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Abstract
In this paper, we establish a structure theorem for a
minimal projective klt variety 𝑋 satisfying Miyaoka’s
equality 3𝑐2(𝑋) = 𝑐1(𝑋)2. Specifically, we prove that the
canonical divisor𝐾𝑋 is semi-ample and that the Kodaira
dimension 𝜅(𝐾𝑋) is equal to 0, 1, or 2. Furthermore,
based on this abundance result, we show that a maxi-
mally quasi-étale cover of𝑋 is smooth, and we explicitly
describe the structure of the Iitaka fibration. In addition,
we prove an analogous result for projective klt varieties
with numerically effective anti-canonical divisor.
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1 INTRODUCTION

1.1 Main results

The abundance conjecture, one of the most significant problems in algebraic geometry, remains
largely unsolved in higher dimensions.

Conjecture 1.1 (Abundance conjecture for minimal klt varieties). Let 𝑋 be a (complex) projective
klt variety. If 𝑋 is minimal (i.e., if the canonical divisor 𝐾𝑋 is numerically effective), then 𝐾𝑋 is semi-
ample.

In this paper, we establish a structure theorem forminimal projective klt varieties whose Chern
classes satisfy a certain extremal condition, the so-calledMiyaoka equality. As part of our results,
we also resolve the abundance conjecture for such varieties.
Building on earlier work [55, 73], Miyaoka proved in [58, chapter 7] that a smooth minimal

projective variety 𝑋 satisfiesMiyaoka’s inequality:

3𝑐2(Ω
1
𝑋) − 𝑐1(Ω

1
𝑋)
2 ⩾ 0.

Subsequently, numerous analogous inequalities have been established; see, for example, [45, The-
orem 5.6], [67, Theorem 7.2], [28, 30, 51, 53, 66], and the references therein. These inequalities
involving Chern classes have a long history and play an important role in higher dimensional
algebraic geometry.
The structure of varieties 𝑋 satisfying equality in such inequalities is expected to be well-

understood in detail. For instance, building on [73], Miyaoka proved in [56] that a smooth
projective surface 𝑋 of general type satisfying Miyaoka’s equality

3𝑐2(Ω
1
𝑋) − 𝑐1(Ω

1
𝑋)
2 = 0

must be an (infinite) étale quotient of the unit ball. Later, Peternell–Wilson [65] explicitly deter-
mined which minimal terminal varieties of dimension three can satisfy Miyaoka’s equality. The
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case 𝜈(𝐾𝑋) = 0, where Miyaoka’s equality is equivalent to 𝑐2(Ω1𝑋) = 0 and𝑋must be a finite étale
quotient of a complex torus, has been extensively studied, including in the singular case (see [13,
22, 53]). More recently, the case where 𝜈(𝐾𝑋) ⩽ 1 and 𝑐2(Ω1𝑋) = 0 has been studied for compact
Kähler manifolds in [37], where it was shown that 𝑋 admits the structure of a smooth abelian
fibration over a curve of general type up to finite étale cover. We emphasize that in all of the above
cases, the abundance conjecture was shown to hold for 𝑋. Moreover, varieties satisfying related
extremal Chern class conditions have also been studied in [25, 28, 31, 62].
Our main result extends, generalizes, and unifies several of the aforementioned results [37,

56, 58, 65]. Specifically, we first prove that Miyaoka’s inequality continues to hold for minimal
projective klt varieties. Moreover, we resolve the abundance conjecture for a minimal klt variety
𝑋 satisfying the equality

3𝑐2(Ω
1
𝑋) − 𝑐1(Ω

1
𝑋)
2 = 0,

and explicitly describe the geometry of 𝑋. In particular, for minimal terminal threefolds,
Theorem 1.2 precisely recovers the classification given in [65].

Theorem1.2 (Main result).Let𝑋 be a projective klt variety of dimension𝑛with numerically effective
canonical divisor 𝐾𝑋 . Then, the following statements hold.

(A) Miyaoka’s inequality holds for ample divisors𝐻1,… ,𝐻𝑛−2 on 𝑋:(
3𝑐2

(
Ω[1]𝑋

)
− 𝑐1

(
Ω[1]𝑋

)2)
𝐻1⋯𝐻𝑛−2 ⩾ 0,

where 𝑐2(Ω
[1]
𝑋 ) and 𝑐1(Ω

[1]
𝑋 ) denote the ℚ-Chern classes of the cotangent sheafΩ

[1]
𝑋 .

(B) Assume that Miyaoka’s equality holds for some ample divisors𝐻𝑖 on 𝑋:(
3𝑐2

(
Ω[1]𝑋

)
− 𝑐1

(
Ω[1]𝑋

)2)
𝐻1⋯𝐻𝑛−2 = 0. (1.1)

Then, the canonical divisor 𝐾𝑋 is semi-ample and 𝜈(𝐾𝑋) = 𝜅(𝐾𝑋) is equal to 0, 1, or 2.
Moreover, there exists a finite quasi-étale cover 𝑋′ → 𝑋 such that, depending on the Kodaira

dimension, one of the following holds.

(i) In the case where 𝜈(𝐾𝑋) = 𝜅(𝐾𝑋) = 0, the variety 𝑋′ is isomorphic to an abelian variety.
(ii) In the case where 𝜈(𝐾𝑋) = 𝜅(𝐾𝑋) = 1, the variety 𝑋′ admits the structure of an abelian group

scheme 𝑋′ → 𝐶 over a curve 𝐶 of general type.
(iii) In the case where 𝜈(𝐾𝑋) = 𝜅(𝐾𝑋) = 2, the variety 𝑋′ is isomorphic to the product 𝐴 × 𝑆 of an

abelian variety 𝐴 and a smooth surface 𝑆 whose universal cover is the unit ball in ℂ2.

In particular, in all cases, the variety 𝑋 is smooth up to finite quasi-étale covers.

Note that a similar result was obtained for varieties of large Kodaira dimension in [31], where
Hao and Schreieder showed that a minimal projective variety 𝑋 satisfying 𝑐2(Ω

[1]
𝑋 )𝐾

𝑛−2
𝑋 = 0 and

𝜅(𝐾𝑋) = 𝑛 − 1 is isomorphic to the product of an elliptic curve and a variety of general type, up
to quasi-étale covers and birational modifications.
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4 of 41 IWAI et al.

The following corollary, established for smooth varieties in [37], is an immediate consequence
of Theorem 1.2. As explained in the introduction of [37], this result can be viewed as a partial
complement to that of [50].

Corollary 1.3. Let 𝑋 be a projective klt variety with numerically effective canonical divisor. Assume
that there exist ample divisors𝐻1,… ,𝐻𝑛−2 on 𝑋 such that

𝑐2(Ω
[1]
𝑋 )𝐻1⋯𝐻𝑛−2 = 0.

Then, the canonical divisor 𝐾𝑋 is semi-ample and 𝜈(𝐾𝑋) = 𝜅(𝐾𝑋) is equal to 0 or 1.

In another direction, we obtain a structure theorem (see Theorem 1.4 below) for a projective
variety 𝑋 with numerically effective anti-canonical divisor −𝐾𝑋 and 𝑐2(𝑋) = 0. This theorem
generalizes the results of [11, 61] for smooth varieties and [36] for terminal threefolds to projective
klt varieties of arbitrary dimension.

Theorem 1.4. Let 𝑋 be a projective klt variety of dimension 𝑛 with numerically effective
anti-canonical divisor −𝐾𝑋 . Assume that there exist ample divisors𝐻1,… ,𝐻𝑛−2 on 𝑋 such that

𝑐2(𝑋)𝐻1⋯𝐻𝑛−2 = 0,

where 𝑋 denotes the tangent sheaf of 𝑋. Then, the numerical dimension 𝜈(−𝐾𝑋) is equal to 0 or
1. Moreover, there exists a finite quasi-étale cover 𝑋′ → 𝑋 such that, depending on the numerical
dimension 𝜈(−𝐾𝑋), one of the following holds.

(i) In the case where 𝜈(−𝐾𝑋) = 0, the variety 𝑋′ is isomorphic to an abelian variety.
(ii) In the case where 𝜈(−𝐾𝑋) = 1, the variety 𝑋′ admits a locally trivial fibration 𝑋′ → 𝐴 onto an

abelian variety 𝐴 with fiber ℙ1.

In particular, in all cases, the variety 𝑋 is smooth up to finite quasi-étale covers.

1.2 Overview and outline of proofs

This subsection outlines the proofs of Theorems 1.2 and 1.4, and highlights our new contributions
compared to previously known results in the literature.
To prove Miyaoka’s inequality for klt varieties, we extend the argument of [45] to the klt setting

by using Langer’s proof of the Bogomolov–Gieseker inequality. Note that the argument in [45] is
essentially the same as Miyaoka’s original proof in [58], with a slight simplification introduced
in [68]. In any case, the possibility of extending these arguments to klt varieties might be already
known to experts.
Let us now consider the case where a minimal projective variety𝑋 satisfies Miyaoka’s equality.

In the case 𝜈(𝐾𝑋) = 0, the desired result was obtained in [22, Theorem 1.17] and [53, Theorem 1.2].
Thus, it remains to consider two cases: 𝜈(𝐾𝑋) = 1, discussed in Subsection 4.1, and 𝜈(𝐾𝑋) ⩾ 2,
discussed in Subsection 4.2.
Both cases require a detailed analysis of the Harder–Narasimhan filtration of the cotangent

sheaf Ω[1]𝑋 and of the second ℚ-Chern class 𝑐2(Ω
[1]
𝑋 ). In particular, as in previous works [11, 37,

58, 61], the first graded piece 1 ⊂ Ω
[1]
𝑋 of the Harder–Narasimhan filtration plays a crucial role

in our proof. We study the Harder–Narasimhan filtration in detail in Section 3.
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MINIMAL PROJECTIVE VARIETIES SATISFYINGMIYAOKA’S EQUALITY 5 of 41

In the case 𝜈(𝐾𝑋) = 1, we first prove that 𝐾𝑋 is semi-ample. This part is analogous to the argu-
ment in [37], where the result was established in the smooth case. The proof relies on Campana’s
notion of special varieties and the result of Lazić–Peternell [50] on the abundance conjecture for
varieties of numerical dimension one. At this point, however, our argument departs significantly
from the existing literature, since it is not clear from the study of the Harder–Narasimhan filtra-
tion whether a maximally quasi-étale cover of 𝑋 is necessarily smooth. To proceed, we first show
that the Iitaka fibration 𝑓∶ 𝑋 → 𝐶 carries the structure of a stratified 𝐶∞-orbifold fiber bundle.
This requires a precise local understanding of numerically flat sheaves on klt varieties (see Sub-
section 2.5). Then, using a combination of topological and algebraic methods, we prove that the
multiple fibers can be eliminated. Once smoothness is established, we conclude by applying [34,
37].
In the case 𝜈(𝐾𝑋) ⩾ 2, an examination of theHarder–Narasimhan filtration together with some

standard arguments shows that𝑋 is smooth. The result then follows froman integrability theorem
for numerically flat foliations obtained by Pereira–Touzet [64]. We find it remarkable that, to the
best of our knowledge, the conclusion of Theorem 1.2 (iii) had not even been conjectured before,
although the subject has been studied extensively in the literature.
The proof of Theorem 1.4 is presented in Section 5. In the proof, we apply the structure theorem

for a projective variety with numerically effective anti-canonical divisor [12, 54], which provides a
locally constant Albanesemap𝑋 → Alb(𝑋) after replacing𝑋 by a finite quasi-étale cover.We then
analyze in detail the Harder–Narasimhan filtration of the relative tangent sheaf 𝑋∕𝐴 to show that
the fiber dimension of 𝑋 → Alb(𝑋) is at most one.

2 PRELIMINARY RESULTS

2.1 Notation and conventions

Throughout this paper, we work over the field of complex numbers. We employ the standard
notation and conventions of [32, 44], as detailed in [38, subsection 2.1]. Moreover, we will simply
say that 𝑋 is a klt variety if the pair (𝑋, 0) is klt, equivalently, the variety 𝑋 is log terminal. All
sheaves considered in this paper are assumed to be coherent, unless explicitly stated otherwise.
Furthermore, a reflexive sheaf  of rank one is called a ℚ-line bundle if its reflexive 𝑚th tensor
power [⊗𝑚] ∶= (⊗𝑚)∨∨ is locally free for some𝑚 ∈ ℕ.

2.2 Maximally quasi-étale covers

In this subsection, following [25, section 2.5], we review maximally quasi-étale covers.
A normal variety 𝑋 is said to be maximally quasi-étale if the morphism 𝜋1(𝑋reg) → 𝜋1(𝑋)

induced by the natural inclusion 𝑖 ∶ 𝑋reg ↪ 𝑋 is an isomorphism, where 𝑋reg denotes the smooth
locus of 𝑋 and 𝜋1(∙) denotes the étale fundamental group. By [24, Theorem 1.14], any klt variety
𝑌 admits a finite quasi-étale cover 𝜈∶ 𝑋 → 𝑌 such that 𝑋 is maximally quasi-étale. If 𝑋 is maxi-
mally quasi-étale, then any projective (or linear) representation of the (topological) fundamental
group 𝜋1(𝑋reg) can be extended to a representation of 𝜋1(𝑋) by the following result:

Theorem 2.1 [26, proof of Proposition 3.10]. Let 𝑋 be a maximally quasi-étale variety.
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6 of 41 IWAI et al.

(1) Any representation 𝜌0 ∶ 𝜋1(𝑋reg) → ℙGL(𝑟, ℂ) factors through 𝜋1(𝑋):

(2) Any representation 𝜌0 ∶ 𝜋1(𝑋reg) → GL(𝑟, ℂ) factors through 𝜋1(𝑋).

2.3 ℚ-Chern classes

In this subsection, following [27, 43], we review ℚ-Chern classes, which allow us to define
intersection numbers for characteristic classes of reflexive sheaves.
Let 𝑋 be a projective klt variety of dimension 𝑛, and let  and  be reflexive sheaves on 𝑋. As

explained in [43, chapter 10] and [27, Theorem 3.13], the ℚ-Chern classes 𝑐1(), 𝑐1()𝑐1(), and
𝑐2() can be defined as the symmetricℚ-multilinear forms satisfying the properties (P1) and (P2):

𝑐1()∶ N
1(𝑋)𝑛−1ℚ ⟶ ℚ, (𝛼1, … , 𝛼𝑛−1)⟼ 𝑐1()𝛼1⋯𝛼𝑛−1,

𝑐1()𝑐1()∶ N
1(𝑋)𝑛−2ℚ ⟶ ℚ, (𝛼1, … , 𝛼𝑛−2)⟼ 𝑐1()𝑐1()𝛼1⋯𝛼𝑛−2,

𝑐2()∶ N
1(𝑋)𝑛−2ℚ ⟶ ℚ, (𝛼1, … , 𝛼𝑛−2)⟼ 𝑐2()𝛼1⋯𝛼𝑛−2.

