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Abstract 

This paper proposes a nonlinear formation tracking control method using generalized canonical transformations with an adaptive 
mechanism for atmospheric drag. This method theoretically guarantees that satellites asymptotically track given reference trajectories 
in formation flying under disturbances, including atmospheric drag and the gravitational J2 effect. First, the nonlinear relative orbital 
motion is modeled in a port-Hamiltonian system. Second, a specific transformation is constructed for any twice differentiable reference 
formation trajectory that converts the system into an error system in the form of a time-varying passive port-Hamiltonian system based 
on generalized canonical transformations. Third, a passivity-based asymptotic stabilizing controller and an adaptive mechanism for the 
error system are presented, provided that the atmospheric drag coefficient is an unknown constant. Overall, the proposed method guar-
antees that the estimation error of the atmospheric drag coefficient is bounded and that the tracking error for the reference trajectory
converges uniformly asymptotically to zero.
© 2025 The Author(s). Published by Elsevier B.V. on behalf of COSPAR. This is an open access article under the CC BY license (http:// 
creativecommons.org/licenses/by/4.0/). 
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1. Intr oduction 

Formation flying (FF) (Alfriend et al., 2010; Mauro 
et al., 2018; Scharf et al., 2004) is a technology that dis-
tributes functions to multiple satellites, which fly in coordi-
nation while controlling their relative positions and 
attitudes. Various missions using FF have been proposed 
in recent years because FF enables missions that are diffi-
cult to achieve with a single large satellite due to physical 
limitations such as satellite size and weight. Examples of
FF missions include the space gravitational wave telescope,
LISA (Danzmann and Rüdiger, 2003; Xie et al., 2024) and 
DECIGO (Kawamura, 2008) and the infrared space inter-
ferometer, SEIRIOS (Matsuo et al., 2022) and LIFE
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(Quanz et al., 2 022). The ongoing PROBA-3 miss ion 
(Llorente et al., 2 013) launched in 2024 is a demonstrator 
of precise FF, which enables observation of the Sun’s cor-
ona through the creation of an artificial solar eclipse. In 
May 2025, it successfully performe d its first in-orbit 
demonstration (Serrano et al., 2 025). In Ref . (Ito, 202 4), 
the usefulness of the near-circular low Earth orbit (LEO) 
as an environment for in-orbit verification of FF technol-
ogy was thoroughly investigated, where the relationship 
between the altitude and satellite relative distance for a 
small relative perturbation environment is exhibited. Due 
to their economical and feasible access, FF missions in 
LEO usi ng low-cost nano-satellites have also been planned,
e.g., (Molina et al., 2 024). In addition, the ultra-precision 
FF technology demonstration project SILVIA has been 
proposed to acquire technologies that can be commonly
SPAR. 
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t time [s] 
nx vector representing the state of the system 1
mu vector representing the co ntrol input 1
my vector representing the outp ut1 

H Hamiltonian 
L Lagrangian 
U gravitational potential function including the J2 

term
nJ n skew-symmetric matrix representing the 
struc ture matr ix

RD n n positive semi-definite symmetric matrix 
representing the dissipation matrix
ng m matrix representing the control port 

x n vector representing the transformed state 
of the error system 

1

H transformed Hami ltonian 
y m vector representing the transformed out -

put 
1 

u m vector representing the transformed con-
trol input 

1

U Rn coordinate transformation: R R n 

Rn U Hamiltonian transformation: R R 
a Rn output transformation: R R m 

b Rn input transformation: R R m 

3Q vector representing the position of the 
de puty in the ECI frame

1

3q vector representing the relative position of 
the depu ty in the LVLH frame

1

qd 3 vector representing a reference relative 
position in the LVLH fram e

1

 

T transformation matrix from the LVLH frame to 
the ECI frame

x 3 vector representing the angular velocity of 
the LVLH frame to the ECI frame

1

3p vector representing the conjugate momen-
tum of the deputy in the LVLH fram e

1

l [m3 gravitational constant of the Earth s2 ] 
Re radius of the Earth [m] 
J2 J2 coeffici ent 
a semi-major axis [m] 
i inclination [rad] 
X right ascension of the ascendi ng node [rad]
h argument of latitude [rad] 
nc mean motion of the chief [rad/s] 
qa [kgatmospheric density m3 ] 
AC [m2 effective area of a satellite ] 
CD drag coeffici ent 
md satellite mass [kg] 
rDr atmospheric drag coeffici entag 
RD m m atmospheric drag matrix 
rDr estimated atmospheric drag coeffici entag 
RD m m estimated atmospheric drag matrix 
rDr rDr estimation errorag ag r Drag, 

c chief satel lite 

transpose 
3skew-symmetric matrix with dimension 3 

repres enting the vector product
used for various future FF missions (Ito et al., 2025). The 
relative orbital motion between satellites, which is funda-
mental to FF, is governed by a nonlinear equation of 
motion. The Clohessy-Wiltshire equations (Clohessy and 
Wiltshire, 1960), or Hill’s equations (Hill, 1 878) obtained 
by linear approximation of the relative orbital motion, 
are useful in proximity maneuvers such as autonomous 
rendezvous and docking, e.g., JAXA’s ETS-VII (Ohkami 
and Kawano, 2003) as an FF of practical importance. 
However, control methods that handle nonlinearity are 
essential for long-distance and ultra-precise formations, 
which are examined in the aforementioned future space
interferometer observations.

