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ABSTRACT
Audio‐visual speaker tracking aims to determine the locations of multiple speakers in the scene by leveraging signals captured
from multisensor platforms. Multimodal fusion methods can improve both the accuracy and robustness of speaker tracking.
However, in complex multispeaker tracking scenarios, critical challenges such as cross‐modal feature discrepancy, weak sound
source localisation ambiguity and frequent identity switch errors remain unresolved, which severely hinder the modelling of
speaker identity consistency and consequently lead to degraded tracking accuracy and unstable tracking trajectories. To this
end, this paper proposes a multimodal multispeaker tracking network using audio‐visual contrastive learning (AVCLNet). By
integrating heterogeneous modal representations into a unified space through audio‐visual contrastive learning, which facili-
tates cross‐modal feature alignment, mitigates cross‐modal feature bias and enhances identity‐consistent representations. In the
audio‐visual measurement stage, we design a vision‐guided weak sound source weighted enhancement method, which lever-
ages visual cues to establish cross‐modal mappings and employs a spatiotemporal dynamic weighted mechanism to improve the
detectability of weak sound sources. Furthermore, in the data association phase, a dual geometric constraint strategy is
introduced by combining the 2D and 3D spatial geometric information, reducing frequent identity switch errors. Experiments
on the AV16.3 and CAV3D datasets show that AVCLNet outperforms state‐of‐the‐art methods, demonstrating superior
robustness in multispeaker scenarios.

1 | Introduction

Multispeaker tracking is a critical task in the field of
human–robot interaction, aiming to determine the spatial lo-
cations and identity associations of multiple speakers in com-
plex scenarios by analysing real‐time data from multimodal
sensors such as microphone arrays and cameras [1]. This
technology has significant applications in multiparty video
conferencing systems, intelligent group behaviour analysis and
social navigation for service robots [2]. Tracking problems are
typically addressed using computer vision‐based object tracking
methods [3–5] and auditory‐based sound source localisation

(SSL) methods [6, 7]. However, unimodal approaches face sig-
nificant challenges in multitarget tracking. Visual‐based
methods are susceptible to dense occlusions, sudden illumina-
tion changes and cross‐view identity switches, whereas acoustic‐
based methods suffer from speech overlapping when multiple
speakers talk simultaneously and are highly sensitive to noise
and reverberant environments. To address these limitations,
tracking frameworks that integrate multimodal perception have
become a key pathway to enhancing tracking robustness. By
associating acoustic features from audio streams with speaker
facial representations from visual streams, a cross‐modal tem-
poral association model can be constructed, significantly
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improving tracking accuracy and continuity in multiparty
interaction scenarios.

Currently, existing audio‐visual multimodal tracking networks
primarily focus on feature fusion and cross‐modal association
during the fusion phase. For instance, prior studies employ early
or late fusion strategies to integrate audio‐visual information,
typically via direct feature concatenation or weighted combi-
nation [8–10], but these methods have limited adaptability to
heterogeneous modalities. With the advent of attention mech-
anisms, the multimodal perception attention network employs a
self‐supervised cross‐modal strategy to assess the significance of
visual and auditory measurements, enabling weighted fusion of
the multimodal features [11]. The cross‐modal multihead
attention mechanism is introduced to facilitate the interaction
of information from the visual and audio streams [12, 13].
However, in multiperson interactions, such as when multiple
speakers are spatially close or speaking simultaneously, the as-
sociation between visual and auditory features may be incorrect,
leading to an identity switch. It is worth noting that recent
studies have attempted to enhance multimodal representation
capabilities through self‐supervised audio‐visual contrastive
learning mechanisms. For example, AV‐HuBERT [14] utilises
contrastive and masked prediction strategies to construct token‐
level alignment between speech and lip movements, achieving
good performance in tasks such as speech recognition and lip‐
reading. However, AV‐HuBERT [14] is primarily designed for
semantic understanding tasks, with its feature optimisation
objectives focused on content‐level matching. It lacks modelling
of speaker identity and spatial awareness, making it difficult to
directly adapt to multispeaker tracking scenarios, which require
identity consistency and trajectory continuity. To address this
challenge, this paper proposes an audio‐visual contrastive
learning (AVCL) mechanism, which integrates audio‐visual
features into a unified feature space to overcome feature bias
caused by modality heterogeneity in traditional methods. Unlike
contrastive mechanisms that focus solely on content‐level
speech consistency, AVCL introduces a task‐driven positive
and negative sample construction strategy. By pulling closer the
positive sample pairs (audio‐visual features of the same target),
the network learns multimodal consistent representations of the
same target, enabling finer‐grained cross‐modal feature align-
ment. Simultaneously, by pushing apart the negative sample
pairs (audio‐visual features of different targets), the network
enhances its ability to discriminate between different targets,
thereby improving identity‐consistent representation and
reducing identity switch errors in dense multispeaker interac-
tion scenarios. In addition, the AVCL module is directly inte-
grated into the backbone of the multispeaker tracking network
and jointly optimised with the feature extraction and data as-
sociation modules, enabling unified learning of semantic
modelling, spatial localisation and identity consistency, which
significantly enhances the robustness and accuracy of multi-
target tracking.

Feature extraction is a critical phase in audio‐visual multimodal
tracking networks, typically involving both acoustic and visual
measurements. Among these, the generalised cross‐correlation
with phase transform (GCC‐PHAT) [15] and the multiple
signal classification (MUSIC) algorithm [16] are two of the most
widely used acoustic measurement methods. A spatial‐temporal

global coherence field (stGCF)‐based acoustic measurement
method was proposed [11], which constructs spatial sampling
points using a camera model and derives the optimal values
over a period of time based on motion continuity. However, the
peak distribution of stGCF is interfered with by multiple syn-
chronous sound sources, resulting in poor performance in
multisource scenarios. With the advancement of deep neural
networks, data‐driven direction‐of‐arrival (DOA) estimation
methods based on deep learning have gained significant atten-
tion, such as contrastive learning‐based multitarget DOA esti-
mation under low signal‐to‐noise ratio (SNR) conditions [17]
and lightweight deep neural network approaches that incorpo-
rate data redundancy removal and regression techniques [18],
which better address the challenges in complex multisource
scenarios. However, these methods lack the ability to locate
weak sound sources in multisource environments and fail to
effectively utilise spatial and temporal information. Therefore,
this paper designs a vision‐guided weak sound source weighted
enhancement method, which uses visual cues to establish cross‐
modal mapping and weighted summation of historical acoustic
cues to improve the detectability of weak audio signals.

Data association represents a critical challenge in audio‐visual
multiobject tracking networks, particularly during the trajec-
tory tracking phase. This task becomes especially demanding in
complex scenarios where precise cross‐frame target matching is
essential for maintaining tracking continuity. The nearest
neighbour (NN) algorithm [19] is the simplest data association
method, associating the closest detection values with target tra-
jectories. However, the NN algorithm is prone to mistakenly
associating irrelevant targets with the trajectory, leading to
tracking errors. Joint probabilistic data association (JPDA) [20] is
a probabilistic‐based multitarget data association method; it se-
lects the optimal association by computing the joint probability
of all possible data associations. However, it requires prior
knowledge of the number of targets and fails in the absence of
targets. Multiple hypothesis tracking (MHT) [21] is an algorithm
that generates multiple hypotheses during tracking, improving
tracking robustness by evaluating different hypothesis paths.
However, its high computational cost makes it difficult to adapt
to complex target motion patterns, resulting in tracking drift. To
address this challenge, this paper proposes a dual geometric
constraint strategy that integrates both 2D and 3D spatial geo-
metric information, effectively optimising the data association
process through complementary constraint mechanisms. Tradi-
tional 2D geometric constraints consider only information in the
image plane and cannot capture the actual position and motion
of targets in 3D space. For instance, two targets may be very close
in the image, but their actual distance in 3D space could be far
apart. 3D geometric constraints rely on the position of targets in
3D space but ignore the target's appearance and posture in the
image. The proposed multiple constraints compensate for the
information loss caused by single constraints, enabling more
precise capture of target appearance features and spatial posi-
tions, thereby effectively reducing identity switch rate and
improving the accuracy of data association.

The contributions of this paper are summarised as follows:

� A novel multimodal multispeaker tracking network using
audio‐visual contrastive learning (AVCLNet) is proposed.

