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HIGHLIGHTS

* A new DEM-CFD framework for low-Mach number flows is developed based on weakly-compressible formulation.
« The proposed framework efficiently captures both particle-scale physics and acoustic phenomena.

+ Gas-particle momentum exchange is validated via pressure drop tests against the Ergun equation.

+ Fluidized bed simulations reproduce experimental dynamics and high sensitivity to DEM parameters.

+ The framework accurately predicts the speed of sound in various gases within a particle bed.

ARTICLE INFO ABSTRACT

Keywords: The design of large-scale multiphase reactors, such as fluidized beds for methanation, requires numerical
DEM-CFD methods that are both computationally efficient and physically accurate. This study addresses the limita-
Fluidized bed tions of existing approaches, where traditional DEM—CFD solvers are often computationally expensive and
Weakly-compressibility

Fractional-step method computationally less expensive methods typically fail to capture crucial physical phenomena such as finite-
Chemical reactions speed acoustic waves. We present a novel DEM-CFD framework for low-Mach number flows that couples
Speed of sound the Discrete Element Method (DEM) with a non-iterative, weakly-compressible fractional-step method for the
gas phase. This approach combines the particle-scale accuracy of DEM with a gas solver that efficiently
handles both density variations and acoustic wave propagation. As a fundamental step before simulating
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reactive flows, this paper validates the framework’s hydrodynamic and acoustic capabilities using non-reactive
test cases. First, simulations of pressure drop across a fixed bed show excellent agreement with the Ergun
equation, validating the momentum exchange model. Second, the complex dynamics of a spout-fluidized bed
are shown to reproduce experimental trends, while also highlighting the simulation’s sensitivity to particle
contact parameters like restitution and friction coefficients. Finally, speed of sound measurements in various
gases (Dry Air, CO,, H,) within a particle bed confirm the framework’s ability to accurately capture finite
sound speed and species-dependent properties, with results aligning well with pure-gas theory. The framework’s
flexibility was further demonstrated by successfully reproducing an alternative "frozen" two-phase sound speed.
These comprehensive validations demonstrate the framework’s capability as a robust and efficient tool for
investigating complex reactive multiphase flows.

1. Introduction

Dense gas—solid multiphase flows with chemical reaction are preva-
lent in a wide range of industrial applications, making a thorough
understanding of their behavior crucial for process optimization and
safety. A typical example is the use of fluidized bed reactors for
methanation, a catalytic process that converts CO, or CO and H, into
CH, and H,O that is gaining attention as a key technology for achieving
carbon neutrality. Fluidized beds are particularly effective for such
processes due to their excellent mixing properties and uniform tem-
perature distribution, which are advantageous for large-scale, efficient
operation. However, significant challenges arise from the chemical
reaction and associated gas density changes. As reported by Kai et al.
(2006), reactions such as methanation that involve a net decrease in
the number of gas moles can alter the gas density, which in turn
can degrade fluidization quality. Furthermore, recent study indicates
that gas compressibility can become significant even well below the
Mach number threshold of 0.3. This occurs particularly in systems
dominated by heat exchange (e.g., due to reaction heat), or in dense
gas—particle flows with strong interphase friction or change of the par-
ticle volume fraction, even in the absence of chemical reactions (Macak
et al., 2021). The finite speed of sound plays a critical role in certain
chemical reactions, particularly in fast processes such as combustion.
The ratio between the acoustic propagation time and the chemical
reaction time, known as the acoustic Damkohler number (Da), can
substantially influence the reaction field (Stohr et al., 2013). Speed of
sound becomes significant when Da is on the order of unity or greater.
In such regimes, as observed in vortex—flame interactions, a distinct
shift in the heat release pattern occurs once the Damkdohler number
falls below a critical value of approximately 4 (Ahn and Yu, 2012).
Moreover, combustion can generate strong pressure waves, which can
lead to self-excited oscillations (Kitano et al., 2013). It has also been
reported that the characteristics of pressure waves, such as propagation
speed and attenuation, change depending on the fluidization state (Bi,
2007), and conversely, pressure waves can influence fluidization pat-
terns, including bubble formation (Li et al., 2003; Coppens et al., 2002).
This highlights the need for simulation tools capable of modeling large-
scale reactors while accounting for the intricate coupling between gas
and particle dynamics, density changes by chemical reaction, and the
propagation of acoustic waves.

Two primary approaches exist for simulating such gas-solid sys-
tems: continuum models and discrete models. The Two-Fluid Model
(TFM), which treats both the fluid and particle phases as interpenetrat-
ing continua, is computationally efficient, making it suitable for large-
scale simulations. It has been applied to the simulation of methanation
in fluidized beds by researchers such as Li and Yang (Li and Yang, 2019)
and Liu and Hinrichsen (Liu and Hinrichsen, 2014). However, the aver-
aging approach inherent to TFM is fundamentally limited in its ability
to capture discrete, particle-scale phenomena. In particular, variations
in individual particle properties such as volume or density changes
induced by chemical reactions are smoothed out through the contin-
uum averaging process. The Discrete Element Method (DEM) (Cundall
and Strack, 1979) coupled with Computational Fluid Dynamics (CFD)

