = T (= 255210]10)
- _rDrag”q + Uref”(q + Uref)

. T
= *rDrag”q + Uref” (%;t) + Uref)y

where the reference velocity v, € R® and the atmospheric
drag coefficient rp.,, € R are defined as

Uref := é]c“‘wx(Q‘f‘%)v (11)
PaAcC
"Drag ‘= 72]/”‘1 D . (12)

Here, we introduce the atmospheric drag matrix R, € R*
as the following equation to represent the system with the
atmospheric drag force fp,,, in a port-Hamiltonian system:

(13)

FD = rDrag”q + Uref||13a

where /,, represents the identity matrix of size m X m.

Finally, using the notation of Rj, in Eq. (13), the nonlin-
ear relative orbital motion considering the gravitational J2
effect and atmospheric drag in the LVLH frame is repre-
sented in a port-Hamiltonian system of the form (1) with
an additional disturbance term as

OH(x)T

q _ Omxm Im dq + 0m><m u + 0m><1
b ~I, —Rp]| it In | | ~Rovwer )’
ap

14

OH(xt)T . (14)
— dq _ OH(x;) .
y—[omxm Im] BH(x,t)T = "o =dq,

dp

H(x,t)=4p"p—p (4. + ©* (¢ +q.) + %(T(q+q.))

with m = 3. Here, uy € R" is the control input and the state
x consists of the position and conjugate momentum of the

deputy as x := (¢",p") € R*.

4. Construction of the error system based on generalized
canonical transformations for reference trajectories

This section constructs an error system for a given refer-
ence formation trajectory that preserves the port-
Hamiltonian structure and, moreover, possesses passivity
using generalized canonical transformations. We first sup-
pose that the atmospheric drag coefficient rpy,, in Eq.
(12) is available for control. Then, in the next section, we
present an adaptation mechanism provided that rp, is
an unknown constant.
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Let us define the control input u, to compensate for the
disturbance due to the atmospheric drag, which appears as
the last term on the right-hand side of Eq. (14) as follows:

Up :FDUref+u :”Drag||c.1+vref||vref+u7 (15)

where u € R™ is a new control input. Substituting Eq. (15),
Eq. (14) is rewritten as the following port-Hamiltonian
system:

. OH (x, T
q o Omxm Im 0<qt) + 0m><m u (16)
7 —I,, —Rp]| |oH@nT 1,
op
OH (x0T .
] _OHxNT _ .
Y= O L] BH(‘,]L,[)T o 4
dp

H(x,0)=5p"p—p " (gc+©*(q+4q.)) +U(T(9+4q.)).

Then, we provide the following theorem for the concrete
construction of the error system using the generalized
canonical transformation for the port-Hamiltonian system
expressed in Eq. (16):

Theorem 2. Consider the port-Hamiltonian system (16)

and any twice differentiable reference trajectory ¢?. The

following set of transformations converts the system into
T(t)(q — q)

the error system for ¢¢:
q
<b<x,t>=[ e ]:H
p— (¢ + 4.+ (¢ +9q.)) p
Ulx,t) =p"(—¢' + 0 (g —q")) — %(T(t)(q + q.))
1+ g+ 0 (¢ +4q.))

(17)

(G’ +4c + 0" (q" +q.))
a(x,t) = —¢* + 0 (q — q%)
B(x,0) = =4 — G — 0 (¢" + ¢.) — ©* (¢ +q.)

y T
—wp— 3//<T(2;q+qc)) _RD{qd — (g — qd)}.

The transformed error system is given as the following
another port-Hamiltonian system:

— T
. OH (x)
Omxm T t q Omxm —
i] = T (—) fq -+ u (18)
p 7T(t) —Rp OH(x) Im
op
0§® oF() |
- g _ ) 5
y - [Omxm [m] 8ﬁ(X)T - p p
_ %
H(%) =3p"p.

Furthermore, the resultant error system is passive for the
new input-output pair (z, y) with respect to the new Hamil-
tonian H.

