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G R A P H I C A L  A B S T R A C T

H I G H L I G H T S

A new DEM–CFD framework for low-Mach number flows is developed based on weakly-compressible formulation.
The proposed framework efficiently captures both particle-scale physics and acoustic phenomena.
Gas–particle momentum exchange is validated via pressure drop tests against the Ergun equation.
Fluidized bed simulations reproduce experimental dynamics and high sensitivity to DEM parameters.
The framework accurately predicts the speed of sound in various gases within a particle bed.
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 A B S T R A C T

The design of large-scale multiphase reactors, such as fluidized beds for methanation, requires numerical 
methods that are both computationally efficient and physically accurate. This study addresses the limita-
tions of existing approaches, where traditional DEM–CFD solvers are often computationally expensive and 
computationally less expensive methods typically fail to capture crucial physical phenomena such as finite-
speed acoustic waves. We present a novel DEM–CFD framework for low-Mach number flows that couples 
the Discrete Element Method (DEM) with a non-iterative, weakly-compressible fractional-step method for the 
gas phase. This approach combines the particle-scale accuracy of DEM with a gas solver that efficiently 
handles both density variations and acoustic wave propagation. As a fundamental step before simulating 
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reactive flows, this paper validates the framework’s hydrodynamic and acoustic capabilities using non-reactive 
test cases. First, simulations of pressure drop across a fixed bed show excellent agreement with the Ergun 
equation, validating the momentum exchange model. Second, the complex dynamics of a spout-fluidized bed 
are shown to reproduce experimental trends, while also highlighting the simulation’s sensitivity to particle 
contact parameters like restitution and friction coefficients. Finally, speed of sound measurements in various 
gases (Dry Air, CO2, H2) within a particle bed confirm the framework’s ability to accurately capture finite 
sound speed and species-dependent properties, with results aligning well with pure-gas theory. The framework’s 
flexibility was further demonstrated by successfully reproducing an alternative "frozen" two-phase sound speed. 
These comprehensive validations demonstrate the framework’s capability as a robust and efficient tool for 
investigating complex reactive multiphase flows.
1. Introduction

Dense gas–solid multiphase flows with chemical reaction are preva-
lent in a wide range of industrial applications, making a thorough 
understanding of their behavior crucial for process optimization and 
safety. A typical example is the use of fluidized bed reactors for 
methanation, a catalytic process that converts CO2 or CO and H2 into 
CH4 and H2O that is gaining attention as a key technology for achieving 
carbon neutrality. Fluidized beds are particularly effective for such 
processes due to their excellent mixing properties and uniform tem-
perature distribution, which are advantageous for large-scale, efficient 
operation. However, significant challenges arise from the chemical 
reaction and associated gas density changes. As reported by Kai et al. 
(2006), reactions such as methanation that involve a net decrease in 
the number of gas moles can alter the gas density, which in turn 
can degrade fluidization quality. Furthermore, recent study indicates 
that gas compressibility can become significant even well below the 
Mach number threshold of 0.3. This occurs particularly in systems 
dominated by heat exchange (e.g., due to reaction heat), or in dense 
gas–particle flows with strong interphase friction or change of the par-
ticle volume fraction, even in the absence of chemical reactions (Mačak 
et al., 2021). The finite speed of sound plays a critical role in certain 
chemical reactions, particularly in fast processes such as combustion. 
The ratio between the acoustic propagation time and the chemical 
reaction time, known as the acoustic Damköhler number (Da), can 
substantially influence the reaction field (Stöhr et al., 2013). Speed of 
sound becomes significant when Da is on the order of unity or greater. 
In such regimes, as observed in vortex–flame interactions, a distinct 
shift in the heat release pattern occurs once the Damköhler number 
falls below a critical value of approximately 4 (Ahn and Yu, 2012). 
Moreover, combustion can generate strong pressure waves, which can 
lead to self-excited oscillations (Kitano et al., 2013). It has also been 
reported that the characteristics of pressure waves, such as propagation 
speed and attenuation, change depending on the fluidization state (Bi, 
2007), and conversely, pressure waves can influence fluidization pat-
terns, including bubble formation (Li et al., 2003; Coppens et al., 2002). 
This highlights the need for simulation tools capable of modeling large-
scale reactors while accounting for the intricate coupling between gas 
and particle dynamics, density changes by chemical reaction, and the 
propagation of acoustic waves.

Two primary approaches exist for simulating such gas–solid sys-
tems: continuum models and discrete models. The Two-Fluid Model 
(TFM), which treats both the fluid and particle phases as interpenetrat-
ing continua, is computationally efficient, making it suitable for large-
scale simulations. It has been applied to the simulation of methanation 
in fluidized beds by researchers such as Li and Yang (Li and Yang, 2019) 
and Liu and Hinrichsen (Liu and Hinrichsen, 2014). However, the aver-
aging approach inherent to TFM is fundamentally limited in its ability 
to capture discrete, particle-scale phenomena. In particular, variations 
in individual particle properties such as volume or density changes 
induced by chemical reactions are smoothed out through the contin-
uum averaging process. The Discrete Element Method (DEM) (Cundall 
and Strack, 1979) coupled with Computational Fluid Dynamics (CFD) 
2 
resolves these particle-scale physics and property changes. This high-
lights the need for computationally efficient frameworks that leverage 
the particle-level resolution of DEM to enable the simulation of large-
scale reactive systems. However, the choice of the gas solver in a 
DEM–CFD framework (Tsuji et al., 1993) presents a trade-off between 
computational cost and physical accuracy. Numerous studies have em-
ployed compressible DEM–CFD for reactive flows. Explicit compressible 
solvers, often used for phenomena such as detonation (Price et al., 
2016) or iron reduction (Lan et al., 2024), can resolve acoustic waves. 
However, they face challenges with computational cost due to the 
acoustic CFL condition, which limits the time step size. Conversely, 
pressure-based solvers such as the Semi-Implicit Method for Pressure 
Linked Equations (SIMPLE) (Patankar, 2018) or the PIMPLE method, 
which is a combination of SIMPLE and Pressure Implicit with Splitting 
Operators (PISO), for reactive flows such as biomass gasification (Wang 
and Shen, 2022) and coal combustion (Huang et al., 2022). While these 
solvers can handle fully compressible flows and potentially exceed the 
acoustic CFL limit, their iterative nature for coupling pressure and 
velocity fields results in a high computational cost, rendering them 
prohibitive for simulations involving a large number of particles over 
long durations.

To improve computational efficiency, fractional-step methods are 
often used as they separate the velocity and pressure calculations, 
avoiding costly inner iterations. Capecelatro and Desjardins (2013) 
developed a DEM–CFD framework for reactive flows using a fractional-
step method based on the work of  Pierce and Moin (2004). While 
this method is highly efficient, it is based on a formulation that re-
sults in pressure waves propagating at an infinite speed. This makes 
it unsuitable for cases where finite-speed acoustic effects are impor-
tant. Addressing this, Moureau et al. (2007) developed a fractional-
step method for weakly-compressible flows that correctly captures the 
finite speed of sound. Their method has been successfully applied 
to methane combustion, but their work did not include a discrete 
particle phase (Moureau et al., 2011). Following this, Kitano et al. 
(2013) applied this semi-implicit compressible method to a direct 
numerical simulation (DNS) of spray combustion, coupling it with a 
global reaction model to investigate the interaction between pressure 
perturbations and combustion.

This study bridges the aforementioned gaps by developing and 
validating a novel DEM–CFD framework for low-Mach number flows. 
This framework combines the particle-scale accuracy of the DEM with a 
highly efficient, weakly-compressible fractional-step method proposed 
by Moureau et al. (2007). Compared to fully compressible methods, 
this approach is significantly efficient for low-Mach number flows. 
It decouples the time step from the acoustic CFL constraint and si-
multaneously avoids ill-conditioning issues that become problematic 
in fully compressible solvers as the Mach number approaches zero. 
This provides key flexibility: computational cost can be prioritized 
by using large time steps (acoustic CFL > 1), or acoustic waves can 
be accurately resolved by adhering to the CFL limit (acoustic CFL ≤
1). This paper details the governing equations, the volume averaging 
technique, and the numerical method. The framework’s capabilities are 
then demonstrated through a series of validation cases. To focus on 
the fluid–particle dynamics and acoustic aspects of the framework, the 
cases presented in this study are non-reactive. These include: pressure 
drop in a fixed bed, particle dynamics in a fluidized bed, and speed of 
sound measurements in various gases.
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2. Governing equations

This section details the governing equations used to describe the 
gas and solid phases in the dense gas–solid multiphase flows under 
investigation. First, the fundamental point-wise governing equations 
for the gas phase are presented. These equations are then spatially 
averaged using the methodology proposed by  Anderson and Jackson 
(1967) to derive the macroscopic equations suitable for multiphase flow 
simulations. Subsequently, the governing equations for the discrete 
solid phase, based on the Discrete Element Method (DEM) (Cundall 
and Strack, 1979), are described, along with the models for interphase 
coupling.