resolves these particle-scale physics and property changes. This high-
lights the need for computationally efficient frameworks that leverage
the particle-level resolution of DEM to enable the simulation of large-
scale reactive systems. However, the choice of the gas solver in a
DEM-CFD framework (Tsuji et al., 1993) presents a trade-off between
computational cost and physical accuracy. Numerous studies have em-
ployed compressible DEM—-CFD for reactive flows. Explicit compressible
solvers, often used for phenomena such as detonation (Price et al.,
2016) or iron reduction (Lan et al., 2024), can resolve acoustic waves.
However, they face challenges with computational cost due to the
acoustic CFL condition, which limits the time step size. Conversely,
pressure-based solvers such as the Semi-Implicit Method for Pressure
Linked Equations (SIMPLE) (Patankar, 2018) or the PIMPLE method,
which is a combination of SIMPLE and Pressure Implicit with Splitting
Operators (PISO), for reactive flows such as biomass gasification (Wang
and Shen, 2022) and coal combustion (Huang et al., 2022). While these
solvers can handle fully compressible flows and potentially exceed the
acoustic CFL limit, their iterative nature for coupling pressure and
velocity fields results in a high computational cost, rendering them
prohibitive for simulations involving a large number of particles over
long durations.

To improve computational efficiency, fractional-step methods are
often used as they separate the velocity and pressure calculations,
avoiding costly inner iterations. Capecelatro and Desjardins (2013)
developed a DEM-CFD framework for reactive flows using a fractional-
step method based on the work of Pierce and Moin (2004). While
this method is highly efficient, it is based on a formulation that re-
sults in pressure waves propagating at an infinite speed. This makes
it unsuitable for cases where finite-speed acoustic effects are impor-
tant. Addressing this, Moureau et al. (2007) developed a fractional-
step method for weakly-compressible flows that correctly captures the
finite speed of sound. Their method has been successfully applied
to methane combustion, but their work did not include a discrete
particle phase (Moureau et al., 2011). Following this, Kitano et al.
(2013) applied this semi-implicit compressible method to a direct
numerical simulation (DNS) of spray combustion, coupling it with a
global reaction model to investigate the interaction between pressure
perturbations and combustion.

This study bridges the aforementioned gaps by developing and
validating a novel DEM-CFD framework for low-Mach number flows.
This framework combines the particle-scale accuracy of the DEM with a
highly efficient, weakly-compressible fractional-step method proposed
by Moureau et al. (2007). Compared to fully compressible methods,
this approach is significantly efficient for low-Mach number flows.
It decouples the time step from the acoustic CFL constraint and si-
multaneously avoids ill-conditioning issues that become problematic
in fully compressible solvers as the Mach number approaches zero.
This provides key flexibility: computational cost can be prioritized
by using large time steps (acoustic CFL > 1), or acoustic waves can
be accurately resolved by adhering to the CFL limit (acoustic CFL <
1). This paper details the governing equations, the volume averaging
technique, and the numerical method. The framework’s capabilities are
then demonstrated through a series of validation cases. To focus on
the fluid—particle dynamics and acoustic aspects of the framework, the
cases presented in this study are non-reactive. These include: pressure
drop in a fixed bed, particle dynamics in a fluidized bed, and speed of
sound measurements in various gases.
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2. Governing equations

This section details the governing equations used to describe the
gas and solid phases in the dense gas-solid multiphase flows under
investigation. First, the fundamental point-wise governing equations
for the gas phase are presented. These equations are then spatially
averaged using the methodology proposed by Anderson and Jackson
(1967) to derive the macroscopic equations suitable for multiphase flow
simulations. Subsequently, the governing equations for the discrete
solid phase, based on the Discrete Element Method (DEM) (Cundall
and Strack, 1979), are described, along with the models for interphase
coupling.

2.1. Gas phase governing equations

2.1.1. Governing equations
At the microscopic level, within the interstitial spaces between
particles, the gas phase is assumed to behave as a continuum. This study
employs a one-fluid, multi-chemical species approach, in which the gas,
although composed of multiple species, is treated as a single mixture for
the conservation of mass, momentum, and energy. These equations for
the mixture form the basis for deriving the volume averaged equations.
The instantaneous, local conservation of mass for a mixture gas is
given by:
7}
%+V-(pfu/-):0, 1
t
where p, is the gas density, u, is the gas velocity vector and ¢ is the
time.
The conservation of momentum is expressed as:

[é]
&(pfuf)""v'(pfuf Qup)=-Vp+V-1t+p,g, 2

where p is the pressure, 7 is the viscous stress tensor, and g is the
gravitational acceleration.
The energy equation, in terms of specific enthalpy 4, is:

9
%(pfh)+ Vo (pshuy) = a_l; tup Vp+ V- (kVT) + 17 : Vuy, ®3)

where k is the thermal conductivity and T is the temperature. The
specific enthalpy 4 for an ideal gas is related to temperature by:

T
h= / C,dT + hy(Tp), (€)]
To

where C, is the specific heat at constant pressure, T, is a reference
temperature and A, is a reference enthalpy.

For a multi-chemical species gas, the conservation of mass fraction
y; for chemical species i is:

oy
ot

where D; is the mass diffusivity of chemical species i.
The equation of state for an ideal gas mixture is:

+V-(psusy) =V -(D;Vy), )

p=p/RT, ®)

where R is the specific gas constant for the mixture. The speed of sound
¢ for an ideal gas, assuming isentropic conditions, is defined as:

c= <6_p> =1/yRT, @)
005/

where y is the ratio of specific heats (C,/C,), C, is the specific heat at
constant volume.

For the fractional-step method which will appear in Section 3, it
is necessary to decouple the direct influence of pressure from the
evolution of enthalpy. Therefore, the energy conservation equation is
reformulated. By applying the definition of enthalpy, the equation of
state, and the definition of the speed of sound, the explicit pressure
evolution terms (dp/dt and u, - Vp) can be replaced by terms involving
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the speed of sound. The detailed derivation of this reformulation is
provided in Appendix A. This yields the following pressure-term-free
form of the energy equation.