(P1) In the case 𝑛 = 2, the surface 𝑋 admits a (not necessarily quasi-étale) finite Galois cover
𝜈∶ 𝑋 → 𝑋 such that the reflexive pullback 𝜈[∗] is locally free, and

deg 𝜈 ⋅ (𝑐1() ⋅ 𝛼) = 𝑐1
(
𝜈[∗]

)
⋅ 𝜈∗𝛼,

for any 𝛼 ∈ N1(𝑋)ℚ.
(P2) In the case 𝑛 > 2, for any general member𝑉 ∈  of a free sub-linear system ⊂ |𝐿| of some

line bundle 𝐿, we have

𝑐1()𝑐1(𝐿)𝛼2⋯𝛼𝑛−1 = 𝑐1(|𝑉)𝛼2⋯𝛼𝑛−1,

for any 𝛼𝑖 ∈ N1(𝑋)ℚ. Note that 𝑉 is a klt hypersurface in 𝑋 and |𝑉 is reflexive.
The same properties as (P1) and (P2) hold for 𝑐1()𝑐1() and 𝑐2().
In this paper, we need to treat intersection numbers with particular care. For this reason, we

briefly review the definitions of intersection numbers for Weil divisors and torsion-free sheaves.

Definition 2.2.

(1) (Weil divisors, divisorial sheaves, and determinant sheaves). Let 𝐷 be a Weil divisor on 𝑋,
and let  ∶= 𝑋(𝐷) be the associated divisorial sheaf. We define 𝑐1(𝐷) ∶= 𝑐1(). By prop-
erties (P1) and (P2), when 𝐷 is ℚ-Cartier, this definition coincides with the ℚ-multilinear
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MINIMAL PROJECTIVE VARIETIES SATISFYINGMIYAOKA’S EQUALITY 7 of 41

form 1
𝑚
𝑐1(𝑚𝐷) naturally defined by the line bundle 𝑚𝐷, where 𝑚 ∈ ℤ+ with 𝑚𝐷 Cartier.

Furthermore, for a reflexive sheaf  , we have 𝑐1() = 𝑐1(det), where det ∶= (Λrk )∨∨.
(2) (Torsion-free sheaves). For a torsion-free sheaf  on 𝑋, we define 𝑐1() ∶= 𝑐1(∨∨). Let 𝐶 be

the curve defined by the complete intersection of general members of |𝐻𝑖|, where each 𝐻𝑖
is a very ample Cartier divisor on 𝑋. Since the natural map → ∨∨ is an isomorphism in
codimension one, the restriction |𝐶 is locally free on 𝐶, and we have

𝑐1()𝐻1⋯𝐻𝑛−1 = 𝑐1(|𝐶).
For convenience, we often write 𝑐1(∙) instead of 𝑐1(∙), and similarly 𝑐1(∙)𝑐1(⧫) instead of

𝑐1(∙)𝑐1(⧫). Furthermore, we use the following notation

𝐷𝛼1⋯𝛼𝑛−1 ∶= 𝑐1(𝐷)𝛼1⋯𝛼𝑛−1.

These conventions are adopted to simplify notation and to avoid confusion in view of the
properties mentioned above.
We now generalize the Hodge index theorem to Weil divisors on projective klt varieties using

ℚ-Chern classes. The following proposition is perhaps already known to experts, but we include
an explanation for completeness, since appropriate references seem to be lacking.

Proposition 2.3 (Hodge index theorem). Let𝑋 be a projective klt variety of dimension 𝑛. Let𝐴 and
𝐵 be ℚ-Weil divisors on 𝑋, and let𝐻1,… ,𝐻𝑛−2 be ample ℚ-Cartier divisors on 𝑋.

(1) If 𝐴2 ⋅𝐻1⋯𝐻𝑛−2 > 0, then we have

(𝐴2 ⋅𝐻1⋯𝐻𝑛−2) ⋅ (𝐵
2 ⋅𝐻1⋯𝐻𝑛−2) ⩽ (𝐴 ⋅ 𝐵 ⋅𝐻1⋯𝐻𝑛−2)

2. (2.1)

(2) If

𝐵2 ⋅𝐻1⋯𝐻𝑛−2 = 𝐴 ⋅ 𝐵 ⋅𝐻1⋯𝐻𝑛−2 = 0,

then we have

𝐴2 ⋅𝐻1⋯𝐻𝑛−2 ⩽ 0. (2.2)

(3) In cases (1) and (2), if equality holds in (2.1) or (2.2), respectively, then there exists a rational
number 𝜆 ∈ ℚ such that

𝐵 ⋅ 𝐿 ⋅𝐻1⋯𝐻𝑛−2 = 𝜆 ⋅ (𝐴 ⋅ 𝐿 ⋅𝐻1⋯𝐻𝑛−2)

holds for any ℚ-Weil divisor 𝐿 on 𝑋.

Remark 2.4. When 𝑋 is a smooth projective variety, this proposition follows directly from the
Hodge index theorem (see, for example, [3, Corollary IV.2.15]). When both𝐴 and 𝐵 are ℚ-Cartier,
the proposition can be proved by taking a resolution of singularities of 𝑋, even without assuming
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8 of 41 IWAI et al.

that 𝑋 has klt singularities. The main difference between this proposition and conventional
formulations is its treatment of ℚ-Weil divisors.

Proof. We reduce the proof to the case where 𝑋 is a surface. The Weil divisors 𝐴 and 𝐵 are not
necessarily ℚ-Cartier, but this causes no difficulty thanks to [49] and the assumption that 𝑋 has
klt singularities.
By replacing 𝐻𝑖 with 𝑚𝑖𝐻𝑖 for 𝑚𝑖 ≫ 1, we may assume that each 𝐻𝑖 is a very ample Cartier

divisor. Define the surface 𝑆 as the complete intersection

𝑆 ∶= 𝑉1 ∩⋯ ∩ 𝑉𝑛−2,

where each 𝑉𝑖 is a general member of |𝐻𝑖|. Then, by [49, Theorem 0.1], we obtain

(𝐴|𝑆)2 = 𝐴2 ⋅𝐻1⋯𝐻𝑛−2.

Here, the intersection numbers are computed using ℚ-Chern classes. The left-hand side (𝐴|𝑆)2
coincides with the usual intersection number of the ℚ-Cartier divisor 𝐴|𝑆 . Indeed, the surface 𝑆
has klt singularities and is therefore ℚ-factorial, which implies that 𝐴|𝑆 is ℚ-Cartier. The same
argument applies to 𝐴|𝑆 ⋅ 𝐵|𝑆 and (𝐵|𝑆)2. Therefore, the desired conclusions follow from the
standard Hodge index theorem (see Remark 2.4). □

Lemma 2.5. Let 𝑋 be a projective klt variety of dimension 𝑛. Let  be a reflexive sheaf of rank one
and 𝐷 be a ℚ-Cartier divisor on 𝑋 such that

(𝑐1() − 𝑐1(𝐷))𝐻1⋯𝐻𝑛−1 = 0 and (𝑐1() − 𝑐1(𝐷))
2𝐻1⋯𝐻𝑛−2 = 0 holds

for some ampleℚ-Cartier divisors𝐻𝑖 on𝑋. Then, the sheaf is aℚ-line bundle and satisfies 𝑐1() =
𝑐1(𝐷).

Proof. Let 𝜈∶ 𝑋 → 𝑋 be a maximally quasi-étale Galois cover with Galois group 𝐺, and let 𝑚 ∈
ℤ>0 be a positive integer such that𝑚𝐷 is Cartier. The sheaf

′ ∶= 𝜈[∗]([⊗𝑚] ⊗ 𝑋(−𝑚𝐷))

is reflexive and satisfies

𝑐1(
′) ⋅𝐻1⋯𝐻𝑛−1 = 0 and 𝑐1(

′)2 ⋅𝐻1⋯𝐻𝑛−2 = 0

by assumption. Furthermore, since ′ has rank one, it is stable and satisfies 𝑐2(′) ⋅
𝐻1⋯𝐻𝑛−2 = 0. Hence, by [53, Theorem 1.4], we deduce that′ is a flat invertible sheaf.
Replacing 𝑚 by a sufficiently divisible multiple, if necessary, we may assume that the natural

action of 𝐺 on ′|𝑥 is trivial for every 𝑥 ∈ 𝑋. Consequently, there exists a flat line bundle 

on 𝑋 such that ′ = 𝜈∗ (see [16, Theorem 6.8]). This shows that  is a ℚ-line bundle with
𝑐1() = 𝑐1(𝐷). □

The following proposition is elementary, but keeping it in mind is often useful. The proof is
straightforward, and thus we omit it.
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MINIMAL PROJECTIVE VARIETIES SATISFYINGMIYAOKA’S EQUALITY 9 of 41

Proposition 2.6. Let 𝑋 be a projective variety of dimension 𝑛, and let 0 ⩽ 𝑘 ⩽ 𝑛 be an integer. Let
𝛼∶ N1(𝑋)𝑛−𝑘ℚ → ℚ be a symmetric ℚ-multilinear form such that

𝛼 ⋅𝐻1⋯𝐻𝑘 ⩾ 0

holds for any ample ℚ-divisors𝐻𝑖 on 𝑋. Then, the following conditions are equivalent.

∙ 𝛼 ⋅𝐻1⋯𝐻𝑘 = 0 for some ample ℚ-divisors𝐻1,… ,𝐻𝑘 .
∙ 𝛼 ⋅𝐻1⋯𝐻𝑘 = 0 for all ample ℚ-divisors𝐻1,… ,𝐻𝑘 .
∙ 𝛼 ⋅𝐻1⋯𝐻𝑘 = 0 for all numerically effective ℚ-divisors𝐻1,… ,𝐻𝑘 .

2.4 Higgs sheaves

In this subsection, we establish some preliminary results on Higgs sheaves. We begin by recalling
the definition and basic properties of Higgs sheaves.

Definition 2.7 (cf. [27, sections 4 and 5]). A Higgs sheaf (, 𝜃) on a normal projective variety 𝑋
is a pair consisting of a reflexive sheaf  and an 𝑋-linear sheaf morphism 𝜃∶  →  ⊗Ω[1]𝑋 ,
called Higgs field, such that the induced morphism

𝜃 ∧ 𝜃∶  →  ⊗Ω[2]𝑋

vanishes.

(1) A subsheaf  ⊂  is said to be generically 𝜃-invariant if 𝜃(|𝑋reg ) is contained in the image of
the natural map  ⊗Ω[1]𝑋 →  ⊗Ω[1]𝑋 on 𝑋reg.

(2) Let 𝐿1, … , 𝐿𝑛−1 be numerically effective ℚ-Cartier divisors on 𝑋. The slope of (, 𝜃) with
respect to (𝐿1⋯𝐿𝑛−1) is defined by

𝜇𝐿1⋯𝐿𝑛−1() ∶=
𝑐1() ⋅ 𝐿1⋯𝐿𝑛−1

rk
.

(3) The Higgs sheaf (, 𝜃) is said to be (𝐿1⋯𝐿𝑛−1)-semistable (resp., (𝐿1⋯𝐿𝑛−1)-stable) if any
generically 𝜃-invariant reflexive subsheaf 0 ⊊  ⊊  satisfies

𝜇𝐿1⋯𝐿𝑛−1() ⩽ 𝜇𝐿1⋯𝐿𝑛−1() (resp.,𝜇𝐿1⋯𝐿𝑛−1() < 𝜇𝐿1⋯𝐿𝑛−1()).

Proposition 2.8. Let 𝑋 be a projective klt variety of dimension 𝑛 and 𝐿1, … , 𝐿𝑛−1 be numerically
effective ℚ-Cartier divisors. For a reflexive subsheaf  ⊂ Ω[1]𝑋 , we define the Higgs sheaf (, 𝜃) by
 ∶=  ⊕ 𝑋 and

𝜃∶  =  ⊕ 𝑋 ⟶  ⊗Ω[1]𝑋 = ( ⊕ 𝑋) ⊗ Ω[1]𝑋
(𝑎, 𝑏) ⟼ (0, 𝑎).

If  is a (𝐿1⋯𝐿𝑛−1)-semistable sheaf with 𝜇𝐿1⋯𝐿𝑛−1() > 0, then the Higgs sheaf (, 𝜃) is
(𝐿1⋯𝐿𝑛−1)-stable.
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10 of 41 IWAI et al.

Proof. Set 𝛼 ∶= 𝐿1⋯𝐿𝑛−1 ∈ N
1(𝑋)𝑛−1ℚ . Suppose that (, 𝜃) is not 𝛼-stable. Then, there exists a

nontrivial generically 𝜃-invariant subsheaf  ⊂  with 𝜇𝛼() ⩾ 𝜇𝛼(). Set 𝑟 ∶= rk  and 𝑙 ∶=
rk . By definition, we have

𝜇𝛼() ⩾ 𝜇𝛼() =
𝑟

𝑟 + 1
𝜇𝛼() > 0.

Consider the sheaf morphism

𝛾∶  ⊂  =  ⊕ 𝑋
pr2
QQQQQ→ 𝑋

induced by the second projection. Note that 𝛾∶  → 𝑋 is not the zeromap, since is generically
𝜃-invariant.
We claim that Ker(𝛾) is a destabilizing subsheaf of  with respect to 𝛼. First, we confirm that

Ker(𝛾) is a nonzero subsheaf of. Indeed, if 𝛾 were injective, then  ≅ Im(𝛾) ⊂ 𝑋 would be an
ideal sheaf of 𝑋 . This would imply 0 ⩾ 𝜇𝛼(Im(𝛾)) = 𝜇𝛼(), which is a contradiction.
We now consider the exact sequence

0 → Ker(𝛾) →  → Im(𝛾) → 0.

Since Ker(𝛾) ⊂  and Im(𝛾) ⊂ 𝑋 , both sheaves are torsion-free. It follows that

𝑐1() ⋅ 𝛼 = 𝑐1(Ker(𝛾)) ⋅ 𝛼 + 𝑐1(Im(𝛾)) ⋅ 𝛼 ⩽ 𝑐1(Ker(𝛾)) ⋅ 𝛼. (2.3)

By noting that rk(Ker(𝛾)) = 𝑙 − 1 and using (2.3), we obtain

𝜇𝛼(Ker(𝛾)) =
1

𝑙 − 1
𝑐1(Ker(𝛾)) ⋅ 𝛼 ⩾

𝑙
𝑙 − 1

𝜇𝛼() ⩾
𝑟𝑙

(𝑟 + 1)(𝑙 − 1)
𝜇𝛼().

By noting 𝑟𝑙
(𝑟+1)(𝑙−1)

> 1 holds, we obtain 𝜇𝛼(Ker(𝛾)) > 𝜇𝛼(), contradicting the 𝛼-semistability of
 . □

2.5 Numerically projectively flat sheaves

In this section, we investigate numerically projectively flat reflexive sheaves, which play a cru-
cial role in studying the singularities of varieties. We first review the definition of numerically
projectively flat sheaves and the Bogomolov–Gieseker inequality.