Proof. First, we check that the set of transformations (17)
satisfies the necessary and sufficient conditions for general-
ized canonical transformations in Theorem 1. Suppose
P; = Op = Opxm, the left-hand side of Eq. (4) can be calcu-
lated using Eq. (17) as follows:
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[ To*(¢—q")-T¢" }
.761.{[7@07wx(qd+‘.]c‘)7d)x(qd+%))
+' T 0mme{Omxm 1y, }
LOmxm 1 —I. —Rp
[ %, du(T()(a+e))"
« w"p 9 :|
L —¢'+o*(g—¢%)
[ Omxl
=4 = e — 0 (¢ +4c) — " (¢" +9.) —0™p

7 T—1_?D{t'f—wx(q—q”’)}}}

[0t

B |:0m><] :| ’

Thus, the condition of Eq. (4) is shown to hold. The second
condition (5) is verified by comparing «(x,¢) in Eq. (17)
with the right-hand side of Eq. (5) as

LoU"
Ox

_9u(1(t)(g+49.)

—w"p— ///T ]
—§'+o (q —q)

_ _qd+w><(q_qd)
Therefore, the set of transformations (17) is a generalized
canonical transformation.

Next, we confirm the passivity condition in Eq. (6) for the
transformed system. It comes from Egs. (16) and (17) that

H+U=35p"p—p" (¢ +o(q+4q.))
+U(T(q+4q.) +p'(—¢" + 0 (g —q%))
—U(T(q+4q.) +3(@" + e+ 0" (0" +4.)
G+ ¢+ 0*(¢' +4.))
=P+ + g+ 0 (¢ +q.))
G+ e +0*(¢" +9.) =P (@' + g + 0" (¢" +4.)
=Lp—(¢"+ i +0*(g"+q.)
(p— (@7 + ¢ +0*(¢" +4q.)))-
From Eq. (19), we have

Ie ¢ T
_ )(H(r;U)_i_ )<H+U {(J Rp)L —i—gﬂ}

=—(p— (¢ +qc+w (¢ +qc)))

g - [Omxm Im]

(19)

(4" = G — 0*(¢" + qc) — > (¢" + q.))
. [ (- }

12— (¢ + 4.+ 0*(¢" +q.))
{ (O I ] —wp -2

L~ln —Ro]| ¢+ o (q q‘)

0m><1
+ _éd_éc_w (q +QC)_C-UX(qd+qc)
| 0=+ Ro(—¢" + 0 (g — ¢))
T

=—(p-(¢ +qc+w (¢ +qc)))
(4" = G — (¢ + ¢c) — & (¢°

(20)

+4.))

+|: 0m><1 :|T
P (¢ +qc+wx(qd+qc))
[ g+ o (g —q")
—0.

q _qc_w ( d+QC)_wX(qd+qc)
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Consequently, using Eq. (20), we can show that

AHLU) p AH+U)T

The left-hand side of Eq. (6) = =5~ Rp=;

= 0.

Now, we confirm that the transformed system is an error
system. From the definition of the transformation in Eq.
(17), it follows that ¢ = ¢ when ¥ = 0, because g = 0 and
T is non-singular. In addition to the result ¢ = ¢, Eq.
(10) leads to the fact ¢ = ¢ under p = 0. Hence, x =0
implies that ¢ = ¢¢ and ¢ = ¢¢. Conversely, when g = ¢¢
and ¢ = ¢¢, it comes from Eq. (17) that ¥ = 0.

Finally, to show that the transformed system is a port-
Hamiltonian system described by Eq. (18). We calculate
the dynamics of the transformed system as

éI oD | 00
| T et
p
Tw (¢ —q*) = T |
- ..d .. X .d . X d (21)
4" = Ge — 0" (¢" + ¢c) — @ (¢" +q.) |
oHT 7
T 0m><m Omxm Im 01;]1 Omxm
+ + u
Om><m Im _Im _ED B—HT Im
op

Substituting u = u# — f into Eq. (21) with  from Eq. (17),
we obtain the following equation:

FJ} _ { T{p—(¢"+ ¢+ ©*(q¢" +q.)}
p i —Rp{p— (4" +q.+ 0 (¢' +4.)}

oo
- la—Rppl

Besides, noting that the new Hamiltonian is given by

(22)