J 2

—(ph)+V - (pshug)=—c’p;V-up+yV- (kVT)
o \Pr priuy prV-upTy (8)
+y7 i Vuy—(y—Dpsus-Vh

Conversely, by combining Egs. (3) and (8), the enthalpy evolution
terms can be eliminated to yield enthalpy-term-free form of the energy
equation, also known as the pressure equation:

dap 2
E+uf-Vp:—c pr-uf+(y—1)V~(kVT) ©

+ (=7 Vuy—(—Dpyuy - Vh.

2.1.2. Volume averaged governing equations

To make the simulation of dense gas—solid flows computationally
tractable, Egs. (1)—(5) are volume averaged. This work employs the
volume averaging technique by Anderson and Jackson (1967), which
utilizes a weighting function g, (r) to define local averaged quantities.
The local void fraction € ,(x, 1) is defined as:

E/-(x,t)=/ 8w(lx —yhdV,, (10)
220
where the integration is over the domain V,(r) occupied by the gas at
time 7.

For any gas quantity a(x,?), its phase volume average a(x,t) is
defined as:

ejacn = [ ay.ngudlx = yhav,, an
V/(l)

The density-weighted phase volume average a(x, ) is defined as:

3 /Ed(x, 1= /

Vf(f)

pj(ys T)ll(y, I)gw(lx_yl)dva (12)

where p in Eq. (12) is the phase volume averaged gas density defined
according to Eq. (11). Any gas quantity « can be split into the volume
averaged and residual component a = a+a’ or a = d+a’. Consequently,
iy, h, T, and j, represent density-weighted phase volume average
quantities, while p and 7 are phase volume average quantities. By
applying the averaging technique (Egs. (10)-(12)) to the governing
equations (Egs. (1), (2), (5), (8), (9)), we obtain the set of volume
averaged equations are as follows.
The averaged continuity equation:

e sps) —
5 +V-(epsip) =S, (13)
The averaged momentum equation:
a(efﬁaf) —_— ~ - - —. inter
— +V~(5/pfuf®uf) = —stp+V-(sf(r—Ru))+£fpfg+Spu—F .

14

In this equation, the interphase momentum transfer is captured by the
gas—particle interaction force F™™",

The averaged pressure-term-free form of the energy equation:
(3(6/Eil) . e N o
TR + V- (eppriph)=—€;p NV ity +yV - (e,kVT)+ye,t : Vag

- (v = Despsiay; - VR—V - R, + S,
= Ry, = 7Sivi + ¥Ry, — (7 = DRy,
15)

The averaged pressure equation:

(e /p) ~ _ — - o

v +epliy - Vp=—¢g;CpViiiy+(y — DV - (e,kVT)
+ (y— DesT 2 Viy — (v — Degpgiiy - Vh (16)
- Sup =@ = DSkyr — Revu — R
+ - I)RtVu - 7Rth‘

uVp
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The averaged mass fraction conservation equation for species i:
(e pr3)
ot

In these equations, the various source terms, denoted by S (e.g., S,
S,p), account for the exchange of mass, momentum, and energy at
particle surfaces. The terms denoted by R (e.g., R,, R;) are unclosed
residual terms that arise from the averaging process, representing the
effects of sub-grid scale phenomena.

The system is closed with the equation of state and the definition
for the speed of sound using averaged quantities:

+V o (e,07a,5) =V (e,D,V5)~V R, +8,, —Spy;. (A7)

p=psRT, as)

¢ = \/yRT. a9

It is also noted that the residual terms arising from the averaging
process are neglected in these expressions.

Previous studies have reported that structure and response of the
particles can influence the speed of sound, taking these effects account
is complex (Rudinger, 1980; Roy et al., 1990). The model presented in
Eq. (19) adopts a simplified assumption where pressure waves do not
propagate through the particles and the particle volume does not affect
the acoustic properties of the gas. The validity of this approach and a
more detailed discussions are provided in Section 5.

2.2. Solid phase governing equations (DEM)

The motion of individual solid particles is tracked using the Discrete
Element Method (DEM), originally proposed by Cundall and Strack
(1979). This method accounts for particle-particle and particle-wall
interactions through contact force models.

The translational motion of Particle i with mass m; and position
vector x; is governed by Newton’s second law:

2
mi% =;fc,ij +fp;+ fpitmg (20)

where fc;; and fp; are the contact force exerted by Particle j (or the
walls) and the fluid drag force acting on Particle i. f p; is the buoyancy
force defined as f,; = —VpV,; where V,; is the particle volume.

The rotational motion of Particle i with moment of inertia I; and
angular velocity w; is given by:

do;

g = 2 My @1
where M; is the torque generated by the tangential component of the
contact force fc,;;. The moment of inertia for a spherical particle of
radius r; is I, =2/5m;r?.

Contact forces fc;; are modeled using a linear spring-dashpot
system. The normal contact force f,;; is given by:

an,ij = (_knan — MUy jj nij)nij’ (22)

where k, is the normal spring stiffness, 6, is the normal overlap, u,;;
is the normal component of the relative velocity at the contact point,
and n;; is the unit normal vector. The normal damping coefficient 7,
is determined from the coefficient of normal restitution e, (Tsuji et al.,
1992):

2lne
L mk,,.

- — n
\/7? +(Ine,)?