Definition 2.9. Let 𝑋 be a projective klt variety of dimension 𝑛, and let  be a reflexive sheaf of
rank 𝑟 on 𝑋. The sheaf  is said to be numerically projectively flat if there exist ample ℚ-Cartier
divisors𝐻1,… ,𝐻𝑛−1 such that  is (𝐻1⋯𝐻𝑛−1)-semistable and satisfies the Bogomolov–Gieseker
equality

Δ̂()𝐻1⋯𝐻𝑛−2 = 0,
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MINIMAL PROJECTIVE VARIETIES SATISFYINGMIYAOKA’S EQUALITY 11 of 41

where

Δ̂() ∶= 2𝑟 𝑐2() − (𝑟 − 1) 𝑐1()
2.

Proposition 2.10 (cf. [48]). Let 𝑋 be a projective klt variety of dimension 𝑛. Let (, 𝜃) be a reflexive
Higgs sheaf on 𝑋, and let𝐻1,… ,𝐻𝑛−1 be ample ℚ-Cartier divisors on 𝑋. If the Higgs sheaf (, 𝜃) is
(𝐻1⋯𝐻𝑛−1)-semistable, then the Bogomolov–Gieseker inequality

Δ̂()𝐻1⋯𝐻𝑛−2 ⩾ 0 (2.4)

holds.Moreover, if𝑋 is maximally quasi-étale and equality holds in (2.4), thenEnd() is locally free.

Proof. The Bogomolov–Gieseker inequality was proved in [48, Theorem 7.6]. Therefore, it suffices
to prove the latter conclusion. Set ∶= End(), which is a reflexiveHiggs sheaf equippedwith the
Higgs field 𝜃 naturally induced by 𝜃. By [27, Lemma 3.18], the Higgs sheaf (, 𝜃) is (𝐻1⋯𝐻𝑛−1)-
semistable and satisfies equality in (2.4). Thus, since 𝑐1() = 0, we obtain

𝑐2() ⋅𝐻1⋯𝐻𝑛−2 = 0.

By [47, Theorem 7.12], it follows that |𝑋reg is locally free and that (, 𝜃) is semistable with
respect to any polarization.Here, we used thatHiggs fields correspond to integrable 𝜆-connections
in the case 𝜆 = 0. By [28, Theorem 6.6], the Higgs bundle (, 𝜃)|𝑋reg is induced from a linear
representation

𝜌0 ∶ 𝜋1(𝑋reg) → GL(rk, ℂ)

via the nonabelian Hodge correspondence. This representation is extended to

𝜌∶ 𝜋1(𝑋) → GL(rk, ℂ)

by Theorem 2.1. Applying the nonabelian Hodge correspondence once more, we obtain a locally
freeHiggs sheaf on𝑋 corresponding to 𝜌. By reflexivity, this locally freeHiggs sheaf on𝑋 coincides
with (, 𝜃). □

Corollary 2.11. Let 𝑋 be a maximally quasi-étale projective klt variety of dimension 𝑛, and let
 ⊂ Ω[1]𝑋 be a reflexive subsheaf of rank 𝑟 of the cotangent sheaf Ω[1]𝑋 . Let 𝐷 be a numerically
effective ℚ-Cartier divisor and 𝐻1,… ,𝐻𝑛−2 be ample ℚ-Cartier divisors on 𝑋. Assume that  is
(𝐷 ⋅𝐻1⋯𝐻𝑛−2)-semistable, that 𝜇𝐷⋅𝐻1⋯𝐻𝑛−2() > 0, and that(

2(𝑟 + 1)𝑐2() − 𝑟 𝑐1()
2)𝐻1⋯𝐻𝑛−2 = 0.

Then, the sheaf  is locally free on 𝑋.

Proof. Consider the Higgs sheaf ( ∶=  ⊕ 𝑋, 𝜃) defined as in Proposition 2.8. By Propo-
sition 2.8, the Higgs sheaf (, 𝜃) is (𝐷 ⋅𝐻1⋯𝐻𝑛−2)-stable. Then, by the argument of [27,
Proposition 4.17], we deduce that (, 𝜃) is also ((𝐷 + 𝜀𝐻1) ⋅𝐻1⋯𝐻𝑛−2)-stable for some 0 <
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12 of 41 IWAI et al.

𝜀 ≪ 1. By assumption, the sheaf  satisfies the Bogomolov–Gieseker equality. Therefore,
Proposition 2.10 shows that End() is locally free on 𝑋. Since  is a direct summand of

End() = End() ⊕  ⊕ ∨ ⊕ 𝑋,

it follows that  is locally free. □

Lemma 2.12. Let 𝑋 be a projective klt variety, and let  be a numerically projectively flat sheaf
on 𝑋 such that det  is a ℚ-line bundle. Then, for any point 𝑥 ∈ 𝑋, there exist an analytic open
neighborhood 𝑥 ∈ 𝑈 ⊂ 𝑋 and a finite quasi-étale Galois cover 𝜋∶ 𝑈 → 𝑈 such that 𝜋[∗] is
locally free.

Proof. Fix a point 𝑥 ∈ 𝑋. By [5, Theorem 1], we can take an analytic open neighborhood 𝑥 ∈
𝑈 ⊂ 𝑋 such that the regional fundamental group 𝜋1(𝑈reg) is finite. By [22, Proposition 3.13], there
exists a finite quasi-étale cover 𝑝∶ 𝑉 → 𝑈 such that𝜋1(𝑉reg) = {id}. Note that𝜋1(𝑉) = {id} by the
normality of 𝑉. Then, by [26, Proposition 3.11], there exists a reflexive sheaf  of rank one such
that

𝑝[∗] ≅ ⊕𝑟.

Since [⊗𝑟] ≅ 𝑝[∗] det  is a ℚ-line bundle by assumption, the sheaf [⊗𝑚] is locally free for
some𝑚 ∈ ℕ. After shrinking 𝑈 if necessary, we may assume that [⊗𝑚] ≅ 𝑉 is trivial. Let

𝑝∶ 𝑈 → 𝑉

be the associated index-one cover such that 𝑝[∗] = 𝑈 , which is a finite quasi-étale cyclic cover
of order𝑚. Then, since 𝜋1(𝑉reg) = {id}, this cover is actually the identity map. Finally, the Galois
closure of 𝑝◦𝑝∶ 𝑈 → 𝑈 satisfies the desired conclusion. □

2.6 Filtrations of reflexive sheaves

In this section, we study filtrations of reflexive sheaves in detail. Although the discussions
and results are technical, they provide essential insights for this paper. The following lemma
investigates the gap between torsion-free sheaves and their reflexive hulls.

Lemma 2.13 (cf. [39, Lemma 2.3]). Let 𝑋 be a projective klt variety of dimension 𝑛. Consider an
exact sequence of sheaves

0⟶  ⟶  ⟶ ⟶0, (2.5)

where  and  are reflexive and  is torsion-free. Then, for any ample ℚ-Cartier divisors 𝐻𝑖 , the
following inequality holds:(

𝑐2() − 𝑐2() − 𝑐2(
∨∨) − 𝑐1()𝑐1()

)
⋅𝐻1⋯𝐻𝑛−2 ⩾ 0. (2.6)
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MINIMAL PROJECTIVE VARIETIES SATISFYINGMIYAOKA’S EQUALITY 13 of 41

Moreover, if equality holds in (2.6) for some ampleℚ-Cartier divisors𝐻𝑖 , then there exists a Zariski
open subset 𝑋◦ ⊂ 𝑋 with codim(𝑋 ⧵ 𝑋◦) ⩾ 3 such that the sequence (2.5) is Zariski-locally split on
𝑋◦. In particular, in this case, the natural morphism → ∨∨ is an isomorphism over 𝑋◦.

Proof. We first reduce the proof to the case where 𝑋 is a surface. Let 𝑆 be the surface defined by
the complete intersection

𝑆 ∶= 𝑉1 ∩⋯ ∩ 𝑉𝑛−2,

where𝑉𝑖 is a general member of |𝑚𝑖𝐻𝑖| for𝑚𝑖 ≫ 1. Then the sheaves |𝑆 , |𝑆 , and|𝑆 satisfy the
assumptions of the lemma. Indeed, a general member 𝑉𝑖 does not contain the associated primes
of the relevant sheaves, so the restriction of (2.5) to 𝑆 remains exact, and reflexivity of sheaves on
𝑋 is preserved under restriction to 𝑆. Furthermore, by property (P2), the left-hand side of (2.6)
coincides with

𝑐2(|𝑆) − 𝑐2( |𝑆) − 𝑐2(∨∨|𝑆) − 𝑐1( |𝑆)𝑐1(|𝑆).
Finally, if the sequence splits locally after restriction to 𝑆, then it also splits locally in a
neighborhood of 𝑆. Therefore, we may assume that 𝑋 is a surface.
As in property (P1), we can take a finite Galois cover 𝜋∶ 𝑋 → 𝑋 such that 𝜋[∗] is locally free

on 𝑋 and satisfies (
𝜋∗𝜋

[∗]
)𝐺
=  and 𝑐2(𝜋

[∗]) = 𝑑 ⋅ 𝑐2(), (2.7)

where 𝐺 ∶= Gal(𝑋∕𝑋) and 𝑑 ∶= deg𝜋 = |𝐺|. We may assume that the same properties also hold
for  and ∨∨.
Consider the induced exact sequence

0⟶ 𝜋[∗] ⟶𝜋[∗]
𝜙
⟶ 𝜋[∗](∨∨)⟶  ∶= Coker(𝜙)⟶ 0, (2.8)

where  is a skyscraper sheaf on𝑋. By [60, Proposition 2.1] or [43, Lemma 10.5], the sheaf  admits
a finite locally free resolution on𝑋, which allows us to define 𝑐2( ). Moreover, by [60, Lemma 3.3]
or [43, Lemma 10.9], we have that−𝑐2( ) equals the length of  (hence nonnegative). Thus, using
(2.7), we deduce

𝑑 ⋅ 𝑐2() = 𝑐2(𝜋
[∗])

= 𝑐2(𝜋
[∗]) + 𝑐2(𝜋

[∗]∨∨) + 𝑐1(𝜋
[∗])𝑐1(𝜋

[∗]∨∨) − 𝑐2( )

⩾ 𝑐2(𝜋
[∗]) + 𝑐2(𝜋

[∗]∨∨) + 𝑐1(𝜋
[∗])𝑐1(𝜋

[∗]∨∨)

= 𝑑 ⋅
(
𝑐2() + 𝑐2(

∨∨) + 𝑐1()𝑐1(
∨∨)

)
.

This proves (2.6).
Assume that equality holds in (2.6). Then, the skyscraper sheaf  vanishes, which means that

0⟶ 𝜋[∗] ⟶𝜋[∗]
𝜙
⟶ 𝜋[∗](∨∨)⟶ 0 (2.9)
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14 of 41 IWAI et al.

is exact. Since all sheaves in (2.9) are locally free, the sequence is Zariski locally split. By pushing
forward (2.9) via 𝜋 and taking 𝐺-invariants, we deduce that

0⟶
(
𝜋∗𝜋

[∗]
)𝐺
⟶

(
𝜋∗𝜋

[∗]
)𝐺
⟶

(
𝜋∗𝜋

[∗](∨∨)
)𝐺
⟶ 0 (2.10)

is exact. Note that
(
𝜋∗(∙)

)𝐺 is exact since 𝜋 is a finite morphism and 𝐺 is finite (cf. [21,
Lemma B.3]). Moreover, since 𝜋 is finite, 𝜋∗ preserves reflexivity of sheaves. Hence, the natural
morphism

 ⟶
(
𝜋∗𝜋

[∗]
)𝐺

is an isomorphism, since it is clearly an isomorphism on the locally free locus of  (which
has codimension ⩾ 2). The same statement holds for  and ∨∨. Thus, we obtain the exact
sequence

0⟶  ⟶  ⟶ ∨∨ ⟶ 0. (2.11)

This shows that→ ∨∨ is an isomorphism.Moreover, if 𝜎∶ 𝜋[∗]|𝑈 → 𝜋[∗]|𝑈 gives a splitting
of (2.9) over a 𝐺-invariant open subset 𝑈 ⊂ 𝑋, then

1|𝐺| ∑
g∈𝐺

g∗𝜎∶ |𝑈 ≅ (
𝜋∗𝜋

[∗]|𝑈)𝐺 ⟶ (
𝜋∗𝜋

[∗]|𝑈)𝐺 ≅ |𝑈
yields a splitting of (2.11) over 𝜋(𝑈) ⊂ 𝑋. □

The following lemma, although technical, plays a crucial role in what follows.

Lemma 2.14. Let 𝑋 be a projective klt variety of dimension 𝑛 and let 𝐻1,… ,𝐻𝑛 be ample divisors
on 𝑋. Consider an exact sequence of sheaves

0⟶  ⟶  ⟶ ⟶0, (2.12)

where  and  are reflexive and  is torsion-free. Assume that  and ∨∨ are numerically
projectively flat and that det() and det() are ℚ-line bundles. If(

𝑐2() − 𝑐2() − 𝑐2(
∨∨) − 𝑐1()𝑐1()

)
⋅𝐻1⋯𝐻𝑛−2 = 0,

holds, then the sequence (2.12) is analytically locally split on𝑋. In particular, the following statements
hold:

(1)  is reflexive, and
(2) the dual sequence

0 → ∨ → ∨ → ∨ → 0 (2.13)

is exact.
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MINIMAL PROJECTIVE VARIETIES SATISFYINGMIYAOKA’S EQUALITY 15 of 41

Proof. Fix a point 𝑥 ∈ 𝑋. By Lemma 2.12, there exists an analytic open set 𝑈 ⊂ 𝑋 and a finite
quasi-étale Galois cover 𝜋∶ 𝑉 → 𝑈 such that both 𝜋[∗] and 𝜋[∗] are locally free on 𝑉.
We first show that the induced sequence

0⟶ 𝜋[∗] ⟶𝜋[∗] ⟶𝜋[∗]⟶0 (2.14)

is an exact sequence of vector bundles on𝑉. The exactness on the left is immediate. ByLemma2.13,
the sequence (2.14) is exact (indeed, even locally split) in codimension two. Note that 𝑉 has klt
singularities since it is a finite quasi-étale cover of the klt variety𝑈; hence 𝑉 is Cohen–Macaulay.
Applying [2, Lemma 9.9], we conclude that (2.14) is an exact sequence of vector bundles. Strictly
speaking, [2, Lemma 9.9] is stated only for schemes, but its proof applies equally to complex
analytic varieties.
Let𝐺 be the Galois group of 𝜋∶ 𝑉 → 𝑈. Then, as in the second half of the proof of Lemma 2.13,

the sequence

0⟶
(
𝜋∗𝜋

[∗]
)𝐺
⟶

(
𝜋∗𝜋

[∗]
)𝐺
⟶

(
𝜋∗𝜋

[∗]
)𝐺
⟶ 0 (2.15)

is exact, analytically locally split on 𝑈, and can be identified with the exact sequence

0⟶  ⟶  ⟶ ∨∨ ⟶ 0.