Sliding mode control (Itkis, 1976; Shtessel et al., 2013)  is
a nonlinear control method suitable for on-board compu-
tation without iterative calculations and is expected to have 
high control performance and robustness. In Ref. (Li et al., 
2018), a control method for rendezvous and docking was 
proposed that combines the artificial potential function 
method with a first-order sliding mode control. This
672
method has the advantage of simultaneous collision avoid-
ance and rendezvous and docking control under external 
disturbances. In Ref. (Bassetto et al., 2 024), an active con-
trol method of drag sails for effective deorbit of LEO 
spacecraft is proposed based on sliding mode control. 
The proposed method maintains the sail surface normal 
in the direction of the velocity vector to maximize the pas-
sive drag effect under orbital and attitude perturbations. 
Although these methods both achieve control objectives 
and robustness against disturbances, a chattering phe-
nomenon peculiar to the first-order sliding mode control 
is observed. Higher-order sliding mode control a nd termi-
nal sliding mode control have been proposed to prevent
chattering. In Refs. (Hui and Li, 2009; Lawn e t al., 
2018), agile formation control methods under disturbances 
based on robustness and finite-time convergence with ter-
minal sliding mode control are proposed. The convergence 
rate of the terminal sliding mode control increases expo-
nentially as the state approaches the target equilibrium 
point, and thus, fast convergence is achieved. However,
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to realize such behavior on the sliding mode manifold, 
these methods need to cancel the original dynamics of the 
plant system significantly and to choose the design param-
eters carefully.

In contrast, controller design methodologies based on 
Hamiltonian systems and their generalizations, port-
Hamiltonian systems (Maschke and van der Schaft, 1992; 
van der Schaft, 1996; Duindam et al., 2009), have been 
promising in controlling a broad class of practically impor-
tant nonlinear systems. A significant advantage is that the 
energy shaping and dissipation can be explicitly considered 
because the Hamiltonian, the total energy of the system, 
and the interconnection and damping structures of the sys-
tem explicitly appear in the system dynamics. This allows 
for energy-efficient control without unnecessarily canceling 
the system dynamics because a desired equilibrium point 
corresponding to the bottom of the potential can be easily 
set, and only factors causing energy increase need to be 
compensated. In addition, since the Hamiltonian is a Lya-
punov function candidate, stability analysis for the resul-
tant closed-loop system is also facilitated. In Ref.
(Scheeres et al., 2003), a Hamiltonian-structure-preserving 
(HSP) controller is proposed to stabilize the relative 
motion to a libration point orb it. This method is also 
extended to the time-dependent relative dynamics in (Fu 
and Xu, 2019). The HSP control method utilizes the eigen-
structure of the linearized relative dynamics along the tar-
get orbit, which compensates for the projected relative 
position along the directions of the stable and unstable 
manifolds of the linearized relative motion. This method 
has the advantage of stabilizing relative motions using only 
information on the relative position; however, controller 
design and stability analysis are based on the linearized rel-
ative dynamics and cannot directly handle nonlinearities of 
the relative orbital motions that are essent ial for the afore-
mentioned long-distance formation and ultra-precise for-
mation. The HSP control method can be interpreted as 
shaping the potential of a linearized Hamiltonian system. 
More generally, systematic methods that transform inter -
connection and damping structures as well as energy shap-
ing while preserving the port-Hamiltonian structure
include IDA-PBC method (Acosta et al., 2005; Ortega 
et al., 20 02), generalized canonical trans formations 
(Fujimito et al., 2003; Fujimito and Sugie, 2001), and 
kinetic potential energy shaping (KPES) method 
(Ferguson et al., 2019). In Ref . (Javanmardi et al., 2020), 
a trajectory tracking control of nonlinear relative orbital 
motions based on the IDA-PBC method is proposed. The 
IDA-PBC method provides an input transformation to a 
given target model of a port-Hamiltonian system with ideal 
closed-loop characteristics if the so-called matching co ndi-
tion is satisfied. However, the controller design of this 
method for complex systems is sometimes difficult in that 
the control performance and transformation should be
simultaneously achieved.

In contrast, the main contributions of this paper are 
four folds:
673
1.

2.

cal transformations;
3.

drag coefficient; and
4.

lizes the error system based on its passivity.

A port-Hamiltonian representation of the nonlinear rel-
ative orbital motion with the gravitat ional J2 and atmo-
spheric drag effects;
A concrete construction of an error system for a given 
reference formation trajectory using generalized canoni-

An adaptive mechanism for an unknown atmos pheric

An asymptotic formation tracking control ler that stabi-

Since the present method can divide the construction of 
the error system and its stabilization processes, it offers 
good prospects and flexibility in controller design for 
asymptotic formation tracking. For the first contribution, 
we represent the nonlinear relative orbital motion with the 
gravitational J2 effect, which is the gravitational perturba-
tion due to the oblateness of the Earth, and the atmo-
spheric drag in a port-Ha miltonian system with an 
additional disturbance term. According to Ref. (Ito 
et al., 20 21), the gravitational J2 effect and the atmo-
spheric drag are the first and second most significant envi-
ronmental disturbances for the FF in a low Earth orbit. 
For the second contribution, we provide a specific gener-
alized canonical transformation that transforms the non-
linear relative orbital motion into an error system in the 
form of a time-varying passive port-Hamiltonian system 
for any twice differentiable reference formation trajecto-
ries. For the third contribution, we propose an adaptive 
mechanism to estimate the coefficient, provided that the 
atmospheric drag coefficient is an unknown constant. 
Finally, a formation tracking controller is presented by 
stabilizing the error system using its passivity and the 
adaptive mechanism. The proposed method guarantees 
that the estimation error of the atmospheric drag coeffi-
cient is bounded, and the t racking error for the reference 
trajectory converges uniformly asymptotically to zero. 
From feature (1) and the main theorems described later
(Theorems 2 and 3), the proposed method can handle 
any differentiable potential functions; hence, higher-
order gravitational perturbations other than the J2 term 
and those from other celestial bodies can easily be 
involved. From feature (2) and the main theorems, the 
proposed method can also handle arbitrary twice differen-
tiable reference trajectories; hence, not only various for-
mation trajectories but also escape trajectories in an 
emergency can be handled in a unified manner. Since 
the proposed method is nonlinear formation control with-
out requiring any linear approximations that a re imposed 
in the conventional methods based on Hill’s solution s or
relative orbital elements (Alfriend et al., 2010; D’A mico 
and Montenbruck, 2006; Schaub and Junkins, 2018), it 
can be applied to long-distance and ultra-precise forma-
tions necessary for future formation flying space interfer-
ometer missions. In addition, the proposed controller is 
scalable independent of the number of satellites, because 
it does not require information from other satellites.
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Preliminary reports of this paper appeared as conference 
papers (Hamanaka and Satoh, 2023; Satoh, 2021) without 
proofs, while the present paper unifies these results and 
provides detailed proofs for all lemmas and theorems. 
Besides, as a possible linkage between the sliding mode 
control and the proposed framework, one of the authors 
recently reported an application of a sliding mode con-
troller to stabilize the error syst em aiming at higher robust-
ness and convergence accuracy in (Tabuchi et al., 2022). 
This was accomplished by the separation of construction 
and stabilization of the error system in the proposed
framework.
2. Preliminarie s 