2.1. Gas phase governing equations

2.1.1. Governing equations
At the microscopic level, within the interstitial spaces between 

particles, the gas phase is assumed to behave as a continuum. This study 
employs a one-fluid, multi-chemical species approach, in which the gas, 
although composed of multiple species, is treated as a single mixture for 
the conservation of mass, momentum, and energy. These equations for 
the mixture form the basis for deriving the volume averaged equations.

The instantaneous, local conservation of mass for a mixture gas is 
given by: 
𝜕𝜌𝑓
𝜕𝑡

+ ∇ ⋅ (𝜌𝑓𝒖𝑓 ) = 0, (1)

where 𝜌𝑓  is the gas density, 𝒖𝑓  is the gas velocity vector and 𝑡 is the 
time.

The conservation of momentum is expressed as: 
𝜕
𝜕𝑡
(𝜌𝑓𝒖𝑓 ) + ∇ ⋅ (𝜌𝑓𝒖𝑓 ⊗ 𝒖𝑓 ) = −∇𝑝 + ∇ ⋅ 𝝉 + 𝜌𝑓 𝐠, (2)

where 𝑝 is the pressure, 𝝉 is the viscous stress tensor, and 𝐠 is the 
gravitational acceleration.

The energy equation, in terms of specific enthalpy ℎ, is: 
𝜕
𝜕𝑡
(𝜌𝑓ℎ) + ∇ ⋅ (𝜌𝑓ℎ𝒖𝑓 ) =

𝜕𝑝
𝜕𝑡

+ 𝒖𝑓 ⋅ ∇𝑝 + ∇ ⋅ (𝑘∇𝑇 ) + 𝝉 ∶ ∇𝒖𝑓 , (3)

where 𝑘 is the thermal conductivity and 𝑇  is the temperature. The 
specific enthalpy ℎ for an ideal gas is related to temperature by: 

ℎ = ∫

𝑇

𝑇0
𝐶𝑝𝑑𝑇 + ℎ0(𝑇0), (4)

where 𝐶𝑝 is the specific heat at constant pressure, 𝑇0 is a reference 
temperature and ℎ0 is a reference enthalpy.

For a multi-chemical species gas, the conservation of mass fraction 
𝑦𝑖 for chemical species 𝑖 is: 
𝜕(𝜌𝑓 𝑦𝑖)

𝜕𝑡
+ ∇ ⋅ (𝜌𝑓𝒖𝑓 𝑦𝑖) = ∇ ⋅ (𝐷𝑖∇𝑦𝑖), (5)

where 𝐷𝑖 is the mass diffusivity of chemical species 𝑖.
The equation of state for an ideal gas mixture is: 

𝑝 = 𝜌𝑓𝑅𝑇 , (6)

where 𝑅 is the specific gas constant for the mixture. The speed of sound 
𝑐 for an ideal gas, assuming isentropic conditions, is defined as: 

𝑐 =

√

(

𝜕𝑝
𝜕𝜌𝑓

)

𝑠
=
√

𝛾𝑅𝑇 , (7)

where 𝛾 is the ratio of specific heats (𝐶𝑝∕𝐶𝑣), 𝐶𝑣 is the specific heat at 
constant volume.

For the fractional-step method which will appear in Section 3, it 
is necessary to decouple the direct influence of pressure from the 
evolution of enthalpy. Therefore, the energy conservation equation is 
reformulated. By applying the definition of enthalpy, the equation of 
state, and the definition of the speed of sound, the explicit pressure 
evolution terms (𝜕𝑝∕𝜕𝑡 and 𝒖 ⋅∇𝑝) can be replaced by terms involving 
𝑓

3 
the speed of sound. The detailed derivation of this reformulation is 
provided in Appendix  A. This yields the following pressure-term-free 
form of the energy equation. 
𝜕
𝜕𝑡
(𝜌𝑓ℎ) + ∇ ⋅ (𝜌𝑓ℎ𝒖𝑓 ) = − 𝑐2𝜌𝑓∇ ⋅ 𝒖𝑓 + 𝛾∇ ⋅ (𝑘∇𝑇 )

+ 𝛾𝝉 ∶ ∇𝒖𝑓 − (𝛾 − 1)𝜌𝑓𝒖𝑓 ⋅ ∇ℎ.
(8)

Conversely, by combining Eqs. (3) and (8), the enthalpy evolution 
terms can be eliminated to yield enthalpy-term-free form of the energy 
equation, also known as the pressure equation: 
𝜕𝑝
𝜕𝑡

+ 𝒖𝑓 ⋅ ∇𝑝 = − 𝑐2𝜌𝑓∇ ⋅ 𝒖𝑓 + (𝛾 − 1)∇ ⋅ (𝑘∇𝑇 )

+ (𝛾 − 1)𝝉 ∶ ∇𝒖𝑓 − (𝛾 − 1)𝜌𝑓𝒖𝑓 ⋅ ∇ℎ.
(9)

2.1.2. Volume averaged governing equations
To make the simulation of dense gas–solid flows computationally 

tractable, Eqs. (1)–(5) are volume averaged. This work employs the 
volume averaging technique by Anderson and Jackson (1967), which 
utilizes a weighting function 𝑔𝑤(𝑟) to define local averaged quantities. 
The local void fraction 𝜀𝑓 (𝒙, 𝑡) is defined as: 

𝜀𝑓 (𝒙, 𝑡) = ∫𝑓 (𝑡)
𝑔𝑤(|𝒙 − 𝒚|)𝑑𝑉𝑦, (10)

where the integration is over the domain 𝑓 (𝑡) occupied by the gas at 
time 𝑡.

For any gas quantity 𝑎(𝒙, 𝑡), its phase volume average 𝑎(𝒙, 𝑡) is 
defined as: 
𝜀𝑓 𝑎(𝒙, 𝑡) = ∫𝑓 (𝑡)

𝑎(𝒚, 𝑡)𝑔𝑤(|𝒙 − 𝒚|)𝑑𝑉𝑦, (11)

The density-weighted phase volume average 𝑎̃(𝒙, 𝑡) is defined as: 

𝜀𝑓 𝜌𝑓 𝑎̃(𝒙, 𝑡) = ∫𝑓 (𝑡)
𝜌𝑓 (𝒚, 𝑡)𝑎(𝒚, 𝑡)𝑔𝑤(|𝒙 − 𝒚|)𝑑𝑉𝑦, (12)

where 𝜌𝑓  in Eq. (12) is the phase volume averaged gas density defined 
according to Eq. (11). Any gas quantity 𝑎 can be split into the volume 
averaged and residual component 𝑎 = 𝑎+𝑎′ or 𝑎 = 𝑎̃+𝑎′′. Consequently, 
𝒖̃𝑓 , ℎ̃, 𝑇̃ , and 𝑦̃𝑖 represent density-weighted phase volume average 
quantities, while 𝑝 and 𝝉 are phase volume average quantities. By 
applying the averaging technique (Eqs. (10)–(12)) to the governing 
equations (Eqs. (1), (2), (5), (8), (9)), we obtain the set of volume 
averaged equations are as follows.

The averaged continuity equation: 
𝜕(𝜀𝑓 𝜌𝑓 )

𝜕𝑡
+ ∇ ⋅ (𝜀𝑓 𝜌𝑓 𝒖̃𝑓 ) = 𝑆𝜌. (13)

The averaged momentum equation: 
𝜕(𝜀𝑓 𝜌𝑓 𝒖̃𝑓 )

𝜕𝑡
+∇ ⋅ (𝜀𝑓𝜌𝑓 𝒖̃𝑓 ⊗ 𝒖̃𝑓 ) = −𝜀𝑓∇𝑝+∇ ⋅ (𝜀𝑓 (𝝉 −𝑹𝑢))+𝜀𝑓 𝜌𝑓 𝐠+𝑺𝜌𝑢−𝑭 𝑖𝑛𝑡𝑒𝑟.

(14)

In this equation, the interphase momentum transfer is captured by the 
gas–particle interaction force 𝑭 𝑖𝑛𝑡𝑒𝑟.

