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1. INTRODUCTION
1.1. Main results. .

Shin-ichi Matsumura? |
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Abstract

In this paper, we establish a structure theorem for a
minimal projective klt variety X satisfying Miyaoka’s
equality 3c,(X) = ¢;(X)?. Specifically, we prove that the
canonical divisor Ky is semi-ample and that the Kodaira
dimension x(Ky) is equal to O, 1, or 2. Furthermore,
based on this abundance result, we show that a maxi-
mally quasi-étale cover of X is smooth, and we explicitly
describe the structure of the Iitaka fibration. In addition,
we prove an analogous result for projective klt varieties
with numerically effective anti-canonical divisor.
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1 | INTRODUCTION
1.1 | Main results

The abundance conjecture, one of the most significant problems in algebraic geometry, remains
largely unsolved in higher dimensions.

Conjecture 1.1 (Abundance conjecture for minimal klt varieties). Let X be a (complex) projective
kit variety. If X is minimal (i.e., if the canonical divisor Ky is numerically effective), then K is semi-
ample.

In this paper, we establish a structure theorem for minimal projective kit varieties whose Chern
classes satisfy a certain extremal condition, the so-called Miyaoka equality. As part of our results,
we also resolve the abundance conjecture for such varieties.

Building on earlier work [55, 73], Miyaoka proved in [58, chapter 7] that a smooth minimal
projective variety X satisfies Miyaoka’s inequality:

3¢,(Q)) — ¢, (Q})* > 0.

Subsequently, numerous analogous inequalities have been established; see, for example, [45, The-
orem 5.6], [67, Theorem 7.2], [28, 30, 51, 53, 66], and the references therein. These inequalities
involving Chern classes have a long history and play an important role in higher dimensional
algebraic geometry.

The structure of varieties X satisfying equality in such inequalities is expected to be well-
understood in detail. For instance, building on [73], Miyaoka proved in [56] that a smooth
projective surface X of general type satisfying Miyaoka’s equality

36,(@)) — ¢,(QL)? = 0

must be an (infinite) étale quotient of the unit ball. Later, Peternell-Wilson [65] explicitly deter-
mined which minimal terminal varieties of dimension three can satisfy Miyaoka’s equality. The
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MINIMAL PROJECTIVE VARIETIES SATISFYING MIYAOKA’S EQUALITY | 3 0f41

case ¥(Kyx) = 0, where Miyaoka’s equality is equivalent to CZ(Q)I() = 0 and X must be a finite étale
quotient of a complex torus, has been extensively studied, including in the singular case (see [13,
22, 53]). More recently, the case where »(Ky) < 1 and c2(Q)1() = 0 has been studied for compact
Kihler manifolds in [37], where it was shown that X admits the structure of a smooth abelian
fibration over a curve of general type up to finite étale cover. We emphasize that in all of the above
cases, the abundance conjecture was shown to hold for X. Moreover, varieties satisfying related
extremal Chern class conditions have also been studied in [25, 28, 31, 62].

Our main result extends, generalizes, and unifies several of the aforementioned results [37,
56, 58, 65]. Specifically, we first prove that Miyaoka’s inequality continues to hold for minimal
projective klt varieties. Moreover, we resolve the abundance conjecture for a minimal kit variety
X satisfying the equality

3¢,(Qy) — ¢,(Q})* =0,

and explicitly describe the geometry of X. In particular, for minimal terminal threefolds,
Theorem 1.2 precisely recovers the classification given in [65].

Theorem 1.2 (Main result). Let X be a projective kit variety of dimension n with numerically effective
canonical divisor Ky. Then, the following statements hold.

(A) Miyaoka’s inequality holds for ample divisors H,, ... ,H,_, on X:

2
(32 (o) & (') )ty >0

where 62(951) and Q(QE(I]) denote the Q-Chern classes of the cotangent sheaf QE(I].
(B) Assume that Miyaoka’s equality holds for some ample divisors H; on X:

2
(362 <Q§]> -3 (Q@) >H1 wH,_,=0. (L)

Then, the canonical divisor K is semi-ample and v(Ky) = x(Ky) is equal to 0, 1, or 2.
Moreover, there exists a finite quasi-étale cover X' — X such that, depending on the Kodaira
dimension, one of the following holds.

(i) In the case where v(Ky) = x(Kx) = 0, the variety X' is isomorphic to an abelian variety.
(ii) In the case where v(Ky) = x(Ky) = 1, the variety X' admits the structure of an abelian group
scheme X' — C over a curve C of general type.
(iii) In the case where v(Ky) = x(Ky) = 2, the variety X' is isomorphic to the product A X S of an
abelian variety A and a smooth surface S whose universal cover is the unit ball in C2.

In particular, in all cases, the variety X is smooth up to finite quasi-étale covers.

Note that a similar result was obtained for varieties of large Kodaira dimension in [31], where
Hao and Schreieder showed that a minimal projective variety X satisfying @(QE(H)K )';_2 =0 and
x(Kx) = n — 1 is isomorphic to the product of an elliptic curve and a variety of general type, up
to quasi-étale covers and birational modifications.

36USD |17 SUOWILLOD BA[a1D 3|get|dde au Aq pauseAcb a.e SapILe YO ‘88N JO Sa|NI 10 AReiq13UljUQ AB|IAA UO (SUONIPUOD-PUR-SLUBIAL0Y" AB| 1M ARIq 1 BUI|UO//SANY) SUOIIPUOD pUe WS | 8U) 89S *[G202/2T/TT] uo Arigiiauljuo A8|IM edesO JO A1seAluNn ayL Ag ¥0T0L 'SWd/ZTTT OT/I0p/Wwod A8 1M AReiq 1pu1 U0 d0syIeWwpuO|//sdny wouy papeojumod ‘9 'S20z ‘Xi20orT



4 of 41 | IWAI ET AL.

The following corollary, established for smooth varieties in [37], is an immediate consequence
of Theorem 1.2. As explained in the introduction of [37], this result can be viewed as a partial
complement to that of [50].

Corollary 1.3. Let X be a projective klt variety with numerically effective canonical divisor. Assume
that there exist ample divisors Hy, ..., H,,_, on X such that

6\2(QE§])H1 - Hy_,=0.
Then, the canonical divisor K is semi-ample and v(Kx) = x(Ky) is equal to 0 or 1.

In another direction, we obtain a structure theorem (see Theorem 1.4 below) for a projective
variety X with numerically effective anti-canonical divisor —Ky and ¢,(7y) = 0. This theorem
generalizes the results of [11, 61] for smooth varieties and [36] for terminal threefolds to projective
kit varieties of arbitrary dimension.

Theorem 1.4. Let X be a projective klt variety of dimension n with numerically effective
anti-canonical divisor —Ky. Assume that there exist ample divisors Hy, ..., H,_, on X such that

62(7’)()H1 ~Hy,_, =0,

where Ty denotes the tangent sheaf of X. Then, the numerical dimension v(—Ky) is equal to 0 or
1. Moreover, there exists a finite quasi-étale cover X' — X such that, depending on the numerical
dimension v(—Ky), one of the following holds.

(i) In the case where v(—Ky) = 0, the variety X' is isomorphic to an abelian variety.
(ii) In the case where v(—K ) = 1, the variety X" admits a locally trivial fibration X' — A onto an
abelian variety A with fiber P'.

In particular, in all cases, the variety X is smooth up to finite quasi-étale covers.

1.2 | Overview and outline of proofs

This subsection outlines the proofs of Theorems 1.2 and 1.4, and highlights our new contributions
compared to previously known results in the literature.

To prove Miyaoka’s inequality for klt varieties, we extend the argument of [45] to the klt setting
by using Langer’s proof of the Bogomolov-Gieseker inequality. Note that the argument in [45] is
essentially the same as Miyaoka’s original proof in [58], with a slight simplification introduced
in [68]. In any case, the possibility of extending these arguments to klt varieties might be already
known to experts.

Let us now consider the case where a minimal projective variety X satisfies Miyaoka’s equality.
In the case ¥(Ky) = 0, the desired result was obtained in [22, Theorem 1.17] and [53, Theorem 1.2].
Thus, it remains to consider two cases: »(Ky) = 1, discussed in Subsection 4.1, and »(Ky) > 2,
discussed in Subsection 4.2.

Both cases require a detailed analysis of the Harder-Narasimhan filtration of the cotangent
sheaf QE(” and of the second Q-Chern class Q(QE]). In particular, as in previous works [11, 37,

58, 61], the first graded piece & C QE(” of the Harder-Narasimhan filtration plays a crucial role
in our proof. We study the Harder—Narasimhan filtration in detail in Section 3.
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In the case ¥(Kx) = 1, we first prove that K is semi-ample. This part is analogous to the argu-
ment in [37], where the result was established in the smooth case. The proof relies on Campana’s
notion of special varieties and the result of Lazi¢-Peternell [50] on the abundance conjecture for
varieties of numerical dimension one. At this point, however, our argument departs significantly
from the existing literature, since it is not clear from the study of the Harder-Narasimhan filtra-
tion whether a maximally quasi-étale cover of X is necessarily smooth. To proceed, we first show
that the Iitaka fibration f : X — C carries the structure of a stratified C*-orbifold fiber bundle.
This requires a precise local understanding of numerically flat sheaves on klt varieties (see Sub-
section 2.5). Then, using a combination of topological and algebraic methods, we prove that the
multiple fibers can be eliminated. Once smoothness is established, we conclude by applying [34,
37].

In the case ¥(Ky) > 2, an examination of the Harder-Narasimhan filtration together with some
standard arguments shows that X is smooth. The result then follows from an integrability theorem
for numerically flat foliations obtained by Pereira-Touzet [64]. We find it remarkable that, to the
best of our knowledge, the conclusion of Theorem 1.2 (iii) had not even been conjectured before,
although the subject has been studied extensively in the literature.

The proof of Theorem 1.4 is presented in Section 5. In the proof, we apply the structure theorem
for a projective variety with numerically effective anti-canonical divisor [12, 54], which provides a
locally constant Albanese map X — Alb(X) after replacing X by a finite quasi-étale cover. We then
analyze in detail the Harder-Narasimhan filtration of the relative tangent sheaf 7, , to show that
the fiber dimension of X — Alb(X) is at most one.