This section defines the plant system considered in this 
paper and introduces transformations preserving the sys-
tem structure, which play an important role in the sub se-
quent controller design.

2.1. Port-Hamiltonian systems 

A port-Hamilton system (Maschke and van der Schaft, 
1992; van der Schaft, 1996; Duindam et al., 2009) is repre-
sented by the following eq uation:

x J  x  t RD x t 
H  x  t 

x g  x  t u x 0 x0 

y g  x  t H  x  t 
x

1

where and denote the state and the con-
trol input, respectively. is defined as a passive 
output to the system. The Hamiltonia repre-
sents the total energy of the system and is supposed to be 
a sufficiently smooth function. A matrix rep-
resents the control port, and for a an a 
skew-symmetric matrix represents the struc-
ture matrix and a symmetric positive semi-definite matrix 

represents the dissipation matrix. In what 
follows, an n positive (sem i-) definite matrix A is repre-
sented by , where denotes the zero 
matrix of size n 

t Rn Rm 

t  Rm 

H  x  R 

g  x  t Rn m 

Rn P 0,
x t Rn n

x t Rn n

0n n ( 0n n) n

.

x u  t  
y  

n 

ll x d t 
J  

RD 

n 
A A 0n 

n 
According to the literature (Fujimito et al., 2003), we 

define a useful property called pa ssivity for the port-
Hamiltonian system (1), though this property can be 
defined for a more general input–output mapping (van 
der Schaft, 1996,). For a differentiable function 
satisfying the system (1) is pas-
sive with respect to V holds for all 

and Note that as shown in (van der 
Schaft, 1996), a time-invariant port-Hamiltonian system 
with a positive semi-definite Hamiltonian is intrinsically 
passive with respect to its Hamiltonian. This comes 
from 

V  x  t 
x  t P V 0n 1 t 0, 

dV d t 6 y u
Rn P 0.

V  
if 

x t 

dH  x  
dt 

H  x  
x RD x 

H  x  
x 

H  x  
x g  x  u 6 y u 2
674
If the Hamiltonian is positive definite, Eq. (2) implies that a 
negative-feedback of the passive output, namely, 
with a positive definite matrix renders the origin 
of the system locally Lyapunov stabl e.

Ky
Rm m

u 
K 

2.2. Generalized canonical transformations 

In converting a positive semi-definite Hamiltonian into 
another positive definite one and performing coordinate 
and feedback transformations, the following result is help-
ful to designing such transformations while preserving the 
port-Hamiltonian structure. A generalized canonical trans-
formation (Fujimito et al., 2003; Fujimito and Sugie, 2001) 
is the following set of transform ations:
x U x t 

H x t H  x  t U  x  t x U 1 x t 

y y a x t x U 1 x t 

u u b x t x U 1 x t 

3

such that the transformed system is another por t-
Hamiltonian system of the form (1) with the new state 
Hamiltonian outpu and in Here, a map 

defined as is a diffeomor-

phism. In Eq. (3), we utilize the nota n as 
that is, Besides, a differen-

tiable function is a Hamiltonian transfor-
mation, and vector-valued functions and 

are the output and input transformations, 
respectively. 

The following theorem clarifies necessary and sufficient 
conditions for generalized canonical transformations: 

, , u. 
Rn R n x U x t x 

U 1 x t 
1 x , 1 x t U 1 

t x x. 
Rn R R

Rn R Rm,
Rn R Rm

x, 
H t y put 

Ut Ut 

tio 
Ut U 

U 
a 

b 

Theorem 1. (Fujimito et al., 2003) Consider the port-
Hamiltonian system (1). Necessary and sufficient condi-
tions for the set of transformations (3) to be a generalized 
canonical transformation are as follows: There exist a 
skew-symmetric matrix and a symmetric 
matrix such that is pos-

J x t Rn n 

x t Rn n x t QR x t
P 

QR RD
Fig. 1. ECI and LVLH frames.
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itive semi-definite, and the following equations are 
satisfied:

U 
t 

U 
x 

J RD 
U 
x 

gb PJ QR 

H U 
x 

0n 1 

4 

a g 
U 
x 

5

Furthermore, when the transformed Hamiltonian satisfies 
the transformed port-

Hamiltonian system is passive with respect to and only 
if the following inequality holds: 

x t P H 0n 1 t 0,

H
H 

if 

H U 
t 

H U 
x 

J RD 
U 
x 

RD 
H U 

x 
gb P 0 6 

Remark 1. The condition in Eq. (6) is slightly different 
from the original one in Eq. (13) in (Fujimito et al., 
2003) in that the original condition in (Fujimito et al., 
2003) only provides a sufficient condition for passivity of 
the transformed system, while Eq. (6) in the present paper 
provides a nec essary and sufficient condition.
T  t  

cosXc cos hc sinXc sin hc cos ic cosXc sin hc sinXc cos hc cos ic sinXc sin ic 
sinXc cos hc cosXc sin hc cos ic sinXc sin hc cosXc cos hc cos ic cosXc sin ic 

sin hc sin ic cos hc sin ic cos i c 
3. Port-Hamiltonian representation of nonlinear relative 
orbital motion considering atmospheric drag

This study uses two coordinate frames: the ECI and 
LVLH frames depicted in Fig. 1. The ECI frame is an 
Earth-centered inertial frame. This frame takes the 
plane as the equatorial plane and the origin as the center 
of the Earth, with the X axis in the direction of the vernal 
equinox, the Z axis in the direction of the north pole per-
pendicular to the equatorial plane, and the Y axis to form 
a right-handed orthogonal system. The LVLH frame is a 
chief-centered rotational frame. This frame takes the origin 
as a chief (a real satellite or a fictitious point), the x axis in 
the radial direction pointing from the center of the Earth to 
the ch ief, the z axis in the direction of the orbital angular
momentum vector, and the y axis to form a right-handed
orthogonal system.

YX 

Here, we describe the nonlinear relative orbital motion 
as a port-Hamiltonian system mentioned in Section 2.1, 
where we explicitly consider the gravitational J2 eff ect
675
and atmospheric drag. In the ECI frame, the Lagrangian 
is given byL 

L Q Q 1 
2
Q Q U Q 

1 
2
Q Q l 

Q 1 J2R2 
e 

2 Q 2 
3 Z2 

Q 2 1
7

where denotes the position vector of 
the deputy and denotes the gravitational poten-
tial including the effect of the J2 term with the gravitational 
constant of the Earth, , the radius of the Earth, 
[m], and the J2 coefficient, Although this paper consid-
ers up to the J2 term, the proposed method can also handle 
potential functions including higher-order gravitational 
perturbations and those from other celestial bodies.

X Y Z R3

Q R

m s2] R

Q 
U 

l [ 3 
e 

J 2. 

The coordinate transformation from the LVLH frame 
to the ECI frame for the position vector of the deputy is
expressed as

Q T  t  q qc 8 

where represents the transformation matrix 
from the LVLH frame to the ECI frame. The LVLH frame 
can be expressed as a rotational sequence given by 

as the (3–1-3) Euler angles from the ECI frame, 
where and denote the right ascension of the 
ascending node, inclination, and argument of latitude of 
the chief, respectively. Therefore, the transformation
matrix in Eq. (8) is given by the following equation: 

t  SO 3 

c ic hc 
ic, c 

t

T  

X 
Xc h 

T  
t t  

Q T q qc x q qc 9 

In what follows, the argument may be omitted from 
for notational simplicity. It comes from Eq. (8) that 

T  

where denotes the angular velocity of the LVLH 
frame to the ECI frame, and the relation for the time 
derivative of the rotational matrix, that is,

R3x 

dT  t  
dt 

T  t  x 

is used. Here, for a vecto a skew-
symmetric matrix is given by 

n1 n2 n3 R3 ,

R3 3

r n 
n 

n 

0 n3 n2 

n3 0 n1 

n2 n1 0 

Using the Lagrangian calculated by Eqs. (7)–(9), the 
conjugate momentum corresponding to q is defined 
as 

L 
R3p

move_f0005
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p 
L 

q 
q qc x q qc 10 

The Legendre transformation leads to the Hamiltonian H 
as

H 
1 
2 
p p p qc x q qc U T  q  qc 

The atmospheric drag force in the LVL H frame is 
express ed as

fDrag T qaACCD 
2md 

Q Q 

rDrag q vref q vref 

rDrag q vref 
H  x  t 

p vref

where the reference velocity and the atmospheric 
drag coefficient are defined as 

R 3

ag R

vref qc x q qc 11 

rDrag 
qaACCD 

2md 
12 

vref 
rDr 

Here, we introduce the atmospheric drag matrix 
as the following equation to represent the system with the 
atmospheric drag force in a port-Hamiltonian system: 

R R3 3

ag

D 

fDr 

RD rDrag q vref I 3 13 

where represents the identity matrix of size m.Im m 
RD 

q 

p 

0m m Im 
Im RD 

H  x  t 
q 

H  x  t 
p 

0m m 

Im 
u0 

0m 1 

R Dvref 

14 

y 0m m Im 
H  x  t 

q 
H  x  t 

p 

H  x  t 
p q 

H  x  t 1 
2
p p p qc x q q c U T  q qc

Finally, using the notation of in Eq. (13), the nonlin-
ear relative orbital motion considering the gravitational J2 
effect and atmospheric drag in the LVLH frame is repre-
sented in a port-Hamiltonian system of the form (1) with 
an additional distu rbance term as

with Here, is the control input and the state 
x consists of the position and conjugate momentum of the 
deputy as 

3. Rm 

q p R2m.

m u0 

x 

4. Construction of the error system based on generalized 
canoni cal transformations for refere nce trajectories

This section constructs an error system for a given refer-
ence formation trajectory that preserves the port-
Hamiltonian structure and, moreover, possesses passivity 
using general ized canonical transformations. We first sup-
pose that the atmos pheric drag coefficie r in Eq.
(12) is available for control. Then, in the next section, we 
present an adaptation mechanism provided tha r is 
an unknown constant.