The tangential contact force fc,;; is modeled with a spring and dash-
pot:

My == (23)

Sferiy =—min(k, 8, +naug il uplfeniiDtijs 24)

where k,, 8, 1, u,;;, Hs, and t;; are the tangential stiffness, displace-
ment, damping, relative surface velocity, friction coefficient, and unit
tangential vector, respectively.
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The fluid force f; acting on each Particle i is composed of a drag
force and a force due to the macroscopic pressure gradient of the fluid:

Pos={ L@y (25)
e

where u; is the velocity of Particle i, and g is the interphase momentum
transfer coefficient. In the present study, we only consider low-Mach
number flows as test cases where the effects of compressibility on
the drag coefficient are considered negligible, and employs Gidaspow
model (Gidaspow, 1994) for g based on the Ergun equation (Ergun,
1952) for dense regions (e s < 038) and the Wen and Yu correla-
tion (Wen, 1966) for dilute regions (g7 > 0.8). The model is expressed
as:

MO0 150(1 — € ) + 1.75Re, ) (6, <0.8)

=1 e (26)
ﬂ_ 3C np=es) 72A7R 0.8
1 DTSI, e, (Ef > 0.8),

where . is the fluid viscosity, d, is the particle diameter, and Re,, is
the particle Reynolds number based on the average particle velocity &,:

presdyliny — i,
e, = —————.
Hr
The drag coefficient Cp, for a single sphere is given by the Schiller
and Naumann correlation (Schiller, 1933):

27)

0.687
Cp— {(2;;(31 +0.15Re%%7)/Re,  (Re, < 1000) 28

(Re, > 1000).
2.3. Interphase coupling terms

The gas and solid phases are coupled primarily through the interfa-
cial momentum transfer. The term F"*" in the gas momentum Eq. (14)
represents the force exerted by the particles on the gas. By Newton’s
third law, this force is equal in magnitude and opposite in direction to
the sum of all fluid dynamic forces, fp;, acting on the particles within
a control volume. The interaction force is calculated as:

1 B
E‘Z{l—ef(uf_ui)llp,i}a ©29)

where the sum is over particles in the fluid cell of volume V,,;. The
other source terms, such as S,, S,,, S,,, and S,y,» account for mass,
momentum, and energy exchanged at the particle surfaces, which are
critical when considering chemical reactions or phase changes.

Finrer -

3. Numerical method

This section outlines the numerical method for solving the volume
averaged gas phase equations. The method is based on a fractional-step
method for weakly-compressible flows (Moureau et al., 2007).

3.1. Overall computational procedure

The gas solver is based on the weakly-compressible approach of
Moureau et al. (2007), which is designed to efficiently simulate low-
Mach number flows while retaining acoustic effects. The core of the
method is a fractional-step method that decouples the advective—
diffusive phenomena from the acoustic phenomena. This characteristic
splitting is based on the decomposition of the eigenvalues of the 1D
compressible Navier—Stokes equations (Moureau et al., 2007):

u+c u c
u—cl|=|ul|l+|—c (30)
u u 0

Here, the eigenvalues u + ¢ and u — ¢ represent the acoustic waves,
while u represents advection. The splitting mathematically separates
the governing equations into a pure advection operator and a pure
acoustic operator. This allows the physical phenomena to be solved in
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two main sub-steps: a predictor step that handles the advection and dif-
fusion, followed by a corrector step that implicitly handles the acoustic
wave propagation. This semi-implicit strategy improves computational
efficiency by avoiding the need for costly inner iterations.

The particles and gas phase are weakly coupled:

1. Particle Motion Calculation (DEM):
Particle positions and velocities for the next time step n+ 1 are
computed based on the forces from the current time step. This
yields the updated void fraction e;“ and interphase source terms
(e.g., F™™, S,).

2. Gas Dynamics Calculation (Fractional-Step Method):
The gas governing equations are then solved for the next time
step using the updated information from the DEM step. This
calculation consists of prediction and correction sub-steps.

3.1.1. Prediction step

In the prediction step, predicted values for the gas variables (5",
ﬁ*/‘., h*, 7;) are computed by solving the advection-diffusion forms of
the conservation equations shown in Egs. (31)-(34). In these equations,
all terms without a temporal superscript are evaluated using known
quantities from the previous time step, n. These prediction equations
omit the pressure gradient term in the momentum equation and terms
related to the speed of sound in the energy equation. It should be noted
that the advection operator in Egs. (31)—(34) is split into two terms,
following the characteristic splitting approach of Moureau et al. (2007).
As will be shown in the correction step, the third terms in the left-
hand side are associated with the terms involving the speed of sound
(Eq. (41)), thereby allowing for a separation between advective and
acoustic phenomena.

n+lpf n+]pf
%+V~(E;pr @) — P i = S, @31
n+l a* n+l=—n~n
Pf —&. P 7y
f fAtf f+V (8”+1,0 uf®uf)—£;+1pqu u
n+lv (— RM)+8n+l—"g+S _Flnter’
(32)
el e n+l——npn
f Pr h Algf s h +V. (£n+l—" nhn)_£n+l—ﬂhnv u
=yV- (e’}“kvr")wef T Vi) (33)
= (7= VeI U] - VR =V - Ry + S,
- RcVu - ySkV’l_' + thVu -@r- l)Rth’
n+| n+l——
P R AN
f f f f ,,.;.1—n~
yr +V (e} fy")—ef TEARY 34

=V (g'}“D,-szi )+ S, = Spvy,-

Subsequently, T+ is determined from A* and j*. The predicted
pressure p* is then calculated from the equation of state (18) using E*
and T*. Finally, the predicted speed of sound ¢* is also determined from
its definition (19) using these predicted properties.