2 CAAI Transactions on Intelligence Technology, 2025
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By integrating audio‐visual features into a unified space
and employing contrastive learning, the network enhances
multimodal alignment and identity consistency, signifi-
cantly improving tracking robustness in multispeaker
interaction scenarios.

� A vision‐guided weak sound source enhancement method
is designed for multisource localisation, which establishes
cross‐modal audio‐visual mapping through visual cue
guidance. By implementing a spatiotemporal weighting
strategy to integrate historical acoustic information, this
approach significantly improves the detection capability of
weak sound sources.

� A dual geometric constraint strategy is proposed for data
association, integrating both 2D and 3D spatial information
to optimise the cost matrix. This approach enhances the
precision of target appearance and spatial feature match-
ing, significantly improving association robustness.

� The proposed AVCLNet achieves superior performance
over state‐of‐the‐art methods on AV16.3 and CAV3D
benchmarks, with significant improvements across key
multiobject tracking metrics.

2 | Related Work

2.1 | Audio‐Visual Speaker Tracking

The complementary nature of visual and auditory modalities
effectively overcomes the inherent limitations of unimodal
perception. This makes multimodal information integration a
crucial approach for improving tracking performance. In audio‐
visual speaker tracking systems, visual measurements primarily
rely on either handcrafted appearance features [22–28] or deep
neural network‐based discriminative features [29, 30]. On the
auditory side, sound source localisation (SSL) algorithms, such
as time delay estimation and direction‐of‐arrival (DOA) esti-
mation [9, 31–35], have been widely applied in azimuth esti-
mation. Early audio‐visual speaker tracking methods were
predominantly based on Bayesian frameworks. Particle filter
(PF) [36–41] enables target distribution inference through
nonlinear modelling but suffers from high computational
complexity. Probability hypothesis density (PHD) filters [22, 42]
allow for dynamic variations in the number of targets but
struggle to distinguish similar targets in multispeaker tracking.
The Poisson multi‐Bernoulli mixture (PMBM) filter [32, 43]
integrates a phase‐aware strategy to enhance tracking in inter-
mittent speech scenarios but relies on manually designed
observation likelihood functions, limiting its adaptability to
complex real‐world environments. In recent years, deep
learning methods have been widely applied in multimodal
fusion research [44–46]. A cross‐modal attention fusion mech-
anism was proposed to capture temporal dependencies within
each modality and achieve alignment across modalities [13]. A
cross‐modal multihead cross‐attention mechanism was pro-
posed to jointly model multimodal context and interactions
while incorporating a quality‐aware module for multispeaker
tracking [12]. However, these methods often lack identity
management mechanisms, making them prone to identity
switches. To address these challenges, the proposed AVCLNet

constructs a unified multimodal feature space through an audio‐
visual contrastive learning mechanism to optimise cross‐modal
feature alignment and enhance identity‐consistent representa-
tion. Additionally, by integrating a dual geometric constraint
strategy, AVCLNet achieves joint optimisation of feature rep-
resentation and the tracking model, demonstrating superior
tracking performance in multispeaker interaction scenarios.

2.2 | Multisource Localisation

Research on multisource localisation has made significant
progress, driven by advancements in both traditional signal
processing methods and deep learning techniques. Traditional
methods, such as generalised cross‐correlation with phase
transform (GCC‐PHAT) [15] and steered response power with
phase transform (SRP‐PHAT) [47], demonstrate excellent per-
formance in single‐source scenarios but face limitations in
multisource environments and reverberant conditions. To
address these challenges, researchers have proposed the prob-
abilistic graph diffusion model for the source localisation
method [48], which introduces a probabilistic graph diffusion
model to enhance the accuracy of source localisation. In recent
years, deep learning‐based approaches have led to break-
throughs in multisource localisation. Convolutional recurrent
neural networks (CRNN) [49] integrate time‐frequency feature
extraction with sequential modelling capabilities, achieving
high‐precision localisation in noisy environments. With the
development of transformer architectures, a self‐attention
mechanism was proposed to enhance long‐term dependency
modelling [50] while further incorporating a multihead self‐
attention mechanism to improve localisation robustness in
complex acoustic environments [51]. Additionally, traditional
spatial features are combined with deep learning models [52,
53], explicitly leveraging the physical properties of sound fields
to mitigate the impact of reverberation on localisation accuracy.
However, existing multisource localisation methods primarily
rely on audio information, lacking collaborative optimisation
with the visual modality. This leads to increased source confu-
sion in scenarios involving overlapping speakers. Moreover,
current methods do not incorporate effective enhancement
mechanisms for weak sound sources, making them susceptible
to masking in noisy and reverberant environments. In this pa-
per, we propose a vision‐guided weak sound source weighted
enhancement method. By establishing a cross‐modal mapping,
the method leverages visual cues to guide auditory measure-
ments and employs weighted aggregation of historical acoustic
cues to enhance the detectability of weak sound sources, thereby
improving the robustness of multisource localisation.

2.3 | Multimodal Contrastive Learning

Research on multimodal contrastive learning has primarily
focused on cross‐modal alignment and representation optimi-
sation between vision and language modalities. For instance,
CLIP [54] leverages large‐scale image‐text contrastive learning
to achieve open‐domain generalisation, whereas ALIGN [55]
demonstrates the robustness of cross‐modal contrastive learning
in noisy data scenarios. Additionally, VLMo [56] further

CAAI Transactions on Intelligence Technology, 2025 3
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enhances modality interaction diversity and task adaptability
through architectural innovations and decoupling strategies.
Regarding audio‐visual contrastive learning, most existing
studies primarily adopt self‐supervised paradigms, leveraging
contrastive learning to align cross‐modal representations. For
example, HiCMAE [57] introduces a hierarchical contrastive
masked autoencoder, applying contrastive learning between
masked and unmasked views across modalities to capture high‐
level semantic correlations, leading to strong performance in
emotion recognition. SCAV [58] models the sequential structure
of audio‐visual signals by performing contrastive learning over
nonaggregated representations, thereby enforcing temporal
consistency via sequence‐wise distance. Furthermore, DETE-
CLAP [59] enhances audio‐visual representation learning by
introducing an object‐aware audio‐visual tag prediction loss,
improving performance on retrieval and classification bench-
marks. AV‐HuBERT [14], as a powerful self‐supervised frame-
work, learns audio‐visual speech representations via masked
modelling and clustering mechanisms. In contrast, the proposed
audio‐visual contrastive learning strategy goes beyond simple
cross‐modal alignment by constructing identity‐aware positive
and negative sample pairs. It explicitly optimises the feature
fusion of the same speaker across heterogeneous modalities
while simultaneously enhancing the discriminability between
different speakers, thereby significantly improving identity
consistency modelling in speaker tracking tasks.

3 | Methodology and Network Design

In this paper, we propose a novel audio‐visual contrastive
learning‐based network, AVCLNet, for multimodal multi-
speaker tracking. As illustrated in Figure 1, the framework
consists of three stages: audio‐visual measurement, audio‐visual
contrastive learning and data association. First, the input audio‐
visual signals are composed of temporally synchronised audio‐

visual sample pairs (Vt,At), where t = 1,…,T. T represents the
total number of frames. In the audio‐visual measurement stage,
a face detector is employed to extract visual cues Ot, whereas a
vision‐guided audio measurement is adopted to obtain
enhanced sound source maps Mt. The audio and visual cues are
encoded by the audio and visual encoder, generating audio and
visual feature representations It and St. In the audio‐visual
contrastive learning stage, the extracted audio and visual fea-
tures are aligned and optimised through a contrastive learning
mechanism. Subsequently, an attention mechanism fuses the
modalities to generate audio‐visual representations Ft, which
are further processed by a prediction head to produce detection
results p̂t. Finally, in the data association stage, a dual geometric
constraint strategy is introduced to associate cross‐frame
detection results, obtaining speaker motion trajectories Trt. In
this section, we provide a detailed description of the AVCLNet
tracking network.