Drag

Drag

nt 

t 
676
u t0Let us define the control input o compensate for the 
disturbance due to the atmospheric drag, which appears as 
the last term on the right-hand side of Eq. (14) as follows: 

u0 RDvref u rDrag q vref v ref u 15

where is a new control input. Substituting Eq. (15), 
Eq. (14) is rewritten as the following port-Hamiltonian 
system: 

Rmu 

Then, we provide the following theorem for the concrete 
construction of the error system using the generalized 
canonical transformation for the port-Hamiltonian system
expressed in Eq. (16): 

Theorem 2. Consider the port-Hamiltonian system (16) 
and any twice differentiable reference trajector The 
following set of transformations converts the system into 
the error system for

qd .

q 

p 

0m m Im 
Im RD 

H  x  t 
q 

H  x  t 
p 

0m m 

Im 
u 16 

y 0m m Im 
H  x  t 

q 
H  x  t 

p 

H  x  t 
p q 

H  x  t 1 
2
p p p qc x q q c U T  q qc

y 

qd : 

U x t 
T  t  q qd 

p qd qc x qd qc 

q 

p 

U  x  t p qd x q qd U T  t  q qc 17 
1 
2 q

d qc x qd qc 
qd qc x qd qc 

a x t qd x q qd 

b x t qd qc x qd qc x qd qc 
x p U T  t  q qc 

q RD qd x q q d

The transformed error system is given as the following 
another port-Hami ltonian system:

Furthermore, the resultant error system is passive for the 
new input–output pair with respect to the new Hamil-

tonian

y

q 

p 

0m m T  t  

T  t RD 

H x 
q 

H x 
p 

0m m 

Im 
u 18 

y 0m m Im 
H x 
q 

H x 
p 

H x 
p p 

H x 1 
2
p p 

u 
H . 

Proof. First, we check that the set of transformations (17) 
satisfies the necessary and sufficient conditions for general-
ized canonical transformations in Theorem 1. Suppose 

the left-hand side of Eq. (4) can be calcu-
lated using Eq. (17) as follows: 

QR 0m m,PJ
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Tx q qd T qd 

qd qc x qd qc x qd qc 
T 0m m 

0m m Im 

0m m Im 
Im RD 

x p U T  t  q qc 
q 

qd x q qd 

0m 1 

qd qc x qd qc x qd qc x p 

U T  t  q qc 
q RD qd x q qd 

0m 1 

0m 1 

Thus, the condition of Eq. (4) is shown to hold. The second 
condition (5) is verified by comparin in Eq. (17) 
with the right-hand side of Eq. (5) as 

x tg a 

g 
U 
x 

0m m Im 
x p U 

q 

qd x q qd 

qd x q qd 

Therefore, the set of transformations (17) is a generalized 
canon ical transform ation.

Next, we confirm the passivity condition in Eq. (6) for the 
transformed system. It comes from Eqs. (16) and (17) that 

H U 1 
2
p p p qc x q qc 

U T  q  qc p qd x q qd 

U T  q  qc 
1 
2 q

d qc x qd qc 
qd qc x qd qc 

1 
2
p p 1 

2 q
d qc x qd qc 

qd qc x qd qc p qd qc x qd qc 
1 
2 p qd qc x qd qc 
p qd qc x qd qc

19

From Eq. (19),  we  h  ave  
H U 

t 
H U 
x J RD 

U 
x gb 

p qd qc x qd qc 
qd qc x qd qc x qd qc 

0m 1 

p qd qc x qd qc 
0m m Im 
Im RD 

x p U 
q 

qd x q qd 

0m 1 

qd qc x qd qc x qd qc 
x p U 

q RD qd x q qd 

p qd qc x qd qc 
qd qc x qd qc x qd qc 

0m 1 

p qd qc x qd qc 
qd x q qd 

qd qc x qd qc x qd q c 
0 

20
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Consequently, using Eq. (20), we can show that 

The left-hand side of Eq 6 H U 
x RD 

H U 
x 

P 0

Now, we confirm that the transformed system is an error 
system. Fr om the definition of the trans formation in Eq.
(17), it follows that when because and 
T is non-singular. In addition to the res Eq.
(10) leads to the fac und Hen 
implies that and Conversely, whe 
and it comes from Eq. (17) that 

qd 0, 0 
q qd , 

qd p 0. x 0 
qd qd . qd 

qd , 0. 

q x q 
ult 

t q er ce, 
q q n q 

q x 
Finally, to show that the transformed system is a por t-

Hamiltonian system described by Eq. (18). We calculate 
the dynamics of the transformed system as

q 

p 

U 
t 

U 
x x 

Tx q qd T qd 

qd qc x qd qc x qd qc 

T 0m m 

0m m Im 

0m m Im 

Im RD 

H 
q 

H 
p 

0m m 

Im 
u 

21 

u fb 

q 

p 

T  p  qd qc x qd qc 
u RD p qd qc x qd qc 

T p 

u RDp 

22 

Substituting into Eq. (21) with rom Eq. (17), 
we obtain the following equation: 

u b

H 
Besides, noting that the new Hamiltonian is given by 

the right-hand side of Eq. (18) can be cal-
culated as 

x 1 2p p ,

0m m T 

T RD 

H x 
q 

H x 
p 

0m m 

Im 
u 

0m m T 

T RD 

0m 1 

p 

0m 1 

u 
T p 

u RD p 

23 

It comes from Eqs . (22) and (23) that the dynamics of the 
transformed system is described by Eq. (18). Next, the 
transformed output is calculated as
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y y a 

0m m Im H 
x 0m m Im U 

x 

0m m Im 
H U 
x 

Also, using the fact that 
H U 
x 

H x 
x 

U x 
x 

H x 
x 

T 0m m 

0m m Im 
H 
q T

H 
p 

the output satisfies the following relation: 

y 0m m Im 
T H 

q 

H 
p 

H 
p 

24 

Thus, Eq. (24) shows that the transformed output is consis-
tent with Eq. (18). This completes the proof. h 
5. Trajectory tracking control with an adaptive mechanism 
for unknown atmospheric drag coefficient

In this section, we treat the atmospheric drag coefficient 
as an unknown constant and propose a trajectory tracking 
control ler with an adaptive mechanism to estimate the
atmospheric drag coefficient.