The averaged pressure-term-free form of the energy equation: 
𝜕(𝜀𝑓 𝜌𝑓 ℎ̃)

𝜕𝑡
+ ∇ ⋅ (𝜀𝑓 𝜌𝑓 𝒖̃𝑓 ℎ̃) = − 𝜀𝑓 𝜌𝑓 𝑐

2∇ ⋅ 𝒖̃𝑓 + 𝛾∇ ⋅ (𝜀𝑓𝑘∇𝑇̃ ) + 𝛾𝜀𝑓 𝝉 ∶ ∇𝒖̃𝑓

− (𝛾 − 1)𝜀𝑓𝜌𝑓 𝒖̃𝑓 ⋅ ∇ℎ̃ − ∇ ⋅𝑹ℎ + 𝑆𝜌ℎ

− 𝑅𝑐∇𝑢 − 𝛾𝑆𝑘∇𝑇̃ + 𝛾𝑅𝑡∇𝑢 − (𝛾 − 1)𝑅𝑢∇ℎ.

(15)

The averaged pressure equation: 
𝜕(𝜀𝑓 𝑝)
𝜕𝑡

+ 𝜀𝑓 𝒖̃𝑓 ⋅ ∇𝑝 = − 𝜀𝑓 𝑐
2𝜌𝑓∇ ⋅ 𝒖̃𝑓 + (𝛾 − 1)∇ ⋅ (𝜀𝑓𝑘∇𝑇̃ )

+ (𝛾 − 1)𝜀𝑓 𝝉 ∶ ∇𝒖̃𝑓 − (𝛾 − 1)𝜀𝑓 𝜌𝑓 𝒖̃𝑓 ⋅ ∇ℎ̃

− 𝑆𝑢𝑝 − (𝛾 − 1)𝑆𝑘∇𝑇̃ − 𝑅𝑐∇𝑢 − 𝑅𝑢∇𝑝

(16)
+ (𝛾 − 1)𝑅𝑡∇𝑢 − 𝛾𝑅𝑢∇ℎ.
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The averaged mass fraction conservation equation for species 𝑖: 
𝜕(𝜀𝑓𝜌𝑓 𝑦̃𝑖)

𝜕𝑡
+ ∇ ⋅ (𝜀𝑓𝜌𝑓 𝒖̃𝑓 𝑦̃𝑖) = ∇ ⋅ (𝜀𝑓𝐷𝑖∇𝑦̃𝑖) − ∇ ⋅𝑹𝑦𝑖 + 𝑆𝜌𝑦𝑖 − 𝑆𝐷∇𝑦̃𝑖 . (17)

In these equations, the various source terms, denoted by 𝑆 (e.g., 𝑆𝜌,
𝑆𝑢𝑝), account for the exchange of mass, momentum, and energy at 
particle surfaces. The terms denoted by 𝑅 (e.g., 𝑹𝑢, 𝑹ℎ) are unclosed 
residual terms that arise from the averaging process, representing the 
effects of sub-grid scale phenomena.

The system is closed with the equation of state and the definition 
for the speed of sound using averaged quantities: 
𝑝 = 𝜌𝑓𝑅𝑇̃ , (18)

𝑐 =
√

𝛾𝑅𝑇̃ . (19)

It is also noted that the residual terms arising from the averaging 
process are neglected in these expressions.

Previous studies have reported that structure and response of the 
particles can influence the speed of sound, taking these effects account 
is complex (Rudinger, 1980; Roy et al., 1990). The model presented in 
Eq. (19) adopts a simplified assumption where pressure waves do not 
propagate through the particles and the particle volume does not affect 
the acoustic properties of the gas. The validity of this approach and a 
more detailed discussions are provided in Section 5.

2.2. Solid phase governing equations (DEM)

The motion of individual solid particles is tracked using the Discrete 
Element Method (DEM), originally proposed by Cundall and Strack 
(1979). This method accounts for particle–particle and particle–wall 
interactions through contact force models.

The translational motion of Particle 𝑖 with mass 𝑚𝑖 and position 
vector 𝒙𝑖 is governed by Newton’s second law: 

𝑚𝑖
𝑑2𝒙𝑖
𝑑𝑡2

=
∑

𝑗
𝒇𝐶,𝑖𝑗 + 𝒇𝐷,𝑖 + 𝒇𝐵,𝑖 + 𝑚𝑖𝐠, (20)

where 𝒇𝐶,𝑖𝑗 and 𝒇𝐷,𝑖 are the contact force exerted by Particle 𝑗 (or the 
walls) and the fluid drag force acting on Particle 𝑖. 𝒇𝐵,𝑖 is the buoyancy 
force defined as 𝒇𝐵,𝑖 = −∇𝑝𝑉𝑝,𝑖 where 𝑉𝑝,𝑖 is the particle volume.

The rotational motion of Particle 𝑖 with moment of inertia 𝐼𝑖 and 
angular velocity 𝝎𝑖 is given by: 

𝐼𝑖
𝑑𝝎𝑖
𝑑𝑡

=
∑

𝑗
𝑴 𝑖𝑗 , (21)

where 𝑴 𝑖𝑗 is the torque generated by the tangential component of the 
contact force 𝒇𝐶,𝑖𝑗 . The moment of inertia for a spherical particle of 
radius 𝑟𝑖 is 𝐼𝑖 = 2∕5𝑚𝑖𝑟2𝑖 .

Contact forces 𝒇𝐶,𝑖𝑗 are modeled using a linear spring–dashpot 
system. The normal contact force 𝒇𝐶𝑛,𝑖𝑗 is given by: 

𝒇𝐶𝑛,𝑖𝑗 = (−𝑘𝑛𝛿𝑛 − 𝜂𝑛𝒖𝑛,𝑖𝑗 ⋅ 𝒏𝑖𝑗 )𝒏𝑖𝑗 , (22)

where 𝑘𝑛 is the normal spring stiffness, 𝛿𝑛 is the normal overlap, 𝒖𝑛,𝑖𝑗
is the normal component of the relative velocity at the contact point, 
and 𝒏𝑖𝑗 is the unit normal vector. The normal damping coefficient 𝜂𝑛
is determined from the coefficient of normal restitution 𝑒𝑝 (Tsuji et al., 
1992): 

𝜂𝑛 = −
2 ln 𝑒𝑝

√

𝜋2 + (ln 𝑒𝑝)2

√

𝑚𝑘𝑛. (23)

The tangential contact force 𝒇𝐶𝑡,𝑖𝑗 is modeled with a spring and dash-
pot: 
𝒇𝐶𝑡,𝑖𝑗 = −min(|𝑘𝑡𝜹𝑡 + 𝜂𝑡𝒖𝑠,𝑖𝑗 |, 𝜇𝑓 |𝒇𝐶𝑛,𝑖𝑗 |)𝒕𝑖𝑗 , (24)

where 𝑘𝑡, 𝜹𝑡, 𝜂𝑡, 𝒖𝑠,𝑖𝑗 , 𝜇𝑓 , and 𝒕𝑖𝑗 are the tangential stiffness, displace-
ment, damping, relative surface velocity, friction coefficient, and unit 
tangential vector, respectively.
4 
The fluid force 𝒇𝐷,𝑖 acting on each Particle 𝑖 is composed of a drag 
force and a force due to the macroscopic pressure gradient of the fluid: 

𝒇𝐷,𝑖 =
{

𝛽
1 − 𝜀𝑓

(𝒖̃𝑓 − 𝒖𝑖)
}

𝑉𝑝,𝑖, (25)

where 𝒖𝑖 is the velocity of Particle 𝑖, and 𝛽 is the interphase momentum 
transfer coefficient. In the present study, we only consider low-Mach 
number flows as test cases where the effects of compressibility on 
the drag coefficient are considered negligible, and employs Gidaspow 
model (Gidaspow, 1994) for 𝛽 based on the Ergun equation (Ergun, 
1952) for dense regions (𝜀𝑓 ≤ 0.8) and the Wen and Yu correla-
tion (Wen, 1966) for dilute regions (𝜀𝑓 > 0.8). The model is expressed 
as: 

𝛽 =

⎧

⎪

⎨

⎪

⎩

𝜇𝑓 (1−𝜀𝑓 )
𝑑2𝑝 𝜀𝑓

{150(1 − 𝜀𝑓 ) + 1.75𝑅𝑒𝑝} (𝜀𝑓 ≤ 0.8)
3
4𝐶𝐷

𝜇𝑓 (1−𝜀𝑓 )
𝑑2𝑝

𝜀−2.7𝑓 𝑅𝑒𝑝 (𝜀𝑓 > 0.8),
(26)

where 𝜇𝑓  is the fluid viscosity, 𝑑𝑝 is the particle diameter, and 𝑅𝑒𝑝 is 
the particle Reynolds number based on the average particle velocity 𝒖̂𝑝: 

𝑅𝑒𝑝 =
𝜌𝑓 𝜀𝑓𝑑𝑝|𝒖̃𝑓 − 𝒖̂𝑝|

𝜇𝑓
. (27)

The drag coefficient 𝐶𝐷 for a single sphere is given by the Schiller 
and Naumann correlation (Schiller, 1933): 

𝐶𝐷 =

{

24(1 + 0.15𝑅𝑒0.687𝑝 )∕𝑅𝑒𝑝 (𝑅𝑒𝑝 ≤ 1000)
0.43 (𝑅𝑒𝑝 > 1000).