2 | PRELIMINARY RESULTS
2.1 | Notation and conventions

Throughout this paper, we work over the field of complex numbers. We employ the standard
notation and conventions of [32, 44], as detailed in [38, subsection 2.1]. Moreover, we will simply
say that X is a kit variety if the pair (X, 0) is klt, equivalently, the variety X is log terminal. All
sheaves considered in this paper are assumed to be coherent, unless explicitly stated otherwise.
Furthermore, a reflexive sheaf £ of rank one is called a Q-line bundle if its reflexive mth tensor
power £[®™] := (£®M)VV js]ocally free for some m € N.

2.2 | Maximally quasi-étale covers

In this subsection, following [25, section 2.5], we review maximally quasi-étale covers.

A normal variety X is said to be maximally quasi-étale if the morphism ﬁl(Xreg) - 1,(X)
induced by the natural inclusion i : X, < X is an isomorphism, where X, ., denotes the smooth
locus of X and 7 («) denotes the étale fundamental group. By [24, Theorem 1.14], any kit variety
Y admits a finite quasi-étale cover v : X — Y such that X is maximally quasi-étale. If X is maxi-
mally quasi-étale, then any projective (or linear) representation of the (topological) fundamental
group 77, (X ¢g) can be extended to a representation of 7z, (X) by the following result:

Theorem 2.1 [26, proof of Proposition 3.10]. Let X be a maximally quasi-étale variety.
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(1) Any representation p, : nl(Xreg) — P GL(r, C) factors through m,(X):

//~—~ ------------ \\
ﬂl(Xreg) i, 7T1(X) 0 P GL(V’ C)

(2) Any representation p, : nl(Xreg) — GL(r, C) factors through m,(X).

2.3 | Q-Chern classes

In this subsection, following [27, 43], we review Q-Chern classes, which allow us to define
intersection numbers for characteristic classes of reflexive sheaves.

Let X be a projective klt variety of dimension n, and let £ and F be reflexive sheaves on X. As
explained in [43, chapter 10] and [27, Theorem 3.13], the Q@-Chern classes ¢; (&), ¢;(€)¢;(F), and
C,(&) can be defined as the symmetric @-multilinear forms satisfying the properties (P1) and (P2):

@) N'@XITT —Q, (a,e,a, ) — E(E)ay g,
GERFE): NI —Q, (g, p) — GEGF)ay -+ ay_y,

SE)N'XIFT?—Q (A, @y ) — G(E)ay .

(P1) In the case n = 2, the surface X admits a (not necessarily quasi-étale) finite Galois cover
v: X — X such that the reflexive pullback v[*I€ is locally free, and

degv - (€(€)-a) = cl<v[*]£> “v'a,

for any o € N'(X)q.
(P2) Inthe case n > 2, for any general member V' € 3 of a free sub-linear system B C |L| of some
line bundle L, we have

61 (E)ey (L)t -+ ay_y =1 (Ely)ay =+ o1,

for any a; € N'(X),. Note that V' is a kit hypersurface in X and €|, is reflexive.

The same properties as (P1) and (P2) hold for ¢;(£)¢;(F) and &,(&).
In this paper, we need to treat intersection numbers with particular care. For this reason, we
briefly review the definitions of intersection numbers for Weil divisors and torsion-free sheaves.

Definition 2.2.

(1) (Weil divisors, divisorial sheaves, and determinant sheaves). Let D be a Weil divisor on X,
and let F := Oy (D) be the associated divisorial sheaf. We define ¢;(D) := ¢;(F). By prop-
erties (P1) and (P2), when D is Q-Cartier, this definition coincides with the Q-multilinear
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MINIMAL PROJECTIVE VARIETIES SATISFYING MIYAOKA’S EQUALITY | 7 of 41

form %cl(mD) naturally defined by the line bundle mD, where m € Z, with mD Cartier.

Furthermore, for a reflexive sheaf £, we have ¢, (£) = ¢,(det £), where det £ := (AKEE)VY,

(2) (Torsion-free sheaves). For a torsion-free sheaf G on X, we define c,(G) :=¢,(G"V). Let C be
the curve defined by the complete intersection of general members of |H;|, where each H;
is a very ample Cartier divisor on X. Since the natural map G — G"V is an isomorphism in
codimension one, the restriction G| is locally free on C, and we have

c1(QH; - H,_; = c;(Cle).

For convenience, we often write ¢,(+) instead of ¢;(+), and similarly c,(+)c,(4) instead of
C1(+)¢, (@). Furthermore, we use the following notation

Day o,y 1=C(D)ety = g
These conventions are adopted to simplify notation and to avoid confusion in view of the
properties mentioned above.
We now generalize the Hodge index theorem to Weil divisors on projective kit varieties using
Q-Chern classes. The following proposition is perhaps already known to experts, but we include

an explanation for completeness, since appropriate references seem to be lacking.

Proposition 2.3 (Hodge index theorem). Let X be a projective klt variety of dimension n. Let A and
B be Q-Weil divisors on X, and let Hy, ..., H,_, be ample Q-Cartier divisors on X.

(1) IfA%?-H,---H,_, > 0, then we have

(A®-Hy - Hy,_,) (B*-Hy -+ H, ;) <(A-B-Hy - H, ). (2.1

@ If
B2 “H,--H, ,=A-B-H,--H,_, =0,
then we have
A*.H,--H, ,<0. (2.2)
(3) In cases (1) and (2), if equality holds in (2.1) or (2.2), respectively, then there exists a rational
number A € Q such that
B-L-H,-H, ,=A-(A-L-H,-H,_,)
holds for any Q-Weil divisor L on X.
Remark 2.4. When X is a smooth projective variety, this proposition follows directly from the

Hodge index theorem (see, for example, [3, Corollary IV.2.15]). When both A and B are Q-Cartier,
the proposition can be proved by taking a resolution of singularities of X, even without assuming
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8of41 | IWAI ET AL.

that X has kit singularities. The main difference between this proposition and conventional
formulations is its treatment of Q-Weil divisors.

Proof. We reduce the proof to the case where X is a surface. The Weil divisors A and B are not
necessarily Q-Cartier, but this causes no difficulty thanks to [49] and the assumption that X has
kit singularities.

By replacing H; with m;H; for m; > 1, we may assume that each H; is a very ample Cartier
divisor. Define the surface S as the complete intersection

S:=Vin-nV,_,,
where each V; is a general member of |H;|. Then, by [49, Theorem 0.1], we obtain
(Alg)* = A®-H, - H,_,.

Here, the intersection numbers are computed using @-Chern classes. The left-hand side (A4|g)?
coincides with the usual intersection number of the Q-Cartier divisor A|g. Indeed, the surface S
has kit singularities and is therefore Q-factorial, which implies that A|¢ is Q-Cartier. The same
argument applies to A|q - B|g and (B|g)?. Therefore, the desired conclusions follow from the
standard Hodge index theorem (see Remark 2.4). O

Lemma 2.5. Let X be a projective klt variety of dimension n. Let L be a reflexive sheaf of rank one
and D be a Q-Cartier divisor on X such that

(e1(£) = ¢y (D)H, - H,_; =0 and (¢,(£) - ¢;(D))’H, -+ H,_, = 0 holds

for some ample Q-Cartier divisors H; on X. Then, the sheaf L is a Q-line bundle and satisfies c; (L) =
¢, (D).

Proof. Letv: X — X be a maximally quasi-étale Galois cover with Galois group G, and let m €
7 be a positive integer such that mD is Cartier. The sheaf

M =yl cl®ml @ O, (-mD))
is reflexive and satisfies
(M) -HyH, ;=0 and c¢;(M)*-H,--H, ,=0

by assumption. Furthermore, since M’ has rank one, it is stable and satisfies &,(M’) -
H,---H,_, = 0. Hence, by [53, Theorem 1.4], we deduce that M’ is a flat invertible sheaf.
Replacing m by a sufficiently divisible multiple, if necessary, we may assume that the natural
action of G on M/’|, is trivial for every x € X. Consequently, there exists a flat line bundle M
on X such that M’ = »* M (see [16, Theorem 6.8]). This shows that £ is a Q-line bundle with
¢/(£) = ¢, (D). 0

The following proposition is elementary, but keeping it in mind is often useful. The proof is
straightforward, and thus we omit it.
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MINIMAL PROJECTIVE VARIETIES SATISFYING MIYAOKA’S EQUALITY | 9 of 41

Proposition 2.6. Let X be a projective variety of dimension n, and let 0 < k < n be an integer. Let
a: NI(X )g_k — Q be a symmetric Q-multilinear form such that

a-H,-H. >0

holds for any ample Q-divisors H; on X. Then, the following conditions are equivalent.

* a-H, - H; =0 for some ample Q-divisors Hy, ..., Hy,.
* a-H, - H =0 forall ample Q-divisors H,, ..., Hy.
* o-H, - H, =0 forall numerically effective Q-divisors Hy, ..., Hy,.

2.4 | Higgs sheaves

In this subsection, we establish some preliminary results on Higgs sheaves. We begin by recalling
the definition and basic properties of Higgs sheaves.

Definition 2.7 (cf. [27, sections 4 and 5]). A Higgs sheaf (H,6) on a normal projective variety X

is a pair consisting of a reflexive sheaf H and an Ox-linear sheaf morphism6: H - H ® Q[”,

called Higgs field, such that the induced morphism
6A0: H—H®QY

vanishes.

(1) Asubsheaf S C H issaid to be generically 6-invariant if 6(S)| Xreg) is contained in the image of

the natural map S ® QE(I] -HQ Qg(l] on X e,.
(2) Let L,,...,L,_; be numerically effective Q-Cartier divisors on X. The slope of (H,0) with
respect to (L, --- L,,_;) is defined by

) Cl(H).Ll...L ]
/"Ll..~Ln_1(H) -= Tk H —.

(3) The Higgs sheaf (M, 0) is said to be (L; -+ L,_,)-semistable (resp., (L, --- L,_,)-stable) if any
generically 6-invariant reflexive subsheaf 0 ¢ S C H satisfies

Mryon, (S <pp,.p, (O (@espopy p  (S) <pg, .., (D).

Proposition 2.8. Let X be a projective klt variety of dimension n and Ly, ...,L,_, be numerically
effective Q-Cartier divisors. For a reflexive subsheaf & C Q[l], we define the Higgs sheaf (H,0) by
H :=E®Oxand

6: H=¢00y — HeW =(Edoneal
(a,b) — (0, ).

If € is a (Ly -+ L,_,)-semistable sheaf with #L1-~~Ln_1(5) > 0, then the Higgs sheaf (H,0) is
(Ly - L,,_;)-stable.
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Proof. Seta :=L;-L, ; € Nl(X)g_l. Suppose that (H,6) is not a-stable. Then, there exists a
nontrivial generically 6-invariant subsheaf S C H with u (S) > u,(H). Setr :=rk€ and [ :=
rk S. By definition, we have

r
U (S) = po(H) = e Uy (E) > 0.
Consider the sheaf morphism
pry
YV:SCH=EDOy —— Oy

induced by the second projection. Note thaty : S — Oy is not the zero map, since S is generically
f-invariant.