3.1 | Audio‐Visual Measurement

3.1.1 | Visual Measurement

In this stage, a lightweight face detection model f detv (⋅) is
employed for real‐time face detection, which processes the input
video stream in an end‐to‐end manner using convolutional
neural networks. The detection process can be formalised as
follows:

Ot = f detv (Vt), (1)

where Vt ∈ RH ×W × 3 represents the current input image frame,
Ot = {oit}

Nv
i= 1 is the set of all detected face bounding boxes at

frame t, i ∈ {1, 2,…,Nv} represents the speaker ID, and Nv is the
number of detected faces. oit = (uit, vit,wit, h

i
t)

⊤ denotes the face

FIGURE 1 | The overall framework of AVCLNet comprises three main stages: audio‐visual measurement, audio‐visual contrastive learning and
data association. First, facial regions are obtained through visual detection, and a visually guided audio measurement is employed. Then, cross‐
modal feature alignment is optimised through audio‐visual contrastive learning (AVCL). Finally, a dual geometric constraint strategy is applied
for data association.

4 CAAI Transactions on Intelligence Technology, 2025
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bounding box coordinates of the speaker with ID = i, where
(uit, vit) represents the top‐left corner coordinates of the bound-
ing box, and (wit, h

i
t) corresponds to its width and height. Visual

cues Ot are then fed into the visual encoder to extract deep vi-
sual features, which can be formulated as follows:

It = f encv (Ot), (2)

where It = {Iit}
Nv
i= 1 is the set of encoded visual features, and Iit

denotes the visual feature of the speaker i at frame t.

3.1.2 | Audio Measurement

In this stage, the multichannel audio At is processed using
stGCF‐based audio measurement [11] to generate the sound
source map, where the peak distribution indicates the location
of the sound source. However, in multisource scenarios, the
distribution is interfered with environmental noise and rever-
beration. Therefore, when reliable visual observations are
available, we use visual cues to guide audio measurement by
narrowing the spatial sampling range based on the results of
face detection, thus avoiding a global search of the entire image
frame. This vision‐guided approach effectively reduces noise
interference from sources in other regions. Additionally, when
speakers have weak or no speech at certain moments, the peaks
in the stGCF‐based sound source map often fail to indicate the
true target location. To address the issue of weak sound sources
being affected by noise interference, we propose a vision‐guided
weak sound source weighted enhancement method, which en-
hances weak sound sources by a weighted combination of his-
torical sound source maps. This method improves the detection
strength of weak sound sources in both the temporal and spatial
dimensions, effectively improving weak sound source local-
isation performance in multisource localisation scenarios. The
detailed process is shown in Figure 2.

In order to generate a global sound source map based on stGCF,
a set of 2D sampling points {(x, y)} is first extracted from the
entire image frame to represent candidate pixels of potential

sound source locations. Each 2D sampling point is projected
onto multiple predefined depths d using a calibrated pinhole
camera model, resulting in 3D projection sampling points
(x, y, d) = Φ((x, y), d), where Φ(⋅) is the back‐projection function
defined by the intrinsic and extrinsic parameters of the camera.
A structured 3D sampling grid is finally formed across spatial
and depth dimensions, as illustrated in Figure 3. The general-
ised cross‐correlation with phase transform (GCC‐PHAT) is
used to measure the coherence between audio signals received
by multiple microphones. Based on GCC‐PHAT, the global
coherence field (GCF) value is calculated at the sampling grid
locations, generating a global coherence field (GCF) map. Then,
the depth at which the peak of the GCF map is selected is fol-
lowed by the selection of the GCF map with the maximum peak
over a segment of time, generating the global sound source map,
denoted as Rglt .

If a face is detected in the visual measurement, the face region is
extracted to constrain the sound source localisation, generating
a vision‐guided sound source map Rvgt . First, a 3D sampling grid
is generated within the detected face bounding box Ot. Then,
the GCF value Git is calculated at each sampling point in the 3D
space. The spatial parameters of the weak sound source
enhancement weight are defined as follows:

Θmax(i)
t =max{Git(x, y, d)}, (3)

FIGURE 2 | The schematic diagram of the vision‐guided weak sound source weighted enhancement module. This module utilises a camera model
combined with face detection results to generate vision‐guided sound source maps and performs weighted aggregation of historical information
through spatiotemporal parameters to generate enhanced sound source maps.

FIGURE 3 | The 2D sampling points (a) and the corresponding 3D
projection sampling points (b).

CAAI Transactions on Intelligence Technology, 2025 5
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Θavg(i)t =
1

w × h
∑
w

x=1
∑
h

y=1
Git(x, y, d), (4)

where (x, y, d) represents the sampling point in the 3D space
(x 2 {1, 2, …, w}, , and the spatial parameters Θtmax(i) and Θtavg(i)

respectively represent the maximum GCF value and average
GCF value for the speaker i at frame t. The weak sound source
enhancement weight Wi

t is jointly determined by the spatial
parameters and temporal parameters Δtm, and is calculated as
follows:

ωit−m = α ⋅ Θmax(i)
t−m ⋅ Θavg(i)t−m ⋅

1
Δtm

,m = 1, 2,…,n, (5)

Wi
t = [ωit,ω

i
t−1,ω

i
t−2,…,ω

i
t−n],ω

i
t = 0.5, ∑

n

m=1
ωit−m = 0.5, (6)

where α represents the normalisation factor, and Δtm = m
represents the time difference between the historical frame and
the current frame. For the vision‐guided sound source map Rvgt
generated from the face region, the enhanced sound source map
is obtained by weighting with weight Wi

t:

REvg(i)t = [Rvg(i)t ,Rvg(i)t−1 ,R
vg(i)
t−2 ,…,R

vg(i)
t−n ]

⊤ ⊗ Wi
t, (7)

where Rvg(i)t−n represents the vision‐guided sound source map
generated for speaker i at frame t − n, and REvg(i)t−n denotes the
enhanced sound source map obtained by weighted accumula-
tion for speaker i. Weak sound sources may be overwhelmed by
other high‐energy sources or noise in a single frame. However,
by leveraging weighted accumulation over multiple frames,
their energy is aggregated in both spatial and temporal di-
mensions, whereas incoherent random noise is partially
cancelled out, thereby improving the accuracy of weak sound
source detection. The set of enhanced sound source maps for all
speakers at frame t is defined as follows:

Mt = {REvg(i)t }
Nv

i=1
. (8)

After the vision‐guided weak sound source weighted enhance-
ment method, all audio cues are further fed into the audio
encoder to extract deep audio features. This process can be
formulated as follows:

St = f enca (Mt), SGt = f
enc
a (Rglt ), (9)

where St = {Sit}
Nv
i= 1 represents the set of encoded audio features,

and Sit denotes the audio feature of speaker i at frame t. SGt
represents the encoded global audio feature.

3.2 | Audio‐Visual Contrastive Learning

After obtaining the deep audio and visual representations
through the measurement modules, it is crucial to align and
integrate the multimodal features for consistent speaker repre-
sentation. To this end, we introduce an audio‐visual contrastive
learning strategy, which not only enhances the consistency

between modalities but also improves the discriminability
across different speakers. The details are described as follows.

Contrastive learning is a self‐supervised learning method that
learns feature representations by pulling the features of positive
sample pairs closer while pushing the features of negative sample
pairs apart. The audio‐visual contrastive learning (AVCL)
mechanism is applied in the proposed AVCLNet to integrate vi-
sual and auditory modality representations into a unified feature
space. Bymaximising the audio andvisual feature similarity of the
same target through pulling the features of audio‐visual positive
sample pairs (It, St) closer, the network is promoted to learn
multimodal consistent representations for the same target,
enhancing the correlation between audio and visual features. By
pulling the features of visual positive sample pairs ( It, It+ ) closer,
the similarity of the same target across consecutive frames is
maximised, improving the stability of visual measurement. It+

represents the visual positive sample feature set, denoted as
It+ = {Ii+t }

Nv
i= 1, I

i+
t = Iit±n,n ∈ {1, 2,…,n+ }. For each image frame

Vt, we collect face detections of all speakers from the neighbour-
ing frames within ±n, forming a visual positive sample pool for
each speaker. Then, one sample is randomly selected from each
pool as the visual positive sample for the corresponding speaker
and encoded as a visual positive sample feature Ii+t . Taking
Nv = 3 and n+ = 3 as examples, the selection process of visual
positive sample features is illustrated in Figure 4.