(28)

2.3. Interphase coupling terms

The gas and solid phases are coupled primarily through the interfa-
cial momentum transfer. The term 𝑭 𝑖𝑛𝑡𝑒𝑟 in the gas momentum Eq. (14) 
represents the force exerted by the particles on the gas. By Newton’s 
third law, this force is equal in magnitude and opposite in direction to 
the sum of all fluid dynamic forces, 𝒇𝐷,𝑖, acting on the particles within 
a control volume. The interaction force is calculated as: 

𝑭 𝑖𝑛𝑡𝑒𝑟 = 1
𝑉𝑐𝑒𝑙𝑙

∑

𝑖

{

𝛽
1 − 𝜀𝑓

(𝒖̃𝑓 − 𝒖𝑖)𝑉𝑝,𝑖
}

, (29)

where the sum is over particles in the fluid cell of volume 𝑉𝑐𝑒𝑙𝑙. The 
other source terms, such as 𝑆𝜌, 𝑺𝜌𝑢, 𝑆𝜌ℎ, and 𝑆𝜌𝑦𝑖 , account for mass, 
momentum, and energy exchanged at the particle surfaces, which are 
critical when considering chemical reactions or phase changes.

3. Numerical method

This section outlines the numerical method for solving the volume 
averaged gas phase equations. The method is based on a fractional-step 
method for weakly-compressible flows (Moureau et al., 2007).

3.1. Overall computational procedure

The gas solver is based on the weakly-compressible approach of
Moureau et al. (2007), which is designed to efficiently simulate low-
Mach number flows while retaining acoustic effects. The core of the 
method is a fractional-step method that decouples the advective–
diffusive phenomena from the acoustic phenomena. This characteristic 
splitting is based on the decomposition of the eigenvalues of the 1D 
compressible Navier–Stokes equations (Moureau et al., 2007): 
⎛

⎜

⎜

⎝

𝑢 + 𝑐
𝑢 − 𝑐
𝑢

⎞

⎟

⎟

⎠

=
⎛

⎜

⎜

⎝

𝑢
𝑢
𝑢

⎞

⎟

⎟

⎠

+
⎛

⎜

⎜

⎝

𝑐
−𝑐
0

⎞

⎟

⎟

⎠

(30)

Here, the eigenvalues 𝑢 + 𝑐 and 𝑢 − 𝑐 represent the acoustic waves, 
while 𝑢 represents advection. The splitting mathematically separates 
the governing equations into a pure advection operator and a pure 
acoustic operator. This allows the physical phenomena to be solved in 
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two main sub-steps: a predictor step that handles the advection and dif-
fusion, followed by a corrector step that implicitly handles the acoustic 
wave propagation. This semi-implicit strategy improves computational 
efficiency by avoiding the need for costly inner iterations.

The particles and gas phase are weakly coupled:

1. Particle Motion Calculation (DEM):
Particle positions and velocities for the next time step 𝑛 + 1 are 
computed based on the forces from the current time step. This 
yields the updated void fraction 𝜀𝑛+1𝑓  and interphase source terms 
(e.g., 𝑭 𝑖𝑛𝑡𝑒𝑟, 𝑆𝜌).

2. Gas Dynamics Calculation (Fractional-Step Method):
The gas governing equations are then solved for the next time 
step using the updated information from the DEM step. This 
calculation consists of prediction and correction sub-steps.

3.1.1. Prediction step
In the prediction step, predicted values for the gas variables (𝜌𝑓 ∗, 

𝒖̃∗𝑓 , ℎ̃∗, 𝑦̃∗𝑖 ) are computed by solving the advection–diffusion forms of 
the conservation equations shown in Eqs. (31)–(34). In these equations, 
all terms without a temporal superscript are evaluated using known 
quantities from the previous time step, 𝑛. These prediction equations 
omit the pressure gradient term in the momentum equation and terms 
related to the speed of sound in the energy equation. It should be noted 
that the advection operator in Eqs. (31)–(34) is split into two terms, 
following the characteristic splitting approach of Moureau et al. (2007). 
As will be shown in the correction step, the third terms in the left-
hand side are associated with the terms involving the speed of sound 
(Eq. (41)), thereby allowing for a separation between advective and 
acoustic phenomena. 
𝜀𝑛+1𝑓 𝜌𝑓

∗ − 𝜀𝑛+1𝑓 𝜌𝑓
𝑛

𝛥𝑡
+ ∇ ⋅ (𝜀𝑛+1𝑓 𝜌𝑓

𝑛𝒖̃𝑛𝑓 ) − 𝜀𝑛+1𝑓 𝜌𝑓
𝑛∇ ⋅ 𝒖̃𝑛𝑓 = 𝑆𝜌, (31)

𝜀𝑛+1𝑓 𝜌𝑓
∗𝒖̃∗𝑓 − 𝜀𝑛+1𝑓 𝜌𝑓

𝑛𝒖̃𝑛𝑓
𝛥𝑡

+ ∇ ⋅ (𝜀𝑛+1𝑓 𝜌𝑓
𝑛𝒖̃𝑛𝑓 ⊗ 𝒖̃𝑛𝑓 ) − 𝜀𝑛+1𝑓 𝜌𝑓

𝑛𝒖̃𝑛𝑓∇ ⋅ 𝒖̃𝑛𝑓
= 𝜀𝑛+1𝑓 ∇ ⋅ (𝝉 −𝑹𝑢) + 𝜀𝑛+1𝑓 𝜌𝑓

𝑛𝐠 + 𝑺𝜌𝑢 − 𝑭 𝑖𝑛𝑡𝑒𝑟,

(32)

𝜀𝑛+1𝑓 𝜌𝑓
∗ℎ̃∗ − 𝜀𝑛+1𝑓 𝜌𝑓

𝑛ℎ̃𝑛

𝛥𝑡
+ ∇ ⋅ (𝜀𝑛+1𝑓 𝜌𝑓

𝑛𝒖̃𝑛𝑓 ℎ̃
𝑛) − 𝜀𝑛+1𝑓 𝜌𝑓

𝑛ℎ̃𝑛∇ ⋅ 𝒖̃𝑛𝑓
= 𝛾∇ ⋅ (𝜀𝑛+1𝑓 𝑘∇𝑇̃ 𝑛) + 𝛾𝜀𝑛+1𝑓 𝝉 ∶ ∇𝒖̃𝑛𝑓
− (𝛾 − 1)𝜀𝑛+1𝑓 𝜌𝑓

𝑛𝒖̃𝑛𝑓 ⋅ ∇ℎ̃𝑛 − ∇ ⋅𝑹ℎ + 𝑆𝜌ℎ

− 𝑅𝑐∇𝑢 − 𝛾𝑆𝑘∇𝑇̃ + 𝛾𝑅𝑡∇𝑢 − (𝛾 − 1)𝑅𝑢∇ℎ,

(33)

𝜀𝑛+1𝑓 𝜌𝑓
∗𝑦̃∗𝑖 − 𝜀𝑛+1𝑓 𝜌𝑓

𝑛𝑦̃𝑛𝑖
𝛥𝑡

+ ∇ ⋅ (𝜀𝑛+1𝑓 𝜌𝑓
𝑛𝒖̃𝑛𝑓 𝑦̃

𝑛
𝑖 ) − 𝜀𝑛+1𝑓 𝜌𝑓

𝑛𝑦̃𝑛𝑖∇ ⋅ 𝒖̃𝑛𝑓
= ∇ ⋅ (𝜀𝑛+1𝑓 𝐷𝑖∇𝑦̃𝑛𝑖 ) + 𝑆𝜌𝑦𝑖 − 𝑆𝐷∇𝑦𝑖 .