3.1.2. Pressure correction step

The pressure correction step adjusts the predicted gas variables to
satisfy the full conservation Egs. (13)-(15), (17) by accounting for the
acoustic phenomena that were omitted from the prediction step. Con-
sequently, the following correction equations explicitly involve terms
related to pressure and the speed of sound. It is a key feature of this
non-iterative approach that these equations are linearized by evaluating
all coefficients using the known predicted (*) state. This linearization
allows the updated variables at the n+1 step to be solved without inner
iterations, as follows:

n+l +1 n+1—x%

pr el oy —
AL R —L—— e =0, 35)
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n+l ——n+loptl ntl——% o n+l
py W =€ p, W - £} _
f /At f f n+1ﬂf*~*~v . IT;. - _ V(p +pn+l)’ (36)
—ntly —_—
£;+1pf"+ hn+1 n+1 *h* . HH_*;l*V T ~*2_*V . (37)
yr €70y U, =—eC"p; i,
1— +1 ont1 —
rt+ n yn+ £n+ f*y? ,H_]_, ~*
yr o IV i =0, (38)

The corresponding correction for pressure, Eq. (39), is derived from
the full pressure equation, Eq. (16). Since all terms other than the
acoustic term (involving the speed of sound, ¢) have already been
accounted for in the prediction step, the correction step simplifies to
the following relationship:

n+l —n+1 n+l=x*
A

At
The pressure at time step n + 1 is related to the predicted pressure
7" and a pressure correction term 8p as:

ol kg o
= -V (39)

sp=p"" 7" (40)
Substituting this definition of 7" into Eq. (39), we get:
£n+l 55
S _ n+1 ~*2 ~ %
TR P, V- i (41)

Using this relationship in Eq. (41), the following equations are
derived from Egs. (35)-(38).

—n+1 —_— —
6;+lpfﬂ+ ;-pr | 6;‘“5]) o (42)
At A @2
n+l=——n+1~n+tl ntl—k it n+l~ * n+l
Sl B TE P SN o s (43)
At T a2 P +p +5p),
+1=—n+13 nt+1 +1—%F % ~ . +1 6=
’} pyh" e; psh (h* + &2) g; ép
At = TR (44)
J—— — —
n+] "+ yn+1 £n+ f*yi )71* 6;+|5p o i
At T A& (45)

Taking the divergence of Eq. (43) and using the continuity equation
to remove the unknown term leads to the Helmholtz equation for §p,
the detailed derivation is provided in Appendix B.

V£n+l g,*l *5

V-Vép+ — - Vep - 2 V-< I ”)—;55
£
f

5}“ &2 At &2 A12
V6n+l
=V VG +7) - + V@ +5)
Ef
.s'}“At At 2 ’

(46)

It is noted, unlike the elliptic Poisson equation found in incompress-
ible solvers (which yields an infinite speed of sound), this Helmholtz
equation is hyperbolic in nature. This property enables the framework
to correctly capture the propagation of acoustic waves at a finite speed.

3.1.3. Correction step

Once the pressure correction §p is obtained by solving the Helmholtz
Eq. (46), the corrected gas variables at time step n + 1 are determined.
The now-known values of 6p and the predicted speed of sound ¢* are
substituted into the pressure correction Egs. (42)—(45). These equations
are then solved for the corrected variables: p”“, 7 f"+],ﬁ'}+1, R+l gL

Finally, 7"*! is updated using A"*! and '
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4. Discretization and implementation details

The numerical framework was implemented in an in-house code,
DEr (Discrete Element solver for dense reactive gas-solid flows), using
a Cartesian coordinate system with a uniform grid for the fluid cells
for each directions. Initially, all spatial derivatives were discretized
using a second-order central difference scheme; however, numerical
instabilities were observed. To enhance stability, the advection terms
were discretized using an upwind scheme. Although a second-order
upwind scheme was also tested, a first-order upwind scheme was
ultimately adopted in this study to prioritize robustness. For the time
integration, the gas advection-diffusion equations were solved using
an explicit third-order Runge-Kutta method, while the particle motion
in the DEM was advanced using the first-order Euler—Cromer method.
Fluid quantities required for particle force calculations were taken from
the volume-averaged values of the cell containing the particle center,
although interpolation from surrounding cells is a possible refinement.
The Helmholtz equation for the pressure correction was solved using
the Bi-Conjugate Gradient Stabilized (Bi-CGSTAB) method (Van der
Vorst, 1992). The unclosed source (S) and residual (R) terms arising
from the volume averaging (Egs. (13)-(17)) were neglected in this
study for simplicity. The physical properties of the chemical species,
such as molecular weight and specific heat, were obtained as a function
of temperature and pressure using CHEMKIN-formatted libraries (Kee
et al., 1986, 1989).

5. Validation
5.1. General setup and numerical approaches

This section presents the validation of the newly proposed numeri-
cal framework through three fundamental test cases. Unless otherwise
specified for a particular case, the gas was considered to be dry air
(23% oxygen, 77% nitrogen by mass), with an initial temperature of
300 K, initial pressure of 1 x 10° Pa, and zero initial velocity. Particle
beds were prepared by allowing particles to settle randomly from an
elevated position, after which excess particles were removed to achieve
the desired initial bed height. For the gas phase, boundary conditions
were set as follows. Gas was introduced from the bottom boundary at
a temperature of 300 K, with the velocity specified as the superficial
velocity. The top boundary was an atmospheric (1 atm). All other
boundaries were treated as slip walls, with zero-gradient conditions
applied to the other gas variables. While the semi-implicit fluid solver
is designed to be stable at large time steps (i.e., for acoustic CFL
> 1), the complex interactions introduced by the coupled particle phase
necessitated a smaller time step to ensure overall stability. Accordingly,
a fixed time step of 1 x 10~ s or 5x 10~ s was used for the simulations
presented in the following section.