For the features of audio‐visual positive sample pairs (It, St), a
cross‐modal contrastive loss Lcc is designed to enhance the
correlation between target modalities, bringing the anchor
speaker's visual features closer to the corresponding audio fea-
tures while suppressing the interference from other speakers'
visual and audio features. The definition is as follows:

Lcc = −
1
2
∑

Nv

i=1

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

log
exp(I

i
tS
i
t
τ )

∑
Nv
j=1
j≠i

exp(I
i
tS
j
t
τ )

+ log
exp(I

i
tS
i
t
τ )

∑
Nv
j=1
j≠i

exp(I
j
tS
i
t
τ )

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (10)

where the numerator represents the similarity between the
audio and visual features of the anchor speaker. The denomi-
nator of the first term represents the sum of similarities between
the anchor speaker's visual features and the audio features of
other speakers, whereas the denominator of the second term
represents the sum of similarities between the anchor speaker's
audio features and the visual features of other speakers. τ is a
learnable temperature parameter.

FIGURE 4 | Selection process of visual positive sample features:
extract face regions from consecutive image frames, build visual
positive sample pools, then randomly select samples from these pools
and encode them as visual positive sample features.
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For the features of visual positive sample pairs ( It, It+ ), an intra‐
visual‐modal contrastive loss Lvc is designed to enhance the
temporal consistency of the target, making the visual features of
the anchor speaker more similar across consecutive frames
while distinguishing the visual features of other speakers. The
loss is defined as follows:

Lvc = −
1
2
∑

Nv

i=1

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

log
exp(I

i
tI
i+
t
τ )

∑
Nv
j=1
j≠i

exp(I
i
t I
j
t
τ )

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (11)

where the numerator represents the similarity of the anchor
speaker's visual features across consecutive frames, whereas the
denominator denotes the sum of similarities between the anchor
speaker's visual features and those of other speakers. τ is a
learnable temperature parameter.

Meanwhile, by pushing the features of negative sample pairs
( It, It− ) and (St, St− ) apart, the similarity of different speakers'
features is minimised, suppressing irrelevant visual information
and audio signals while focusing on target‐relevant visual and
audio features to improve the accuracy of target association. The
features of negative samples include the visual negative sample
feature set It− and the audio negative sample feature set St− ,
denoted as It− = {Ii−t }

Nv
i= 1, I

i−
t = Ijt, St− = {Si−t }

Nv
i= 1, S

i−
t = Sjt,

where i, j ∈ {1, 2,…,Nv}, i ≠ j representing the speaker ID. Audio
and visual negative samples are randomly selected from the
audio and visual negative sample pools of speakers different
from the anchor speaker. Taking Nv = 3 as an example, the
selection process of audio and visual negative sample features is
illustrated in Figure 5.

For all the features of sample pairs ( Iit, S
i
t, I
i+
t , Ii−t , Si−t ), the

audio‐visual quintuplet loss Lqui is designed to ensure that
positive sample features are closer to the anchor speaker's fea-
tures than negative sample features through margin constraints.
It is defined as follows:

Lqui =∑

Nv

i=1
∑

Nv

j=1,j≠i
max(max

⃦
⃦Iit − Sit

⃦
⃦ +max

⃦
⃦
⃦Iit − Ii

+

t

⃦
⃦
⃦

− min
⃦
⃦Iit − Ii

−

t
⃦
⃦ − min

⃦
⃦Sit − Si

−

t
⃦
⃦ + ε, 0),

(12)

where ‖ ⋅ ‖ denotes the cosine distance between two embed-
dings, whereas ε represents the margin. Therefore, the total loss
of AVCLNet is defined as follows:

LTotal = λLcc + μLvc + ηLqui, (13)

where the weights λ, μ and η are, respectively, assigned to the
losses Lcc, Lvc and Lqui, to balance the contribution of each loss
in the total loss function.

The audio and visual features obtained after the AVCL mech-
anism are fed into the cross‐modal attention module for audio‐
visual fusion:

Ft = LN(It +MHA(Qa,Kv,Vv))
⊕ LN(St +MHA(Qv,Ka,Va)),

(14)

where Ft = {Fit}
Nv
i= 1 represents the set of audio‐visual fusion

features. Then, Ft is combined with the global audio feature SGt
to obtain the global fusion feature F̂t, addressing complex sce-
narios such as missed visual detections. Finally, the global fused
features are fed into the prediction head to obtain the detection
results p̂t = {B1

t ,B
2
t ,…,B

Nt
t }.

3.3 | Data Association With Dual Geometric
Constraints

To enhance the robustness of data association under different
target motion patterns, we propose a dual geometric constraint
strategy. By integrating the 2D bounding box IoU and 3D
Euclidean distance constraints to construct the cost matrix, our
method simultaneously accounts for spatial overlap and motion
continuity, outperforming single‐constraint approaches. Firstly,
detection box matching serves as the foundation of data asso-
ciation. Given the detected bounding boxes Bit− 1 and Bjt in
adjacent frames, their intersection over union (IoU) is computed
as the 2D cost:

C2D
i,j = 1 −

Area(Bit−1 ∩ Bjt)

Area(Bit−1 ∪ Bjt)
, (15)

where Bit− 1 and B jt , respectively, represent the bounding boxes of
targets with ID = i and ID = j in frame t − 1 and frame t. Through
the camera model, the 3D centre coordinates of the target
bounding box (a, b, c) are obtained, and the 3DEuclideandistance
of the target across consecutive frames is defined as follows:

D3D
i,j =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Δa2 + Δb2 + Δc2

√
,Δa = ajt − ait−1. (16)

To eliminate scale discrepancies, the similarity score metric is
mapped using a Gaussian kernel function as the 3D cost:

FIGURE 5 | Selection process of audio and visual negative sample
features: sound source maps and face regions of nonanchor speakers
are extracted to build negative sample pools, from which samples are
randomly selected and encoded as audio and visual negative sample
features.
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C3D
i,j = 1 − exp

⎛

⎜
⎜
⎜
⎝

−
(D3D
i.j )

2

2σ2

⎞

⎟
⎟
⎟
⎠
, (17)

where σ is dynamically adjusted based on the scene depth range
to enhance the scene adaptability of distance sensitivity. The
final matching cost Cm is obtained by fusing the two afore-
mentioned costs through the cost weight β:

Cmi,j = β ⋅ C2D
i,j + (1 − β) ⋅ C3D

i,j . (18)

Our data association module uses the aforementioned con-
straints to associate trajectories and detections between adjacent
frames. Specifically, the cost matrix between adjacent frames is
computed as follows:

C =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Cm1,1 … Cm1,Nt
Cm2,1 … Cm2,Nt

⋮ ⋱ ⋮
CmNt−1 ,1 … CmNt−1 ,Nt

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (19)

where Nt− 1 and Nt represent the number of tracked targets in
the previous frame t − 1 and the number of detected targets in
the current frame t. Cmi,j denotes the matching cost between the
tracking trajectory of the target with ID = i in the previous
frame and the detection result of the target with ID = j in the
current frame. Based on the above cost matrix, we use a greedy
algorithm to determine the association between the trajectory
before frame t (Trt− 1) and the detection results at frame
t ( p̂t = {B1

t ,B
2
t ,…,B

Nt
t }). The core idea of the greedy algorithm is

to select the trajectory‐detection pair with the minimum
matching cost at each step and add the current detection result
to the previous trajectory until all detection results are matched
and the trajectory Trt is updated.

4 | Experiments and Discussions

4.1 | Experimental Settings

To comprehensively evaluate the performance of AVCLNet, we
conduct extensive experiments under standardised protocols.
This section first introduces the datasets used for training and
validation. We then define the evaluation metrics aligned with
the objectives of the tracking task, ensuring fair comparisons
with existing methods. Finally, the implementation details are
elaborated, covering network configurations, hyperparameter
settings and hardware environments.