(34)

Subsequently, 𝑇̃ ∗ is determined from ℎ̃∗ and 𝑦̃∗𝑖 . The predicted 
pressure 𝑝∗ is then calculated from the equation of state (18) using 𝜌𝑓 ∗

and 𝑇̃ ∗. Finally, the predicted speed of sound 𝑐∗ is also determined from 
its definition (19) using these predicted properties.

3.1.2. Pressure correction step
The pressure correction step adjusts the predicted gas variables to 

satisfy the full conservation Eqs. (13)–(15), (17) by accounting for the 
acoustic phenomena that were omitted from the prediction step. Con-
sequently, the following correction equations explicitly involve terms 
related to pressure and the speed of sound. It is a key feature of this 
non-iterative approach that these equations are linearized by evaluating 
all coefficients using the known predicted (*) state. This linearization 
allows the updated variables at the 𝑛+1 step to be solved without inner 
iterations, as follows: 
𝜀𝑛+1𝑓 𝜌𝑓

𝑛+1 − 𝜀𝑛+1𝑓 𝜌𝑓
∗

+ 𝜀𝑛+1𝜌 ∗∇ ⋅ 𝒖̃∗ = 0, (35)

𝛥𝑡 𝑓 𝑓 𝑓

5 
𝜀𝑛+1𝑓 𝜌𝑓
𝑛+1𝒖̃𝑛+1𝑓 − 𝜀𝑛+1𝑓 𝜌𝑓

∗𝒖̃∗𝑓
𝛥𝑡

+ 𝜀𝑛+1𝑓 𝜌𝑓
∗𝒖̃∗𝑓∇ ⋅ 𝒖̃∗𝑓 = −

𝜀𝑛+1𝑓

2
∇(𝑝𝑛 + 𝑝𝑛+1), (36)

𝜀𝑛+1𝑓 𝜌𝑓
𝑛+1ℎ̃𝑛+1 − 𝜀𝑛+1𝑓 𝜌𝑓

∗ℎ̃∗

𝛥𝑡
+ 𝜀𝑛+1𝑓 𝜌𝑓

∗ℎ̃∗∇ ⋅ 𝒖̃∗𝑓 = −𝜀𝑛+1𝑓 𝑐∗2𝜌𝑓
∗∇ ⋅ 𝒖̃∗𝑓 , (37)

𝜀𝑛+1𝑓 𝜌𝑓
𝑛+1𝑦̃𝑛+1𝑖 − 𝜀𝑛+1𝑓 𝜌𝑓

∗𝑦̃∗𝑖
𝛥𝑡

+ 𝜀𝑛+1𝑓 𝜌𝑓
∗𝑦̃∗𝑖 ∇ ⋅ 𝒖̃∗𝑓 = 0. (38)

The corresponding correction for pressure, Eq. (39), is derived from 
the full pressure equation, Eq. (16). Since all terms other than the 
acoustic term (involving the speed of sound, 𝑐) have already been 
accounted for in the prediction step, the correction step simplifies to 
the following relationship: 

𝜀𝑛+1𝑓 𝑝𝑛+1 − 𝜀𝑛+1𝑓 𝑝∗

𝛥𝑡
= −𝜀𝑛+1𝑓 𝑐∗2𝜌𝑓

∗∇ ⋅ 𝒖̃∗𝑓 . (39)

The pressure at time step 𝑛 + 1 is related to the predicted pressure 
𝑝∗ and a pressure correction term 𝛿𝑝 as: 

𝛿𝑝 = 𝑝𝑛+1 − 𝑝∗. (40)

Substituting this definition of 𝑝𝑛+1 into Eq. (39), we get: 
𝜀𝑛+1𝑓 𝛿𝑝

𝛥𝑡
= −𝜀𝑛+1𝑓 𝑐∗2𝜌𝑓

∗∇ ⋅ 𝒖̃∗𝑓 . (41)

Using this relationship in Eq. (41), the following equations are 
derived from Eqs. (35)–(38). 

𝜀𝑛+1𝑓 𝜌𝑓
𝑛+1 − 𝜀𝑛+1𝑓 𝜌𝑓

∗

𝛥𝑡
− 1

𝛥𝑡

𝜀𝑛+1𝑓 𝛿𝑝

𝑐∗2
= 0, (42)

𝜀𝑛+1𝑓 𝜌𝑓
𝑛+1𝒖̃𝑛+1𝑓 − 𝜀𝑛+1𝑓 𝜌𝑓

∗𝒖̃∗𝑓
𝛥𝑡

−
𝜀𝑛+1𝑓 𝒖̃∗𝑓
𝑐∗2

𝛿𝑝
𝛥𝑡

= −
𝜀𝑛+1𝑓

2
∇(𝑝𝑛 + 𝑝∗ + 𝛿𝑝), (43)

𝜀𝑛+1𝑓 𝜌𝑓
𝑛+1ℎ̃𝑛+1 − 𝜀𝑛+1𝑓 𝜌𝑓

∗ℎ̃∗

𝛥𝑡
−

(ℎ̃∗ + 𝑐∗2)
𝑐∗2

𝜀𝑛+1𝑓 𝛿𝑝

𝛥𝑡
= 0, (44)

𝜀𝑛+1𝑓 𝜌𝑓
𝑛+1𝑦̃𝑛+1𝑖 − 𝜀𝑛+1𝑓 𝜌𝑓

∗𝑦̃∗𝑖
𝛥𝑡

−
𝑦̃∗𝑖
𝑐∗2

𝜀𝑛+1𝑓 𝛿𝑝

𝛥𝑡
= 0. (45)

Taking the divergence of Eq. (43) and using the continuity equation 
to remove the unknown term leads to the Helmholtz equation for 𝛿𝑝, 
the detailed derivation is provided in Appendix  B. 

∇ ⋅ ∇𝛿𝑝 +
∇𝜀𝑛+1𝑓

𝜀𝑛+1𝑓

⋅ ∇𝛿𝑝 − 2
𝜀𝑛+1𝑓

∇ ⋅

(

𝜀𝑛+1𝑓 𝒖̃∗𝑓
𝑐∗2

𝛿𝑝
𝛥𝑡

)

− 4
𝑐∗2𝛥𝑡2

𝛿𝑝

= −∇ ⋅ ∇(𝑝𝑛 + 𝑝∗) −
∇𝜀𝑛+1𝑓

𝜀𝑛+1𝑓

⋅ ∇(𝑝𝑛 + 𝑝∗)

+ 4
𝜀𝑛+1𝑓 𝛥𝑡

[

𝜀𝑛+1𝑓 𝜌𝑓
∗ − 𝜀𝑛𝑓 𝜌𝑓

𝑛

𝛥𝑡
+ ∇ ⋅

(

𝜀𝑛+1𝑓 𝜌𝑓
∗𝒖̃∗𝑓 + 𝜀𝑛𝑓 𝜌𝑓

𝑛𝒖̃𝑛𝑓
2

)

− 𝑆𝜌

]

(46)

It is noted, unlike the elliptic Poisson equation found in incompress-
ible solvers (which yields an infinite speed of sound), this Helmholtz 
equation is hyperbolic in nature. This property enables the framework 
to correctly capture the propagation of acoustic waves at a finite speed.

3.1.3. Correction step
Once the pressure correction 𝛿𝑝 is obtained by solving the Helmholtz 

Eq. (46), the corrected gas variables at time step 𝑛+ 1 are determined. 
The now-known values of 𝛿𝑝 and the predicted speed of sound 𝑐∗ are 
substituted into the pressure correction Eqs. (42)–(45). These equations 
are then solved for the corrected variables: 𝑝𝑛+1, 𝜌𝑓 𝑛+1, 𝒖̃𝑛+1𝑓 , ℎ̃𝑛+1, 𝑦̃𝑛+1𝑖 . 
Finally, 𝑇̃ 𝑛+1 is updated using ℎ̃𝑛+1 and 𝑦̃𝑛+1.
𝑖
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4. Discretization and implementation details

The numerical framework was implemented in an in-house code, 
DEr (Discrete Element solver for dense reactive gas–solid flows), using 
a Cartesian coordinate system with a uniform grid for the fluid cells 
for each directions. Initially, all spatial derivatives were discretized 
using a second-order central difference scheme; however, numerical 
instabilities were observed. To enhance stability, the advection terms 
were discretized using an upwind scheme. Although a second-order 
upwind scheme was also tested, a first-order upwind scheme was 
ultimately adopted in this study to prioritize robustness. For the time 
integration, the gas advection–diffusion equations were solved using 
an explicit third-order Runge–Kutta method, while the particle motion 
in the DEM was advanced using the first-order Euler–Cromer method. 
Fluid quantities required for particle force calculations were taken from 
the volume-averaged values of the cell containing the particle center, 
although interpolation from surrounding cells is a possible refinement. 
The Helmholtz equation for the pressure correction was solved using 
the Bi-Conjugate Gradient Stabilized (Bi-CGSTAB) method (Van der 
Vorst, 1992). The unclosed source (𝑆) and residual (𝑅) terms arising 
from the volume averaging (Eqs. (13)–(17)) were neglected in this 
study for simplicity. The physical properties of the chemical species, 
such as molecular weight and specific heat, were obtained as a function 
of temperature and pressure using CHEMKIN-formatted libraries (Kee 
et al., 1986, 1989).