This shows that  is reflexive and that (2.12) is analytically locally split. □

3 HARDER–NARASIMHAN FILTRATIONS OF GENERICALLY
NUMERICALLY EFFECTIVE REFLEXIVE SHEAVES

In this subsection, we extend to klt varieties a well-known relation between Δ̂() and the Harder–
Narasimhan filtration of  , originally established for smooth varieties (see, for example, [46]).
Throughout this section, we work under the following setup:

Setup 3.1. Let𝑋 be a projective klt variety of dimension 𝑛, and let  be a reflexive sheaf of rank 𝑟 on
𝑋. Let𝐷 be a numerically effectiveℚ-Cartier divisor, and let𝐻1,… ,𝐻𝑛−2 be ampleℚ-Cartier divi-
sors on 𝑋. Following [23, Corollary 2.27], we consider the (𝐷 ⋅𝐻1⋯𝐻𝑛−2)-Harder–Narasimhan
filtration of  :

0 =∶ 0 ⊊ 1 ⊊ ⋯ ⊊ 𝑙 ∶=  .

We adopt the following notation:

∙ 𝑖 ∶= 𝑖∕𝑖−1 and 𝑟𝑖 ∶= rk(𝑖),
∙ 𝛼 ∶= 𝐷 ⋅𝐻1⋯𝐻𝑛−2,
∙ 𝜇𝑖 ∶= 𝜇𝛼(𝑖) and 𝜇 ∶= 𝜇𝛼(),
∙ Δ̂(𝑖) ∶= 2𝑟𝑖𝑐2(𝑖) − (𝑟𝑖 − 1)𝑐1(𝑖)

2.

By construction, the graded pieces 𝑖 are torsion-free semistable sheaves with 𝜇𝑖 > 𝜇𝑖+1. Themax-
imum slope 𝜇1 = 𝜇max𝛼 () is the supremum of 𝜇𝛼(), where  ranges over all nonzero subsheaves
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16 of 41 IWAI et al.

 ⊂  . Similarly, theminimal slope 𝜇𝑙 = 𝜇min𝛼 () is the infimumof 𝜇𝛼(), where ranges over all
torsion-free quotients ↠ . The first graded piece1 is called themaximal destabilizing subsheaf
of  .

We begin with the following elementary lemmas. Although these results were previously
proved in [46], we include the proofs here for completeness, with particular attention to the
conditions under which equality holds.

Lemma 3.2 (cf. [46, Lemma 1.4]). Let 𝑙 ∈ ℤ+, and let 𝑟, 𝜇, 𝑟1, … , 𝑟𝑙, 𝜇1, … , 𝜇𝑙 ∈ ℝ+ satisfy the
following conditions.

(1) 𝑟 = 𝑟1 +⋯ + 𝑟𝑙 .
(2) 𝜇1 >⋯ > 𝜇𝑙 ⩾ 0.
(3) 𝑟𝜇 = 𝑟1𝜇1 +⋯ + 𝑟𝑙𝜇𝑙 .

Then, the following inequality holds:∑
1⩽𝑖<𝑗⩽𝑙

𝑟𝑖𝑟𝑗(𝜇𝑖 − 𝜇𝑗)
2 ⩽ 𝑟2(𝜇1 − 𝜇)(𝜇 − 𝜇𝑙). (3.1)

Moreover, if equality holds in (3.1), then 𝑙 ⩽ 2.

Proof. By rescaling 𝑟𝑖 to 𝑟𝑖∕𝑟 and𝜇𝑖 to𝜇𝑖∕𝜇, wemay assume 𝑟 = 𝜇 = 1. From conditions (1) and (3),
we obtain ∑

1⩽𝑖<𝑗⩽𝑙

𝑟𝑖𝑟𝑗(𝜇𝑖 − 𝜇𝑗)
2 =

1
2

𝑙∑
𝑖=1

𝑙∑
𝑗=1

𝑟𝑖𝑟𝑗(𝜇𝑖 − 𝜇𝑗)
2

=
𝑙∑
𝑖=1

𝑟𝑖𝜇
2
𝑖 − 1.

Using condition (2), we estimate the right-hand side as follows:

𝑙∑
𝑖=1

𝑟𝑖𝜇
2
𝑖 − 1 =

𝑙∑
𝑖=1

𝑟𝑖(𝜇𝑖 + 𝜇𝑙)(𝜇𝑖 − 𝜇𝑙) − 1 + 𝜇
2
𝑙

⩽ (𝜇1 + 𝜇𝑙)
𝑙∑
𝑖=1

𝑟𝑖(𝜇𝑖 − 𝜇𝑙) − 1 + 𝜇
2
𝑙

= (𝜇1 + 𝜇𝑙)(1 − 𝜇𝑙) − 1 + 𝜇
2
𝑙 (since

∑𝑙
𝑖=1 𝑟𝑖 = 1 and

∑𝑙
𝑖=1 𝑟𝑖𝜇𝑖 = 1)

= (𝜇1 − 1)(1 − 𝜇𝑙).

This proves the desired inequality (3.1).
If equality holds in (3.1), the above argument shows that

𝑟𝑖(𝜇𝑖 − 𝜇1)(𝜇𝑖 − 𝜇𝑙) = 0 for all 𝑖 = 1, … , 𝑙.

By condition (2), this implies 𝑙 ⩽ 2. □

 1460244x, 2025, 6, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/plm
s.70104 by T

he U
niversity O

f O
saka, W

iley O
nline L

ibrary on [11/12/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



MINIMAL PROJECTIVE VARIETIES SATISFYINGMIYAOKA’S EQUALITY 17 of 41

Lemma 3.3 (cf. [46, Theorem 5.1]). Consider Setup 3.1. Then, the following inequality holds:

Δ̂()
𝑟
𝐻1⋯𝐻𝑛−2 ⩾

𝑙∑
𝑖=1

Δ̂(∨∨𝑖 )

𝑟𝑖
𝐻1⋯𝐻𝑛−2

−
1
𝑟

∑
1⩽𝑖<𝑗⩽𝑙

𝑟𝑖𝑟𝑗

(
𝑐1(𝑖)

𝑟𝑖
−
𝑐1(𝑗)

𝑟𝑗

)2

𝐻1⋯𝐻𝑛−2.

(3.2)

Moreover, if equality holds in (3.2), then the natural morphism 𝑖 → ∨∨𝑖 is isomorphism in
codimension two for any 𝑖 = 1, … , 𝑙.

Proof. In the case 𝑙 = 2, this lemma follows directly from Lemma 2.13. In the general case, by
applying Lemma 2.13 inductively, we obtain the desired conclusion (see [46, chapter 5]). □

With the above preparations in place, we are now ready to prove the following proposition:

Proposition 3.4 (cf. [46, Theorem 5.1]). Consider Setup 3.1 and assume that 𝑑 ∶= 𝐷2𝐻1⋯𝐻𝑛−2 >
0. Then, the following inequality holds:

Δ̂()
𝑟
𝐻1⋯𝐻𝑛−2 ⩾ −

𝑟
𝑑
(𝜇1 − 𝜇)(𝜇 − 𝜇𝑙). (3.3)

Moreover, if equality holds in (3.3), then we have the following.

(1) 𝑙 ⩽ 2, and Δ̂(∨∨𝑖 )𝐻1⋯𝐻𝑛−2 = 0 for any 𝑖 = 1, 2.
(2) There exists 𝜆 ∈ ℚ such that

𝑐1(1)

𝑟1
−
𝑐1(2)

𝑟2
≡ 𝜆𝐷.

(3) The natural morphism 2 → ∨∨2 is an isomorphism in codimension two.

Proof. To simplify notation, we set 𝛽 ∶= 𝐻1⋯𝐻𝑛−2. The semistability of ∨∨𝑖 implies that the
Bogomolov–Gieseker inequality holds:

Δ̂(∨∨𝑖 )𝛽 ⩾ 0. (3.4)

The Hodge index theorem (see Proposition 2.3) yields

1
𝑟

∑
1⩽𝑖<𝑗⩽𝑙

𝑟𝑖𝑟𝑗

(
𝑐1(𝑖)

𝑟𝑖
−
𝑐1(𝑗)

𝑟𝑗

)2

𝛽 ⩽
1
𝑟𝑑

∑
1⩽𝑖<𝑗⩽𝑙

𝑟𝑖𝑟𝑗(𝜇𝑖 − 𝜇𝑗)
2. (3.5)

Applying Lemmas 3.2 and 3.3, together with inequalities (3.2) and (3.5), we obtain the first
conclusion:
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18 of 41 IWAI et al.

(3.6)

For the latter conclusion, we assume that equality holds in (3.3). Conclusions (1) and (3) directly
follow from Lemmas 3.3, 3.2, and (3.4). Moreover, the Hodge index theorem shows that(

𝑐1(1)

𝑟1
−
𝑐1(2)

𝑟2

)
⋅ 𝐿 ⋅ 𝛽 = 𝜆𝐷 ⋅ 𝐿 ⋅ 𝛽

for any Weil divisor 𝐿 on 𝑋. Hence, conclusion (2) follows from Lemma 2.5. □

3.1 Case of 𝝂(𝐝𝐞𝐭 ) ⩾ 𝟐

In this subsection, we describe the structure of the Harder–Narasimhan filtration for a gener-
ically numerically effective reflexive sheaf  with numerically effective determinant det in
the case where 𝜈(det ) ⩾ 2. Here, a reflexive sheaf  is called generically numerically effective
if 𝜇min𝐻1⋯𝐻𝑛−1

() ⩾ 0 for all ℚ-ample Cartier divisors 𝐻1,… ,𝐻𝑛−1.

Theorem 3.5 (cf. [51, Corollary 3.5]). Let 𝐻1,… ,𝐻𝑛−2 be ample ℚ-Cartier divisors on a projective
klt variety 𝑋, and let  be a reflexive sheaf on 𝑋 satisfying the following conditions.

∙  is generically numerically effective.
∙ det  is a numerically effective ℚ-line bundle.
∙ 𝜈(det ) ⩾ 2.

Let 𝑟1 be the rank of the maximal destabilizing subsheaf 1 ∶= max of  with respect to 𝑐1() ⋅
𝐻1⋯𝐻𝑛−2. Then, the following inequality holds:

𝑐2()𝐻1⋯𝐻𝑛−2 ⩾
𝑟1 − 1

2𝑟1
𝑐1()

2𝐻1⋯𝐻𝑛−2. (3.7)

Moreover, if equality holds in (3.7), then the (𝑐1() ⋅𝐻1⋯𝐻𝑛−2)-Harder–Narasimhan filtration
of  is given by

0⟶ 1 = max ⟶  ⟶ 2 ⟶ 0

and satisfies the following properties.

(1) det1 is a ℚ-line bundle such that 𝑐1(1) = 𝑐1() and Δ̂(1)𝐻1⋯𝐻𝑛−2 = 0.
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(2) 𝑐1(2) = 0 and Δ̂(∨∨2 )𝐻1⋯𝐻𝑛−2 = 0 holds.
(3) The natural morphism 2 → ∨∨2 is an isomorphism in codimension two.

In particular, if 𝑋 is maximally quasi-étale, then ∨∨2 is a flat locally free sheaf.

Proof. We consider the same situation as in Setup 3.1 in the case𝐷 ∶= 𝑐1(). Since  is generically
numerically effective, we have

𝑟1𝜇1 ⩾ 𝑟𝜇 and 𝜇𝑙 ⩾ 0. (3.8)

From now on, we set

𝑑 ∶= 𝑐1()
2𝐻1⋯𝐻𝑛−2 and 𝛽 ∶= 𝐻1⋯𝐻𝑛−2.

Note that 0 < 𝑑 = 𝑐1()2𝛽 = 𝑟𝜇 holds. Then, the desired inequality (3.7) follows from

(3.9)

Assume that equality holds in (3.7). Proposition 3.4 (1) shows that 𝑙 ⩽ 2. In the case 𝑙 = 1, by setting
1 =  , we complete the proof. Thus, we may assume that 𝑙 = 2.
We now show that det2 is a ℚ-line bundle with 𝑐1(2) = 0. From (3.8), we can deduce that

𝜇2 = 0, and thus 𝑐1(2)𝑐1()𝛽 = 0. This implies that

(𝑐1(1) + 𝑐1(2))𝑐1(2)𝛽 = 0. (3.10)

On the other hand, by Proposition 3.4 (2), we obtain(
𝑐1(1)

𝑟1
−
𝑐1(2)

𝑟2

)
𝑐1(2)𝛽 = 0. (3.11)

Subtracting (3.11) from (3.10), we find that

𝑐1(1)𝑐1(2)𝛽 = 𝑐1(2)
2𝛽 = 0.

By applying the Hodge index theorem (see Proposition 2.3) to 𝐴 = 𝑐1() and 𝐵 = 𝑐1(2), we
deduce that det2 is a ℚ-line bundle with 𝑐1(2) = 0 (see Lemma 2.5). This shows that det1
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20 of 41 IWAI et al.

is a ℚ-line bundle and that 𝑐1(1) = 𝑐1(). Moreover, Proposition 3.4 (1) yields Δ̂(∨∨1 ) ⋅ 𝛽 =
Δ̂(∨∨2 ) ⋅ 𝛽 = 0. This completes the proof of (1)–(3).
Assume further that 𝑋 is maximally quasi-étale. We now show that 2 is a flat locally free

sheaf. Since the quotients and reflexive hulls of generically numerically effective sheaves remain
generically numerically effective, we see that∨∨2 is generically numerically effective. This implies
that

𝜇min𝐻1⋅𝐻1⋯𝐻𝑛−2
(∨∨2 ) = 𝜇𝐻1⋅𝐻1⋯𝐻𝑛−2(

∨∨
2 ) = 0,

and that ∨∨2 is (𝐻1 ⋅𝐻1⋯𝐻𝑛−2)-semistable. Thus, ∨∨2 is a flat locally free sheaf by [53, Theorem
1.4]. □

The following corollary is a direct consequence of Theorem 3.5. Note that the equality (3.12) is
well-known to experts (see [58, Theorem 6.1] and [43, Proposition 10.12]).

Corollary 3.6 (cf. [43, 58]). Consider the same situation as in Theorem 3.5. Then, the following
inequality holds:

𝑐2()𝐻1⋯𝐻𝑛−2 ⩾ 0. (3.12)

Moreover, if equality holds in (3.12), then the (𝑐1() ⋅𝐻1⋯𝐻𝑛−2)-Harder–Narasimhan filtration of
 is given by

0⟶ 1 ∶= max ⟶  ⟶ 2 ⟶ 0

and satisfies the following properties.

(1) 1 is a ℚ-line bundle with 𝑐1(1) = 𝑐1().
(2) 2 is reflexive and satisfies that 𝑐1(2) = 0 and Δ̂(∨∨2 )𝐻1⋯𝐻𝑛−2 = 0.

In particular, if 𝑋 is maximally quasi-étale, then 2 is a flat locally free sheaf.