4.1.1 | Dataset

AV16.3 [60] is an audio‐visual corpus widely used to evaluate
speaker localisation and tracking systems. The audio data (16
channels) are recorded at a 16‐kHz sampling rate by two cir-
cular eight‐element microphone arrays mounted on the table,
spaced 0.8 m apart. The video data (288 × 360 pixels) are
captured at a frequency of 25 Hz by monocular colour cameras

installed at three corners of the room. In the experiments, two
microphone arrays and one of the three cameras are selected for
recording to evaluate the algorithm's performance under
different viewpoints. In the sequences, 2–3 participants speak
and engage in various activities in a conference room, including
sitting statically, standing statically or walking around the table.
Each sequence lasts approximately 20–60 s. We train the model
on 13,450 audio‐visual sample pairs from the multispeaker se-
quences seq18, 19, 35, 40 and evaluate it on seq24, 25, 30, 45.

CAV3D [61] is an audio‐visual speaker tracking corpus collected
by a co‐located sensor platform. The dataset is collected in a
room of size (4.77m × 5.95m × 4.5m). The audio data (8
channels) are recorded at a 96‐kHz sampling rate by a circular
eight‐element microphone array. The video data (768 × 1024
pixels) are captured at a frequency of 15 Hz by a camera with a
90° field of view. This dataset contains 5 multispeaker se-
quences. Compared to AV16.3, the scenes in the CAV3D dataset
are more challenging, including scenarios with 2–3 speakers
involving mutual occlusion, entering or exiting the camera's
field of view and periods of silence. Each sequence lasts
approximately 60–90 s. We select data from 3 sequences in the
CAV3D‐MOT (multispeaker sequences), with a total of 11,935
audio‐visual sample pairs used for model training, and test the
model using data from the remaining 2 sequences.

Both datasets offer synchronised and well‐calibrated multi-
modal recordings, featuring temporally aligned audio‐visual
streams, precise camera calibration parameters and compre-
hensive identity‐level annotations. These characteristics are
critical for effectively evaluating cross‐modal fusion strategies
and speaker identity association mechanisms. Accordingly,
AV16.3 and CAV3D are selected as the primary evaluation
benchmarks for this study.

4.1.2 | Metrics

Mean absolute error (MAE) is a metric used to evaluate tracking
performance. It measures the accuracy of target localisation by
calculating the Euclidean distance between the predicted posi-
tion and the ground truth position. Because MAE directly re-
flects the magnitude of localisation error, it is widely used to
compare the performance of different algorithms. The definition
of MAE is as follows:

MAE =
1
NtT

∑

Nt

i=1
∑
T

t=1

⃦
⃦p̂t,i − p̂gtt,i

⃦
⃦

2, (20)

where Nt denotes the number of targets in each frame, T is the
total number of frames, and p̂t,i and p̂gtt,i, respectively, represent
the predicted position and ground truth position.

Multiple object tracking accuracy (MOTA) reflects the success
rate of the tracker in detecting targets and associating trajec-
tories. It is used to measure various errors that occur during
tracking, including IDS (identity switch), FP (detection error
exceeding the predefined threshold) and FN (missed targets).
We record results exceeding 1/15 of the image diagonal size as
FP. The definition of MOTA is as follows:
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MOTA = (1 −
∑t(IDSt + FPt + FNt)

∑tN
gt
t

) × 100, (21)

where Ngtt denotes the number of ground truth targets in
frame t.

Multiple object tracking precision (MOTP) reflects the accuracy
of correctly tracked target positions and is used to measure the
spatial precision of the tracker, that is, the average error be-
tween the predicted positions and the ground truth positions.
The definition of MOTP is as follows:

MOTP =
∑i,te

i
t

∑i,tmt
, (22)

where eit denotes the Euclidean distance between the predicted
target with ID = i and its matched ground truth, and mt rep-
resents the number of successful matches at time step t.

4.1.3 | Implementation Details

In visual measurement, the face detection module adopts a
YOLOv10 model [62] pretrained on the ImageNet dataset [63].
In audio measurement, the speech signals from the circular
microphone array undergo a 40ms framing process, with
Hamming windowing applied and a frame shift of 1/2 frame
length. The interval between 2D sampling points is 3 pixels.
Based on the actual room configurations of the two datasets, 3D
sampling points located outside the room boundaries and below
the table surface are removed. Using the camera calibration
parameters provided by the dataset, a pinhole camera model is
established to achieve 3D image projection. When calculating
the weak sound source enhancement weight, we set n = 3. For
the computation of the total loss LTotal, we set τ = 0.1, λ = 0.4,
μ = 0.3 and η = 0.3. For the computation of the cost matrix, we
set σ = 0.5m and β = 0.6. The model is optimised using the
SGD optimiser with a learning rate of 1 × 10− 4. The model is
trained for 50 epochs with a batch size of 16. The experiments
are conducted on the PyTorch framework with one NVIDIA
RTX 4090 Ti GPU.

4.2 | Comparisons With State‐Of‐The‐Art Methods

Our approach is compared with unimodal methods and previ-
ous state‐of‐the‐art audio‐visual methods on the AV16.3 and
CAV3D datasets, with the results presented in Tables 1 and 2.
The audio‐only (AO) and visual‐only (VO) methods are imple-
mented based on the audio and visual measurements described
in Section 3.1. Unimodal methods rely solely on a single infor-
mation source. Evidently, compared to unimodal approaches,
the fusion of audio and visual modalities provides significant
advantages in speaker tracking tasks. We reproduce the
methods in Refs. [12, 22, 61] by running their publicly available
source codes, whereas the results of Ref. [64] are directly
referenced from the published work. As shown in Table 1, our
AVCLNet outperforms all baseline methods across all evalua-
tion metrics. Specifically, the MAE and MOTP are reduced to
10.70 pixels and 5.65 pixels, respectively, whereas MOTA is T
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improved to 83.94%, demonstrating the superiority of AVCLNet
in multispeaker tracking, particularly in dynamic multispeaker
(three speakers) interaction scenarios. The sequential Monte
Carlo‐probability hypothesis density (SMC‐PHD) filtering‐based
method [22] incurs high computational costs in multitarget
scenarios, making real‐time processing infeasible. Additionally,
its sparse sampling strategy leads to degraded tracking accuracy
in dense target and dynamic interaction scenes. We replaced the
original feature encoder in AVCLNet with the pretrained AV‐
HuBERT [14] model to extract audio‐visual features while
retaining our proposed data association modules. Experimental
results show that the AV‐HuBERT‐based variant [14]* performs
worse than AVCLNet across all evaluation metrics. This is
mainly because AV‐HuBERT [14] is designed for token‐level
semantic alignment between audio and visual streams (e.g.,
voice‐lip correspondence), but it lacks spatial modelling capa-
bility and identity‐level discrimination, which are crucial for
multispeaker tracking tasks. Methods in Refs. [12, 61] lack
explicit identity consistency optimisation, resulting in a high ID‐
switch rate and failing to address the problem of identity am-
biguity. In addition, these methods are unable to effectively
handle the issue of weak sound sources being easily masked by
noise in multitarget scenarios. In contrast, our AVCLNet in-
tegrates contrastive learning strategies with spatiotemporal
modelling capabilities. By employing identity‐aware contrastive
learning, we construct a unified feature space that effectively
mitigates feature bias caused by cross‐modal heterogeneity,
significantly reducing frequent identity switches. Meanwhile,
the vision‐guided temporal weighted strategy enhances weak
sound source localisation under noisy conditions, and the dual
geometric constraint strategy jointly considers spatial overlap
and motion continuity, reducing identity switch and matching
errors.

On the more challenging CAV3D dataset, AVCLNet also dem-
onstrates superior performance, as shown in Table 2. We
introduce MAE∗ following Ref. [61], which represents the MAE
computed only on successfully tracked frames. AVCLNet ach-
ieves the MAE∗ as low as 4.56 pixels, outperforming other
audio‐visual trackers and indicating higher localisation accu-
racy in stable tracking scenarios.