5. Validation

5.1. General setup and numerical approaches

This section presents the validation of the newly proposed numeri-
cal framework through three fundamental test cases. Unless otherwise 
specified for a particular case, the gas was considered to be dry air 
(23% oxygen, 77% nitrogen by mass), with an initial temperature of 
300 K, initial pressure of 1 × 105 Pa, and zero initial velocity. Particle 
beds were prepared by allowing particles to settle randomly from an 
elevated position, after which excess particles were removed to achieve 
the desired initial bed height. For the gas phase, boundary conditions 
were set as follows. Gas was introduced from the bottom boundary at 
a temperature of 300 K, with the velocity specified as the superficial 
velocity. The top boundary was an atmospheric (1 atm). All other 
boundaries were treated as slip walls, with zero-gradient conditions 
applied to the other gas variables. While the semi-implicit fluid solver 
is designed to be stable at large time steps (i.e., for acoustic CFL 
> 1), the complex interactions introduced by the coupled particle phase 
necessitated a smaller time step to ensure overall stability. Accordingly, 
a fixed time step of 1×10−5 s or 5×10−5 s was used for the simulations 
presented in the following section.

5.2. Pressure drop

5.2.1. Computational conditions
To validate the gas–particle interaction model, the pressure drop 

across the particle bed and the minimum fluidization velocity were 
evaluated. The computational setup (Fig.  1) and parameters (Table  1) 
were adapted from the work of Van Buijtenen et al. (2012). While the 
𝑥−𝑦 dimensions of the domain and the particle parameters are identical 
to their simulation, the particle bed height and the 𝑧-dimension were 
set to form an initially cubic particle bed. To isolate gas–particle 
interactions from wall effects on fluidization, the particle–wall friction 
coefficient was set to zero for this test case. The superficial gas ve-
locity at the inlet was increased gradually with a small acceleration 
(0.1 m/s2).
6 
Fig. 1. Computational domain for the pressure drop test.

Table 1
Simulation parameters for pressure drop test.
 Bed
 Height (𝐿𝑥) [m] 2.5  
 Width (𝐿𝑦) [m] 0.15  
 Depth (𝐿𝑧) [m] 0.15  
 Particle
 Sphericity [–] 1  
 Number [–] 154,206  
 Diameter [m] 3.0 × 10−3 
 Density [kg∕m3] 2505  
 Normal spring constant [N∕m] 10,000  
 Poisson’s ratio [–] 0.25  
 Coefficient of restitution(normal) [–] 0.97  
 Coefficient of friction (particle–particle) [–] 0.1  
 Coefficient of friction (particle–wall) [–] 0  
 Gas
 Cells in 𝑥-direction [–] 250  
 Cells in 𝑦-direction [–] 20  
 Cells in 𝑧-direction [–] 20  
 Cell size in 𝑥-direction (Δ𝑥) [m] 10 × 10−3  
 Cell size in 𝑦-direction (Δ𝑦) [m] 7.5 × 10−3 
 Cell size in 𝑧-direction (Δ𝑧) [m] 7.5 × 10−3 
 Initial void fraction [–] 0.34  
 Time step [s] 1 × 10−5  

5.2.2. Results and discussion
The computed pressure drop versus superficial fluid velocity is com-

pared with the Ergun equation (Ergun, 1952) in Fig.  2. The predicted 
minimum fluidization velocity (𝑢𝑚𝑓 ≈ 1.15 m/s) also matched well with 
the theoretical value (1.13 m/s), and the pressure drop in the fluidized 
state (2290 Pa) was close to the theoretical particle weight per unit area 
(2380 Pa).

The slight discrepancy observed in the fixed-bed region can be 
attributed to the different treatment of the void fraction. While the 
Ergun equation is based on a single, bulk-averaged void fraction, 
the simulation resolves the gas–particle interaction forces according 
to the local void fraction in each computational cell. This contrast 
between the homogeneous assumption of the theory and the spatially 
resolved heterogeneity in the simulation is the likely source of the 
minor deviation. These results show good agreement, validating the 
basic momentum exchange model.
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Fig. 2. Pressure drop versus superficial fluid velocity. The simulation results 
are compared with the Ergun equation.

Fig. 3. Computational domain for the fluidization state test.

5.3. Fluidization state

5.3.1. Computational conditions
Particle dynamics in a fluidized state were validated against the 

experimental and numerical work of Van Buijtenen et al. (2012). A 
central jet (𝑢𝑠𝑝 = 37.25 m∕s) and background flow (𝑢𝑏𝑔 = 4.15 m∕s) 
were introduced as per the experiment (Fig.  3). The parameters listed in 
Table  2 were adopted from their numerical study (Van Buijtenen et al., 
2012); notably, this includes the reference values for the coefficient 
of restitution and the friction coefficient, which are subjects of later 
discussion.

5.3.2. General flow pattern and particle velocities
The simulation revealed a dynamic flow field, with max variations 

in gas pressure and density of approximately 1.2% and 1.1%, respec-
tively. Fig.  4 shows instantaneous snapshots of key gas properties at 
𝑡 = 10.0 s. The void fraction distribution (Fig.  4(a)) indicates that the 
particles are in a well-fluidized state. The gas pressure field, shown in 
Fig.  4(b), varies in accordance with the local particle distribution. The 
gas density distribution (Fig.  4(c)) is observed to be nearly identical to 
the pressure distribution. This is a reasonable result, as the simulation 
is nearly isothermal, and for an ideal gas, density is approximately 
proportional to pressure under such conditions.

Fig.  5 compares the simulated time-averaged vertical particle veloc-
ities, measured at a height of 0.1 m along the centerline in the depth 
direction and averaged over 20 s, with experimental data (PEPT, PIV) 
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Table 2
Simulation parameters for fluidization state test.
 Bed
 Height (𝐿𝑥) [m] 2.5  
 Width (𝐿𝑦) [m] 0.15  
 Depth (𝐿𝑧) [m] 0.020  
 Particle
 Sphericity [–] 1  
 Number [–] 12,479  
 Diameter [m] 3.0 × 10−3 
 Density [kg∕m3] 2505  
 Normal spring constant [N∕m] 10,000  
 Poisson’s ratio [–] 0.25  
 Coefficient of restitution(normal) [–] 0.97  
 Coefficient of friction (particle–particle) [–] 0.1  
 Coefficient of friction (particle–wall) [–] 0.3  
 Initial bed height [m] 0.1  
 Gas
 Cells in 𝑥-direction [–] 250  
 Cells in 𝑦-direction [–] 30  
 Cells in 𝑧-direction [–] 2  
 Cell size in 𝑥-direction (Δ𝑥) [m] 10 × 10−3  
 Cell size in 𝑦-direction (Δ𝑦) [m] 5 × 10−3  
 Cell size in 𝑧-direction (Δ𝑧) [m] 10 × 10−3  
 Time step [s] 1 × 10−5  

from Van Buijtenen et al. (2012). General trends and symmetry are 
reproduced, but discrepancies exist near the center and walls.

The discrepancies observed prompted a sensitivity analysis on DEM 
contact parameters. As shown in Figs.  6 and 7, the particle velocity pro-
files are highly sensitive to the coefficient of restitution (𝑒𝑝) and friction 
(𝜇𝑝), underscoring the importance of accurate parameter calibration for 
quantitative predictions.