We claim that Ker(y) is a destabilizing subsheaf of €& with respect to a. First, we confirm that
Ker(y) is a nonzero subsheaf of . Indeed, if y were injective, then S = Im(y) C Oy would be an
ideal sheaf of Oy. This would imply 0 > u,(Im(y)) = u,(S), which is a contradiction.

‘We now consider the exact sequence

0 - Ker(y) » S - Im(y) - 0.
Since Ker(y) € S and Im(y) C Oy, both sheaves are torsion-free. It follows that
¢1(S) - & = ¢ (Ker()) - o + ¢;(Im(y)) - @ < ¢ (Ker(7)) - a. 23)

By noting that rk(Ker(y)) = I — 1 and using (2.3), we obtain

a(Ker() = e (Ker() - > o e (8) 2 4 (E).

o
1-1 r+1(1-1)

l

By noting m > 1 holds, we obtain u,(Ker(y)) > u, (&), contradicting the a-semistability of

E. L

2.5 | Numerically projectively flat sheaves

In this section, we investigate numerically projectively flat reflexive sheaves, which play a cru-
cial role in studying the singularities of varieties. We first review the definition of numerically
projectively flat sheaves and the Bogomolov-Gieseker inequality.

Definition 2.9. Let X be a projective klt variety of dimension #n, and let £ be a reflexive sheaf of
rank r on X. The sheaf £ is said to be numerically projectively flat if there exist ample Q-Cartier
divisors Hy, ..., H,,_; such that £ is (H --- H,,_;)-semistable and satisfies the Bogomolov-Gieseker
equality

A(&H, - H, ,=0,
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where
AE) :=2ry(&) — (r —1)E,(8)°.

Proposition 2.10 (cf. [48]). Let X be a projective kit variety of dimension n. Let (H, 6) be a reflexive
Higgs sheafon X, and let Hy, ... ,H,_; be ample Q-Cartier divisors on X. If the Higgs sheaf (H, 0) is
(H, --- H,_,)-semistable, then the Bogomolov-Gieseker inequality

A(H)H, -+ H,_, >0 2.4)
holds. Moreover, if X is maximally quasi-étale and equality holds in (2.4), then End(H) is locally free.

Proof. The Bogomolov-Gieseker inequality was proved in [48, Theorem 7.6]. Therefore, it suffices
to prove the latter conclusion. Set G : = End(H), which is a reflexive Higgs sheaf equipped with the
Higgs field O, naturally induced by 6. By [27, Lemma 3.18], the Higgs sheaf (G, 6.) is (H; --- H,_;)-
semistable and satisfies equality in (2.4). Thus, since c¢;(G) = 0, we obtain

&(Q)-Hy -+ Hy_p =0.

By [47, Theorem 7.12], it follows that G| Xreg is locally free and that (G,0,) is semistable with
respect to any polarization. Here, we used that Higgs fields correspond to integrable A-connections
in the case 1 = 0. By [28, Theorem 6.6], the Higgs bundle (G, eg)lxreg is induced from a linear
representation

Po: ﬂl(Xreg) - GL(I‘kg, C)
via the nonabelian Hodge correspondence. This representation is extended to
p: m(X) > GL(rk G, C)

by Theorem 2.1. Applying the nonabelian Hodge correspondence once more, we obtain a locally
free Higgs sheaf on X corresponding to p. By reflexivity, this locally free Higgs sheaf on X coincides
with (G, 6). O

Corollary 2.11. Let X be a maximally quasi-étale projective klt variety of dimension n, and let
EC QE;] be a reflexive subsheaf of rank r of the cotangent sheaf QQ]. Let D be a numerically
effective Q-Cartier divisor and H,, ..., H,_, be ample Q-Cartier divisors on X. Assume that £ is
(D - H, -+ H,,_,)-semistable, that up p ..y, ,(E) > 0, and that

(2(r + 1)ey(&) — r&,(&)*)H, -+ H,_, = 0.

Then, the sheaf £ is locally free on X.

Proof. Consider the Higgs sheaf (H := & @ Oy, 0) defined as in Proposition 2.8. By Propo-
sition 2.8, the Higgs sheaf (H,0) is (D-H, --- H,_,)-stable. Then, by the argument of [27,
Proposition 4.17], we deduce that (H,9) is also ((D +¢H,) - H; -+ H,_,)-stable for some 0 <
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€ < 1. By assumption, the sheaf H satisfies the Bogomolov-Gieseker equality. Therefore,
Proposition 2.10 shows that End(H) is locally free on X. Since € is a direct summand of

End(H) =End(&) ® £ @ €Y @ Oy,
it follows that & is locally free. O

Lemma 2.12. Let X be a projective klt variety, and let £ be a numerically projectively flat sheaf
on X such that det € is a Q-line bundle. Then, for any point x € X, there exist an analytic open
neighborhood x € U C X and a finite quasi-étale Galois cover m: U — U such that 7*1€ is
locally free.

Proof. Fix a point x € X. By [5, Theorem 1], we can take an analytic open neighborhood x €
U C X such that the regional fundamental group 7;(U,,) is finite. By [22, Proposition 3.13], there
exists a finite quasi-étale cover p : V — U such that 77, (V) = {id}. Note that 77, (V) = {id} by the
normality of V. Then, by [26, Proposition 3.11], there exists a reflexive sheaf £ of rank one such
that

plle = %,

Since £1®71 ~ pl*l det € is a Q-line bundle by assumption, the sheaf £!®"! is locally free for
some m € N. After shrinking U if necessary, we may assume that £1®" ~ @, is trivial. Let

p: U-vVv

be the associated index-one cover such that pl*/£ = Oy, which is a finite quasi-étale cyclic cover
of order m. Then, since 7;(V,) = {id}, this cover is actually the identity map. Finally, the Galois
closure of pop: U — U satisfies the desired conclusion. 1

2.6 | Filtrations of reflexive sheaves
In this section, we study filtrations of reflexive sheaves in detail. Although the discussions
and results are technical, they provide essential insights for this paper. The following lemma

investigates the gap between torsion-free sheaves and their reflexive hulls.

Lemma 2.13 (cf. [39, Lemma 2.3]). Let X be a projective klt variety of dimension n. Consider an
exact sequence of sheaves

0—wF —>E—Q—0, (2.5)

where F and & are reflexive and Q is torsion-free. Then, for any ample Q-Cartier divisors H;, the
following inequality holds:

(&(&) = &(F) = 6,(@"Y) — ¢, (F)ey(Q)) - Hy -+ Hyp_ > 0. (2.6)
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Moreover, if equality holds in (2.6) for some ample Q-Cartier divisors H;, then there exists a Zariski
open subset X° C X with codim(X \ X°) > 3 such that the sequence (2.5) is Zariski-locally split on
X°. In particular, in this case, the natural morphism Q — QVV is an isomorphism over X°.

Proof. We first reduce the proof to the case where X is a surface. Let S be the surface defined by
the complete intersection

S = Vl n--- ﬂVn_z,

where V; is a general member of |m;H;| for m; > 1. Then the sheaves F|g, €|, and Q| satisfy the
assumptions of the lemma. Indeed, a general member V; does not contain the associated primes
of the relevant sheaves, so the restriction of (2.5) to S remains exact, and reflexivity of sheaves on
X is preserved under restriction to S. Furthermore, by property (P2), the left-hand side of (2.6)
coincides with

é\2(<€|5) - /C\z(r|s) - 6\z(vi|5) =1 (Fls)e(Qlg)-

Finally, if the sequence splits locally after restriction to S, then it also splits locally in a
neighborhood of S. Therefore, we may assume that X is a surface.

As in property (P1), we can take a finite Galois cover 7 : X — X such that z[*1€ is locally free
on X and satisfies

(7€) =& and c,(xle) = d &), @.7)

where G ;= Gal(X /X)and d := degm = |G|. We may assume that the same properties also hold
for 7 and QVV.
Consider the induced exact sequence

0 — 72117 — 7l¥e 25 2Qvy s T = Coker(¢) —> 0, (28)

where 7 is a skyscraper sheaf on X. By [60, Proposition 2.1] or [43, Lemma 10.5], the sheaf 7 admits
a finite locally free resolution on X, which allows us to define ¢,(T). Moreover, by [60, Lemma 3.3]
or [43, Lemma 10.9], we have that —c,(7") equals the length of 7 (hence nonnegative). Thus, using
(2.7), we deduce

d-6(&) = cy(xlle)
= c,(7F) + ey (21QYY) + ¢, (A F) e, (2¥10VY) — ¢y (T)
> cz(ﬂ[*]r) + Cz(ﬂ[*]QVV) + Cl(ﬂ[*]p)cl(ﬂ[*lgvv)
=d- (&) +6@Q") +&(PEaE™).

This proves (2.6).
Assume that equality holds in (2.6). Then, the skyscraper sheaf 7 vanishes, which means that

0 — 7P — 2l £, 2wy — o (2.9)
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is exact. Since all sheaves in (2.9) are locally free, the sequence is Zariski locally split. By pushing
forward (2.9) via 7 and taking G-invariants, we deduce that

0 — (z,7"F) — (z,72"€)° — (7,2Q™))° — 0 (2.10)
is exact. Note that (ﬂ*('))G is exact since 7 is a finite morphism and G is finite (cf. [21,
Lemma B.3]). Moreover, since 7 is finite, 7, preserves reflexivity of sheaves. Hence, the natural
morphism

F — (m,7*F)°

is an isomorphism, since it is clearly an isomorphism on the locally free locus of F (which
has codimension > 2). The same statement holds for & and QVV. Thus, we obtain the exact
sequence

0—F—E&—QVW —o. (2.11)

This shows that Q — QVV is an isomorphism. Moreover, if o : 7!*1Q|,, — 7l*1&€|, gives a splitting
of (2.9) over a G-invariant open subset U C X, then

1 * . ~ * G * G
G X oo Qu = (ratlly)’ — (rallel)” z el
geG
yields a splitting of (2.11) over 7(U) C X. O

The following lemma, although technical, plays a crucial role in what follows.