4.3 | Ablation Study

4.3.1 | The Effectiveness of Each Component

To validate the effectiveness of each module, we conduct abla-
tion experiments on the visual‐guided weak sound source
weighted enhancement (V‐WSWE) module, the audio‐visual
contrastive learning (AVCL) module and the dual geometric
constraint (DGC) module. The results are shown in Table 3 and
visualised in Figure 6. After removing the V‐WSWE module

(denoted as w/o V‐WSWE), the MAE on the AV16.3 and
CAV3D datasets, respectively, increases from 10.70 pixels and
10.04 pixels in the baseline model to 13.23 pixels (an increase of
2.53 pixels) and 14.08 pixels (an increase of 4.04 pixels). This
result indicates that the visual‐guided cross‐modal mapping, by
utilising face detection results to constrain the sound source
sampling range, effectively suppresses noise interference. The
temporal dynamic weighted method, through the weighted
accumulation of acoustic clues from historical frames, enhances
the detectability of weak sound sources in both spatial and
temporal dimensions. Further removing the AVCL module
(denoted as w/o V‐WSWE þ AVCL), the MAE, respectively,
increases to 29.53 pixels (an increase of 16.30 pixels) and 29.99
pixels (an increase of 15.91 pixels) on the two datasets, whereas
MOTA sharply drops to 65.10% and 65.05%. This result high-
lights that the contrastive learning mechanism effectively ad-
dresses the feature bias caused by modality heterogeneity,
improving tracking accuracy. By pulling close audio and visual
features of the same target while pushing apart those of different
targets, it enhances the consistency of identity representation.
Finally, further removing the DGC module (denoted as w/o V‐
WSWE þ AVCL þ DGC), MOTA decreases significantly, from
65.10% to 55.93% on the AV16.3 dataset and from 65.05% to
52.34% on the CAV3D dataset. This shows that the 3D geometric
constraint, by calculating the Euclidean distance between tar-
gets in consecutive frames, compensates for the limitations of
relying solely on 2D bounding box IoU, significantly improving
data association robustness in complex motion scenarios. The
combination of 2D and 3D geometric information reduces
mismatches caused by viewpoint changes or target occlusions.
The experimental results demonstrate that the collaboration of
each module jointly supports the efficiency and robustness of
AVCLNet in multispeaker tracking tasks. The experimental re-
sults indicate that the collaborative effect of all modules jointly
supports the efficiency and robustness of AVCLNet in multi-
speaker tracking tasks.

4.3.2 | Visual‐Guided Weak Sound Source Weighted
Enhancement Module

To validate the effectiveness of the proposed audio measure-
ment module, we conduct an ablation study based on the audio
measurement module and compare the following three variants.
Firstly, the authors in Ref. [11] proposed the spatiotemporal
GCF (stGCF) method, which incorporates spatial and temporal
information assisted by the visual modality to improve sound
source localisation accuracy. However, due to the lack of robust
modelling for interference and noise in multispeaker scenarios,
stGCF suffers significant performance degradation in complex
environments. Secondly, the authors in Ref. [12] introduced a
visual‐guided GCF (vgGCF) method, which establishes a map-
ping between audio and visual representations to achieve the

TABLE 2 | Experimental results of unimodal methods and state‐of‐the‐art audio‐visual methods on the CAV3D dataset.

Sequences 2D AO VO [14]* [61] [12] Ours
MOT MAE↓ 39.61 22.19 15.02 10.10 12.38 10.04

MAE∗ ↓ 9.55 5.67 5.14 4.90 4.82 4.56
Note: Bold values indicate the best performance.
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fusion of heterogeneous modalities within a unified localisation
space. Although vgGCF integrates visual cues, it fails to differ-
entiate between sound sources with varying intensities, making
it difficult to distinguish weak or overlapping sound sources
effectively. In contrast, our proposed visual‐guided weak sound
source weighted enhancement (V‐WSWE) method introduces a
visual‐guided weighted mechanism that not only accurately
focuses on salient sound sources but also significantly enhances
the discrimination of weak sound regions. This leads to more
robust and precise performance in multispeaker tracking tasks.
As shown in Table 4 and visualised in Figure 7, V‐WSWE
significantly outperforms the other two methods across all
evaluation metrics on both the AV16.3 and CAV3D datasets.
Specifically, V‐WSWE achieves the lowest MAE (34.34 pixels
and 38.69 pixels), the highest MOTA (62.73% and 60.03%) and
superior localisation precision in terms of MOTP (9.77 pixels
and 10.10 pixels). These results demonstrate the clear advantage
of our visual‐guided weighted mechanism under complex
multispeaker scenarios.

4.3.3 | Audio‐Visual Contrastive Learning

We introduce multiple loss functions in the module of audio‐
visual contrastive learning, including cross‐modal contrastive
loss Lcc, intra‐visual‐modal contrastive loss Lvc and audio‐visual
quintuplet loss Lqui. To validate the contribution of each loss
function to the model's performance, we conduct an ablation
study. The experimental results are shown in Table 5, demon-
strating that the model performs optimally when all loss func-
tions are used together. The audio‐visual quintuplet loss Lqui

enhances the discriminability of cross‐modal features by opti-
mising the cosine distance between positive and negative sam-
ple pairs through margin constraints, thereby suppressing
identity switch. After removing Lqui, the decrease in the
tracker's ability to distinguish target features leads to an in-
crease in identity switch rate, with MOTA on the two datasets
decreasing from 83.94% to 81.77% and from 81.17% to 79.98%,
confirming the key role of this loss in identity matching for
multitarget tracking. The intra‐visual‐modal contrastive loss Lvc
strengthens the consistency of visual features of the same target
across time, reducing tracking drift caused by occlusion or
abrupt viewpoint changes. After removing Lvc, the tracker's
temporal association ability significantly deteriorates, with
MAE, respectively, increasing to 12.91 pixels and 12.46 pixels on
the two datasets, whereas MOTA decreases to 80.23% and
77.73%, indicating that this loss enhances the robustness of
temporal association. The cross‐modal contrastive loss Lcc aligns
the visual and audio features into a unified space, addressing the
representation bias caused by modality heterogeneity. After
removing Lcc, the cross‐modal feature bias causes a significant
drop in tracking accuracy, with MAE, respectively, increasing to
22.37 pixels and 22.25 pixels on the two datasets, whereas
MOTA decreases to 71.10% and 71.54%, confirming the core
contribution of this loss to feature alignment. The experiments
show that the multiloss collaborative optimisation framework in
audio‐visual contrastive learning effectively balances cross‐
modal alignment, temporal consistency and identity discrimi-
nation, providing comprehensive support for multispeaker
tracking in complex scenarios.

4.3.4 | Dual Geometric Constraint Module

To further validate the effectiveness of the proposed dual geo-
metric constraints (DGC) module in the data association phase,
we design an ablation study to compare and analyse the per-
formance changes after removing the 2D or 3D geometric con-
straints. The results are shown in Table 6. In the complete DGC
module, both the 2D bounding box IoU constraint and the 3D
Euclidean distance constraint are introduced, implementing
dual geometric constraints at the image and spatial levels,
thereby effectively improving target matching accuracy and
trajectory consistency. After removing the 2D geometric
constraint (DGC (w/o 2D)) and the 3D geometric constraint
(DGC (w/o 3D)), the model shows a noticeable decline in all
performance metrics. Numerically, the complete DGC module
achieves the lowest MAE of 10.70 pixels and 10.04 pixels, the
highest MOTA of 83.94% and 81.17% and the best MOTP of 5.65
pixels and 5.72 pixels on the AV16.3 and CAV3D datasets,

TABLE 3 | Ablation study results of each component in the AVCLNet.

Module
MAE ↓ MOTA ↑ MOTP ↓

AV16.3 CAV3D AV16.3 CAV3D AV16.3 CAV3D
AVCLNet 10.70 10.04 83.94 81.17 5.65 5.72

W/o V‐WSWE 13.23 14.08 79.48 76.64 6.97 7.41

W/o V‐WSWE þ AVCL 29.53 29.99 65.10 65.05 10.32 10.86

W/o V‐WSWE þ AVCL þ DGC 32.44 33.60 55.93 52.34 11.85 12.19
Note: Bold values indicate the best performance.

FIGURE 6 | Ablation study results of each component in the
AVCLNet on AV16.3 and CAV3D datasets.
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respectively. More notably, in the identity switches (IDS) metric,
the DGC module achieves the fewest identity switch occur-
rences (147 and 163), significantly outperforming the other two
variants. The IDS metric represents the number of times the
same target is incorrectly assigned different IDs across different
frames in multiobject tracking, reflecting the consistency and
robustness of the model in maintaining target identity during
the tracking and data association process. The lower the IDS,
the more stable and accurate the tracker is at maintaining target
identity, which is particularly crucial in multispeaker scenarios.
From the comparison, it can be observed that when the 2D
geometric constraint is removed, the model shows a certain
degree of performance degradation in both MOTA and IDS
metrics (e.g., MOTA in AV16.3 drops from 83.94% to 78.25%,
and IDS increases from 147 to 166). When the 3D geometric
constraint is removed, the performance degradation is even
more significant, with IDS rising to 211 and 234. This indicates
that multiple constraints can compensate for the information
loss caused by a single constraint, allowing for a more accurate
capture of the target's appearance features and spatial position,
thereby effectively reducing IDs and improving the accuracy of
data association.