First, we define an estimated atmospheric drag matrix 
using the esti mated atmospheric drag coefficien 

similarly to Eq. (13) as 
DragRD t r 

RD rDrag q vref I m 25 

The estimation error for the unknown consta r is 
defined as

Dragnt 

rDrag rDrag r Drag 

Now, we replace the true coefficient with the estimated one 
in the compensation input in Eq. (15) as 

u0 RDvref u rDrag q vref v ref u 26

Then, the system corresponding to Eq. (16) becomes the 
following port-Hamiltonian system with the disturbance 
term due to the estimation error of the atmos pheric drag
coefficient:

q 

p 

0m m Im 
Im RD 

H  x  t 
q 

H  x  t 
p 27 

0m m 

Im 
u 

0m 1 

rDrag q vref vref 

y 0m m Im 
H  x  t 

q 
H  x  t 

p 

H  x  t 
p q 

H  x  t 1 
2
p p p q c x q qc U T q qc
678
Accordingly, the generalized canonical transformation pre-
sented in Eq. (17) is now mod ified as 

U x t 
T  t  q qd 

p qd qc x qd qc 

q 

p 

U  x  t p qd x q qd U T  t  q qc 

1 
2 q

d qc x qd qc qd qc x qd qc 
28

a x t qd x q qd 

b x t qd qc x qd qc x qd qc 
x p U T  t  q qc 

q RD qd x q q d 

Using the generalized canonical transformation (28) for the 
system (27), we obtain the following error syst em:

q 

p 

0m m T 

T RD 

H x 
q 

H x 
p 

0m m 

Im 
u 

0m 1 

rDrag q vref qd qc x qd qc 

29 

y 0m m Im 
H x 
q 

H x 
p 

H x 
p p 

H x 1 
2
p p 

Finally, we show the following theorem that provides a sta-
bilizing controller for the error system (29), an adaptive 
update law for the atmospheric drag coefficient, and a the-
oretical guarantee for the closed-loop system: 

Theorem 3. Suppose that the orbital angular velocity 
vector of the chief is bounded and any twice differen-
tiable refer ence trajectory Consider the error system in
Eq. (29), and the following control input with symmetric 
positive definite matrices Kd Rm m :

x 
qd . 

Kp 

u T U q 
q Kd 

H x 
p 

T Kpq Kdp 
30 

with a potential function defined as 

U q 
1 
2 
q Kp q 31 

The closed-loop system is given by 

q 

p 

0m m T 

T Kd RD 

H x 
q 

H x 
p 

0m 1 

rDrag q vref qd qc x qd qc 

32 

H x 
1 
2 
p p U q 

Also, consider the following adaptive update law for the 
estimated atmospheric drag coefficient:
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rDrag kr q vref p jq T 

qd qc x qd qc 33 

where and are positive constants.kr j 
Then, can be chosen small enough so that 

becomes an uniformly Lyapunov 
stable equilibrium point, and furthermore, the following 
convergence property holds: 

rDrag 0 2m 1 1

j 

x 

lim 
t 

x  t 02 m 1 

Proof. The closed-loop system in Eq. (32) is straightfor-
wardly verified by substituting Eqs . (30) and (31) into 
Eq. (29) and utilizing the relation that p H p.H 

Let us define a Lyapunov function candidate as follows :
E x rDrag t H x jq T  t  p 1 
2kr 

r2 
Drag 

1 
2
p p 1 

2
q Kpq jq T  t  p 1 

2kr 
r2 
Drag 

1 
2 q p 

Kp jT  t  

jT  t Im 

q 
p 

1 
2 kr r

2
Drag

34

where the positive consta satisfies the following 
equation: 

jnt 

0 j min 1 kmin K p 35 

Here, and represent the minimum and max-
imum eigenvalues of the argument, respectively. It comes 
from Schur’s lemma that

n axkmi km 

Kp jT 

jT Im 
0 Kp j2 TT Kp j2 Im 0 

36 

Since s chosen to satisfy Eq. (35), is a positive 
definite matrix. Thus, from Eqs. (36) and (34), 
is a positive definite function with respect to for 

Furthermore, the following inequalities with 
respect to the function hold: 

K j2Im 

E rDrag t 
rDrag 

P 0. 
x rDrag t

ij p 

x 
x 

t 
E 
1 j 
2 

p p 
1 
2 
q Kp jIm q 

1 
2kr 

r2 
Drag 6 E x rDrag t 

6 1 j 
2 

p p 
1 
2 
q Kp jIm q 1 

2kr 
r 2Drag 37

Since the leftmost function in Eq. (37) is also a positive def-
inite function with respect from Eq. (35), 

is bounded from above and below by a 
time-invariant positive definite function, as shown by
Eq. (37). 

x rDrag 

x r Drag t 
to 

E 

Using Eq. (33), the time derivative of the Lyapunov 
function candidate E along the solution to the closed-loop 
system in Eq. (32) is calculated as follows: 
679
E E 
t 