Lemma 2.14. Let X be a projective klt variety of dimension n and let H, ..., H, be ample divisors
on X. Consider an exact sequence of sheaves

0—wF —>E—Q—0, (2.12)

where F and & are reflexive and Q is torsion-free. Assume that F and QY are numerically
projectively flat and that det(F) and det(Q) are Q-line bundles. If

(6:(8) = &) = 5(Q"™) = ¢;(F)ey(Q)) - Hy ++ H, 5 = 0,

holds, then the sequence (2.12) is analytically locally split on X. In particular, the following statements
hold:

(1) Q is reflexive, and
(2) the dual sequence

00V >& S5 FY 50 (2.13)

is exact.
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Proof. Fix a point x € X. By Lemma 2.12, there exists an analytic open set U C X and a finite
quasi-étale Galois cover 77 : V — U such that both 7I*/7 and 7!*/Q are locally free on V.
We first show that the induced sequence

0 — 7P — 7lle — 72l¥lg — 0 (2.14)

is an exact sequence of vector bundles on V. The exactness on the left isimmediate. By Lemma 2.13,
the sequence (2.14) is exact (indeed, even locally split) in codimension two. Note that V has kit
singularities since it is a finite quasi-étale cover of the klt variety U; hence V is Cohen-Macaulay.
Applying [2, Lemma 9.9], we conclude that (2.14) is an exact sequence of vector bundles. Strictly
speaking, [2, Lemma 9.9] is stated only for schemes, but its proof applies equally to complex
analytic varieties.

Let G be the Galois groupof 7 : V — U. Then, as in the second half of the proof of Lemma 2.13,
the sequence

0 — (7,2"F7) — (z,72"e)® — (7,210)° — 0 (2.15)

is exact, analytically locally split on U, and can be identified with the exact sequence
0—wF—E—5 99V —0.

This shows that Q is reflexive and that (2.12) is analytically locally split. O

3 | HARDER-NARASIMHAN FILTRATIONS OF GENERICALLY
NUMERICALLY EFFECTIVE REFLEXIVE SHEAVES

In this subsection, we extend to kit varieties a well-known relation between A(€) and the Harder—
Narasimhan filtration of &, originally established for smooth varieties (see, for example, [46]).
Throughout this section, we work under the following setup:

Setup 3.1. Let X be a projective klt variety of dimension n, and let £ be a reflexive sheaf of rank r on
X. Let D be a numerically effective Q-Cartier divisor, and let Hy, ..., H,_, be ample Q-Cartier divi-
sors on X. Following [23, Corollary 2.27], we consider the (D - H, --- H,_,)-Harder-Narasimhan
filtration of &:

We adopt the following notation:

© G :=&/&_, and r; :=1k(G)),
e a:=D ,H1 "'Hn—2’

. &i = 'L{a(gl) and M :=,ua(8)a

« A(&) 1= 2r8y(E) — (r — DE(E).

By construction, the graded pieces G; are torsion-free semistable sheaves with y; > ;. The max-
imum slope u, = p7**(€) is the supremum of w, (F), where F ranges over all nonzero subsheaves
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F C &.Similarly, the minimal slope u; = ,ufxnin(é‘ )is the infimum of i (Q), where Q ranges over all
torsion-free quotients £ » Q. The first graded piece &, is called the maximal destabilizing subsheaf
of £.

We begin with the following elementary lemmas. Although these results were previously
proved in [46], we include the proofs here for completeness, with particular attention to the
conditions under which equality holds.

Lemma 3.2 (cf. [46, Lemma 1.4]). Let € Z_, and let r,u,rq, ..., 7}, U4y, ..., 4y € R, satisfy the
following conditions.

O r=r+-+r.
@ > >0
) rp =1y + e 1

Then, the following inequality holds:

D — ) < — (= ). (3.1

1<i<j<l

Moreover, if equality holds in (3.1), then 1 < 2

Proof. Byrescalingr; tor; /r and y; to y; /4, we may assume r = u = 1. From conditions (1) and (3),
we obtain

Nl’—‘

> -

1<i<j<l

é; ri(u; —

1
Z ri,ul.z -1
i=1

Using condition (2), we estimate the right-hand side as follows:

l l

Z"iﬂiz -1= Zri(:ui + ) — ) — 1 +,ul2
i=1 i=1

l
<G+ ) Qi — ) =1+ 417
i=1

I
=(u + )1 —p) =1+ (since ¥_ r;=1and Y\_ rip; = 1)

= (= DA = ).

This proves the desired inequality (3.1).
If equality holds in (3.1), the above argument shows that

ri(u; — ) — ) =0 foralli=1,..,1L

By condition (2), this implies [ < 2. O
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Lemma 3.3 (cf. [46, Theorem 5.1]). Consider Setup 3.1. Then, the following inequality holds:

I A(rVV
AE) A(G;
—H,-H,, > Z —H, - H,_,
r “~
5 3.2)
c,(G) <Gy
_l rﬂtj(ﬁ_l—j) Hl.“HVl—Z'
r r; r;
1<i<j<l i J

Moreover, if equality holds in (3.2), then the natural morphism G; — leV is isomorphism in
codimension two foranyi =1,...,L

Proof. In the case | = 2, this lemma follows directly from Lemma 2.13. In the general case, by
applying Lemma 2.13 inductively, we obtain the desired conclusion (see [46, chapter 5]). O

With the above preparations in place, we are now ready to prove the following proposition:

Proposition 3.4 (cf. [46, Theorem 5.1]). Consider Setup 3.1 and assume thatd := D*H, ---H,,_, >
0. Then, the following inequality holds:

@Hl “H,_ _g(#l — (= ). (3.3)

Moreover, if equality holds in (3.3), then we have the following.
1) 1<2 and K(QI.VV)H1 «H, ,=0foranyi=1,2.
(2) There exists A € Q such that

c1(Gy) _ c1(G,)

r 2

= AD.

(3) The natural morphism G, — g;v is an isomorphism in codimension two.

Proof. To simplify notation, we set § := H, - H,_,. The semistability of G/ implies that the
Bogomolov-Gieseker inequality holds:

AG/)B = 0. (3.4)
The Hodge index theorem (see Proposition 2.3) yields
1 a(@)  al) .
- Z ”i"j<—r_ ,3 < rd Z rir iy — pj)° (3.5)
1<i<j<l L 1<i<j<l

Applying Lemmas 3.2 and 3.3, together with inequalities (3.2) and (3.5), we obtain the first
conclusion:
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N L XNeevv N 2
80y 3O 1y, (a9 a9y,
t J

4 v Ad
(by Lemma 3.3) i=1 1<i<j<lI

2
1 Cl(gi) Cl(gj)
= r Zrirf( r o r B
(by (3.4)) 1<i<j<l j (3.6)
1
2 “rd Z rirj(u; — :uj)z
(by (3.5)) 1<i<j<l
r
> —g W == ).

(by Lemma 3.2)

For the latter conclusion, we assume that equality holds in (3.3). Conclusions (1) and (3) directly
follow from Lemmas 3.3, 3.2, and (3.4). Moreover, the Hodge index theorem shows that

c1(Gy) _ c1(G,)
ry r

)-L-ﬁ:/lD-L-ﬁ

for any Weil divisor L on X. Hence, conclusion (2) follows from Lemma 2.5. O

3.1 | Caseofv(detf) >2

In this subsection, we describe the structure of the Harder-Narasimhan filtration for a gener-
ically numerically effective reflexive sheaf £ with numerically effective determinant det £ in
the case where v(det £) > 2. Here, a reflexive sheaf £ is called generically numerically effective
if ,ugir}. . HH(S) > 0 for all @-ample Cartier divisors Hy, ..., H,,_;.

Theorem 3.5 (cf. [51, Corollary 3.5)). Let Hy, ..., H,_, be ample Q-Cartier divisors on a projective
kit variety X, and let £ be a reflexive sheaf on X satisfying the following conditions.

* & is generically numerically effective.
* det & is a numerically effective Q-line bundle.
* y(deté) = 2.

Let v, be the rank of the maximal destabilizing subsheaf G, := E,« of € with respect to c¢,(E) -
H, .- H,_,. Then, the following inequality holds:

Vl—l

&(EH, - Hy,_; > c1(EY’Hy -+ Hy_,. (3.7

1
Moreover, if equality holds in (3.7), then the (¢;(€) - H, --- H,,_,)-Harder-Narasimhan filtration
of € is given by

0— G =&

max_)g_)gz_)o

and satisfies the following properties.

(1) detG, is a Q-line bundle such that ¢,(G;) = c¢,(£) and K(gl)H1 -H, ,=0.
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() ¢,(Gy) = 0and A(GYV)H, -+ H,,_, = 0 holds.
(3) The natural morphism G, — Q;V is an isomorphism in codimension two.

In particular, if X is maximally quasi-étale, then ) is a flat locally free sheaf.

Proof. We consider the same situation as in Setup 3.1in the case D : = ¢;(&). Since £ is generically
numerically effective, we have

rip; =ru and ;= 0. (3.8
From now on, we set
d:=c(€)*H,H,, and B:=H,-H,_,.
Note that 0 < d = ¢,(£)?f = ru holds. Then, the desired inequality (3.7) follows from

A(E) r
—B = == — W)
(by Proposition 3.4

,
> == — W

(by (3.8))
ro[ripg—ru
2 ~3 <%> M (3.9)
(by (3.8)) 1
_(”1#1 —ru)

= ———— (sinced =ru)
"

(5-7)atere.

Assume that equality holds in (3.7). Proposition 3.4 (1) shows that [ < 2.Inthe casel = 1, by setting
G, = &, we complete the proof. Thus, we may assume that [ = 2.

We now show that det G, is a Q-line bundle with c¢,(G,) = 0. From (3.8), we can deduce that
Uy, = 0, and thus ¢;(G,)c;(€)F = 0. This implies that

(c1(G1) +¢1(G2))e1(G)B = 0. (3.10)
On the other hand, by Proposition 3.4 (2), we obtain

<Cl(g1) B Cl(gz))cl(gz)ﬁ —o. (3.11)

51 1§
Subtracting (3.11) from (3.10), we find that
¢1(61)e1(G,)B = ¢,(G,)°B = 0.

By applying the Hodge index theorem (see Proposition 2.3) to A =¢;(€) and B = ¢;(G,), we
deduce that det G, is a Q-line bundle with c¢;(G,) = 0 (see Lemma 2.5). This shows that det G,
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is a @-line bundle and that ¢,(G;) = ¢;(€). Moreover, Proposition 3.4 (1) yields K(Qlw) B =
K(ggv) - 8 = 0. This completes the proof of (1)-(3).