H(x) = 1/2p"p, the right-hand side of Eq. (18) can be cal-
culated as
O T |52 | [0
{TT FD] A () { In ]
o

0m><m T 0m><l Omxl (23)

:[TT RDH P } [ i }
Tp

B [” - ]_eril

It comes from Egs. (22) and (23) that the dynamics of the
transformed system is described by Eq. (18). Next, the
transformed output is calculated as
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y=ytua

o T -
= [Omxm [m ]%—[;1 + [Omxm Im ]%_;/
= [Omxm [m]O(H+U)T-

Ox
Also, using the fact that

AH+U) __ OH(x) 00(x)

Ox ox ox
_ 6ﬁ()?) |: T 0m><m:|
T ox
. Omxm [m
— |oH oH
- |: g T’ op :| ’

the output satisfies the following relation:

T o
3= [0, I (A 24
y= ] o i (24)

p
Thus, Eq. (24) shows that the transformed output is consis-
tent with Eq. (18). This completes the proof. [I

5. Trajectory tracking control with an adaptive mechanism
for unknown atmospheric drag coefficient

In this section, we treat the atmospheric drag coefficient
as an unknown constant and propose a trajectory tracking
controller with an adaptive mechanism to estimate the
atmospheric drag coefficient.

First, we define an estimated atmospheric drag matrix
I/éD using the estimated atmospheric drag coefficient 7pyae
similarly to Eq. (13) as

ﬁD = ;'Drag”q + Urcf||[m~ (25)

The estimation error for the unknown constant rp, is
defined as

?Drag = ?Drag — "Drag-

Now, we replace the true coefficient with the estimated one
in the compensation input in Eq. (15) as

Uy = RDUref +u= ]A”DragH(:] + Uref””ref + u. (26)

Then, the system corresponding to Eq. (16) becomes the
following port-Hamiltonian system with the disturbance
term due to the estimation error of the atmospheric drag

coefficient:
_ Om xm I m Oq
—I, —Rp]|oHanT

[ o (27)

mxm 0m><l
+ u—+ | _ .
[m Dra ||61 + Uref”vref

OH(x) "

] dq _oH)T _ g
mI omxnT ap

OH(x0) T

o TR

y= [Omxm

H(x,0) =1p"p—p (g + 0" (g +q.) + %(T(q +q.)).
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Accordingly, the generalized canonical transformation pre-
sented in Eq. (17) is now modified as

; ]

p

T(t)(q —q)
Ux,t) =p" (=¢' + 0 (g —q*)) — U(T(t)(q + q.))

D(x,t) =
P— (@' + g+ (¢ +4q.))
. . « T, . «
+3G"+ g+ 0 (¢" +q.) (@ +qc+ 0" (¢" +4q.))

(28)
a(x,1) = —¢' + 0 (¢ — q)
B(x,0) = =4 — G — 0 (¢* + ¢.) — > (¢° +q.)

) T A
—o*p — PG — Rp{g! — (g — g)}-

Using the generalized canonical transformation (28) for the
system (27), we obtain the following error system:

_ T
. OH (x
5] Omxm T d; ) Omxm _
bl -7 —Rp||omw" AL
_ _ % n
P L 1 (29)
+ |: 0m><1 :|
Pragl|q + vret | (G A+ Ge + 0" (¢ +q.))
aﬁd@) gHE "
)_} = [Omxm Im] Oﬁ((ZX)T = g;,x} = [_7
“op

H(x) =3p'p.

Finally, we show the following theorem that provides a sta-
bilizing controller for the error system (29), an adaptive
update law for the atmospheric drag coefficient, and a the-
oretical guarantee for the closed-loop system:

Theorem 3. Suppose that the orbital angular velocity
vector of the chief w is bounded and any twice differen-
tiable reference trajectory ¢?. Consider the error system in
Eq. (29), and the following control input with symmetric
positive definite matrices K,, K; € R™*™:

= _ _pTiu(g OH (%)
u=-T f)q Kd P (30)
=T K,q—Kap

I
U(@) =54 'Kpq (31)
The closed-loop system is given by
o
-0 ]|
p] |-T" —(Ki+R e
p ( d D) agg) (32)