Proof. The sheaves 1 and ∨∨2 satisfy the assumptions of Lemma 2.14, and thus 2 is reflexive.
Then, the desired conclusion follows from Theorem 3.5. □

3.2 Case of 𝝂(𝐝𝐞𝐭 ) ⩽ 𝟏

In this subsection, we describe the structure of the Harder–Narasimhan filtration in the case
where 𝜈(det ) ⩽ 1.
The following theorem generalizes [11, Lemma 4.5] and [61, subsection 6.2], initially established

for smooth varieties, to varieties with klt singularities. Note that, as with the equality (3.12), the
inequality (3.13) is also well-known (see [58, Theorem 6.1] and [43, Proposition 10.12]).

Theorem 3.7 (cf. [11, 43, 58, 61]). Let𝐻,𝐻1, … ,𝐻𝑛−2 be ampleℚ-Cartier divisors on a projective klt
variety 𝑋, and let  be a reflexive sheaf on 𝑋 satisfying the following conditions.

∙  is generically numerically effective.
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∙ det  is a numerically effective ℚ-line bundle.
∙ 𝑐1()

2𝐻1⋯𝐻𝑛−2 = 0, equivalently, 𝜈(det ) ⩽ 1.

Then, the following inequality holds:

𝑐2()𝐻1⋯𝐻𝑛−2 ⩾ 0. (3.13)

Moreover, if equality holds in (3.13), then there exists a positive rational number 𝜀0 such that for
any rational number 0 < 𝜀 < 𝜀0, the ((𝑐1() + 𝜀𝐻) ⋅𝐻1⋯𝐻𝑛−2)-Harder–Narasimhan filtration of


0 =∶ 0 ⊊ 1 ⊊ … ⊊ 𝑙 ∶=  (3.14)

is independent of 𝜀 and satisfies the following properties.

(1) 𝑖 ∶= 𝑖∕𝑖−1 is a reflexive and numerically projectively flat sheaf.
(2) det(𝑖) is a ℚ-line bundle and 𝑐1(𝑖) = 𝜆𝑖𝑐1() for some 𝜆𝑖 ∈ ℚ.
(3) The filtration (3.14) is locally analytically split. In particular, for any 𝑖, the following sequence is

exact

0 → ∨𝑖 → ∨𝑖 → ∨𝑖−1 → 0.

Proof. Set 𝐻𝜀 ∶= 𝑐1() + 𝜀𝐻 for any 𝜀 > 0 and define 𝛽 ∶= 𝐻1⋯𝐻𝑛−2. By [58, Theorem 2.2
(3)], there exists a positive number 𝜀0 > 0 such that the (𝐻𝜀 ⋅𝐻1⋯𝐻𝑛−2)-Harder–Narasimhan
filtration

0 =∶ 0 ⊊ 1 ⊊ … ⊊ 𝑙 ∶= 

is independent of any positive rational number 𝜀 < 𝜀0.
Since ∨∨𝑖 is (𝐻𝜀 ⋅𝐻1⋯𝐻𝑛−2)-semistable, the sheaf ∨∨𝑖 satisfies the Bogomolov–Gieseker

inequality

Δ̂(∨∨𝑖 )𝛽 ⩾ 0. (3.15)

By the assumption 𝑐1()2𝛽 = 0, we have

𝑙∑
𝑖=1

𝑐1(𝑖)𝑐1()𝛽 = 𝑐1()
2𝛽 = 0.

Since  is generically numerically effective, each term 𝑐1(𝑖)𝑐1()𝛽 on the left-hand side is non-
negative. This implies that 𝑐1(𝑖)𝑐1()𝛽 = 0. By applying the Hodge index theorem (see part (2)
of Proposition 2.3) to 𝐴 = (1∕𝑟𝑖)𝑐1(𝑖) − (1∕𝑟𝑗)𝑐1(𝑗) and 𝐵 = 𝑐1(), we obtain(

𝑐1(𝑖)

𝑟𝑖
−
𝑐1(𝑗)

𝑟𝑗

)2

𝛽 ⩽ 0. (3.16)
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22 of 41 IWAI et al.

The desired inequality (3.13) follows from

(3.17)

For the latter conclusion, assume that 𝑐2()𝛽 = 0.We first verify property (2) for1. By applying
Proposition 2.3 and Lemma 2.5 to (3.16) (as in the proof of Proposition 3.4 (2)), we can find rational
numbers 𝜆𝑗 such that

𝑐1(1)

𝑟1
−
𝑐1(𝑗)

𝑟𝑗
= 𝜆𝑗𝑐1().

Setting 𝜆 ∶= 𝑟
∑𝑙
𝑗=2

𝑟𝑗
𝑟1
𝜆𝑗 + 1, we obtain 𝑐1(1) = 𝜆𝑐1(). By applying Lemma 2.5 again, we see

that det1 is a ℚ-line bundle. The same proof applies for 𝑖 , so we omit the details.
Finally, we confirm properties (1) and (3). By (3.15), 𝑐2()𝛽 = 0, and property (2), we deduce

that Δ̂(∨∨𝑖 )𝛽 = 0, which establishes property (1). Applying Lemma 2.14 repeatedly yields property
(3). □

4 PROOF OF THEOREM 1.2

4.1 Case of 𝝂(𝑲𝑿) ⩽ 𝟏

In this subsection, we first establish Theorem 1.2 (A), and then prove Theorem 1.2 in the case
where 𝜈(𝐾𝑋) ⩽ 1.
Proof of Theorem 1.2 (𝐴) in the case 𝜈(𝐾𝑋) ⩽ 1. By [58, Corollary 6.4] and [14], the cotangent

sheaf Ω[1]𝑋 is generically numerically effective. Therefore, Miyaoka’s inequality(
3𝑐2(Ω

[1]
𝑋 ) − 𝑐1(Ω

[1]
𝑋 )

2
)
𝐻1⋯𝐻𝑛−2 ⩾ 0

follows from Theorem 3.7. □
Next, we verify Theorem 1.2 (B) in the case 𝜈(𝐾𝑋) = 0, which is a direct consequence of [53].
Proof of Theorem 1.2 (𝐵) in the case 𝜈(𝐾𝑋) = 0. Assume that 𝜈(𝐾𝑋) = 0. By [53, Theorem 1.2],

we conclude that𝑋 is a quasi-étale quotient of an abelian variety, which completes the proof. □
Hereafter, in this subsection, we focus on the case 𝜈(𝐾𝑋) = 1. Our first goal is to prove that

𝐾𝑋 is semi-ample (see Theorem 4.1). Our argument is strongly influenced by the approach of
Lazić–Peternell [50] to the nonvanishing problem in the case 𝜈(𝐾𝑋) = 1.

Theorem 4.1. Let𝑋 be a projective klt variety as in Theorem 1.2. Assume that 𝜈(𝐾𝑋) = 1. Then, the
canonical divisor 𝐾𝑋 is semi-ample.
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Proof. The proof of Theorem4.1 involves an in-depth analysis of theHarder–Narasimhan filtration
of the cotangent sheaf Ω[1]𝑋 , which was studied in Section 3. Since 𝜈(𝐾𝑋) = 1, our assumption on
Miyaoka’s equality is equivalent to

𝑐2(Ω
[1]
𝑋 )𝐻1⋯𝐻𝑛−2 = 0.

It is enough to prove that𝐾𝑋 is semi-ample after replacing𝑋with its finite quasi-étale cover. Thus,
we may assume that 𝑋 is maximally quasi-étale (see [24, Theorem 1.14]).
Lemma 4.2, which is essential for the proof of Theorem 4.1, is an extension of the main result

of [37].

Lemma 4.2. Let 𝑋 be a projective klt variety as in Theorem 1.2. Assume that 𝜈(𝐾𝑋) = 1 and that 𝑋
is maximally quasi-étale. Then, the following statements hold.

(1) 𝑋 has finite quotient singularities and is ℚ-factorial.
(2) No resolution 𝜋∶ 𝑋 → 𝑋 is of special type in the sense of Campana.

Proof of Lemma 4.2. By [58, Corollary 6.4] and [14], the cotangent sheafΩ[1]𝑋 is generically numeri-
cally effective. Thus, by applying Theorem 3.7 toΩ[1]𝑋 , we deduce that the 𝛼𝜀-Harder–Narasimhan
filtration of Ω[1]𝑋

0 =∶ 0 ⊊ 1 ⊊ … ⊊ 𝑙 ∶= Ω
[1]
𝑋 (4.1)

satisfies the properties stated inTheorem3.7,where𝛼𝜀 ∶= (𝐾𝑋 + 𝜀𝐻) ⋅𝐻1⋯𝐻𝑛−2 for some ample
divisor 𝐻 and sufficiently small 𝜀 > 0. In particular, each sheaf 𝑖 is semistable.
Fix a point 𝑥 ∈ 𝑋. By Lemma 2.12, there exist an analytic neighborhood 𝑥 ∈ 𝑈 ⊂ 𝑋 and a finite

quasi-étale Galois cover 𝜋∶ 𝑉 → 𝑈 such that 𝜋[∗]𝑖 is locally free for every 𝑖. By Theorem 3.7, the
filtration (4.1) is locally analytically split. Then, after shrinking 𝑈, we have

Ω[1]𝑉 ≅ 𝜋[∗]Ω[1]𝑈 ≅
⨁
𝑖

𝜋[∗]𝑖 ,

which is locally free. The variety 𝑉 has klt singularities since 𝑉 is a finite quasi-étale cover of the
klt variety𝑈. By [21, Theorem 6.1], we conclude that𝑉 is smooth, which implies that𝑈 (and thus
𝑋) has only finite quotient singularities. In particular, by [44, Proposition 5.15], we see that the
variety 𝑋 is ℚ-factorial.
To prove (2), suppose that there exists a resolution 𝜋∶ 𝑋 → 𝑋 of the singularities of 𝑋 such

that 𝑋 is of special type in the sense of Campana. By [63, Theorem A], to reach a contradiction it
suffices to show that there exists a sub-line bundle  ⊂ Ω1

𝑋
with 𝜈() = 1.

To construct such a sub-line bundle, we focus on the first piece 1 of the 𝛼𝜀-Harder–
Narasimhan filtration (4.1). The sheaf 1 is 𝛼𝜀-semistable with 𝜇𝛼𝜀 (1) ⩾ 𝜇𝛼𝜀 (Ω

[1]
𝑋 ) > 0. Moreover

1 is numerically projectively flat and satisfies

𝑐2(1) = 𝑐1(1)
2 = 0.

Hence, Corollary 2.11 implies that 1 is locally free and projectively flat.

 1460244x, 2025, 6, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/plm
s.70104 by T

he U
niversity O

f O
saka, W

iley O
nline L

ibrary on [11/12/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



24 of 41 IWAI et al.

Since 𝜋1(𝑋) ≅ 𝜋1(𝑋) by [69], we deduce that the image of any linear representation of 𝜋1(𝑋) is
virtually abelian by [7, Theorem 7.8]. Thus, by [25, Proposition 3.3], after passing to a finite étale
cover of 𝑋 and 𝑋, there exists a line bundle  on 𝑋 such that 1 ⊗∨ ≅  ′ is a flat locally free
sheaf admitting a filtration

0 ⊊ 𝑋 ≅  ′1 ⊊ … ⊊  ′𝑘 =  ′,

where each  ′𝑖 ∕
′
𝑖−1 is a flat line bundle. The line bundle  ∶=  ′1 ⊗ is a sub-line bundle of

Ω[1]𝑋 with 𝜈(𝑐1()) = 𝜈(𝑐1(1)) = 1. The pullback𝜋∗↪ 𝜋[∗]Ω[1]𝑋 ↪ Ω1
𝑋
is the desired line bundle,

yielding a contradiction by [63, Theorem A]. □

Wenow return to the proof of Theorem4.1. Let𝜋∶ 𝑋 → 𝑋 be a log resolution of the singularities
of 𝑋. Since 𝑋 has klt singularities, there exist 𝜋-exceptional effective divisors 𝐸 and 𝐺 such that

𝜋∗𝐾𝑋 + 𝐸 ∼ℚ 𝐾𝑋 + 𝐺 and (𝑋, 𝐺) is a log smooth klt pair. (4.2)

Since 𝑋 is not of special type by Lemma 4.2, there exists a Bogomolov sheaf  ⊂ Ω𝑝
𝑋
for some

𝑝 ⩾ 1 (i.e., a sub-line bundle  ⊂ Ω𝑝
𝑋
with 𝜅() = 𝑝). By taking the saturation, we may assume

that  is saturated in Ω𝑝
𝑋
(log⌈𝐺⌉).

Consider the exact sequence

0⟶ ⟶Ω𝑝
𝑋
(log⌈𝐺⌉)⟶  ∶= Ω𝑝

𝑋
(log⌈𝐺⌉)∕⟶0. (4.3)

Since 𝐾𝑋 + ⌈𝐺⌉ is pseudo-effective by (4.2), we conclude that det is pseudo-effective by [10,
Theorem 1.3] and [4]. Combining (4.2) and (4.3), we obtain

𝜋∗𝐾𝑋 + 𝐸 + ⌈𝐺⌉ − 𝐺 ∼ℚ 𝐾𝑋 + ⌈𝐺⌉ ∼ℚ  + det.

Hence, we deduce that

𝐾𝑋 ∼ℚ 𝜋[∗] + 𝜋[∗] det,

by noting that the reflexive hull 𝜋[∗](∙) of the direct image of a line bundle is a ℚ-line bundle by
the ℚ-factoriality of 𝑋. Since 𝜋[∗] det is pseudo-effective, we obtain

𝜅(𝐾𝑋) ⩾ 𝜅(𝜋[∗]) = 𝜅() = 𝑝 ⩾ 1

by [50, Corollary 6.2], which confirms that 𝜅(𝐾𝑋) = 𝜈(𝐾𝑋) = 1. This proves that 𝐾𝑋 is semi-
ample. □

At the end of this subsection, after recalling the definition of 𝐶∞-orbifold fiber bundles, we
establish Theorem 4.3, thereby completing the proof of Theorem 1.2 in the case 𝜈(𝐾𝑋) = 1.

Theorem 4.3. Let 𝑋 be a projective klt variety as in Theorem 1.2. Assume that 𝜈(𝐾𝑋) = 1. Then,
after replacing𝑋 with a finite quasi-étale cover, the variety𝑋 is smooth and admits an abelian group
scheme 𝑋 → 𝐶 over a curve 𝐶 of general type.
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Definition 4.4 ((stratified) 𝐶∞-orbifold fiber bundles). Let 𝑓∶ 𝑋 → 𝐶 be a fibration from a
normal projective variety 𝑋 onto a smooth curve 𝐶.

(1) Let 𝑓−1(𝑡) =
∑𝓁
𝑖=1 𝑎𝑖𝐹𝑖 be the irreducible decomposition of the divisor 𝑓−1(𝑡) over a point

𝑡 ∈ 𝐶. The integer𝑚 ∶= gcd(𝑎1, … , 𝑎𝓁) is called themultiplicity over 𝑡 ∈ 𝐶.
(2) The divisor 𝐷𝑓 on 𝐶 defined by

𝐷𝑓 ∶=
𝑠∑
𝑖=1

(
1 −

1
𝑚𝑖

)
𝑡𝑖

is called the orbifold branch divisor of 𝑓. Here𝑚𝑖 denotes the multiplicity over 𝑡𝑖 , and 𝑡𝑖 runs
through all points with multiplicity𝑚𝑖 ⩾ 2.