5.2. Pressure drop

5.2.1. Computational conditions

To validate the gas—particle interaction model, the pressure drop
across the particle bed and the minimum fluidization velocity were
evaluated. The computational setup (Fig. 1) and parameters (Table 1)
were adapted from the work of Van Buijtenen et al. (2012). While the
x—y dimensions of the domain and the particle parameters are identical
to their simulation, the particle bed height and the z-dimension were
set to form an initially cubic particle bed. To isolate gas—particle
interactions from wall effects on fluidization, the particle-wall friction
coefficient was set to zero for this test case. The superficial gas ve-
locity at the inlet was increased gradually with a small acceleration
0.1 m/s?).
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Fig. 1. Computational domain for the pressure drop test.

Table 1

Simulation parameters for pressure drop test.
Bed
Height (L,) [m] 2.5
width (L,) [m] 0.15
Depth (L.) [m] 0.15
Particle
Sphericity [-] 1
Number [-1 154,206
Diameter [m] 3.0 x 1073
Density [kg/m?] 2505
Normal spring constant [N/m] 10,000
Poisson’s ratio [-1 0.25
Coefficient of restitution(normal) [-] 0.97
Coefficient of friction (particle-particle) [-1 0.1
Coefficient of friction (particle-wall) -1 0
Gas
Cells in x-direction -1 250
Cells in y-direction [-1 20
Cells in z-direction [-] 20
Cell size in x-direction (Ax) [m] 10 x 1073
Cell size in y-direction (Ay) [m] 7.5 x 1073
Cell size in z-direction (Az) [m] 75 x 1073
Initial void fraction [-1 0.34
Time step [s] 1 x 107

5.2.2. Results and discussion

The computed pressure drop versus superficial fluid velocity is com-
pared with the Ergun equation (Ergun, 1952) in Fig. 2. The predicted
minimum fluidization velocity (u,,, ~ 1.15 m/s) also matched well with
the theoretical value (1.13 m/s), and the pressure drop in the fluidized
state (2290 Pa) was close to the theoretical particle weight per unit area
(2380 Pa).

The slight discrepancy observed in the fixed-bed region can be
attributed to the different treatment of the void fraction. While the
Ergun equation is based on a single, bulk-averaged void fraction,
the simulation resolves the gas—particle interaction forces according
to the local void fraction in each computational cell. This contrast
between the homogeneous assumption of the theory and the spatially
resolved heterogeneity in the simulation is the likely source of the
minor deviation. These results show good agreement, validating the
basic momentum exchange model.
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Fig. 2. Pressure drop versus superficial fluid velocity. The simulation results
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Fig. 3. Computational domain for the fluidization state test.

5.3. Fluidization state

5.3.1. Computational conditions

Particle dynamics in a fluidized state were validated against the
experimental and numerical work of Van Buijtenen et al. (2012). A
central jet (uy, = 3725 m/s) and background flow (up, = 4.15 m/s)
were introduced as per the experiment (Fig. 3). The parameters listed in
Table 2 were adopted from their numerical study (Van Buijtenen et al.,
2012); notably, this includes the reference values for the coefficient
of restitution and the friction coefficient, which are subjects of later
discussion.

5.3.2. General flow pattern and particle velocities

The simulation revealed a dynamic flow field, with max variations
in gas pressure and density of approximately 1.2% and 1.1%, respec-
tively. Fig. 4 shows instantaneous snapshots of key gas properties at
t = 10.0 s. The void fraction distribution (Fig. 4(a)) indicates that the
particles are in a well-fluidized state. The gas pressure field, shown in
Fig. 4(b), varies in accordance with the local particle distribution. The
gas density distribution (Fig. 4(c)) is observed to be nearly identical to
the pressure distribution. This is a reasonable result, as the simulation
is nearly isothermal, and for an ideal gas, density is approximately
proportional to pressure under such conditions.

Fig. 5 compares the simulated time-averaged vertical particle veloc-
ities, measured at a height of 0.1 m along the centerline in the depth
direction and averaged over 20 s, with experimental data (PEPT, PIV)
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Table 2

Simulation parameters for fluidization state test.
Bed
Height (L,) [m] 2.5
width (L,) [m] 0.15
Depth (L) [m] 0.020
Particle
Sphericity [-] 1
Number [-1 12,479
Diameter [m] 3.0 x 1073
Density [kg/m?] 2505
Normal spring constant [N/m] 10,000
Poisson’s ratio [-] 0.25
Coefficient of restitution(normal) -1 0.97
Coefficient of friction (particle-particle) [-1 0.1
Coefficient of friction (particle-wall) [-] 0.3
Initial bed height [m] 0.1
Gas
Cells in x-direction [-] 250
Cells in y-direction [-] 30
Cells in z-direction [-] 2
Cell size in x-direction (Ax) [m] 10 x 1073
Cell size in y-direction (Ay) [m] 5 x 1073
Cell size in z-direction (Az) [m] 10 x 1073
Time step [s] 1 x 1073

from Van Buijtenen et al. (2012). General trends and symmetry are
reproduced, but discrepancies exist near the center and walls.