0m><l :|
rDraglllq + Orer (¢ + G + 0" (7 + q.))
Hx) =3p'p+U(@)
Also, consider the following adaptive update law for the
estimated atmospheric drag coefficient:
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;’Drag = —k||q + veer | (pT + K‘?TT>

X (¢ + 4+ 0*(¢' +4.)), (33)
where &, and x are positive constants.
Then, k can be chosen small enough so that

[x", ?Drag]T = O(am+1)x1 becomes an uniformly Lyapunov
stable equilibrium point, and furthermore, the following
convergence property holds:

tlima‘c(t) = 0anx1-

Proof. The closed-loop system in Eq. (32) is straightfor-
wardly verified by substituting Egs. (30) and (31) into

Eq. (29) and utilizing the relation that 0H /dp = OH /0p.

Let us define a Lyapunov function candidate as follows:

E(x ;Dragat) = H(i) + KqTT( )p—f—i;‘%}rag
=3P P+3q"Kyg+1q T(0P + 5t Thrae

oo ]+

(34)

152

=T
] 2/, rDrag7

=3lq"

NI'—‘

where the positive constant x satisfies the following
equation:

0<K<min{1, imi“(Kp)}. (35)
Here, Amin(-) and Ama(-) represent the minimum and max-
imum eigenvalues of the argument, respectively. It comes
from Schur’s lemma that

KP
kT

Since « is chosen to satisfy Eq. (35), K, — k*1,, is a positive
definite matrix. Thus, from Eqs. (36) and (34), E(X, Fprag, )
is a positive definite function with respect to (X, 7prag) for
V¢t > 0. Furthermore, the following inequalities with
respect to the function E (X, prg, f) hold:

kT

I}>0 = K,—-«TT" =K, —«I, = 0.

(36)

1—k 1_ _ 1 .
> PP+ ZqT (Kp — icl,,,)q —1—2—krr%)mg < E(x, PDrags t)
1 +rx 1 1
2 p p+ zq (K + K]m)q + 2k rDrdg (37)

Since the leftmost function in Eq. (37) is also a positive def-
inite function with respect to (X,7prg) from Eq. (35),
E(X,7prag,?) is bounded from above and below by a
time-invariant positive definite function, as shown by
Eq. (37).

Using Eq. (33), the time derivative of the Lyapunov
function candidate E along the solution to the closed-loop
system in Eq. (32) is calculated as follows:

679

Advances in Space Research 77 (2026) 671-685

OE

E= i +2 ()XX + 0'1) rDrag
— a7 ey  oEg ] | 4 TDrag 7,
=g Tp+ | 555% 55 T g

=xq Tw* P+[5H +xp'TT BH —i—KqTT

_ T
0m><m T ag—;)
-7 _(Kd ‘H_eD) ()H( )T

Jp

+ 0m><l
Poragllq + vrer (67 + e + 0™ (¢

"Drag

PDrag %,
} ! b

+4.))
-
=kg' T p — 2 (Kd +RD)

5
=)
=0

+[—xg"IT" «p'T'T — kg "T(Ks+Rp) |

+[qTKP+KI—9TTT ﬁT-l-KZ]TT}
01
+ G+ 0 (¢" +4.))
72 (k|G + vrer|| (BT + k77 T) (G + G + 0 (¢ + 4.)))
= KqTTw p—p (Ki+Rp)p—kq'K,q
+xp'p—xq T(Ks+Rp)p
< —Amin (K4 + Rp) 121> = Kmin (K

’N’Dr'lg”‘.] + ”ref”(qd

»)llall” + wllpll”
+[| T ([l || + Zmax (Ko + Rp)) llg]l 12l

From the assumption that w(¢) is bounded, we define

Omax = supllo(?)]| < oo, (38)
0

t=
and since T € SO(3), we have ||T|| = 1. In addition, for any
a € R, ||a”|| = ||a|| holds. Therefore, by applying Young’s
inequality with € as an arbitrary positive constant, the fol-
lowing inequality holds:
E g imm (Kd + RD) HP” - K)me Kp)

el + K (@max + e (K + R)) (f

’3
\_/

, wmdﬁ/mdx (K4+R 39
= ) - it >}|| 5 3
{ﬂ»mm(deLFD) _ x(l +M>}” 1%,
For Eq. (39), we can always choose ¢ > 0 such that
max )~m‘x K F
lmin(Kp) _E(CO ax + “2( a+ D)) >0
2 min (K
= 0<e< (Ky) (40)