Assume further that X is maximally quasi-étale. We now show that G, is a flat locally free
sheaf. Since the quotients and reflexive hulls of generically numerically effective sheaves remain
generically numerically effective, we see that QZV is generically numerically effective. This implies
that

#Eir'lHlmHn_z(g;/\/) = /leliHl..,Hn_z(Q\z’V) =0,

and that Q;V is(H; - H; --- H,_,)-semistable. Thus, Q\z’v is a flat locally free sheaf by [53, Theorem
1.4]. ]

The following corollary is a direct consequence of Theorem 3.5. Note that the equality (3.12) is
well-known to experts (see [58, Theorem 6.1] and [43, Proposition 10.12]).

Corollary 3.6 (cf. [43, 58]). Consider the same situation as in Theorem 3.5. Then, the following
inequality holds:

¢)(&H,y -+ Hy_, > 0. (3.12)

Moreover, if equality holds in (3.12), then the (¢,(€) - H; -+ H,,_,)-Harder-Narasimhan filtration of
£ is given by

0—G =& —€E— G, —0

and satisfies the following properties.

1) G, is a Q-line bundle with c,(G;) = ¢;(&).
(2) G, is reflexive and satisfies that ¢,(G,) = 0 and 3(9\2’\’)H1 «+H,_,=0.

In particular, if X is maximally quasi-étale, then G, is a flat locally free sheaf.

Proof. The sheaves G; and G} satisfy the assumptions of Lemma 2.14, and thus G, is reflexive.
Then, the desired conclusion follows from Theorem 3.5. O

3.2 | Caseofv(detf)<1

In this subsection, we describe the structure of the Harder-Narasimhan filtration in the case
where v(det &) < 1.

The following theorem generalizes [11, Lemma 4.5] and [61, subsection 6.2], initially established
for smooth varieties, to varieties with kit singularities. Note that, as with the equality (3.12), the
inequality (3.13) is also well-known (see [58, Theorem 6.1] and [43, Proposition 10.12]).

Theorem 3.7 (cf. [11, 43, 58, 61]). Let H,H,, ..., H,_, be ample Q-Cartier divisors on a projective klt
variety X, and let £ be a reflexive sheaf on X satisfying the following conditions.

* & is generically numerically effective.
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* det & is a numerically effective Q-line bundle.
« ¢,(€)*H, - H,_, = 0, equivalently, v(det &) < 1.

Then, the following inequality holds:
¢)(EH,y -+ Hy_, 2 0. (3.13)

Moreover, if equality holds in (3.13), then there exists a positive rational number €, such that for
any rational number 0 < ¢ < €, the ((c;(£) +¢H) - H; --- H,_,)-Harder-Narasimhan filtration of
&

0=:6GEGC.CE =€ (3.14)

is independent of € and satisfies the following properties.

Q) G; := &;/&_; is a reflexive and numerically projectively flat sheaf.

(2) det(G,) is a Q-line bundle and c¢,(G;) = A;¢,(E) for some A; € Q.

(3) The filtration (3.14) is locally analytically split. In particular, for any i, the following sequence is
exact

0—>Q;’—>£iv—>£iv_1—>0.

Proof. Set H, :=c,(€)+¢cH for any € > 0 and define § := H; -+ H,_,. By [58, Theorem 2.2
(3)], there exists a positive number ¢, > 0 such that the (H, - H; --- H,_,)-Harder-Narasimhan
filtration

is independent of any positive rational number ¢ < ¢.
Since GV is (H, - H, --- H,_,)-semistable, the sheaf GV satisfies the Bogomolov-Gieseker
inequality

A6 > 0. (3.15)

By the assumption ¢, (€)?B = 0, we have

1
> e1(Ger(E)B = ¢, (€)% = 0.
i=1

Since £ is generically numerically effective, each term c;(G;)c;(€)g on the left-hand side is non-
negative. This implies that ¢;(G;)c;(£)B = 0. By applying the Hodge index theorem (see part (2)
of Proposition 2.3) to A = (1/r;)c;(G;) — (1/rj)cl(gj) and B = ¢,(&), we obtain

2
<q@ﬂ_q@ﬂ>5<0 1)
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The desired inequality (3.13) follows from

A L Recvw )2
=20 > 3N 1y (a6 9O,

4 r b ri r;
(by Lemma 3.3) i=1 1<i<j<l J

2
1 Cl(gi) Cl(gj) (317)
L E (e
(by (3.15)) 1<i<j<i J
> 0.
(by (3.16))

For the latter conclusion, assume that ¢,(£)3 = 0. We first verify property (2) for G,. By applying
Proposition 2.3 and Lemma 2.5 to (3.16) (as in the proof of Proposition 3.4 (2)), we can find rational
numbers A i such that

a6 <)

r

J

Setting 1 :=r 2522 :—1/1 i+ 1, we obtain ¢;(G;) = A¢,(€). By applying Lemma 2.5 again, we see
that det G, is a Q-line bundle. The same proof applies for G;, so we omit the details.

Finally, we confirm properties (1) and (3). By (3.15), ¢,(£)B = 0, and property (2), we deduce
that E(givv)ﬁ = 0, which establishes property (1). Applying Lemma 2.14 repeatedly yields property
3). d

4 | PROOF OF THEOREM 1.2
41 | Caseof»(Ky)<1

In this subsection, we first establish Theorem 1.2 (A), and then prove Theorem 1.2 in the case
where »(Ky) < 1.

Proof of Theorem 1.2 (A) in the case v(Kx) < 1. By [58, Corollary 6.4] and [14], the cotangent
sheaf Q&” is generically numerically effective. Therefore, Miyaoka’s inequality

(36(Qh — ex(@? )y - H,p > 0

follows from Theorem 3.7. O
Next, we verify Theorem 1.2 (B) in the case ¥(Kx) = 0, which is a direct consequence of [53].
Proof of Theorem 1.2 (B) in the case v(Ky) = 0. Assume that ¥(Ky) = 0. By [53, Theorem 1.2],

we conclude that X is a quasi-étale quotient of an abelian variety, which completes the proof. []
Hereafter, in this subsection, we focus on the case ¥(Ky) = 1. Our first goal is to prove that

Ky is semi-ample (see Theorem 4.1). Our argument is strongly influenced by the approach of

Lazi¢-Peternell [50] to the nonvanishing problem in the case ¥(Kyx) = 1.

Theorem 4.1. Let X be a projective kit variety as in Theorem 1.2. Assume that v(Ky) = 1. Then, the
canonical divisor Ky, is semi-ample.
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Proof. The proof of Theorem 4.1 involves an in-depth analysis of the Harder-Narasimhan filtration
of the cotangent sheaf Q;H, which was studied in Section 3. Since ¥(Kx) = 1, our assumption on
Miyaoka’s equality is equivalent to

&@UhH, - H, , =0.

Itis enough to prove that K is semi-ample after replacing X with its finite quasi-étale cover. Thus,
we may assume that X is maximally quasi-étale (see [24, Theorem 1.14]).

Lemma 4.2, which is essential for the proof of Theorem 4.1, is an extension of the main result
of [37].

Lemma 4.2. Let X be a projective kit variety as in Theorem 1.2. Assume that v(Kx) = 1 and that X
is maximally quasi-étale. Then, the following statements hold.

(1) X has finite quotient singularities and is Q-factorial.
(2) No resolution 7 : X — X is of special type in the sense of Campana.

Proof of Lemma 4.2. By [58, Corollary 6.4] and [14], the cotangent sheaf QEJ is generically numeri-

cally effective. Thus, by applying Theorem 3.7 to olll

filtration of QE(”

, we deduce that the r,-Harder-Narasimhan

0=6C&C..C& =0l 4.1)

satisfies the properties stated in Theorem 3.7, where o, := (Kx +¢H) - H, -+ H,_, for some ample
divisor H and sufficiently small ¢ > 0. In particular, each sheaf G, is semistable.

Fix a point x € X. By Lemma 2.12, there exist an analytic neighborhood x € U C X and a finite
quasi-étale Galois cover 77 : V — U such that 7z1*1g; is locally free for every i. By Theorem 3.7, the
filtration (4.1) is locally analytically split. Then, after shrinking U, we have

1 * 1] o *
ol = 710l = @ #lg,
i

1R

which is locally free. The variety V has klt singularities since V is a finite quasi-étale cover of the
Kklt variety U. By [21, Theorem 6.1], we conclude that V' is smooth, which implies that U (and thus
X) has only finite quotient singularities. In particular, by [44, Proposition 5.15], we see that the
variety X is Q-factorial.

To prove (2), suppose that there exists a resolution 77 : X — X of the singularities of X such
that X is of special type in the sense of Campana. By [63, Theorem A], to reach a contradiction it
suffices to show that there exists a sub-line bundle £ C Q}(, with v(£) = 1.

To construct such a sub-line bundle, we focus on the first piece &£ of the a.-Harder-
Narasimhan filtration (4.1). The sheaf & is a,-semistable with /«‘ag(gﬁ > /,LO(E(QE(”) > 0. Moreover
&, is numerically projectively flat and satisfies

&E) =ci(&) =0.

Hence, Corollary 2.11 implies that &; is locally free and projectively flat.
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Since 7;(X) = 7,(X) by [69], we deduce that the image of any linear representation of 7, (X) is
virtually abelian by [7, Theorem 7.8]. Thus, by [25, Proposition 3.3], after passing to a finite étale
cover of X and X, there exists a line bundle A on X such that & ® AY = & is aflat locally free
sheaf admitting a filtration

0COx=EGC..CE=E,

where each £//€] | is a flat line bundle. The line bundle £ := & ® A is a sub-line bundle of
QE(I] withv(c,(£)) = v(c;(&;)) = 1. The pullback 7*L & n[*]QE] = Q}Z is the desired line bundle,
yielding a contradiction by [63, Theorem A]. O

We now return to the proof of Theorem 4.1. Let 7 : X — X be alog resolution of the singularities
of X. Since X has klt singularities, there exist 7-exceptional effective divisors E and G such that

'Ky +E ~q Kg+G and (X, G) is a log smooth kIt pair. (4.2)

Since X is not of special type by Lemma 4.2, there exists a Bogomolov sheaf £ C Q;% for some
p =1 (i.e., a sub-line bundle £ C Q; with x(£) = p). By taking the saturation, we may assume

that L is saturated in Q;(log [G]).
Consider the exact sequence

0— L — Qg(log [G]) — Q := Qg(log [G])/£ — O. (4.3)

Since K5 + [G] is pseudo-effective by (4.2), we conclude that det Q is pseudo-effective by [10,
Theorem 1.3] and [4]. Combining (4.2) and (4.3), we obtain

'Ky +E+ [G] =G ~g Kz + [G] ~g L +detQ.
Hence, we deduce that
KX ~0 77.'[*][: + 71'[*] det Q,

by noting that the reflexive hull 7z, (+) of the direct image of a line bundle is a Q-line bundle by
the Q-factoriality of X. Since 7, det Q is pseudo-effective, we obtain

K(Kx) 2 x(mp L) =x(L)=p>1

by [50, Corollary 6.2], which confirms that x(Ky) = v(Kyx) = 1. This proves that Ky is semi-
ample. ]

At the end of this subsection, after recalling the definition of C*-orbifold fiber bundles, we
establish Theorem 4.3, thereby completing the proof of Theorem 1.2 in the case »(Ky) = 1.