4.4 | Effect of Key Hyperparameters

We conducted sensitivity analysis on several key hyper-
parameters of the model, as shown in Table 7, including the
temperature parameter τ, the visual positive sample selection
range n + , and the balancing coefficients λ, μ and η in audio‐
visual contrastive learning in Section 3.2, as well as the cost
weight β in data association in Section 3.3. These parameters

were all tuned through experiments on the validation set and
kept fixed in all main experiments.

The temperature parameter τ in contrastive learning controls
the sharpness of the feature similarity distribution. We set
τ = 0.1. Experiments demonstrate that this value achieves a
good balance between convergence speed and feature discrim-
inability. A smaller value (e.g., τ = 0.05) leads to slower training
and a higher risk of overfitting, whereas a larger value (e.g.,
τ = 0.2) results in insufficient feature clustering and degrades
contrastive performance.

The selection range n + for visual positive samples represents the
temporal sampling window size of the visual modality, used to
construct positive sample pairs. We conducted sensitivity exper-
iments with n + ∈ {1, 3, 5, 10}, and the results show that n + = 3
strikes a balance between temporal diversity and semantic con-
sistency of visual features from the same speaker. When n + = 1,
although the positive sample pairs have very high semantic con-
sistency, the limited temporal spanmakes the contrastive task too
simple and prone to local optima. When n + = 5 or n + = 10, the
temporal span of the positive sample pairs increases, which helps
learn more discriminative visual features but introduces more
cross‐event or cross‐speaker samples, thus weakening the se-
mantic consistency of positive sample pairs.

In the audio‐visual contrastive learning module, to balance the
contribution of each loss component to the total loss function,
we set the weights of the cross‐modal contrastive loss Lcc, intra‐
visual‐modal contrastive loss Lvc and audio‐visual quintuplet
loss Lqui as λ = 0.4, μ = 0.3 and η = 0.3, respectively. This
configuration emphasises the importance of cross‐modal rep-
resentation alignment by assigning a higher weight to Lcc to
strengthen the consistency between visual and audio features.
At the same time, appropriate constraints on temporal consis-
tency in the visual modality (Lvc) and margin‐based discrimi-
nation between audio‐visual positive and negative samples
(Lqui) are introduced to jointly enhance the discriminative
capability and association accuracy of the network for multi-
modal targets. Multiple ablation studies confirm that this weight
configuration achieves a good balance between performance
and training stability.

The cost weight β is used to balance the relative importance of
2D geometric constraints and 3D geometric constraints in the
data association strategy. We conducted a sensitivity analysis on
β ∈ {0.4, 0.6, 0.8}. Experimental results show that the best per-
formance is achieved when β = 0.6. Specifically, when β = 0.4,
the model relies on 3D Euclidean distance, which is susceptible
to depth estimation errors, leading to association failures,
especially in weak sound source scenarios. When β = 0.8, the

TABLE 4 | Ablation study results of audio measurement using a visual‐guided weak sound source weighted enhancement module.

Method
MAE ↓ MOTA ↑ MOTP ↓

AV16.3 CAV3D AV16.3 CAV3D AV16.3 CAV3D
stGCF 61.21 63.82 46.78 44.53 13.53 13.99

vgGCF 41.35 40.86 56.54 52.90 9.85 11.34

V‐WSWE 34.34 38.69 62.73 60.03 9.77 10.10
Note: Bold values indicate the best performance.

FIGURE 7 | Ablation study results of the visual‐guided weak sound
source weighted enhancement module in the form of line and bar chart.
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model relies on 2D bounding box IoU on the image plane,
ignoring spatial differences in the real world, which easily
causes ID switches between visually adjacent but spatially
distant targets. Therefore, β = 0.6 achieves a good trade‐off
between spatial perception and image features, effectively
improving the association stability and accuracy of the tracking
system under multisource interference.

4.5 | Real‐Time Performance and Computational
Complexity Analysis

To validate the real‐time performance and applicability of the
proposed network, we conducted benchmark tests on the

AVCLNet against representative state‐of‐the‐art audio‐visual
multispeaker tracking methods on the AV16.3 validation set,
including the AV‐HuBERT variant [14]*, AV3T [61] and STNet
[12]. All models were evaluated on the same NVIDIA RTX 3090
GPU.As shown inTable 8, AVCLNet achieved an inference speed
of 36.74 FPS and a computational cost of 3.82 GFLOPs. Compared
to the AV‐HuBERT variant [14]*, the FLOPs were reduced by
approximately 25.4%, as AV‐HuBERT has a more complex model
structure that includes a large number of transformer encoder
layers for semantic modelling, leading to higher computational
overhead and making it less suitable for real‐time multispeaker
tracking tasks. In contrast, AVCLNet is designed with an
emphasis on efficient spatial modelling and identity discrimina-
tion, significantly reducing inference cost while maintaining

TABLE 7 | Impact of key hyperparameters on tracking performance on AV16.3 and CAV3D datasets. Each row varies one parameter (or loss
weight combination) while keeping others fixed.

Parameter Value
MAE ↓ MOTA ↑ MOTP ↑

AV16.3 CAV3D AV16.3 CAV3D AV16.3 CAV3D
τ 0.05 20.45 21.03 76.12 74.85 10.01 9.94

0.10 10.70 10.04 83.94 81.17 5.65 5.72

0.20 17.92 18.41 78.85 77.32 8.13 9.02

n + 1 23.81 25.34 73.85 72.49 10.13 10.57

3 10.70 10.04 83.94 81.17 5.65 5.72

5 12.02 12.41 81.87 80.20 6.27 6.85

10 15.72 16.96 78.61 76.93 8.95 8.66

(λ, μ, η) (0.2, 0.4, 0.4) 20.26 21.14 75.44 73.29 9.80 10.33

(0.4, 0.3, 0.3) 10.70 10.04 83.94 81.17 5.65 5.72

(0.6, 0.2, 0.2) 19.68 18.26 77.49 75.68 9.28 9.87

β 0.4 11.64 11.33 82.03 80.50 5.91 6.06

0.6 10.70 10.04 83.94 81.17 5.65 5.72

0.8 12.91 13.90 79.42 78.10 6.74 7.02
Note: Bold values indicate the best performance.

TABLE 5 | Ablation study results of loss functions in audio‐visual contrastive learning.

Lcc Lvc Lqui

MAE ↓ MOTA ↑ MOTP ↓
AV16.3 CAV3D AV16.3 CAV3D AV16.3 CAV3D

✓ ✓ ✓ 10.70 10.04 83.94 81.17 5.65 5.72

✓ ✓ — 12.45 12.87 81.77 79.98 6.43 7.23

✓ — ✓ 12.91 12.46 80.23 77.73 6.17 6.89

— ✓ ✓ 22.37 22.25 71.10 71.54 9.08 10.02

— — ✓ 26.67 27.07 67.12 64.22 10.09 10.26
Note: Bold values indicate the best performance.

TABLE 6 | Ablation study results of each component in the dual geometric constraint module.