Wmax + ;Lmax (Kd + ED) '
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Moreover, for any e satisfying Eq. (40), there always exists
Kk that satisfies the following equation:

®max + j~max (Kd + ED)
2e

Jmin(Ka +Rp) — K (1 +
/lmin (Kd + FD)

Omax+4max (Kd +ED ) '
I+ ——

>0 k<

(41)

Combining the conditions in (35) and (41) that x must sat-
isfy, we can always find x such that

/lmin (K a+ ED)
®max +/Amax (Kd +ED )
2e

0<x<min{l, \/Amin(K,), (42)

1+
Hence, according to Egs. (39), (40), and (42), it has been
shown that there exists a time-invariant and continuous

positive definite function W (x) with respect to x satisfying
the following equation:

E < —Ww(x). (43)

From Eq. (43), [x', ?Drag]T = Oam+1)x1 in the closed-loop
system is endowed with uniform Lyapunov stability. Fur-
thermore, since it comes from generalized LaSalle’s theo-
rem (Theorem 5.27 in (Sastry, 1999)) that

lim W (x) = 0,

t—00

it has been shown that the following convergence property
holds:

lim)?(t) = 02m><l .

—00

|

Finally, using Egs. (3), (26), (28), and (30), the trajectory
tracking controller for the system (27) is summarized as
follows:

up=—T"K,T(q—q") — Ka(p — ¢ — ¢ — 0 (¢ +q.))
47+ G + 0* (4" + ¢c) + 0" (¢ + q.)
Y T N . .
+op + PULID 4 Ry (¢ + G + 0™ (¢ + 4.))-

This completes the proof.

(44)

0.08
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6. Simulation results

This section shows simulation results to demonstrate the
validity of the proposed method. In this simulation, the ref-
erence formation configuration for two deputy satellites is
a GCO with a radius p of 50 m to maintain a straight for-
mation with a relative distance of 100 m. The control
objective of this simulation is set to reduce the relative dis-
tance error between satellites to the order of 10~ mm for
possible future precision formation control. We give the
reference trajectory ¢¢ for the ith deputy (i € {1,2}) as
follows:

Lpsin(n.t+ ¢,)
pCOS(}’lCl + ¢1) )
B psin(net + ¢,)

2
where ¢, = (i — 1)n [rad] and n,. is the mean motion of the
)1 2

d

q; = (45)

chief and is equal to (,u/ai , where a. [m] is the semi-
major axis of the chief. The orbital elements of the chief
are set as follows:

a, = 6.928142 x 10°m, i, = 98°,

"prg in Eq. (12)
1.415683 x 107'%, where a small satellite with a mass of
180 kg is assumed and the atmospheric density value is
determined as the average of the atmospheric densities at
an altitude of 550 km that are in the top 7% in each year
during 2001-2021, using the Jacchia—Bowman 2008 model.

We set the initial position error of each deputy to 0.25 m
(0.5%) and replace p for deputies 1 and 2 in Eq. (45) with
1.005p and 0.995p, respectively. We suppose a precise
micro-thruster system as the actuator, and the control
input is continuously variable acceleration. In addition,
the maximum output norm of the acceleration is limited
to 2.5 x 107° m/s?, where the basis for the micro-thruster
is the existing throttleable propulsion system in (Noci
et al., 2009). We parameterize the design parameters of
the controller in Eq. (30) with a positive constant k,,

0. = 30°.

is

e. =0,

The true coefficient set to

0.07
0.06
0.05

€
£

—

0.03

0.04

0.02

Maximum distance error

0.01

0 1
0.05 0.1 0.15 0.2

0.25

0.3 0.35 0.45

kp

0.4

Fig. 2. Maximum distance error between the deputies at the 3rd revolution.
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Fig. 5. Time responses of the relative velocity of two deputies (k, = 0.5).
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Fig. 7. Tracking errors of the velocity of two deputies (k, = 0.5).