Theorem 4.3. Let X be a projective kit variety as in Theorem 1.2. Assume that v(Kx) = 1. Then,
after replacing X with a finite quasi-étale cover, the variety X is smooth and admits an abelian group
scheme X — C over a curve C of general type.
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Definition 4.4 ((stratified) C*-orbifold fiber bundles). Let f: X — C be a fibration from a
normal projective variety X onto a smooth curve C.

1) Let f~4(t) = Zle a;F; be the irreducible decomposition of the divisor f~1(t) over a point
t € C. The integer m := gcd(ay, ..., a,) is called the multiplicity over t € C.
(2) The divisor Dy on C defined by

S
. 1
D, ._Z;(l_ﬁ)ti
i=

is called the orbifold branch divisor of f. Here m; denotes the multiplicity over t;, and ¢; runs
through all points with multiplicity m; > 2.

(3) The fibration f : X — (C,D f) is called a (stratified) C*°-orbifold fiber bundle if, for any t € C,
there exists an analytic open disc A C C containing ¢t with the following property: Let m denote
the multiplicity over ¢, and consider the normalization V of the fiber product of f: V :=
f7Y(A) > Aandthemapp: A - A, z+— 2™

Then, there exists a C*-isomorphism
Ve AXF

over A as C*®-(stratified) spaces, where F is a general fiber of f (see [19, section 1.1.5] for C*°-
stratified spaces). Note that p: V — V is a finite quasi-étale cover since it is étale over the
smooth locus of V, by a straightforward local computation (see [33, proof of Lemma 2.2]).

Proposition 4.5. Under the same assumptions as in Theorem 4.3, we consider the Iitaka fibration
f:X—-(C,D)

onto a smooth curve C with orbifold branch divisor D := Dy. Then the fibration f : X — (C,D) is
a (stratified) C*-orbifold fiber bundle.

Proof. We now examine the filtration (4.1) in detail:
0=:6C&C..Cé& =0l
_ . 0 1 =t E f .« — X .

=

By replacing this filtration with a Jordan-Holder refinement, we may assume that the sheaves
G, 1= & /&_, are a,-stable. Since the sheaves G; are numerically projectively flat, there exist
associated irreducible representations

pi + m(X) — PGL(r;, C),
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where r; :=rk G;. Moreover, since c,(G;) is numerically proportional to Ky, there exist integers
a;,b; € 7 and numerically trivial line bundles M; on X such that

Let
o;: m(X) — GL(1,C)

be the irreducible representations associated with M;. Furthermore, since f : X — (C,D) is the
Iitaka fibration, we may assume that there exists an ample divisor H; on C such that

Ox(a;Kx) = f*O(H)). (4.5)

Fix t € C and let m > 1 be the multiplicity over ¢. Consider the normalization V of the fiber
product as in Definition 4.4. Hereafter, we divide the proof into several steps and show that
f: V — Ais a (stratified) C*®-fiber bundle.

Step 1: The images of pilifl({/\) and o;| (D) @re ﬁnite./\ ~

Set p; |ﬂ1(‘7) 1= p;o(j,.op,) and o; |n1(17) 1= 0;0(j,.0P,), where j, op, is the homomorphism

DN ~. D Js
]xop* : 7T1(V) — 7T1(V) — 7T1(X),

inducedby p: V — V and the natural inclusion j : V < X. In this step, we show that the images
of p;| ) and o] 7,(0) are finite.

Let F be a general fiber of f The fiber F is a kit variety satisfying K. ~o 0 and ¢,(F) = 0. Thus,
by [53, Theorem 1.2], there exists a finite quasi-étale cover 7 : A — F such that A is an abelian

variety. We identify 7 : A — F with the composition A Z, F & X and consider the reflexive pull-
back of the filtration (4.1) via 71*]. Since A is an abelian variety, n'[*JQE(lJ admits a filtration by

trivial bundles on A. On the other hand, the sheaf n'l*JQgJ also admits a filtration whose graded

pieces are 771*1G;, which are polystable sheaves of slope zero. Hence, we deduce 71*1G; ~ Ofr".
Therefore, the induced homomorphism

11(A) — 7,(F) — m,(X) 25 PGL(r,, )
is trivial. Similarly, by (4.4) and (4.5), we conclude that
7,(A) — 7, (F) — 7,(X) = GL(1,C)
is trivial. On the other hand, the sequence
#1(F) — 7,(V) — #,(8) = {1} (4.6)

is exact (see [70, Tag 0CO0J] for the proof applies verbatim to morphisms of analytic varieties).
Thus, the image
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H :=1Im (7,(A) — #,(F) — 7,(V))
has finite index in ﬁl(V). This implies that the homomorphisms
p: #,(") —Im(p,) and 6 : 7,(V) — Im(o,)

have finite image. By Malcev’s theorem [72, Theorem 4.2], the images of p;| () and o;| ()
are finite.

Step 2: V is smooth up to finite quasi-étale covers.

In this step, we show that there exists a finite quasi-étale Galois cover ¢ : W — V such that W
issmoothand h := fozp : W — Ais an abelian group scheme.

Let ¢ : W — V be the finite étale cover corresponding to the intersection of the kernels of all
Pil and o; |z, ()- By construction, there exist reflexive coherent sheaves £; of rank one on W

such that G; | = EfBr". Moreover, by (4.4) and (4.5), we have ££®Jc" = Oy, wherec; :=a;-b; - ;.
Thus, after replacing W with the associated index-one cover, we may assume that each L, is trivial.
It follows that Q%] is locally free, since it is a successive extension of £; by the filtration (4.1).

Hence, by [21, Theorem 6.1], we conclude that W is smooth.

By taking a further finite étale cover, we may assume that 3 : W — V is a Galois cover. By con-
struction, the fibration W — A has multiplicity one. Furthermore, the above argument shows that
the cotangent bundle Q%] is (fol,b)-numerically flat. Thus, by [34, Lemma 2.1(1)], we conclude that

W — A is a smooth fibration. Since W is connected, its fibers are also connected. After possibly
replacing W with a further finite étale cover, we may assume that the fibers of W — A are abelian
varieties (see [34, Lemma 2.1(2)]). This fibration clearly admits a section, and the claim follows.
Step 3: The desired conclusion.
In this step, we show that ¥ — A is a C®-fiber bundle. Let A be a general fiber of h : W — A.
Then, by Step 2, we have W ~-» A X A.Under this identification, the action of the covering group
G of W — V is given by

GAWew AXA, g-(z,0) = (6,(z,0),1),

where z is a local coordinate on A and G is the Galois group of 1 : W — V. Note that 6 ,(z,0)
depends smoothly on z and ¢. By [29, Theorem 2.4.B’], there exists (possibly after changing
the diffeomorphism) a C*®-isomorphism W cw A XA such that 6, is independent of ¢, which
completes the proof. O

Our next goal is to show that we can eliminate the multiplicities, that is, we find a finite orbi-
étale cover (C, D) — (C, D) such that D = 0. This is a priori unclear in the case C =~ P!, which is
why we need the following proposition:

Proposition 4.6. Under the same assumptions as in Proposition 4.5, we further assume that C is the
smooth rational curve P'. Then, there exists a finite orbifold-étale cover (C,0) — (P!, D) such that C
is a smooth curve and the fiber product X := C X X is isomorphic to the product C X F.

Proof. Note that f : X — (C, D) is a C*-orbifold fiber bundle by Proposition 4.5.
Step 1: f : X - (C, D) is a holomorphic orbifold fiber bundle.
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Fix a point t, € P}, weset U := P!\ {t,} = Al and V := f~1(U). Consider the finite orbifold-
étale cover

p: (U:=A00— (U,D), z+ (z—1t)™,

where {{;,...,t,} C C is the set of points with multiplicities m; > 2. The base change f: V=
U Xy X = U is still a C*-fiber bundle. We now show that all fibers of fare isomorphic, which
implies that f : X — (C, D) is a holomorphic orbifold fiber bundle. Since U = A is contractible,
we have 771(17) = 7, (F). In particular, there exists a finite quasi-étale Galois cover W — V with
Galois group G such that the fibers of W — U = A! are abelian varieties. Hence, W is isomorphic
to the product U x A (see, for example, [15, proof of Proposition 3.12(vii)]). By [29, Theorem 2.4],
the homomorphism G — Aut(A) is rigid (i.e., the action of G on all fibers is the same). This shows
that

Va2W/G=Ux(A/G)=UXF,

which is a holomorphic fiber bundle.

Step 2: X is isomorphic to the product F X ¢ after finite orbifold-étale covers.

Fix a very ample line bundle £ on X. Then the structure group of f is reduced to Aut(F, L|r) C
Aut(F). Now, Aut(F, L|) is a linear algebraic group (see, for example, [6, Theorem 2.16]), while
Aut’(F) is an abelian variety since x(F) > 0 (see, for example, [1, Proposition 4.6]). This implies
that Aut(F, L|) is finite.

In particular, the variety X is defined by a representation p: 7,(C,D) — Aut(F, L|z) of the
orbifold fundamental group. Let (C,D) - (C, D) be the finite orbifold-étale cover corresponding
to ker(p). Then, by construction, we obtain X =2 CxF , and moreover D=o. O

Finally, we make the following elementary observation:

Lemma 4.7. Let A be an abelian variety of dimension n,andw: A - F := A/G be a finite Galois
quasi-étale cover with Galois group G. If m,(F"8) is an abelian group (possibly with torsion) of rank
2n, then F is smooth.

Proof. Consider the natural isomorphisms
H%A,0)° = H(nw~\(F™®),C)® ~ HO(F™¢,C).