5.4. Speed of sound measurement

5.4.1. Computational conditions
This study validates the framework’s ability to handle weakly-

compressible effects by simulating the propagation of a pressure wave 
through a particle bed (Fig.  8) for various gases (Dry Air, CO2, H2) 
at different gas temperatures. The parameters used are given in Table 
3. Through parameter sensitivity analysis of speed of sound measure-
ments, it was confirmed that results are independent of the parameters 
listed in Table  3 when sufficient spatial resolution is available (see 
Appendix  C for details). Method for determining the speed of sound 
from simulation data are also described in Appendix  C.

5.4.2. Results and discussion
Fig.  9 compares the measured speeds with the theoretical values 

for a pure ideal gas, given by 𝑐 =
√

𝛾𝑅𝑇 ∕𝑀 , where 𝑀 is the molecular 
weight of the gas mixture. Excellent agreement was found, confirming 
the framework’s ability to accurately handle finite speed of sound 
propagation and species-dependent properties. As stated in Section 2, 
the speed of sound here is calculated using Eq. (19). This formulation 
assumes that pressure waves do not propagate through the particles and 
that the particle volume does not affect the acoustic properties of the 
interstitial gas. Therefore, under this specific formulation, it is a valid 
result that the pressure wave propagates unaffected by the presence of 
the solid phase.

To validate the framework’s ability to capture the influence of 
the particle phase on wave propagation, an alternative model for the 
speed of sound was tested in a second set of simulations for dry air 
at 300 K. This test was based on the ‘‘frozen flow’’ (Rudinger, 1980), 
which assumes that flow changes occur so rapidly that the particles 
cannot follow, leaving their velocity and temperature unaffected by the 
acoustic wave. The speed of sound in such a medium is referred to as 
the ‘‘frozen speed of sound’’. Similar to the formulation in Eq. (19), 
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(a) Void fraction.

  
(b) Gas pressure.

  
(c) Gas density.

 

Fig. 4. Instantaneous snapshots of gas properties at 𝑡 = 10.0 s.
Fig. 5. Time-averaged vertical particle velocities on the centerline at a height 
of 0.1 m, compared with experimental data from Van Buijtenen et al. (2012).

Fig. 6. Effect of coefficient of restitution (𝑒𝑝) on time-averaged vertical 
particle velocities.
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Fig. 7. Effect of friction coefficient (𝜇𝑝) on time-averaged vertical particle 
velocities.

this model assumes that pressure waves do not propagate through the 
particles; however, it does account for the influence that the particle 
volume has on wave propagation. The frozen speed of sound (𝑐𝑓 ) can 
be expressed as (Rudinger, 1980): 

𝑐𝑓 =

√

𝛾𝑅𝑇̃
𝜀𝑓

. (47)

For this validation, the particle bed was held fixed under adiabatic 
conditions. To vary the bulk void fraction, the same initial pack-
ing structure was used, and the particle diameter was systematically 
reduced.

The results of this second study are shown in Fig.  10. Overall, 
the simulation results demonstrate the flamework’s ability to handle 
the dependency of the frozen speed of sound on the void fraction. At 
lower void fractions, the measured speed of sound is notably higher 
than the single-phase gas value and closely approaches the theoretical 
line for the frozen speed of sound. As the void fraction increases, the 
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Fig. 8. Computational domain for the speed of sound measurement.

Fig. 9. Speed of sound in various gases at different temperatures, compared 
with theoretical values (lines).

measured speed deviates from the frozen speed theory and asymp-
totically approaches the theoretical value for the pure ideal gas. The 
increasing error from the frozen speed theory at higher void fractions 
is likely attributable to the difference in how the speed of sound 
is determined. The theoretical line is calculated using the bulk void 
fraction for the entire domain. In contrast, the simulation calculates the 
speed of sound locally at each point, based on the actual void fraction 
in that location. This is although to create a discrepancy between the 
constant theoretical speed and the spatially varying local speed within 
the simulation, which may in turn lead to the diffusion of the pressure 
wave front.

These results demonstrate that the speed of sound within the sim-
ulation can be intentionally altered by changing its definition. This 
underscores the flexibility of the framework. However, it also highlights 
that the physically appropriate model for the speed of sound depends 
on factors such as the fluidization state and the response of the particles 
to pressure fluctuations. As other studies have reported, another models 
exist for the speed of sound in well-fluidized states where the particles 
are able to follow the motion of the gas (Roy et al., 1990). It is crucial to 
select a suitable model based on the specific physical conditions being 
investigated.

6. Conclusion

In this study, an efficient numerical framework for simulating dense, 
reactive gas–solid flows was developed and validated. The methodology 
combines the Discrete Element Method (DEM) for resolving the particle 
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Table 3
Simulation parameters for speed of sound measurement.
 Bed
 Height(𝐿𝑥) [m] 0.15  
 Width(𝐿𝑦) [m] 0.05  
 Depth(𝐿𝑧) [m] 0.05  
 Particle
 Sphericity [–] 1  
 Number [–] 280,784  
 Diameter [m] 1.0 × 10−3  
 Density [kg∕m3] 1036  
 Normal spring constant [N∕m] 800  
 Poisson’s ratio [–] 0.25  
 Coefficient of restitution(normal) [–] 0.9  
 Coefficient of friction [–] 0.3  
 Initial bed height [m] 0.1  
 Gas
 Chemical species [–] Dry Air/CO2/H2  
 Temperature [K] 250, 300, . . . , 600 
 Cells in 𝑥-direction [–] 60  
 Cells in 𝑦-direction [–] 20  
 Cells in 𝑧-direction [–] 20  
 Cell size in 𝑥-direction(Δ𝑥) [m] 2.5 × 10−3  
 Cell size in 𝑦-direction(Δ𝑦) [m] 2.5 × 10−3  
 Cell size in 𝑧-direction(Δ𝑧) [m] 2.5 × 10−3  
 Time step [s] 5 × 10−5  

Fig. 10. Speed of sound predicted using Eq. (47) as a function of bulk void 
fraction, compared with the theoretical frozen speed of sound (Rudinger, 
1980) (solid red line) and the single-phase gas theory (dotted blue line). (For 
interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.)

phase with a volume averaged gas equations solved by a weakly-
compressible fractional-step method. This approach was designed to 
bridge the gap between computationally prohibitive, fully compressible 
DEM–CFD solvers and faster methods that neglect important acoustic 
phenomena.

A series of validation cases confirmed the framework’s capabilities. 
Simulations of pressure drop in a fixed bed and particle dynamics 
in a spout-fluidized bed demonstrated that the framework accurately 
captures fundamental gas–particle momentum exchange and complex 
hydrodynamic behaviors. These tests also highlighted the critical role 
of particle contact parameters (restitution and friction coefficients), 
underscoring the need for their careful calibration to achieve quantita-
tive accuracy. Furthermore, a key study on acoustic wave propagation 
validated the framework’s central feature: its ability to reproduce the 
correct finite speed of sound for various gases at different temperatures, 
using species properties derived from CHEMKIN libraries. The flexibil-
ity of the framework was further highlighted in a second study, where 
the framework also successfully reproduced an alternative theoretical 
frozen speed of sound for the two-phase mixture. Together, these 
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acoustic studies demonstrate that the framework can capture different 
physical regimes of sound propagation, confirming that the physically 
appropriate model for the speed of sound depends on factors such as 
the response of the particles to the acoustic waves.

In conclusion, this work establishes a robust, efficient, and physi-
cally comprehensive numerical tool for the study of reactive gas–solid 
multiphase systems. By successfully integrating a non-iterative fluid 
solver capable of resolving acoustic wave propagation with a discrete 
particle model, this framework is now well-positioned for application to 
its motivating problem: the large-scale simulation fluidized bed reactors 
especially methanation. Future work will focus on implementing reac-
tion kinetics to investigate the crucial link between reaction-induced 
density changes and fluidization efficiency.
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Appendix A. Derivation of the pressure-term-free energy equation

This appendix details the reformulation of the energy equation 
to eliminate the terms including pressure, resulting in Eq. (8). The 
derivation is based on the thermodynamic relations for an ideal gas.