namely, the positive definite symmetric matrices K, and K,
are parameterized as

K, = ks, Ky =30k,;. (46)

The rest parameters of the adaptive mechanism in Eq. (33)
are set to k, = 1.0 x 1072 and x = 5.0 x 1072

The simulations are performed using a 4th-order
Runge-Kutta method, setting the time step size and con-
trol period to 0.2 s and the number of revolutions around
the Earth to 3. Simulation results are presented from
Figs. 2-10. Fig. 2 shows the maximum error of the distance
between the deputies at the 3rd revolution when £, in Eq.
(46) is varied in 0.05 increments, from 0.05 to 0.5. Fig. 3
shows the average of the sum of AV of two deputies for
three revolutions when £, is varied under the same condi-
tion, where AV represents the velocity change indicating
fuel consumption.
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In the following, time responses when £, is fixed at 0.5
are exhibited, which corresponds to the case with the small-
est maximum distance error between the deputies. Figs. 4
and 5 show the time responses of the relative position
and velocity of each deputy from the chief. The solid lines
represent the state of each deputy, and the dotted lines rep-
resent the reference trajectory of each deputy. To quantify
the errors in tracking to the reference trajectories, Figs. 6
and 7 show the time transition of the norm of the position
and velocity errors. Fig. 8 shows the time responses of the
control input of each deputy summarized in Eq. (44) and
its norm, respectively.

Fig. 9 shows the time transition of the estimated atmo-
spheric drag coefficient 7p,, in the solid line, where the dot-
ted line represents the true coefficient rpr,. This figure
implies that the estimate of each deputy remains bounded
and converges to a constant value.
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Fig. 9. Time transition of the estimated atmospheric drag coefficient (k, = 0.5).
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Fig. 10. Time transition of the relative distance error between the deputies at the last period (k, = 0.5).

Lastly, to quantify the accuracy of the formation shape,  indicates that we can achieve the formation control accu-
Fig. 10 shows the time transition of the relative distance  racy on the order of 10~° mm. Consequently, these figures
error between the deputies at the last period. This figure  confirm that the deputies follow their reference formation
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trajectories while estimating the unknown atmospheric
drag coefficient and achieve the desired formation
accurately.

Comparing the proposed method with Ref. (Tabuchi
et al., 2022), the comparison method can achieve a smaller
maximum distance error by selecting the gain parameter,
while the averaged AV becomes larger. When comparing
the averaged AV required for one revolution under the
same control accuracy, Ref. (Tabuchi et al., 2022) is more
than twice that of the proposed method. The proposed
method enables efficient control with the same level of con-
trol accuracy.

7. Conclusion

This paper proposes a nonlinear formation tracking
control method using generalized canonical transforma-
tions with an adaptive mechanism for an unknown atmo-
spheric drag. First, a port-Hamiltonian representation of
the nonlinear relative orbital motion with the gravitational
J2 and atmospheric drag effects is modeled. Second, a
specific construction of an error system for any twice differ-
entiable reference formation trajectory using generalized
canonical transformations is constructed. Third, a
passivity-based asymptotic stabilizing controller and an
adaptive mechanism for the error system are presented.
The proposed method stabilizes the error system based
on its passivity while updating the estimate of the atmo-
spheric drag coefficient. Consequently, it is guaranteed that
the estimation error of the atmospheric drag coefficient is
bounded and that the tracking error for the reference tra-
jectory converges uniformly asymptotically to zero. The
effectiveness of the proposed method is demonstrated
through numerical simulations.

The proposed method can handle any differentiable
potential functions and twice differentiable reference trajec-
tories; hence, gravitational perturbations of arbitrary com-
plexity and various formation and transition/escape
trajectories can be handled in a unified manner. Further-
more, the proposed method does not impose any lineariza-
tions, and thus, it can be applied to long-distance and
ultra-precise formations necessary for future formation fly-
ing space interferometer missions.

Since the main focus of the present study is to develop
a framework for theoretical assurance of asymptotic sta-
bility of the entire control system, the atmospheric drag
coefficient is supposed to be an unknown constant. In
future work, we will extend the proposed method to
the time-varying case by applying model reference adap-
tive control.
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