(3) The fibration 𝑓∶ 𝑋 → (𝐶,𝐷𝑓) is called a (stratified) 𝐶∞-orbifold fiber bundle if, for any 𝑡 ∈ 𝐶,
there exists an analytic open discΔ ⊂ 𝐶 containing 𝑡with the following property: Let𝑚 denote
the multiplicity over 𝑡, and consider the normalization 𝑉 of the fiber product of 𝑓∶ 𝑉 ∶=
𝑓−1(Δ) → Δ and the map 𝑝∶ Δ → Δ, 𝑧 ↦ 𝑧𝑚:

Then, there exists a 𝐶∞-isomorphism

𝑉 ≅𝐶∞ Δ × 𝐹

over Δ as 𝐶∞-(stratified) spaces, where 𝐹 is a general fiber of 𝑓 (see [19, section I.1.5] for 𝐶∞-
stratified spaces). Note that 𝑝∶ 𝑉 → 𝑉 is a finite quasi-étale cover since it is étale over the
smooth locus of 𝑉, by a straightforward local computation (see [33, proof of Lemma 2.2]).

Proposition 4.5. Under the same assumptions as in Theorem 4.3, we consider the Iitaka fibration

𝑓∶ 𝑋 → (𝐶,𝐷)

onto a smooth curve 𝐶 with orbifold branch divisor 𝐷 ∶= 𝐷𝑓 . Then the fibration 𝑓∶ 𝑋 → (𝐶,𝐷) is
a (stratified) 𝐶∞-orbifold fiber bundle.

Proof. We now examine the filtration (4.1) in detail:

0 =∶ 0 ⊊ 1 ⊊ … ⊊ 𝓁 ∶= Ω
[1]
𝑋 .

By replacing this filtration with a Jordan–Hölder refinement, we may assume that the sheaves
𝑖 ∶= 𝑖∕𝑖−1 are 𝛼𝜀-stable. Since the sheaves 𝑖 are numerically projectively flat, there exist
associated irreducible representations

𝜌𝑖 ∶ 𝜋1(𝑋)⟶ ℙGL(𝑟𝑖, ℂ),
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26 of 41 IWAI et al.

where 𝑟𝑖 ∶= rk𝑖 . Moreover, since 𝑐1(𝑖) is numerically proportional to 𝐾𝑋 , there exist integers
𝑎𝑖, 𝑏𝑖 ∈ ℤ+ and numerically trivial line bundles𝑖 on 𝑋 such that

det(𝑖)
[⊗]𝑏𝑖 =𝑖 ⊗ 𝑋(𝑎𝑖𝐾𝑋). (4.4)

Let

𝜎𝑖 ∶ 𝜋1(𝑋)⟶ GL(1, ℂ)

be the irreducible representations associated with𝑖 . Furthermore, since 𝑓∶ 𝑋 → (𝐶,𝐷) is the
Iitaka fibration, we may assume that there exists an ample divisor𝐻𝑖 on 𝐶 such that

𝑋(𝑎𝑖𝐾𝑋) ≅ 𝑓
∗𝐶(𝐻𝑖). (4.5)

Fix 𝑡 ∈ 𝐶 and let 𝑚 ⩾ 1 be the multiplicity over 𝑡. Consider the normalization 𝑉 of the fiber
product as in Definition 4.4. Hereafter, we divide the proof into several steps and show that
𝑓∶ 𝑉 → Δ is a (stratified) 𝐶∞-fiber bundle.
Step 1: The images of 𝜌𝑖|𝜋1(𝑉) and 𝜎𝑖|𝜋1(𝑉) are finite.
Set 𝜌𝑖|𝜋1(𝑉) ∶= 𝜌𝑖◦(𝑗∗◦𝑝∗) and 𝜎𝑖|𝜋1(𝑉) ∶= 𝜎𝑖◦(𝑗∗◦𝑝∗), where 𝑗∗◦𝑝∗ is the homomorphism

𝑗∗◦𝑝∗ ∶ 𝜋1(𝑉)
𝑝∗
QQ→ 𝜋1(𝑉)

𝑗∗
QQ→ 𝜋1(𝑋),

induced by 𝑝∶ 𝑉 → 𝑉 and the natural inclusion 𝑗 ∶ 𝑉 ↪ 𝑋. In this step, we show that the images
of 𝜌𝑖|𝜋1(𝑉) and 𝜎𝑖|𝜋1(𝑉) are finite.
Let 𝐹 be a general fiber of 𝑓. The fiber 𝐹 is a klt variety satisfying𝐾𝐹 ∼ℚ 0 and 𝑐2(𝐹) = 0. Thus,

by [53, Theorem 1.2], there exists a finite quasi-étale cover 𝜋∶ 𝐴 → 𝐹 such that 𝐴 is an abelian
variety. We identify 𝜋∶ 𝐴 → 𝐹 with the composition𝐴

𝜋
Q→ 𝐹 ↪ 𝑋 and consider the reflexive pull-

back of the filtration (4.1) via 𝜋[∗]. Since 𝐴 is an abelian variety, 𝜋[∗]Ω[1]𝑋 admits a filtration by
trivial bundles on 𝐴. On the other hand, the sheaf 𝜋[∗]Ω[1]𝑋 also admits a filtration whose graded
pieces are 𝜋[∗]𝑖 , which are polystable sheaves of slope zero. Hence, we deduce 𝜋[∗]𝑖 ≅ 

⊕𝑟𝑖
𝐴 .

Therefore, the induced homomorphism

𝜋1(𝐴)⟶ 𝜋1(𝐹)⟶ 𝜋1(𝑋)
𝜌𝑖
QQ→ ℙGL(𝑟𝑖, ℂ)

is trivial. Similarly, by (4.4) and (4.5), we conclude that

𝜋1(𝐴)⟶ 𝜋1(𝐹)⟶ 𝜋1(𝑋)
𝜎𝑖
QQ→ GL(1, ℂ)

is trivial. On the other hand, the sequence

𝜋1(𝐹)⟶ 𝜋1(𝑉)⟶ 𝜋1(Δ) = {1} (4.6)

is exact (see [70, Tag 0C0J] for the proof applies verbatim to morphisms of analytic varieties).
Thus, the image
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𝐻 ∶= Im
(
𝜋1(𝐴)⟶ 𝜋1(𝐹)⟶ 𝜋1(𝑉)

)
has finite index in 𝜋1(𝑉). This implies that the homomorphisms

𝜌𝑖 ∶ 𝜋1(𝑉)⟶ Îm(𝜌𝑖) and 𝜎𝑖 ∶ 𝜋1(𝑉)⟶ Îm(𝜎𝑖)

have finite image. By Malcev’s theorem [72, Theorem 4.2], the images of 𝜌𝑖|𝜋1(𝑉) and 𝜎𝑖|𝜋1(𝑉)
are finite.
Step 2: 𝑉 is smooth up to finite quasi-étale covers.
In this step, we show that there exists a finite quasi-étale Galois cover 𝜓∶ 𝑊 → 𝑉 such that𝑊

is smooth and ℎ ∶= 𝑓◦𝜓∶ 𝑊 → Δ is an abelian group scheme.
Let 𝜓∶ 𝑊 → 𝑉 be the finite étale cover corresponding to the intersection of the kernels of all

𝜌𝑖|𝜋1(𝑉) and 𝜎𝑖|𝜋1(𝑉). By construction, there exist reflexive coherent sheaves 𝑖 of rank one on𝑊
such that 𝑖|𝑊 ≅ 

⊕𝑟𝑖
𝑖 . Moreover, by (4.4) and (4.5), we have [⊗]𝑐𝑖𝑖 ≅ 𝑊 , where 𝑐𝑖 ∶= 𝑎𝑖 ⋅ 𝑏𝑖 ⋅ 𝑟𝑖 .

Thus, after replacing𝑊with the associated index-one cover, wemay assume that each𝑖 is trivial.
It follows that Ω[1]

𝑊
is locally free, since it is a successive extension of 𝑖 by the filtration (4.1).

Hence, by [21, Theorem 6.1], we conclude that𝑊 is smooth.
By taking a further finite étale cover, we may assume that 𝜓∶ 𝑊 → 𝑉 is a Galois cover. By con-

struction, the fibration𝑊 → Δ hasmultiplicity one. Furthermore, the above argument shows that
the cotangent bundleΩ[1]

𝑊
is (𝑓◦𝜓)-numerically flat. Thus, by [34, Lemma 2.1(1)], we conclude that

𝑊 → Δ is a smooth fibration. Since𝑊 is connected, its fibers are also connected. After possibly
replacing𝑊 with a further finite étale cover, we may assume that the fibers of𝑊 → Δ are abelian
varieties (see [34, Lemma 2.1(2)]). This fibration clearly admits a section, and the claim follows.
Step 3: The desired conclusion.
In this step, we show that 𝑉 → Δ is a 𝐶∞-fiber bundle. Let 𝐴 be a general fiber of ℎ∶ 𝑊 → Δ.

Then, by Step 2, we have𝑊 ≅𝐶∞ 𝐴 × Δ. Under this identification, the action of the covering group
𝐺 of𝑊 → 𝑉 is given by

𝐺 ↷ 𝑊 ≅𝐶∞ 𝐴 × Δ, g ⋅ (𝑧, 𝑡) =
(
𝜃g (𝑧, 𝑡), 𝑡

)
,

where 𝑧 is a local coordinate on 𝐴 and 𝐺 is the Galois group of 𝜓∶ 𝑊 → 𝑉. Note that 𝜃g (𝑧, 𝑡)
depends smoothly on 𝑧 and 𝑡. By [29, Theorem 2.4.B’], there exists (possibly after changing
the diffeomorphism) a 𝐶∞-isomorphism𝑊 ≅𝐶∞ 𝐴 × Δ such that 𝜃g is independent of 𝑡, which
completes the proof. □

Our next goal is to show that we can eliminate the multiplicities, that is, we find a finite orbi-
étale cover (𝐶, 𝐷̂) → (𝐶,𝐷) such that 𝐷̂ = 0. This is a priori unclear in the case 𝐶 ≅ ℙ1, which is
why we need the following proposition:

Proposition 4.6. Under the same assumptions as in Proposition 4.5, we further assume that𝐶 is the
smooth rational curve ℙ1. Then, there exists a finite orbifold-étale cover (𝐶, 0) → (ℙ1, 𝐷) such that 𝐶
is a smooth curve and the fiber product 𝑋 ∶= 𝐶 ×𝐶 𝑋 is isomorphic to the product 𝐶 × 𝐹.

Proof. Note that 𝑓∶ 𝑋 → (𝐶,𝐷) is a 𝐶∞-orbifold fiber bundle by Proposition 4.5.
Step 1: 𝑓∶ 𝑋 → (𝐶,𝐷) is a holomorphic orbifold fiber bundle.
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Fix a point 𝑡0 ∈ ℙ1, we set𝑈 ∶= ℙ1 ⧵ {𝑡0} ≅ 𝔸
1 and 𝑉 ∶= 𝑓−1(𝑈). Consider the finite orbifold-

étale cover

𝑝∶ (𝑈 ∶= 𝔸1, 0)⟶ (𝑈,𝐷), 𝑧⟼ (𝑧 − 𝑡𝑖)
𝑚𝑖 ,

where {𝑡1, … , 𝑡𝑠} ⊂ 𝐶 is the set of points with multiplicities 𝑚𝑖 ⩾ 2. The base change 𝑓∶ 𝑉 ∶=
𝑈 ×𝑈 𝑋 → 𝑈 is still a 𝐶∞-fiber bundle. We now show that all fibers of 𝑓 are isomorphic, which
implies that 𝑓∶ 𝑋 → (𝐶,𝐷) is a holomorphic orbifold fiber bundle. Since𝑈 = 𝔸1 is contractible,
we have 𝜋1(𝑉) ≅ 𝜋1(𝐹). In particular, there exists a finite quasi-étale Galois cover𝑊 → 𝑉 with
Galois group 𝐺 such that the fibers of𝑊 → 𝑈 ≅ 𝔸1 are abelian varieties. Hence,𝑊 is isomorphic
to the product 𝑈 × 𝐴 (see, for example, [15, proof of Proposition 3.12(vii)]). By [29, Theorem 2.4],
the homomorphism𝐺 → Aut(𝐴) is rigid (i.e., the action of𝐺 on all fibers is the same). This shows
that

𝑉 ≅ 𝑊∕𝐺 ≅ 𝑈 × (𝐴∕𝐺) = 𝑈 × 𝐹,

which is a holomorphic fiber bundle.
Step 2: 𝑋 is isomorphic to the product 𝐹 × 𝐶 after finite orbifold-étale covers.
Fix a very ample line bundle on𝑋. Then the structure group of 𝑓 is reduced toAut(𝐹,|𝐹) ⊂

Aut(𝐹). Now, Aut(𝐹,|𝐹) is a linear algebraic group (see, for example, [6, Theorem 2.16]), while
Aut0(𝐹) is an abelian variety since 𝜅(𝐹) ⩾ 0 (see, for example, [1, Proposition 4.6]). This implies
that Aut(𝐹,|𝐹) is finite.
In particular, the variety 𝑋 is defined by a representation 𝜌∶ 𝜋1(𝐶, 𝐷) → Aut(𝐹,|𝐹) of the

orbifold fundamental group. Let (𝐶, 𝐷̂) → (𝐶,𝐷) be the finite orbifold-étale cover corresponding
to ker(𝜌). Then, by construction, we obtain 𝑋 ≅ 𝐶 × 𝐹, and moreover 𝐷̂ = 0. □

Finally, we make the following elementary observation:

Lemma 4.7. Let𝐴 be an abelian variety of dimension 𝑛, and 𝜋∶ 𝐴 → 𝐹 ∶= 𝐴∕𝐺 be a finite Galois
quasi-étale cover with Galois group 𝐺. If 𝜋1(𝐹reg) is an abelian group (possibly with torsion) of rank
2𝑛, then 𝐹 is smooth.

Proof. Consider the natural isomorphisms

𝐻0(𝐴, ℂ)𝐺 ≅ 𝐻0(𝜋−1(𝐹reg), ℂ)𝐺 ≅ 𝐻0(𝐹reg, ℂ).