The discrepancies observed prompted a sensitivity analysis on DEM
contact parameters. As shown in Figs. 6 and 7, the particle velocity pro-
files are highly sensitive to the coefficient of restitution (e,) and friction
(#,), underscoring the importance of accurate parameter calibration for
quantitative predictions.

5.4. Speed of sound measurement

5.4.1. Computational conditions

This study validates the framework’s ability to handle weakly-
compressible effects by simulating the propagation of a pressure wave
through a particle bed (Fig. 8) for various gases (Dry Air, CO,, H,)
at different gas temperatures. The parameters used are given in Table
3. Through parameter sensitivity analysis of speed of sound measure-
ments, it was confirmed that results are independent of the parameters
listed in Table 3 when sufficient spatial resolution is available (see
Appendix C for details). Method for determining the speed of sound
from simulation data are also described in Appendix C.

5.4.2. Results and discussion

Fig. 9 compares the measured speeds with the theoretical values
for a pure ideal gas, given by ¢ = \/m , where M is the molecular
weight of the gas mixture. Excellent agreement was found, confirming
the framework’s ability to accurately handle finite speed of sound
propagation and species-dependent properties. As stated in Section 2,
the speed of sound here is calculated using Eq. (19). This formulation
assumes that pressure waves do not propagate through the particles and
that the particle volume does not affect the acoustic properties of the
interstitial gas. Therefore, under this specific formulation, it is a valid
result that the pressure wave propagates unaffected by the presence of
the solid phase.

To validate the framework’s ability to capture the influence of
the particle phase on wave propagation, an alternative model for the
speed of sound was tested in a second set of simulations for dry air
at 300 K. This test was based on the “frozen flow” (Rudinger, 1980),
which assumes that flow changes occur so rapidly that the particles
cannot follow, leaving their velocity and temperature unaffected by the
acoustic wave. The speed of sound in such a medium is referred to as
the “frozen speed of sound”. Similar to the formulation in Eq. (19),
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Fig. 9. Speed of sound in various gases at different temperatures, compared
with theoretical values (lines).

measured speed deviates from the frozen speed theory and asymp-
totically approaches the theoretical value for the pure ideal gas. The
increasing error from the frozen speed theory at higher void fractions
is likely attributable to the difference in how the speed of sound
is determined. The theoretical line is calculated using the bulk void
fraction for the entire domain. In contrast, the simulation calculates the
speed of sound locally at each point, based on the actual void fraction
in that location. This is although to create a discrepancy between the
constant theoretical speed and the spatially varying local speed within
the simulation, which may in turn lead to the diffusion of the pressure
wave front.

These results demonstrate that the speed of sound within the sim-
ulation can be intentionally altered by changing its definition. This
underscores the flexibility of the framework. However, it also highlights
that the physically appropriate model for the speed of sound depends
on factors such as the fluidization state and the response of the particles
to pressure fluctuations. As other studies have reported, another models
exist for the speed of sound in well-fluidized states where the particles
are able to follow the motion of the gas (Roy et al., 1990). It is crucial to
select a suitable model based on the specific physical conditions being
investigated.

6. Conclusion

In this study, an efficient numerical framework for simulating dense,
reactive gas-solid flows was developed and validated. The methodology
combines the Discrete Element Method (DEM) for resolving the particle
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Table 3

Simulation parameters for speed of sound measurement.
Bed
Height(L,) [m] 0.15
Width(L,) [m] 0.05
Depth(L_) [m] 0.05
Particle
Sphericity [-] 1
Number [-] 280,784
Diameter [m] 1.0 x 1073
Density [kg/m?] 1036
Normal spring constant [N/m] 800
Poisson’s ratio [-] 0.25
Coefficient of restitution(normal) [-1 0.9
Coefficient of friction [-] 0.3
Initial bed height [m] 0.1
Gas
Chemical species [-] Dry Air/CO2/H2
Temperature [K] 250, 300, ..., 600
Cells in x-direction [-] 60
Cells in y-direction [-] 20
Cells in z-direction [-1 20
Cell size in x-direction(Ax) [m] 25 x 1073
Cell size in y-direction(Ay) [m] 25 x 1073
Cell size in z-direction(Az) [m] 25 x 1073
Time step [s] 5 x 107
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Fig. 10. Speed of sound predicted using Eq. (47) as a function of bulk void
fraction, compared with the theoretical frozen speed of sound (Rudinger,
1980) (solid red line) and the single-phase gas theory (dotted blue line). (For
interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

phase with a volume averaged gas equations solved by a weakly-
compressible fractional-step method. This approach was designed to
bridge the gap between computationally prohibitive, fully compressible
DEM-CFD solvers and faster methods that neglect important acoustic
phenomena.

A series of validation cases confirmed the framework’s capabilities.
Simulations of pressure drop in a fixed bed and particle dynamics
in a spout-fluidized bed demonstrated that the framework accurately
captures fundamental gas—particle momentum exchange and complex
hydrodynamic behaviors. These tests also highlighted the critical role
of particle contact parameters (restitution and friction coefficients),
underscoring the need for their careful calibration to achieve quantita-
tive accuracy. Furthermore, a key study on acoustic wave propagation
validated the framework’s central feature: its ability to reproduce the
correct finite speed of sound for various gases at different temperatures,
using species properties derived from CHEMKIN libraries. The flexibil-
ity of the framework was further highlighted in a second study, where
the framework also successfully reproduced an alternative theoretical
frozen speed of sound for the two-phase mixture. Together, these
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acoustic studies demonstrate that the framework can capture different
physical regimes of sound propagation, confirming that the physically
appropriate model for the speed of sound depends on factors such as
the response of the particles to the acoustic waves.