E 
x x

E 
rDrag 

rDrag 

jq T p E x t 
q 

E x t 
p 

q 

p 
rDrag 
kr 

rDrag 

jq Tx p H x 
q jp T H x 

p jq T 

0m m T 

T Kd RD 

H x 
q 

H x 
p 

0m 1 

rDrag q vref qd qc x qd qc 

rDrag 
kr 

rDrag 

jq Tx p H 
p Kd RD 

H 
p 

jq TT jp T T jq T  Kd RD 

H x 
q 

H x 
p 

q Kp jp T p jq T 

0m 1 

rDrag q vref qd qc x qd qc 
rDrag 
kr 

kr q vref p jq T qd qc x qd qc 

jq Tx p p Kd RD p jq Kpq 

jp p jq T  Kd RD p 

6 kmin Kd RD p 2 jkmin Kp q 2 j p 2 

j T x kmax Kd RD q p

From the assumption that is bounded, we definetx 

xmax sup 
tP0 

x t 38 

and since we have In addition, for any 
holds. Therefore, by applying Young’s 

inequality with s an arbitrary positive co nstant, the fol-
lowing inequality holds: 

SO 3 , 1.

R3 a a
T T 

a 
a 

E 6 kmin Kd RD p 2 jkmin Kp q 2 

j p 2 j  xmax kmax Kd RD 
q 2 

2 
p 2 

2 

j  kmin Kp 
xmax kmax Kd RD 

2
q 2 

kmin K d RD j 1 xmax kmax Kd R D
2

p 2

39

For Eq. (39), we can always choo se such that 0

kmin Kp 
xmax kmax Kd RD 

2 
0 

0 
2kmin Kp 

xmax kmax Kd RD
40
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Moreover, for any atisfying Eq. (40), there always exists 
hat satisfies the following equati on:

s 
tj 

kmin Kd RD j 1 
xmax kmax Kd RD 

2 

0 j 
kmin Kd RD 

1 xmax k max Kd RD 

2

41

Combining the conditions in (35) and (41) that ust sat-
isfy, we can always find uch that 

j m 
sj 

0 j min 1 kmin Kp 
kmin Kd RD 

1 xmax kmax Kd RD 

2 

42

Hence, according to Eqs . (39), (40), and (42), it has been 
shown that there exists a time-invariant and continuous 
positive definite function with respect to atisfying 
the foll owing equation:

xW sx 

E 6 W x 43 

From E q. (43), in the closed-loop 
system is endowed with uniform Lyapunov stability. Fur-
thermore, since it co mes from generalized LaSalle’s theo-
rem (Theorem 5.27 in (Sastry, 1999)) that 

rDrag 0 2m 1 1x 

lim 
t 

W x 0 

it has been shown that the foll owing convergence pro perty
holds:

lim 
t 

x  t 02 m 1 

This completes the proo f. h 

Finally, using Eqs. (3), (26), (28), and (30), the trajectory 
tracking controller for the system (27) is summarized as 
follows: 

u0 T KpT  q  qd Kd p qd qc x qd qc 
qd qc x qd qc x qd qc 

x p U T  q  qc 
q RD qd qc x qd q c 

44 
Fig. 2. Maximum distance error betwee

680
6. Simulation resul ts 

This section shows simulation results to demonstrate the 
validity of the proposed method. In this simulation, the ref-
erence formation configuration for two deputy satellites is 
a GCO with a radius f 50 m to maintain a straight for-
mation with a relative distance of 100 m. The control 
objective of this simulation is set to reduce the relative dis-
tance error between satellites to the order of mm for 
possible future precision formation control. We give the
reference trajectory for the ith deput ) as
follows:

3

i 1 2

oq 

10 

qd i y ( 

qd i 

1 
2
q sin nct /i 

q cos nct /i 

3 
2 q sin n ct /i 

45

where [rad] and s the mean motion of the 
chief and is equal to wher [m] is the semi-

major axis of the chief. The orbital elem ents of the chief 
are set as follows: 

i 1 p

l a3c
1 2

, c

/i n ic 

e a 

ac 6 928142 106 m ec 0 i c 98 hc 30

The true coefficie r in Eq. (12) is set to 
where a small satellite with a mass of 

180 kg is assumed and the atmospheric density value is 
determined as the average of the atmospheric densities at 
an altitude of 550 km that are in the top in each year 
during 2001–2021, using the Jacchia–Bowman 2008 model.

Drag

15683 10 12,

nt 
1 4 

7 

We set the initial position error of each deputy to 0.25 m 
(0.5%) and replace or deputies 1 and 2 in Eq. (45) with 

and respectively. We suppose a precise 
micro-thruster system as the actuator, and the control 
input is continuously variable acceleration. In addition, 
the maximum output norm of the accele ration is limited 
to where the basis for the micro-thruster 
is the existing throttleable propulsion system in (Noci 
et al., 2009). We parameterize the design parameters of 
the controller in Eq. (30) with a positive cons t 

05q 995q, 

10 6 s2 , 

kp,

fq 
1 0 0 

2 5 m 

tan
n the deputies at the 3rd revolution.
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Fig. 3. Averaged total of two deputies for three revolutions.D V

Fig. 4. Time responses o e relative position of two deputies .(kp 0 5)f th 

Fig. 5. Time responses o e relative velocity of two deputies .(kp 0 5)f th

681
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Fig. 6. Track errors of the position of two deputies .(kp 0 5)ing 

Fig. 7. Trac errors of the velocity of two deputies .(kp 0 5)king 
namely, the positive definite symmetric matrices and 
are parameterized as

K Kp d 

Kp kpI3 Kd 30kpI3 46 

The rest parameters of the adaptive mechanism in Eq. (33) 
are set to and1 0 10 12 5 0 10 2.kr j 

The simulations are performed using a 4th-order 
Runge–Kutta method, setting the time step size and con-
trol period to 0.2 s and the number of revolutions around 
the Earth to 3. Simulation results are presented from
Figs. 2–10. Fig. 2 shows the maximum error of the distance 
between the deputie s at the 3rd revolut ion when in Eq.
(46) is varied in 0.05 increments, from 0.05 to 0.5. Fig. 3 
shows the average of the sum o of two deputies for 
three revolutions when is varied under the same condi-
tion, where represents the velocity change indicating 
fuel consumption.