From Mayer’s relation, we have: 
𝑅 = 𝐶𝑝 − 𝐶𝑣. (A.1)

From the ideal gas law, Eq. (6), and the definition of the speed of sound, 
Eq. (7), pressure can be expressed as: 

𝑝 = 𝜌𝑓
𝑐2

𝛾
. (A.2)

Using the definition of specific heat at constant pressure, 𝐶𝑝 =
(𝜕ℎ∕𝜕𝑇 )𝑝, a relationship between the differentials of enthalpy, pressure, 
and density can be derived. By expressing the total differential of 
temperature 𝛿𝑇  in terms of 𝛿𝑝 and 𝛿𝜌𝑓  and substituting it into the 
enthalpy definition, we obtain: 

𝜌𝑓 𝛿ℎ =
𝛾

𝛾 − 1

(

𝛿𝑝 − 𝑐2

𝛾
𝛿𝜌𝑓

)

. (A.3)

Rearranging Eq. (A.3) to solve for the pressure differential gives a key 
thermodynamic relation: 

𝛿𝑝 =
𝛾 − 1
𝛾

𝜌𝑓 𝛿ℎ + 𝑐2

𝛾
𝛿𝜌𝑓 . (A.4)

Taking the partial derivative of Eq. (A.4) with respect to time and 
applying the product rule to the enthalpy term yields the expression for 
the time derivative of pressure: 
𝜕𝑝
𝜕𝑡

=
𝛾 − 1
𝛾

𝜌𝑓
𝜕ℎ
𝜕𝑡

+ 𝑐2

𝛾
𝜕𝜌𝑓
𝜕𝑡

=
𝛾 − 1

( 𝜕(𝜌𝑓ℎ) − ℎ
𝜕𝜌𝑓

)

+ 𝑐2 𝜕𝜌𝑓 .
(A.5)
𝛾 𝜕𝑡 𝜕𝑡 𝛾 𝜕𝑡
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Finally, the pressure terms in the original enthalpy-based energy 
equation, Eq. (3), are eliminated. This is achieved by substituting the 
expression for 𝜕𝑝∕𝜕𝑡 from Eq. (A.5) and the expression for 𝑝 from 
Eq. (A.2) into the 𝒖𝑓 ⋅∇𝑝 term. After simplification using the continuity 
equation, Eq. (1), and substantial algebraic rearrangement, we obtain 
the final pressure-term-free form of the energy equation: 
𝜕
𝜕𝑡
(𝜌𝑓ℎ) + ∇ ⋅ (𝜌𝑓ℎ𝒖𝑓 ) = − 𝑐2𝜌𝑓∇ ⋅ 𝒖𝑓 + 𝛾∇ ⋅ (𝑘∇𝑇 )

+ 𝛾𝝉 ∶ ∇𝒖𝑓 − (𝛾 − 1)𝜌𝑓𝒖𝑓 ⋅ ∇ℎ.
(A.6)

Appendix B. Derivation of the Helmholtz equation for pressure 
correction

This appendix details the derivation of the Helmholtz equation 
for the pressure correction, Eq. (46). The derivation is based on the 
following set of correction-step equations.

The momentum correction is given by Eq. (43). Taking the diver-
gence of this equation yields: 

∇ ⋅
⎛

⎜

⎜

⎝

𝜀𝑛+1𝑓 𝜌𝑓
𝑛+1𝒖̃𝑛+1𝑓 − 𝜀𝑛+1𝑓 𝜌𝑓

∗𝒖̃∗𝑓
𝛥𝑡

⎞

⎟

⎟

⎠

− ∇ ⋅

(

𝜀𝑛+1𝑓 𝒖̃∗𝑓
𝑐∗2

𝛿𝑝
𝛥𝑡

)

= −1
2
∇ ⋅

(

𝜀𝑛+1𝑓 ∇(𝑝𝑛 + 𝑝∗ + 𝛿𝑝)
)

. (B.1)

To eliminate the unknown velocity term, ∇⋅(𝜀𝑓 𝜌𝑓 𝒖̃𝑓 )𝑛+1, the second-
order accurate time discretization of the continuity equation is used: 

𝜀𝑛+1𝑓 𝜌𝑓
𝑛+1 − 𝜀𝑛𝑓 𝜌𝑓

𝑛

𝛥𝑡
+ ∇ ⋅

⎛

⎜

⎜

⎝

𝜀𝑛+1𝑓 𝜌𝑓
𝑛+1𝒖̃𝑛+1𝑓 + 𝜀𝑛𝑓 𝜌𝑓

𝑛𝒖̃𝑛𝑓
2

⎞

⎟

⎟

⎠

= 𝑆𝜌. (B.2)

Additionally, the density at the new time step, 𝜌𝑓 𝑛+1, is substituted 
using the density correction relationship from Eq. (42): 

𝜀𝑛+1𝑓 𝜌𝑓
𝑛+1 = 𝜀𝑛+1𝑓 𝜌𝑓

∗ +
𝜀𝑛+1𝑓 𝛿𝑝

𝑐∗2
. (B.3)

By substituting these relationships into Eq. (B.1) and rearranging 
all terms involving the unknown 𝛿𝑝 to the left-hand side, we obtain the 
final Helmholtz equation: 

∇ ⋅ ∇𝛿𝑝 +
∇𝜀𝑛+1𝑓

𝜀𝑛+1𝑓

⋅ ∇𝛿𝑝 − 2
𝜀𝑛+1𝑓

∇ ⋅

(

𝜀𝑛+1𝑓 𝒖̃∗𝑓
𝑐∗2

𝛿𝑝
𝛥𝑡

)

− 4
𝑐∗2𝛥𝑡2

𝛿𝑝

= −∇ ⋅ ∇(𝑝𝑛 + 𝑝∗) −
∇𝜀𝑛+1𝑓

𝜀𝑛+1𝑓

⋅ ∇(𝑝𝑛 + 𝑝∗)

+ 4
𝜀𝑛+1𝑓 𝛥𝑡

[

𝜀𝑛+1𝑓 𝜌𝑓
∗ − 𝜀𝑛𝑓 𝜌𝑓

𝑛

𝛥𝑡
+ ∇ ⋅

(

𝜀𝑛+1𝑓 𝜌𝑓
∗𝒖̃∗𝑓 + 𝜀𝑛𝑓 𝜌𝑓

𝑛𝒖̃𝑛𝑓
2

)

− 𝑆𝜌

]

(B.4)

Appendix C. Method for speed of sound measurement and sensi-
tivity analysis

This appendix details the specific method used to measure the speed 
of sound presented in Section 5.4 and the sensitivity analyses performed 
to confirm the robustness of these measurements.

C.1. Method of measurement

The speed of sound was defined as the propagation speed of a 
pressure wave through the particle bed. The system was initially at 
1 × 105 Pa. A planar pressure wave was generated by instantaneously 
increasing the pressure at the bottom boundary (𝑥 = 0 m) to 2 × 105

Pa at 𝑡 = 0 s. To track the wave front’s position over time, the gas 
pressure was monitored. Specifically, the pressure was averaged in 
the horizontal (𝑦 − 𝑧) plane at each height (𝑥 coordinate). The wave 
front position was measured as the height at which the gauge pressure 
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first exceeded 1 Pa. Sensitivity tests using different pressure thresholds 
showed slight differences in the detected wave front position at each 
time step, however, these variations did not significantly affect the 
resulting speed of sound; therefore, the 1 Pa threshold was adopted. 
The speed of sound was then determined from the slope of a linear 
least-squares fit applied to the position–time data of the wave front in 
the height range from 𝑥 = 0 m to 𝑥 = 0.1 m.

C.2. Parameters sensitivity analyses

The tested sound speed models depend primarily on gas properties 
and, for Eq. (47), void fraction (addressed in Fig.  10). Since particles 
were fixed in these simulations, DEM mechanical parameters (Table  3) 
do not influence wave propagation through the interstitial gas.

Domain boundary effects were minimized. Planar wave generation 
at the bottom boundary negates horizontal dependence. The speed 
measurement was performed within the region of the particle bed 
(0 m to 0.1 m), ensuring wave front analysis occurred before any 
reflections from the top boundary could interfere. Therefore, the results 
are considered independent of the domain size.

A grid size independence study was conducted specifically for the 
streamwise 𝑥-direction cell size (𝛥𝑥), as this is the primary direction of 
wave propagation. Using the setup for Dry Air at 300 K with the speed 
of sound definition (Eq. (19)), three grid resolutions were tested:

1. Fine Grid: 𝛥𝑥 = 1.25 × 10−3 m (Half the baseline size in Table  3)
2. Baseline Grid: 𝛥𝑥 = 2.5 × 10−3 m (Original size from Table  3)
3. Coarse Grid: 𝛥𝑥 = 5.0×10−3 m (Double the baseline size in Table 
3)

The measured speed of sound for each case were 329 m/s, 329 m/s, 
and 411 m/s, respectively. The convergence of the results between 
the fine and baseline grids confirms that the baseline grid resolution 
(𝛥𝑥 = 2.5 × 10−3 m) provides sufficient spatial resolution to capture the 
pressure wave propagation.

Data availability

Data will be made available on request.
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