In conclusion, this work establishes a robust, efficient, and physi-
cally comprehensive numerical tool for the study of reactive gas—solid
multiphase systems. By successfully integrating a non-iterative fluid
solver capable of resolving acoustic wave propagation with a discrete
particle model, this framework is now well-positioned for application to
its motivating problem: the large-scale simulation fluidized bed reactors
especially methanation. Future work will focus on implementing reac-
tion kinetics to investigate the crucial link between reaction-induced
density changes and fluidization efficiency.
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Appendix A. Derivation of the pressure-term-free energy equation

This appendix details the reformulation of the energy equation
to eliminate the terms including pressure, resulting in Eq. (8). The
derivation is based on the thermodynamic relations for an ideal gas.

From Mayer’s relation, we have:

R=C,-C,. (A1)

From the ideal gas law, Eq. (6), and the definition of the speed of sound,
Eq. (7), pressure can be expressed as:

p=p S (A.2)

v

Using the definition of specific heat at constant pressure, C, =
(0h/0T),, a relationship between the differentials of enthalpy, pressure,
and density can be derived. By expressing the total differential of
temperature 67 in terms of ép and 6p, and substituting it into the

enthalpy definition, we obtain:
proh =
/ 14

2
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— (ep=-Ssp, ).
—1<p v pf)

Rearranging Eq. (A.3) to solve for the pressure differential gives a key
thermodynamic relation:

(A.3)
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Taking the partial derivative of Eq. (A.4) with respect to time and
applying the product rule to the enthalpy term yields the expression for
the time derivative of pressure:
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Finally, the pressure terms in the original enthalpy-based energy
equation, Eq. (3), are eliminated. This is achieved by substituting the
expression for dp/dt from Eq. (A.5) and the expression for p from
Eq. (A.2) into the u, - Vp term. After simplification using the continuity
equation, Eq. (1), and substantial algebraic rearrangement, we obtain
the final pressure-term-free form of the energy equation:
9 2
—(ph)+ V- -(pshur)=—=c“p/V-u;+yV.(kVT
6t(pf ) (pyhuy) Pr r+rV( ) (A.6)
T:Vu;—(y—Dpsus-Vh.

Appendix B. Derivation of the Helmholtz equation for pressure
correction

This appendix details the derivation of the Helmholtz equation
for the pressure correction, Eq. (46). The derivation is based on the
following set of correction-step equations.

The momentum correction is given by Eq. (43). Taking the diver-
gence of this equation yields:
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To eliminate the unknown velocity term, V-(¢ ;p i, )+l the second-
order accurate time discretization of the continuity equation is used:
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Additionally, the density at the new time step, ﬁ"“, is substituted

using the density correction relationship from Eq. (42):
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By substituting these relationships into Eq. (B.1) and rearranging

all terms involving the unknown §p to the left-hand side, we obtain the
final Helmholtz equation:
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Appendix C. Method for speed of sound measurement and sensi-
tivity analysis

This appendix details the specific method used to measure the speed
of sound presented in Section 5.4 and the sensitivity analyses performed
to confirm the robustness of these measurements.

C.1. Method of measurement

The speed of sound was defined as the propagation speed of a
pressure wave through the particle bed. The system was initially at
1 x 107 Pa. A planar pressure wave was generated by instantaneously
increasing the pressure at the bottom boundary (x = 0 m) to 2 x 10°
Pa at + = 0 s. To track the wave front’s position over time, the gas
pressure was monitored. Specifically, the pressure was averaged in
the horizontal (y — z) plane at each height (x coordinate). The wave
front position was measured as the height at which the gauge pressure
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first exceeded 1 Pa. Sensitivity tests using different pressure thresholds
showed slight differences in the detected wave front position at each
time step, however, these variations did not significantly affect the
resulting speed of sound; therefore, the 1 Pa threshold was adopted.
The speed of sound was then determined from the slope of a linear
least-squares fit applied to the position-time data of the wave front in
the height range from x = 0 m to x = 0.1 m.

C.2. Parameters sensitivity analyses

The tested sound speed models depend primarily on gas properties
and, for Eq. (47), void fraction (addressed in Fig. 10). Since particles
were fixed in these simulations, DEM mechanical parameters (Table 3)
do not influence wave propagation through the interstitial gas.

Domain boundary effects were minimized. Planar wave generation
at the bottom boundary negates horizontal dependence. The speed
measurement was performed within the region of the particle bed
(0 m to 0.1 m), ensuring wave front analysis occurred before any
reflections from the top boundary could interfere. Therefore, the results
are considered independent of the domain size.

A grid size independence study was conducted specifically for the
streamwise x-direction cell size (4x), as this is the primary direction of
wave propagation. Using the setup for Dry Air at 300 K with the speed
of sound definition (Eq. (19)), three grid resolutions were tested:

1. Fine Grid: Ax = 1.25x 1073 m (Half the baseline size in Table 3)

2. Baseline Grid: 4x = 2.5 x 10~ m (Original size from Table 3)

3. Coarse Grid: Ax = 5.0x 1073 m (Double the baseline size in Table
3)

The measured speed of sound for each case were 329 m/s, 329 m/s,
and 411 m/s, respectively. The convergence of the results between
the fine and baseline grids confirms that the baseline grid resolution
(Ax = 2.5x 1073 m) provides sufficient spatial resolution to capture the
pressure wave propagation.

Data availability

Data will be made available on request.
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