By assumption, both 𝐻0(𝐴, ℂ) and 𝐻0(𝐹reg, ℂ) are ℂ-vector spaces of the same dimension. It fol-
lows that the action of 𝐺 on𝐻0(𝐴, ℂ) is trivial. Hence, 𝐺 acts by translations on 𝐴, which implies
that the action has no fixed points, and therefore 𝐹 is smooth. □

Proof of Theorem 4.3. By Proposition 4.5, up to finite quasi-étale covers, the Iitaka fibration
𝑓∶ 𝑋 → (𝐶,𝐷) is a (stratified) 𝐶∞-orbifold fiber bundle. In the case 𝐶 ≅ ℙ1, the proof follows
from Proposition 4.6, so we may assume that 𝐶 is a curve of genus g(𝐶) ⩾ 1. In particular 𝐾𝐶 + 𝐷
is either numerically trivial or ample. Hence, there exists a finite orbi-étale cover (𝐶, 𝐷̂) → (𝐶,𝐷)
with 𝐷̂ = 0 (see, for example, [13]). After replacing𝑋 by the induced quasi-étale cover𝑋 → 𝑋, we
may assume that 𝑓∶ 𝑋 → 𝐶 is a (stratified) 𝐶∞-fiber bundle. Moreover, since g(𝐶) ⩾ 1, we have
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𝜋2(𝐶) = 1. Thus, we obtain the following long exact sequence of homotopy groups:

1 = 𝜋2(𝐶)⟶ 𝜋1(𝐹reg)⟶ 𝜋1(𝑋reg)⟶ 𝜋1(𝐶)⟶ 1.

Since 𝐹 is a finite quasi-étale quotient of an abelian variety, say 𝐹 = 𝐴∕𝐺, the group 𝜋1(𝐹reg)
contains a free abelian subgroup of rank 2(𝑛 − 1) of finite index. By [41, Corollary 6.4.3], after
replacing𝑋with a finite quasi-étale cover,wemay assume that𝜋1(𝐹reg) is abelian of rank 2(𝑛 − 1).
By Lemma 4.7, the variety 𝐹 (and hence 𝑋) is smooth. Finally, by the abundance theorem of [37],
the structure of abelian group schemes follows from [34]. □

4.2 Case of 𝝂(𝑲𝑿) ⩾ 𝟐

This subsection is devoted to proving Theorem 1.2 in the case 𝜈(𝐾𝑋) ⩾ 2. To this end, we study
certain inequalities for the second ℚ-Chern class of the cotangent sheafΩ[1]𝑋 , which have already
been established in the case where 𝑋 is smooth in codimension two (see [58, chapter 7], [45, sec-
tion 5], and [67, Theorem 7.2]). Our contribution is to extend these inequalities to varieties with
klt singularities and to examine the conditions under which equality is attained. To this end, we
make use of the theory of Higgs sheaves. We now consider the following setup.

Setup 4.8. Let 𝑋 be a projective klt variety of dimension 𝑛 ⩾ 2, and let 𝐻1,… ,𝐻𝑛−2 be ample ℚ-
Cartier divisors on 𝑋. Assume that 𝐾𝑋 is numerically effective and 𝜈(𝐾𝑋) ⩾ 2. As in Section 3,
consider the (𝐾𝑋 ⋅𝐻1⋯𝐻𝑛−2)-Harder–Narasimhan filtration of the cotangent sheaf Ω

[1]
𝑋 :

0 =∶ 0 ⊂ 1 ⊂ … ⊂ 𝑙 ∶= Ω
[1]
𝑋 .

We define the constants 𝜇𝑖 , 𝜇, and 𝑑 by

𝜇𝑖 ∶= 𝜇𝐾𝑋 ⋅𝐻1⋯𝐻𝑛−2(𝑖), 𝜇 ∶= 𝜇𝐾𝑋 ⋅𝐻1⋯𝐻𝑛−2(Ω
[1]
𝑋 ), 𝑑 ∶= 𝑐1(Ω

[1]
𝑋 )

2 ⋅𝐻1⋯𝐻𝑛−2.

We investigate inequalities for the secondℚ-Chern class 𝑐2(Ω
[1]
𝑋 ), dividing our situation into the

cases 𝑟1 ⩾ 2 and 𝑟1 = 1. The following theorems (Theorems 4.9 and 4.10) have been established
for smooth projective varieties 𝑋 in [45, Theorem 5.5], but here we generalize them to varieties
with klt singularities and examine the cases where equality holds.

Theorem4.9 (cf. [45, Theorem 5.5]).Consider Setup 4.8 and assume that 𝑟1 ⩾ 2. Then the following
inequality holds:

𝑐2(Ω
[1]
𝑋 )𝐻1⋯𝐻𝑛−2 ⩾

𝑟1
2(𝑟1 + 1)

𝑐1(Ω
[1]
𝑋 )

2𝐻1⋯𝐻𝑛−2. (4.7)

Moreover, if 𝑋 is maximally quasi-étale and equality holds in (4.7), then 𝑋 is smooth and the
(𝐾𝑋 ⋅𝐻1⋯𝐻𝑛−2)-Harder–Narasimhan filtration ofΩ1𝑋 is given by

0⟶ 1 ⟶ Ω1𝑋 ⟶ 2 ⟶ 0,
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and satisfies the following properties.

(1) 1 is a locally free sheaf of rank 𝑟1 such that(
2(𝑟1 + 1) 𝑐2(1) − 𝑟1 𝑐1(1)

2)𝐻1⋯𝐻𝑛−2 = 0.

(2) 2 is flat and locally free.

Proof. Set 𝛽 ∶= 𝐻1⋯𝐻𝑛−2. We first consider the secondℚ-Chern class of 1. By applying Propo-
sition 2.8 to 1 ⊂ Ω

[1]
𝑋 , we obtain the (𝐾𝑋 ⋅𝐻1⋯𝐻𝑛−2)-stable Higgs sheaf (1 ⊕ 𝑋, 𝜃), where

the Higgs field 𝜃 is defined as in Proposition 2.8. Then, the Bogomolov–Gieseker inequality in
Proposition 2.10 yields

𝑐2(1)𝛽 ⩾
𝑟1

2(𝑟1 + 1)
𝑐1(1)

2𝛽. (4.8)

Meanwhile, we have

𝑟1𝜇1 ⩽ 𝑛𝜇 = 𝑑 and 𝜇𝑙 ⩾ 0 (4.9)

by Miyaoka’s semipositivity theorem (see [58, Corollary 6.4], [10, Theorem 1.3], and [14,
Theorem 5.5]). The Hodge index theorem (see Proposition 2.3) implies that

𝑙∑
𝑖=2

1
𝑟𝑖
𝑐1(

∨∨
𝑖 )

2𝛽 ⩽
(by Proposition 2.3)

1
𝑑

𝑙∑
𝑖=2

𝑟𝑖𝜇
2
𝑖 ⩽

𝜇1
𝑑

𝑙∑
𝑖=2

𝑟𝑖𝜇𝑖 = 𝜇1 −
𝑟1𝜇

2
1

𝑑
. (4.10)

As in [58, Proposition 7.1], we obtain

(4.11)

Consider the function

𝑓∶ ℝ⟶ ℝ, 𝑓(𝑥) =
𝑟1𝑥

2

𝑟1 + 1
− 𝑑𝑥.
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MINIMAL PROJECTIVE VARIETIES SATISFYINGMIYAOKA’S EQUALITY 31 of 41

Note that 𝑓 is convex and attains its unique minimum at 𝑥 = (𝑟1+1)𝑑
2𝑟1

. We observe that

Thus, we obtain

2𝑐2(Ω
[1]
𝑋 )𝛽 ⩾

𝑓
(
𝑑
𝑟1

)
𝑑

+ 𝑐1(Ω
[1]
𝑋 )

2𝛽 =

(
1

𝑟1(𝑟1 + 1)
−
1
𝑟1
+ 1

)
𝑐1(Ω

[1]
𝑋 )

2𝛽,

which yields the desired inequality (4.7). Here, we used 𝑑 ∶= 𝑐1(Ω
[1]
𝑋 )

2𝐻1⋯𝐻𝑛−2 for the
last equality.
We assume that 𝑋 is maximally quasi-étale and that equality holds in (4.7). In the case 𝑟1 = 𝑛,

this situation has essentially been addressed in [28]. Specifically, Proposition 2.10 shows that
End(Ω[1]𝑋 ⊕ 𝑋) is locally free. Since Ω

[1]
𝑋 is a direct summand of End(Ω[1]𝑋 ⊕ 𝑋), the cotan-

gent sheaf Ω[1]𝑋 is also locally free. Therefore, by [21, Theorem 6.1], we conclude that 𝑋 is
smooth.
We now consider the case of 𝑟1 < 𝑛. Since equality holds in (4.9), we have 𝑟1𝜇1 = 𝑛𝜇. It follows

that 𝜇2 = 0, and by the definition of the Harder–Narasimhan filtration, we conclude that 𝑙 = 2.
By the same argument as in Theorem 3.5, we obtain 𝑐1(2) = 0.
Our next step is to prove that 1 and ∨∨2 are locally free. Since equality holds in (4.8), we deduce

that (
2(𝑟1 + 1) 𝑐2(1) − 𝑟1 𝑐1(1)

2)𝛽 = 0.
Thus, Corollary 2.11 implies that 1 is locally free. Since ∨∨2 is generically numerically effec-
tive and satisfies 𝑐1(2) = 0, it follows that ∨∨2 is (𝐻1 ⋅𝐻2⋯𝐻𝑛−2)-semistable. Moreover, we
obtain

𝑐2(
∨∨
2 )𝐻1⋯𝐻𝑛−2 = 0.

Indeed, in (4.11) we applied the Bogomolov–Gieseker inequality to 2, and equality now holds.
Thus, the above equality follows from 𝑐1(2) = 0.
Thus, [53, Theorem 1.4] shows that ∨∨2 is a flat locally free sheaf. Moreover, the torsion-free

sheaf 2 is locally free in codimension two since 2 → ∨∨2 is isomorphic in codimension two by
Lemma 2.13.
We finally prove that 2 = ∨∨2 and that 𝑋 is smooth. Consider the short exact sequence

0⟶ 1 ⟶ Ω[1]𝑋 ⟶ 2 ⟶ 0.

Note that 𝑋 satisfies Serre’s condition 𝑆𝑘 for all 𝑘, since 𝑋 has klt singularities (and is therefore
Cohen–Macaulay). Hence, all the assumptions of [2, Lemma 9.9] are satisfied, and we deduce
that Ω[1]𝑋 is locally free and 2 = ∨∨2 . In particular, it follows that 𝑋 is smooth by applying [21,
Theorem 6.1] once more. □
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32 of 41 IWAI et al.

Theorem 4.10 (cf. [58, chapter 7]). Consider Setup 4.8 and assume that 𝑟1 = 1. Then, the following
inequality holds:

𝑐2(Ω
[1]
𝑋 )𝐻1⋯𝐻𝑛−2 >

3
8
𝑐1(Ω

[1]
𝑋 )

2𝐻1⋯𝐻𝑛−2. (4.12)

We emphasize that equality never occurs in (4.12).

Proof. Set 𝛽 ∶= 𝐻1⋯𝐻𝑛−2. Since 1 ⊂ Ω
[1]
𝑋 and 𝜇1 > 0 holds, we obtain

𝑐1(1)
2𝛽 ⩽ 0 (4.13)

by Propositions 2.8 and 2.10.
Hence, as in the proof of Theorem 4.9, we obtain

(4.14)

Here, for the last inequality, we used the fact that the function 𝑓(𝑥) ∶= 𝑑 − 𝑥 + 𝑥2

𝑑
attains its

minimum value 3
4
𝑑 at 𝑥 = 𝑑

2
. Hence, the desired inequality (4.12) follows.

We finally show that equality is never attained in (4.12). If equality in (4.12) were to hold, then
by (4.10) and (4.14) we would obtain 𝑙 = 2,

𝜇2 = 0, and 𝜇1 =
𝑑
2
.

However, this contradicts the relation 𝜇1 + 𝑟2𝜇2 = 𝑑. □

By combining Theorems 4.9 and 4.10, we derive Miyaoka’s inequality for minimal projective
klt varieties. Moreover, we analyze the case of equality and obtain a uniformization theorem.

Theorem 4.11 (cf. [58, chapter 7], [45, Theorem 5.6], and [67, Theorem 7.2]). Consider Setup 4.8.
Then, Miyaoka’s inequality holds:(

3𝑐2(Ω
[1]
𝑋 ) − 𝑐1(Ω

[1]
𝑋 )

2
)
𝐻1⋯𝐻𝑛−2 ⩾ 0 (4.15)

Moreover, if equality holds in (4.15), then there exists a finite quasi-étale cover 𝐴 × 𝑆 → 𝑋, where
𝐴 is an abelian variety and 𝑆 is a smooth projective surface whose universal cover is the unit ball in
ℂ2. In particular, the canonical divisor 𝐾𝑋 is semi-ample.
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MINIMAL PROJECTIVE VARIETIES SATISFYINGMIYAOKA’S EQUALITY 33 of 41

Proof. We easily obtain the desired inequality (4.15) from Theorems 4.9 and 4.10, by noting that

𝑥
2(𝑥 + 1)

⩾
1
3

(4.16)

for any real number 𝑥 ⩾ 2.
Assume that equality holds in (4.15). After taking a quasi-étale cover, we may assume that 𝑋

is maximally quasi-étale. Let 𝑟1 be the rank of the maximal destabilizing subsheaf of Ω
[1]
𝑋 with

respect to 𝐾𝑋 ⋅𝐻1⋯𝐻𝑛−2. Then 𝑟1 = 2 by Theorems 4.9, 4.10, and (4.16). Moreover, applying
Theorem 4.9 again, we see that 𝑋 is smooth and that there exists an exact sequence of locally
free sheaves

0⟶ 1 ⟶ Ω1𝑋 ⟶ 2 ⟶ 0,

where 2 is flat. Since ∨2 ⊂ 𝑇𝑋 has trivial first Chern class, the sheaf 
∨
2 defines a flat foliation of

codimension two by [52, Theorem 5.2]. Thus, by [64, TheoremD], we conclude that𝑋 ≅ 𝐴 × 𝑆 up
to a finite étale cover, where 𝐴 is an abelian variety and 𝑆 is a point, a smooth curve, or a smooth
surface. By noting 𝜈(𝐾𝑋) = 𝜈(𝐾𝑆) ⩾ 2, we see that 𝑆 is a smooth projective surface of general type.
Finally, equality in (4.15) implies that 3𝑐2(𝑆) − 𝑐1(𝑆)2 = 0, which shows that the universal cover
of 𝑆 is the unit ball in ℂ2 by [57, Proposition 2.1.1]. □

By Theorem 1.2, we immediately obtain Corollary 1.3.