By assumption, both H°(A, C) and H°(F™8, C) are C-vector spaces of the same dimension. It fol-
lows that the action of G on H(A, C) is trivial. Hence, G acts by translations on A, which implies
that the action has no fixed points, and therefore F is smooth. O

Proof of Theorem 4.3. By Proposition 4.5, up to finite quasi-étale covers, the Iitaka fibration
f: X = (C,D) is a (stratified) C®-orbifold fiber bundle. In the case C = P!, the proof follows
from Proposition 4.6, so we may assume that C is a curve of genus ¢(C) > 1. In particular K + D
is either numerically trivial or ample. Hence, there exists a finite orbi-étale cover (C,D) - (C,D)
with D = 0 (see, for example, [13]). After replacing X by the induced quasi-étale cover X — X, we
may assume that f : X — C is a (stratified) C*-fiber bundle. Moreover, since g(C) > 1, we have
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7,(C) = 1. Thus, we obtain the following long exact sequence of homotopy groups:
1=m,(C) — ﬂl(Freg) - nl(Xreg) — m(C) — 1.

Since F is a finite quasi-étale quotient of an abelian variety, say F = A/G, the group 7, (Feg)
contains a free abelian subgroup of rank 2(n — 1) of finite index. By [41, Corollary 6.4.3], after
replacing X with a finite quasi-étale cover, we may assume that 7z, (F™8) is abelian of rank 2(n — 1).
By Lemma 4.7, the variety F (and hence X) is smooth. Finally, by the abundance theorem of [37],
the structure of abelian group schemes follows from [34]. O

4.2 | Caseof »(Ky) > 2

This subsection is devoted to proving Theorem 1.2 in the case ¥(Kx) > 2. To this end, we study
certain inequalities for the second Q-Chern class of the cotangent sheaf Q[”, which have already
been established in the case where X is smooth in codimension two (see [58, chapter 7], [45, sec-
tion 5], and [67, Theorem 7.2]). Our contribution is to extend these inequalities to varieties with
kit singularities and to examine the conditions under which equality is attained. To this end, we
make use of the theory of Higgs sheaves. We now consider the following setup.

Setup 4.8. Let X be a projective klt variety of dimension n > 2, and let H,, ..., H,_, be ample Q-
Cartier divisors on X. Assume that Ky is numerically effective and v»(Ky) > 2. As in Section 3,
consider the (K - H; --- H,_,)-Harder-Narasimhan filtration of the cotangent sheaf Qg]:

0=:&cé&c..cg:=all
We define the constants y;, x4, and d by
Mi = MgyH,-H, ,\%i)s M = Mg HH, (8 0)s =082 1 n—2-
We investigate inequalities for the second Q-Chern class 6\2(Q§]), dividing our situation into the
cases r; > 2 and r; = 1. The following theorems (Theorems 4.9 and 4.10) have been established
for smooth projective varieties X in [45, Theorem 5.5], but here we generalize them to varieties

with klt singularities and examine the cases where equality holds.

Theorem 4.9 (cf. [45, Theorem 5.5]). Consider Setup 4.8 and assume that r, > 2. Then the following
inequality holds:

&@QhH, - H, > e (@PH, - H,_,. 4.7)

ry
2(ry+1)

Moreover, if X is maximally quasi-étale and equality holds in (4.7), then X is smooth and the
(Kx - Hy -+ H,_,)-Harder-Narasimhan filtration on§( is given by

0—>gl—»9}(—>g2—>0,
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and satisfies the following properties.

(1) G, is alocally free sheaf of rank r; such that

(2(71 +1)6,(G) — 1y C1(g1)2)H1 --H, ,=0.

(2) G, isflat and locally free.

Proof. Setp :=H, --- H,_,. We first consider the second Q-Chern class of G,. By applying Propo-
sition 2.8 to G, C QQ], we obtain the (Ky - H, --- H,_,)-stable Higgs sheaf (G, ® Ox,0), where
the Higgs field 6 is defined as in Proposition 2.8. Then, the Bogomolov-Gieseker inequality in
Proposition 2.10 yields

~ 'y 2
c > —-0r . 4.8
2(G1B 2 D) 1(G)°B (4.8)
Meanwhile, we have
rp<nu=d and =0 (4.9

by Miyaoka’s semipositivity theorem (see [58, Corollary 6.4], [10, Theorem 1.3], and [14,
Theorem 5.5]). The Hodge index theorem (see Proposition 2.3) implies that

l l l 2
1. ) 1 2 _ M !
; r; i ﬁ (by Proposition 2.3) d ; iHi d ; i = d

As in [58, Proposition 7.1], we obtain

l
26\2(95])5 > <2 Z 6\2(g2/v) - Cl(gi)2> B+ Cl(QE(l])26

(by Lemma 2.13) i=1

l

1 1

- (‘m+fﬂgf—zgﬁ@m>ﬁ+mdb%

(by (4.8)) = .
2 l .

1
2 —d(r—lﬂ)uf - —ci(G)’B + (g
(by Proposition 2.3) 1 i=2 !

1 ry 1
> 5<,+1M—dm)+q«&Wﬂ
(by (4.10)) 1

r

Consider the function

rix?

ri+1

fiR—R, f(x)= —dx.
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(ri+1)d
1

Note that f is convex and attains its unique minimum at x = . We observe that

+ 1)d
d < (rq )

" (byis)) n N
Thus, we obtain
~ [1] f(%) 1152 1 1 (1152
208 > 3 @y = (L - L1 el

which yields the desired inequality (4.7). Here, we used d := cl(Qg(”)zH1 ---H,_, for the
last equality.

We assume that X is maximally quasi-étale and that equality holds in (4.7). In the case r; = n,
this situation has essentially been addressed in [28]. Specifically, Proposition 2.10 shows that
End(Q&l] @ Oy) is locally free. Since QE] is a direct summand of End(QE(l] @ Oy), the cotan-

gent sheaf QE] is also locally free. Therefore, by [21, Theorem 6.1], we conclude that X is
smooth.

We now consider the case of r; < n. Since equality holds in (4.9), we have r,u; = nu. It follows
that u, = 0, and by the definition of the Harder-Narasimhan filtration, we conclude that | = 2.
By the same argument as in Theorem 3.5, we obtain ¢;(G,) = 0.

Our next step is to prove that G; and Q;V are locally free. Since equality holds in (4.8), we deduce
that

(2(r + DG — 1y C1(Q1)2)ﬁ =0.

Thus, Corollary 2.11 implies that G, is locally free. Since Q;V is generically numerically effec-
tive and satisfies ¢;(G,) = 0, it follows that G}V is (H; - H, - H,_,)-semistable. Moreover, we
obtain

8(GY)H, - H,_, = 0.

Indeed, in (4.11) we applied the Bogomolov-Gieseker inequality to G,, and equality now holds.
Thus, the above equality follows from c;(G,) = 0.

Thus, [53, Theorem 1.4] shows that ggv is a flat locally free sheaf. Moreover, the torsion-free
sheaf G, is locally free in codimension two since G, — ggv is isomorphic in codimension two by
Lemma 2.13.

We finally prove that G, = Q;V and that X is smooth. Consider the short exact sequence

0—)QI—>Q§]—>QZ—>O.

Note that X satisfies Serre’s condition S for all k, since X has klt singularities (and is therefore
Cohen-Macaulay). Hence, all the assumptions of [2, Lemma 9.9] are satisfied, and we deduce
that QEJ is locally free and G, = Q\z’v. In particular, it follows that X is smooth by applying [21,
Theorem 6.1] once more. |
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Theorem 4.10 (cf. [58, chapter 7]). Consider Setup 4.8 and assume thatr; = 1. Then, the following
inequality holds:

A 3
62(92])111 o Hy_p > gcl(ﬂg])zHl = Hy . (412)
We emphasize that equality never occurs in (4.12).
Proof. Setf :=H, --H,_,.Since G; C Qg] and u; > 0 holds, we obtain

¢(G)*B <0 (4.13)

by Propositions 2.8 and 2.10.
Hence, as in the proof of Theorem 4.9, we obtain

1
~ 1
QN > (—q(gl)z -2 ;c1<ci>2> B+ (B

(by (4.11)) i=2 '

1
1
> a@hB - —aG)s

(by (4.13)) = li (4.14)

2 d—p +
(by (4.10))
3

> =
— 4

2
O
d

d.

2
Here, for the last inequality, we used the fact that the function f(x) :=d —x + % attains its

minimum value %d atx = %. Hence, the desired inequality (4.12) follows.
We finally show that equality is never attained in (4.12). If equality in (4.12) were to hold, then
by (4.10) and (4.14) we would obtain | = 2,

U, =0, and pu; = g
However, this contradicts the relation u; +r,u, = d. [l

By combining Theorems 4.9 and 4.10, we derive Miyaoka’s inequality for minimal projective
kit varieties. Moreover, we analyze the case of equality and obtain a uniformization theorem.

Theorem 4.11 (cf. [58, chapter 7], [45, Theorem 5.6], and [67, Theorem 7.2]). Consider Setup 4.8.
Then, Miyaoka’s inequality holds:

(362(0h = e, (@) ), - H, > 0 (4.15)
Moreover, if equality holds in (4.15), then there exists a finite quasi-étale cover A X S — X, where

A is an abelian variety and S is a smooth projective surface whose universal cover is the unit ball in
C2. In particular, the canonical divisor Ky is semi-ample.
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Proof. We easily obtain the desired inequality (4.15) from Theorems 4.9 and 4.10, by noting that

X 1
m > 3 (4.16)
for any real number x > 2.

Assume that equality holds in (4.15). After taking a quasi-étale cover, we may assume that X
is maximally quasi-étale. Let r; be the rank of the maximal destabilizing subsheaf of QE] with
respect to Ky - Hy --- H,_,. Then r; = 2 by Theorems 4.9, 4.10, and (4.16). Moreover, applying
Theorem 4.9 again, we see that X is smooth and that there exists an exact sequence of locally
free sheaves

O—)Ql—>Q)1(—>g2—>0,

where G, is flat. Since Q\z’ C Ty has trivial first Chern class, the sheaf Q\Z’ defines a flat foliation of
codimension two by [52, Theorem 5.2]. Thus, by [64, Theorem D], we conclude that X = A X S up
to a finite étale cover, where A is an abelian variety and S is a point, a smooth curve, or a smooth
surface. By noting v(Ky) = v(K) > 2, we see that S is a smooth projective surface of general type.
Finally, equality in (4.15) implies that 3¢,(S) — ¢;(S)? = 0, which shows that the universal cover
of S is the unit ball in C? by [57, Proposition 2.1.1]. O

By Theorem 1.2, we immediately obtain Corollary 1.3.