V

V

kp 

f D 
kp 

D 
682
kpIn the following, time responses when is fixed at 0.5 
are exhibited, which corresponds to the case with the small-
est maximum distance error between the deputies. Figs. 4 
and 5 show the time responses of the relative position 
and velocity of each deputy from the chief. The solid lines 
represent the state of each deputy, and the dotted lines rep-
resent the reference trajectory of each deputy. To qua ntify
the errors in tracking to the reference trajectories, Figs. 6 
and 7 show the time transition of the norm of the position 
and velocity errors. Fig. 8 shows the time responses of the 
control input of each deputy summarized in Eq. (44) and 
its norm, respectively. 

Fig. 9 shows the time transition of the estimated atmo-
spheric drag coefficient in the solid line, where the dot-
ted line represents the true coefficie r This figure 
implies that the estimate of each deputy remains bounded 
and converges to a constant value.

g

Drag.
rDra 

nt

move_f0050
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Fig. 8. Time responses of control i t and its norm of two deputies .(kp 0 5)npu 

Fig. 9. Time transition of the esti ed atmospheric drag coefficient .(kp 0 5)mat 

Fig. 10. Time transition of the relative distance error between the dep s at the last period .(kp 0 5)utie 
Lastly, to quantify the accuracy of the formation shap e,
Fig. 10 shows the time transition of the relative distance 
error between the deputies at the last period. This figure
683
indicates that we can achieve the formation control accu-
racy on the order of mm. Consequently, these figures 
confirm that the deputies follow their reference formation

310
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trajectories while estimating the unknown atmospheric 
drag coefficient and achieve the desired formation
accurately.

Comparing the proposed method with Ref. (Tabuchi 
et al., 2022), the comparison method can achieve a smaller 
maximum distance error by selecting the gain parameter, 
while the averaged becomes larger. When comparing 
the averaged required for one revolution under the
same control accuracy, Ref. (Tabuchi et al., 2 022)  is  more
than twice that of the proposed method. The proposed 
method enables efficient control with the same level of co n-
trol accuracy.

V
V

D 
D 

7. Conc lusion 

This paper proposes a nonlinear formation tracking 
control method using generalized canonical transforma-
tions with an adaptive mechanism for an unknown atmo-
spheric drag. First, a port-Hamiltonian representation of 
the nonlinear relative orbital motion with the gravitational 
J2 and atmospheric drag effects is modeled. Second, a 
specific construction of an error system for any twice differ-
entiable reference formation trajectory using generalized 
canonical transformations is constructed. Third, a 
passivity-based asymptotic stabilizing controller and an 
adaptive mechanism for the error system are presented. 
The proposed method stabilizes the error system based 
on its passivity while updating the estimate of the atmo-
spheric drag coefficient. Consequently, it is guaranteed that 
the estimation error of the atmospheric drag coefficient is 
bounded and that the tracking error for the reference tra-
jectory converges uniformly asymptotically to zero. The
effectiveness of the proposed method is demonstrated
through numerical simulations.

The proposed method can handle any differentiable 
potential functions and twice differentiable reference trajec-
tories; hence, gravitational perturbations of arbitrary com-
plexity and various formation and transition/escape 
trajectories can be handled in a unified manner. Further-
more, the proposed method does not impose any lineariza-
tions, and thus, it can be applied to long-distance and 
ultra-precise formations necessa ry for future formation fly-
ing space interferometer missions.

Since the main focus of the present study is to develop 
a framework for theoretical assurance of asymptotic sta-
bility of the entire control system, the atmospheric drag 
coefficient is supposed to be an unknown constant. In 
future work, we will extend the proposed method to 
the tim e-varying case by applying model reference adap-
tive control.

Declaration of competing interest 

The authors declare that they have no known competing 
financial interests or personal relationships that could have 
appeared to influence the work reported in this paper.
684
Acknowledgment 

This work was partially supported by JSPS KAKENHI 
Grant No. JP2 4K00909.

References 

Acosta, J., Ortega, R., Astolfi, A., et al., 2005. Interconnection and 
damping assignment passivity-based control of mechanica l systems 
with underactuation degree one. IEEE Trans. Autom. Contr. 50 (12),
1936–1955. https://doi.org/10.1016/S1474-6670(17)31354-X. 

Alfriend, K.T., Vadali, S.R., Gurfil, P., et al., 2010. Spacecraft formation 
flying: dynamics, control and navigatio n. Butterworth-Heinemann.
https://doi.org/10.1016/C2009-0-17485-8. 

Bassetto, M., Mengali, G., Quarta, A.A., 2024. Drag sail attitude tracking 
via nonlinear control. Acta Astronaut. 225, 845–856. https://doi.org/ 
10.1016/j.actaastro.2024.09.046. 

Clohessy, W.H., Wiltshire, R.S., 1960. Terminal guidance system for 
satellite rendezvous. J. Aerospace Sci. 27 (9), 653–658. https://doi.org/ 
10.2514/8.8704. 

D’Amico, S., Montenbruck, O., 2006. Proximity operations of formation-
flying spacecraft using an eccentric ity/inclination vector separation. J. 
Guid., Control, Dynam. 29 (3), 554–563. https://doi.org/10.2514/ 
1.15114. 
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