Proof of Corollary 1.3. By Theorem 1.2(A), we have 𝑐1(Ω
[1]
𝑋 )

2𝐻1⋯𝐻𝑛−2 = 0. Hence, all the
assumptions of Theorem 1.2(B) are satisfied, and we conclude that 𝐾𝑋 is semi-ample. □

5 PROOF OF THEOREM 1.4

This section is devoted to the proof of Theorem 1.4. We begin by recalling the definition of the
Albanese map for a projective klt variety 𝑋. Given a resolution 𝜋∶ 𝑋 → 𝑋 of singularities, the
Albanese map 𝛼̃ ∶ 𝑋 → Alb(𝑋) factors through 𝑋 (see, for example, [71, Proposition 9.12]):

Themorphism 𝛼∶ 𝑋 → Alb(𝑋) ∶= Alb(𝑋) is independent of the choice of resolution of singulari-
ties and is called theAlbanesemap of𝑋. Note that dimAlb(𝑋) = 𝑞(𝑋) = 𝑞(𝑋) since𝑋 has rational
singularities, where 𝑞(𝑋) ∶= ℎ1(𝑋,𝑋) denotes the irregularity of 𝑋. The augmented irregularity
𝑞(𝑋) of 𝑋 is defined as

𝑞(𝑋) ∶= sup{𝑞(𝑋) ∣ 𝑋 → 𝑋 is a finite quasi-étale cover} ∈ ℤ⩾0 ∪ {∞}.

The following theorem is an immediate consequence of [54] and the Beauville–Bogomolov–Yau
decomposition theorem for klt varieties (see [8, 17, 20, 24, 35]).
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34 of 41 IWAI et al.

Theorem 5.1. Let 𝑋 be a projective klt variety with numerically effective anti-canonical divisor.
Then, after replacing 𝑋 with a finite quasi-étale cover, there exist the following data:

(1) an abelian variety 𝐴 of dimension 𝑞 ∶= 𝑞(𝑋),
(2) a projective klt variety 𝑌 with 𝐾𝑌 = 0 and 𝑞(𝑌) = 0,
(3) a rationally connected klt variety 𝐹 with −𝐾𝐹 numerically effective,
(4) a group homomorphism 𝜌∶ 𝜋1(𝐴) → Aut0(𝐹)

such that

𝑋 ≅ ((ℂ𝑞 × 𝐹)∕𝜋1(𝐴)) × 𝑌,

where 𝜋1(𝐴) acts diagonally on ℂ𝑞 × 𝐹 via 𝜌∶ 𝜋1(𝐴) → Aut0(𝐹). In particular, the Albanese map
𝛼∶ 𝑋 → 𝐴 is a locally trivial fibration whose fibers are isomorphic to 𝐹 × 𝑌.

Proof. By combining [54] with the Beauville–Bogomolov–Yau decomposition theorem for klt
varieties, and after replacing 𝑋 with a finite quasi-étale cover, we obtain an abelian variety 𝐴
of dimension 𝑞 ∶= 𝑞(𝑋), a projective klt variety 𝑌 with 𝐾𝑌 = 0 and 𝑞(𝑌) = 0, a rationally con-
nected klt variety𝐹with numerically effective anti-canonical divisor, and a grouphomomorphism
𝜌∶ 𝜋1(𝐴) → Aut(𝐹) such that

𝑋 ≅ ((ℂ𝑞 × 𝐹)∕𝜋1(𝐴)) × 𝑌.

Here, we used the fact that every linear representation of 𝜋1(𝑌) has finite image (see [20,
Theorem I]). Since 𝑋 is projective, the image of the composition

𝜋1(𝐴)⟶ Aut(𝐹)⟶ Aut(𝐹)∕Aut0(𝐹)

is finite (see, for example, [59, Lemma 3.4]). Hence, after replacing 𝑋 with a finite étale cover, we
may assume that 𝜌 takes values in Aut0(𝐹). □

After proving that the tangent sheaf 𝑋 is generically numerically effective, we now complete
the proof of Theorem 1.4.

Lemma 5.2. Let𝑋 be a projective klt variety with numerically effective anti-canonical divisor. Then,
the tangent sheaf 𝑋 is generically numerically effective. In particular, for any ample Cartier divisors
𝐻1,… ,𝐻𝑛−2 on 𝑋, we have

𝑐2(𝑋) ⋅𝐻1⋯𝐻𝑛−2 ⩾ 0.

Proof. Note that when 𝑋 is ℚ-factorial, the conclusion was proved in [61, Theorem 1.4]. In the
general case, given a subsheaf  ⊂ Ω[1]𝑋 , we show that

𝑐1() ⋅𝐻1⋯𝐻𝑛−1 ⩽ 0

for any ample divisors 𝐻1,… ,𝐻𝑛−1 on 𝑋. Let 𝜌∶ 𝑋 → 𝑋 be a ℚ-factorization as in [42, Corol-
lary 1.37], and set ̃ ∶= 𝜌[∗] . Since 𝜌 is a small birational morphism (i.e., it does not contract any
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MINIMAL PROJECTIVE VARIETIES SATISFYINGMIYAOKA’S EQUALITY 35 of 41

divisor), we have

𝐾𝑋 = 𝜌
∗𝐾𝑋 and 𝑐1(̃) = 𝜌

∗𝑐1().

We see that −𝐾𝑋 is also numerically effective. Moreover, we have Ω[1]
𝑋
≅ 𝜌[∗]Ω[1]𝑋 by reflexivity,

and thus ̃ can be regarded as a subsheaf of Ω[1]
𝑋
. By [61, Theorem 1.4], we deduce that

𝑐1() ⋅𝐻1⋯𝐻𝑛−1 = 𝑐1(̃) ⋅ 𝜌
∗𝐻1⋯ 𝜌∗𝐻𝑛−1 ⩽ 0.

This shows that 𝑋 is generically numerically effective. The latter conclusion follows from
Corollary 3.6 and Theorem 3.7. □

Proof of Theorem 1.4. Let 𝑋 be a projective klt variety of dimension 𝑛 satisfying the assumptions
of Theorem 1.4. Note that, by Proposition 2.6 and Lemma 5.2, we have 𝑐2(𝑋) ⋅ 𝐷1⋯𝐷𝑛−2 = 0 for
all numerically effective ℚ-divisors 𝐷1,… , 𝐷𝑛−2.
It suffices to prove the conclusion after replacing 𝑋 with a finite quasi-étale cover. Hence, we

may assume that 𝑋 is maximally quasi-étale. Furthermore, by Theorem 5.1, we may assume that

𝑋 ≅ ((ℂ𝑞 × 𝐹)∕𝜋1(𝐴)) × 𝑌

and that𝑋 satisfies the properties listed in Theorem 5.1. Recall that𝑌 is a projective klt varietywith
𝐾𝑌 = 0 and 𝑞(𝑌) = 0, and that 𝐹 is a rationally connected klt variety. Then, from the assumption
on 𝑐2(𝑋), we obtain the following claim.

Claim 5.3. The variety 𝑌 is a single point.

Proof of Claim 5.3. Assume for a contradiction that 𝑌 is not a point. Consider the splitting of the
tangent sheaf

𝑋 = pr
∗
1𝑍 ⊕ pr∗2𝑌

arising from the product structure 𝑋 ≅ 𝑍 × 𝑌, where

𝑍 ∶= (ℂ𝑞 × 𝐹)∕𝜋1(𝐴)

and pr𝑖 is the natural projection. Let 𝐷 be an ample divisor on 𝑍 and let𝐻 be an ample divisor on
𝑋. Set𝑚 ∶= dim𝑍. Then, Proposition 2.6 shows that

𝑐2(𝑋|𝑌) ⋅ (𝐻|𝑌)𝑛−𝑚−2 = 𝑐2(𝑋) ⋅𝐻𝑛−𝑚−2 ⋅ (pr∗1𝐷)𝑚 = 0.
By combining Lemmas 2.13 and 5.2, we deduce that

𝑐2(𝑌) ⋅ (𝐻|𝑌)𝑛−𝑚−2 = 0.
Since𝐾𝑌 = 0, it follows from [53, Theorem 1.2] that𝑌 is a quasi-étale quotient of an abelian variety,
contradicting 𝑞(𝑌) = 0. □
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36 of 41 IWAI et al.

Fromnow on, let 𝛼∶ 𝑋 → 𝐴 be theAlbanesemorphism of𝑋 as in Theorem 5.1. By construction
and Claim 5.3, this is a locally trivial fibration with fiber 𝐹, where 𝐹 is a rationally connected klt
variety. By [18, Theorem 1.5] (cf. [9, Theorem 1.2]), we have

𝜈(−𝐾𝑋) = 𝜈(−𝐾𝐹) ⩽ dim𝐹. (5.1)

Thus, to conclude the proof of Theorem 1.4, it remains to show that dim𝐹 ⩽ 1. To this end, we
consider three cases according to the numerical dimension 𝜈(−𝐾𝑋) of−𝐾𝑋 . We first treat the case
𝜈(−𝐾𝑋) = 0.

Case 1 (The case 𝜈(−𝐾𝑋) = 0). In this case, by [53, Theorem 1.2], the variety 𝑋 is a quasi-étale
quotient of an abelian variety, and thus satisfies the desired conclusion.

In the case 𝜈(−𝐾𝑋) ⩾ 1, we consider the relative tangent sheaf 𝑋∕𝐴. Note that we have the
splitting

𝑋 = 𝑋∕𝐴 ⊕ 𝛼∗𝐴 ≅ 𝑋∕𝐴 ⊕ 
⊕𝑞
𝑋 ,

since 𝛼∶ 𝑋 → 𝐴 is a locally constant fibration.

Case 2 (The case 𝜈(−𝐾𝑋) ⩾ 2). We show that this situation cannot occur. In this case, we have
dim𝐹 ⩾ 2 by (5.1). The relative tangent sheaf 𝑋∕𝐴 satisfies the assumptions of Corollary 3.6, and
hence, we obtain a surjective morphism of sheaves 𝑋∕𝐴 ↠ , where  is a flat locally free sheaf
such that rk = dim𝐹 − 1 ⩾ 1. Taking dual and restricting to the fiber, we obtain a flat subsheaf

(|𝐹)∨ ↪ (𝑋∕𝐴|𝐹)∨ ≅ Ω[1]𝐹 .
The flat locally free sheaf (|𝐹)∨ is trivial since𝐹 is rationally connected (in particular, simply con-
nected). This implies that 𝑞(𝐹) ≠ 0, contradicting the assumption that 𝐹 is rationally connected.

Case 3 (The case 𝜈(−𝐾𝑋) = 1). Recall that it remains only to show that dim𝐹 ⩽ 1. To this end,
assume dim𝐹 ⩾ 2 and derive a contradiction.
Fix an ample divisor𝐻 on𝑋 and set𝐻𝜀 ∶= −𝐾𝑋 + 𝜀𝐻. Consider the (𝐻𝜀 ⋅𝐻1⋯𝐻𝑛−2)-Harder–

Narasimhan filtration of 𝑋∕𝐴:

0 =∶ 0 ⊊ 1 ⊊ ⋯ ⊊ 𝑙 ∶= 𝑋∕𝐴. (5.2)

By Theorem 3.7, this filtration is independent of 𝜀 for 0 < 𝜀 ≪ 1. Moreover, the graded pieces
𝑖 ∶= 𝑖∕𝑖−1 satisfy the following properties.

(1) 𝑖 is a reflexive sheaf of rank 𝑟𝑖 on 𝑋.
(2) 𝑖|𝑋reg is locally free and projectively flat, with associated representation 𝜌𝑖 ∶ 𝜋1(𝑋reg) →

ℙGL(𝑟𝑖, ℂ).
(3) det(𝑖) is a ℚ-line bundle, and 𝑐1(𝑖) = 𝜆𝑖𝑐1(𝑋∕𝐴) = 𝜆𝑖𝑐1(−𝐾𝑋).

Then, by applying [25, Proposition 3.3] to each 𝑖 , there exists a reflexive sheaf𝑖 of rank one such
that 𝑖 = 𝑖 ⊗ 𝑖 , where 𝑖 admits a filtration
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0 =∶ 0𝑖 ⊊ 1𝑖 ⊊⋯ ⊊ 
𝑟𝑖−1
𝑖 ⊊ 

𝑟𝑖
𝑖 ∶= 𝑖 (5.3)

such that each graded piece 𝑘𝑖 ∕
𝑘−1
𝑖 is a flat line bundle, and 1𝑖 is a trivial line bundle on 𝑋.

Now, by a straightforward computation, we have

𝜆𝑖𝑐1(−𝐾𝑋) = 𝑐1(𝑖) = 𝑟𝑖𝑐1(𝑖).

Then, from the properties of the Harder–Narasimhan filtration (5.2) and Lemma 5.2, we deduce
that

(5.4)

We now show that 𝜆𝑙 > 0. Suppose instead that 𝜆𝑙 = 0. Then, the ℚ-line bundle 𝑙 is
numerically trivial. On the other hand, by definition, there is a surjective morphism of sheaves

𝑋∕𝐴 = 𝑙 ↠ 𝑙∕𝑙−1 = 𝑙 = 𝑙 ⊗ 𝑙 ↠ 
𝑟𝑙
𝑙
∕ 𝑟𝑙−1

𝑙
⊗ 𝑙 =∶.

Since 𝑋 is maximally quasi-étale and 𝑐1() = 0, the sheaf is a flat line bundle by [53, Theo-
rem 1.4] (see also the proof of Lemma 2.5). By taking dual and restricting to the fiber, we obtain
the inclusion

(|𝐹)∨ ↪ (𝑋∕𝐴|𝐹)∨ ≅ Ω[1]𝐹 .
The flat line bundle (|𝐹)∨ is trivial since 𝐹 is rationally connected. This implies that 𝑞(𝐹) ≠ 0,
which contradicts the fact that 𝐹 is rationally connected.
Consequently, we obtain 𝜆𝑙 > 0. Hence, by (5.4) and dim𝐹 ⩾ 2, we deduce that 𝜆𝑖∕𝑟𝑖 < 1 for

every 𝑖. This establishes Claim 5.4 below, which implies that 𝐾𝐹 is numerically effective and
therefore numerically trivial. This contradicts (5.1), and thus we conclude that dim𝐹 ⩽ 1.

Claim 5.4. 𝐹 has no 𝐾𝐹-negative extremal contraction. In particular, 𝐾𝐹 is numerically effective.

Proof of Claim 5.4. Assume that 𝐹 admits a 𝐾𝐹-negative extremal contraction 𝜙∶ 𝐹 → 𝑊. By the
argument in [25, Claim 5.8 in the ArXiv version], it suffices to show that

𝑅𝑝𝜙∗Ω
[1]
𝐹 = 0 for all 𝑝 > 0.

To this end, restricting (5.2) and (5.3) to the fiber 𝐹 and taking duals, it is enough to verify that

𝑅𝑝𝜙∗
((

𝑘𝑖 ∕
𝑘−1
𝑖

)∨
⊗ ∨𝑖

)
= 0 for all 𝑝 > 0. (5.5)

Note that

𝐹(−𝐾𝐹) ⊗
(
𝑘𝑖 ∕

𝑘−1
𝑖

)∨
⊗ ∨𝑖
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is numerically equivalent to (1 − 𝜆𝑖∕𝑟𝑖)𝑐1(−𝐾𝐹), and is therefore 𝜙-ample since 𝜆𝑖∕𝑟𝑖 < 1. Thus,
by the relative vanishing theorem (see [40, Theorem 1-2-5]), we obtain the desired vanishing
(5.5). □

In summary, we see that in all cases dim𝐹 ⩽ 1, as required. This completes the proof. □
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