Proof of Corollary 1.3. By Theorem 1.2(A), we have cl(QQ])ZH1 --H,_, =0. Hence, all the
assumptions of Theorem 1.2(B) are satisfied, and we conclude that Ky is semi-ample. O

5 | PROOF OF THEOREM 1.4

This section is devoted to the proof of Theorem 1.4. We begin by recalling the definition of the
Albanese map for a projective klt variety X. Given a resolution 77 : X — X of singularities, the
Albanese map @ : X — Alb(X) factors through X (see, for example, [71, Proposition 9.12]):

X—"—=X

N

Alb(X).

The morphism « : X — Alb(X) := Alb(X) is independent of the choice of resolution of singulari-
ties and is called the Albanese map of X. Note that dim Alb(X) = q(X) = q(X) since X has rational
singularities, where g(X) := h!(X, Oy) denotes the irregularity of X. The augmented irregularity
gq(X) of X is defined as

qx) := sup{q()? ) | X > X is a finite quasi-étale cover} € Z,, U {c0}.

The following theorem is an immediate consequence of [54] and the Beauville-Bogomolov-Yau
decomposition theorem for kit varieties (see [8, 17, 20, 24, 35]).
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Theorem 5.1. Let X be a projective klt variety with numerically effective anti-canonical divisor.
Then, after replacing X with a finite quasi-étale cover, there exist the following data:

(1) an abelian variety A of dimension q := q(X),

(2) a projective kit variety Y with Ky, = 0 and q(Y) = 0,

(3) arationally connected klt variety F with —K numerically effective,
(4) a group homomorphism p : 7,(A) = Aut’(F)

such that
X =2 (CIxF)/m(A) XY,

where 7t,(A) acts diagonally on C4 x F via p : m,(A) — Aut’(F). In particular, the Albanese map
a: X — Aisalocally trivial fibration whose fibers are isomorphicto F X Y.

Proof. By combining [54] with the Beauville-Bogomolov-Yau decomposition theorem for kit
varieties, and after replacing X with a finite quasi-étale cover, we obtain an abelian variety A
of dimension g := g(X), a projective klt variety Y with Ky = 0 and §(Y) = 0, a rationally con-
nected klt variety F with numerically effective anti-canonical divisor, and a group homomorphism
p: m(A) - Aut(F) such that

X =2 (CIxF)/m(A)XY.

Here, we used the fact that every linear representation of 7,(Y) has finite image (see [20,
Theorem I]). Since X is projective, the image of the composition

7,(A) — Aut(F) — Aut(F)/Aut’(F)

is finite (see, for example, [59, Lemma 3.4]). Hence, after replacing X with a finite étale cover, we
may assume that p takes values in Aut’(F). O

After proving that the tangent sheaf 7 is generically numerically effective, we now complete
the proof of Theorem 1.4.

Lemma 5.2. Let X be a projective klt variety with numerically effective anti-canonical divisor. Then,
the tangent sheaf Ty is generically numerically effective. In particular, for any ample Cartier divisors
H,,..,H,_,onX, wehave

62(Tx) N Hl "'Hn_z > 0.

Proof. Note that when X is Q-factorial, the conclusion was proved in [61, Theorem 1.4]. In the
general case, given a subsheaf £ C QE(I], we show that

¢/(€) - Hy - H, 1 <0

for any ample divisors H,...,H,_; on X. Let p: X — X be a Q-factorization as in [42, Corol-
lary 1.37], and set £ : = pl*|€. Since p is a small birational morphism (i.e., it does not contract any
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divisor), we have
Ky =p"Kx and (&) = p*c, ().

We see that —K 5 is also numerically effective. Moreover, we have Q;] = p[*]QE(I] by reflexivity,

and thus € can be regarded as a subsheaf of Q;]. By [61, Theorem 1.4], we deduce that

¢y(&) - Hy = Hy_y = ¢,(8) - p*Hy - p*Hyy <0.

This shows that 7y is generically numerically effective. The latter conclusion follows from
Corollary 3.6 and Theorem 3.7. O

Proof of Theorem 1.4. Let X be a projective klt variety of dimension n satisfying the assumptions
of Theorem 1.4. Note that, by Proposition 2.6 and Lemma 5.2, we have &,(7x) - D; --- D,,_, = 0 for
all numerically effective Q-divisors Dy, ..., D,,_,.

It suffices to prove the conclusion after replacing X with a finite quasi-étale cover. Hence, we
may assume that X is maximally quasi-étale. Furthermore, by Theorem 5.1, we may assume that
X =2 (CIxXF)/m(A) XY
and that X satisfies the properties listed in Theorem 5.1. Recall that Y is a projective kit variety with
Ky = 0and q(Y) = 0, and that F is a rationally connected klt variety. Then, from the assumption

on C,(Ty), we obtain the following claim.

Claim 5.3. The variety Y is a single point.

Proof of Claim 5.3. Assume for a contradiction that Y is not a point. Consider the splitting of the
tangent sheaf

arising from the product structure X = Z X Y, where
Z :=(CIxF)/m(A)

and pr; is the natural projection. Let D be an ample divisor on Z and let H be an ample divisor on
X.Set m := dim Z. Then, Proposition 2.6 shows that

&(Txly) - (HIy)"™™ % = &(Tx) - H* ™% - (pr;D)™ = 0.
By combining Lemmas 2.13 and 5.2, we deduce that
&(Ty) - (HIy)"™™"* =0.

Since Ky = 0, itfollows from [53, Theorem 1.2] that Y is a quasi-étale quotient of an abelian variety,
contradicting g(Y) = 0. O
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Fromnowon,leta : X — A be the Albanese morphism of X as in Theorem 5.1. By construction
and Claim 5.3, this is a locally trivial fibration with fiber F, where F is a rationally connected kit
variety. By [18, Theorem 1.5] (cf. [9, Theorem 1.2]), we have

Y(—Kx) = v(—Ky) < dim F. (5.1)

Thus, to conclude the proof of Theorem 1.4, it remains to show that dim F < 1. To this end, we
consider three cases according to the numerical dimension »(—Ky ) of —K . We first treat the case

Case 1 (The case »(—Ky) = 0). In this case, by [53, Theorem 1.2], the variety X is a quasi-étale
quotient of an abelian variety, and thus satisfies the desired conclusion.

In the case »(—Kx) > 1, we consider the relative tangent sheaf 7y ,,. Note that we have the
splitting

Tx =Tx/a @ Ty =Ty s ® 0,
since o : X — A is a locally constant fibration.

Case 2 (The case »(—Ky) > 2). We show that this situation cannot occur. In this case, we have
dim F > 2 by (5.1). The relative tangent sheaf 7y ,, satisfies the assumptions of Corollary 3.6, and
hence, we obtain a surjective morphism of sheaves 7y /A > Q, where Q is a flat locally free sheaf
such thatrk Q@ = dim F — 1 > 1. Taking dual and restricting to the fiber, we obtain a flat subsheaf

QIp)’ & Ty alp) = QE:”-

The flat locally free sheaf (Q| )" is trivial since F is rationally connected (in particular, simply con-
nected). This implies that q(F) # 0, contradicting the assumption that F is rationally connected.

Case 3 (The case ¥(—Ky) = 1). Recall that it remains only to show that dim F < 1. To this end,
assume dim F > 2 and derive a contradiction.
Fix an ample divisor H on X and set H, := —Ky + ¢H. Consider the (H, - H, - H,_,)-Harder-
Narasimhan filtration of 7y /4
0=:EGE G CE =Ty (5.2)

By Theorem 3.7, this filtration is independent of ¢ for 0 < € <« 1. Moreover, the graded pieces
G; 1= & /& _, satisty the following properties.

(1) G, is a reflexive sheaf of rank r; on X.

) G| Xieg is locally free and projectively flat, with associated representation p; : 7;(X,,) —
P GL(r;, C).

(3) det(G;) is a Q-line bundle, and ¢,(G;) = ;¢,(Tx/4) = A;¢1(—=Kx).

Then, by applying [25, Proposition 3.3] to each G;, there exists a reflexive sheaf £; of rank one such
that G; = F; ® L;, where F; admits a filtration
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0=:F'CFlCc..cFilcri.=F (5.3)
i + i -+ - i - i

1

such that each graded piece T’l.k / Pik‘l is a flat line bundle, and T’l.l is a trivial line bundle on X.
Now, by a straightforward computation, we have

Aic)(=Kx) = ¢1(G;) = ricy(L)).

Then, from the properties of the Harder-Narasimhan filtration (5.2) and Lemma 5.2, we deduce
that

A A A
252552 > 0 and YA o= L (5.4)
" I r(by Lemma 5.2) =1 (by(52)

We now show that A; > 0. Suppose instead that A; = 0. Then, the Q-line bundle £, is
numerically trivial. On the other hand, by definition, there is a surjective morphism of sheaves

Txja=&>&E/6,=G=F1QL > Flrl/Frl_l

1 ®£[=:M.

Since X is maximally quasi-étale and ¢, (M) = 0, the sheaf M is a flat line bundle by [53, Theo-
rem 1.4] (see also the proof of Lemma 2.5). By taking dual and restricting to the fiber, we obtain
the inclusion
MIp)Y & Ty alp)’ = QE]-

The flat line bundle (M |p)V is trivial since F is rationally connected. This implies that g(F) # 0,
which contradicts the fact that F is rationally connected.

Consequently, we obtain A; > 0. Hence, by (5.4) and dim F > 2, we deduce that 4;/r; < 1 for
every i. This establishes Claim 5.4 below, which implies that K is numerically effective and
therefore numerically trivial. This contradicts (5.1), and thus we conclude that dim F < 1.

Claim 5.4. F has no Kp-negative extremal contraction. In particular, K is numerically effective.

Proof of Claim 5.4. Assume that F admits a Kp-negative extremal contraction ¢ : F — W. By the
argument in [25, Claim 5.8 in the ArXiv version], it suffices to show that

[l _
RP$, Q' =0 forallp>0.
To this end, restricting (5.2) and (5.3) to the fiber F and taking duals, it is enough to verify that
Re, ((FE/FE) @ £Y) =0 forallp>o0. (5.5)
Note that

OF(_KF) ® (F[k/rik_l)v ® ﬁ:/
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is numerically equivalent to (1 — 4;/r;)c;(—KF), and is therefore ¢-ample since 4;/r; < 1. Thus,
by the relative vanishing theorem (see [40, Theorem 1-2-5]), we obtain the desired vanishing

(5.5). O
In summary, we see that in all cases dim F < 1, as required. This completes the proof. O
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