Module
MAE ↓ MOTA ↑ MOTP ↓ IDS ↑

AV16.3 CAV3D AV16.3 CAV3D AV16.3 CAV3D AV16.3 CAV3D
DGC 10.70 10.04 83.94 81.17 5.65 5.72 147 163

DGC (w/o 2D) 12.02 12.68 78.35 77.64 5.78 5.94 166 179

DGC (w/o 3D) 14.58 16.17 71.14 71.03 6.99 7.26 211 234
Note: Bold values indicate the best performance.
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performance. Compared to the particle‐filter‐based AV3T [61]
method (with 100 particles), AVCLNet reduced the FLOPs by
81.6%. This is because particle filtering inherently relies on sam-
pling and iterative updates of a large number of particles, and its
inference overhead increases rapidly with the number of targets,
making it difficult to meet the requirements of real‐time deploy-
ment. AVCLNet, on the other hand, utilises a lightweight feature
extraction network and a modular contrastive learning mecha-
nism.Compared to the deep learning‐based STNet [12],AVCLNet
achieved approximately 118%higher FPS and 41.0% lower FLOPs.
Although STNet can process multiple targets in parallel, it was
originally designed for single‐target tracking and lacks architec-
tural optimisation for multispeaker scenarios. In multitarget
cases, it suffers from high module redundancy, and its feature
extraction and matching processes cannot be shared, resulting in
low resource utilisation efficiency and limiting its inference speed
and scalability. In contrast, AVCLNet is specifically designed for
multispeaker scenarios with efficient modality fusion and data
association mechanisms, making it more suitable for real‐time
multitarget tracking tasks.

We conducted a complexity analysis of the proposed AVCLNet
framework and evaluated the computational load controllability
of each submodule. The visual measurement module adopts a
YOLO‐based detector, whose complexity mainly stems from the
multiscale convolutional structures in the backbone network
and the prediction heads. The overall computational cost is
O(CHWq2), where C denotes the number of channels, H andW
represent the image resolution, and q2 is the kernel size of the
convolution. The complexity of the audio measurement module
mainly lies in the time delay estimation and the generation of
generalised cross‐correlation (GCC) maps based on spatial
sampling points. For each frame, k depth levels and p3d spatial
sampling points are projected into 3D space for acoustic delay
estimation, resulting in a computational cost of approximately
O(kp3dM), where M is the number of microphone pairs. In the
audio‐visual feature alignment stage, we design three types of
contrastive loss functions. This module requires constructing
positive and negative sample pairs and computing the cosine
similarity or Euclidean distance between features. The overall

complexity is O(n2
pD), where np denotes the number of samples

and D the feature dimensionality. In the data association stage,
the dual geometric constraint (DGC) strategy combines the
matching cost calculations of 2D IoU and 3D Euclidean dis-
tance. Its matching complexity is O(N2

t ), where Nt is the number
of detected targets in the current frame. To summarise, the core
computational complexity of AVCLNet is mainly dominated by

the following components: O(CHWq2 + kp3dM + n2
pD + N2

t ).

When the number of spatial sampling points is large, the audio
measurement module becomes the dominant contributor to the
overall complexity. To alleviate the computational burden at

this stage, we further introduce a vision‐guided weak sound
source weighted enhancement (V‐WSWE) strategy. This
approach leverages visual detection results to provide a coarse
localisation of sound sources, thereby restricting acoustic sam-
pling to local regions in space and significantly reducing the
number of p3d. Experimental results show that this strategy
substantially improves the overall inference efficiency.

4.6 | Visualisation Analysis

To demonstrate the role of the AVCL mechanism in enhancing
audio‐visual feature alignment and consistency, we present the
visualisation results of different stages ofAVCLNet on a 2‐speaker
sequence. As shown in Figure 8, Panel (a) shows the face detec-
tion results, and Panels (b) and (c) correspond to the audio‐visual
feature fusion heatmaps without AVCL (w/o AVCL) and with
AVCL (w/i AVCL). From the comparison of these heatmaps, it is
clear that the AVCL mechanism plays a crucial role in enhancing
feature fusion. Specifically, in Panel (b), the response regions are
more dispersed, especially in scenes with complex backgrounds
or strong acoustic interference,making it prone to environmental
noise. For instance, at time steps t = 230 and t = 240, the target
region's heatmap responses shift, and some acoustic information
is incorrectly mapped to nontarget areas. In contrast, Panel (c)
exhibitsmore concentrated responses in the target area, thanks to
the effect of the contrastive learning mechanism. By pulling the
audio and visual feature representations of the same target closer
and pushing the features of different targets apart, the cross‐
modal information aligns in a unified feature space, promoting
audio and visual feature alignment and identity consistency.
Similarly, at t = 230 and t = 240, Panel (c) shows a clear
advantage,with its high‐response areas strictly covering the target
speaker's location and avoiding interference from environmental
noise. Further analysis of the detection results, as shown inPanels
(d) and (e), demonstrates that AVCL can accurately detect the
target location compared to without AVCL and maintain con-
sistency in detection results throughout the entire time sequence.

Figure 9 further presents the visualisation results on the more
challengingCAV3Ddataset. The selected sequence involves three
simultaneously active speakers with frequent occlusions, com-
plex background clutter and speaker motion. The visualisations
show that AVCLNet maintains accurate and robust tracking
performance, effectively handling identity consistency and cross‐
modal alignment in more dynamic and realistic scenarios.

4.7 | Limitations and Future Work

Although AVCLNet demonstrates strong cross‐modal robust-
ness in complex scenarios, it still has certain limitations. In

TABLE 8 | Real‐time performance analysis of AVCLNet and representative audio‐visual multispeaker tracking methods.

Method [14]* [61] [12] Ours (w/i stGCF) Ours (w/i V‐WSWE)
FPS 9.32 16.88 12.50 32.75 36.74

FLOPs (G) 20.78 6.47 5.12 4.25 3.82
Note: Bold values indicate the best performance.
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cases of visual occlusion, the model leverages the audio mea-
surement method based on stGCF described in Section III‐A,
using the global sound source map to accurately estimate the

positions of multiple speakers, thereby partially compensating
for the missing visual information. In scenarios where audio
information is missing, such as silence in audio, the model relies

FIGURE 8 | Visualisation results on the AV16.3 dataset seq24‐cam1 sequence. (a) Face detection results of visual measurement, (b) audio‐visual
feature fusion heatmap w/o AVCL, (c) audio‐visual feature fusion heatmap w/i AVCL, (d) detection results w/o AVCL and (e) detection results w/i
AVCL.

FIGURE 9 | Visualisation results on the CAV3D dataset seq26‐cam4 sequence. (a) Face detection results of visual measurement, (b) audio‐visual
feature fusion heatmap w/o AVCL, (c) audio‐visual feature fusion heatmap w/i AVCL, (d) detection results w/o AVCL and (e) detection results w/i
AVCL.
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on the lightweight face detector in the visual measurement
module to identify and track facial regions of speakers,
providing complementary information for audio prediction and
cross‐modal association. Therefore, even in the case of short‐
term loss of one modality, AVCLNet can still use the other
modality to maintain continuous multispeaker tracking and
identity association, demonstrating strong cross‐modal robust-
ness and generalisation ability. However, there are still some
challenges in real‐world applications. First, when there is long‐
term and large‐scale occlusion in the scene, the face detector
may fail to provide stable visual cues, thereby affecting the
performance of cross‐modal feature alignment. Second, when
the speaker is out of the camera's view for a long time, the lack
of visual guidance significantly reduces the accuracy of identity
association. Third, if the face detector produces false positives or
false negatives, its output will directly affect the accuracy of
modality fusion, leading to incorrect audio‐visual associations.
These issues indicate directions for further improving the
robustness and scalability of the model in the future.

To address these limitations, future work will explore strategies
to enhance robustness under occlusion and off‐screen condi-
tions, such as integrating temporal audio continuity or visual
hallucination techniques. Moreover, we aim to scale the
framework to larger and more dynamic scenes with more par-
ticipants. Real‐time optimisation and deployment on resource‐
constrained edge devices are also important directions. Addi-
tionally, extending the model to recognise and track nonspeech
acoustic events (e.g., footsteps, object collisions) could further
broaden its applicability to general audio‐visual perception
tasks.

5 | Conclusions

This paper proposes AVCLNet, a multimodal multispeaker
tracking network using audio‐visual contrastive learning.
AVCLNet aims to address the challenges caused by cross‐modal
feature discrepancies, weak sound source localisation ambiguity
and frequent identity switch errors, which lead to difficulties in
modelling speaker identity consistency and result in unstable
tracking trajectories. By employing audio‐visual contrastive
learning, heterogeneous modal representations are aligned into
a unified feature space, promoting cross‐modal feature consis-
tency and alleviating feature bias, thereby enhancing the rep-
resentation capability of identity consistency. Additionally, the
vision‐guided weak sound source weighted enhancement
method, through cross‐modal mapping and temporal dynamic
weighting, effectively suppresses noise interference and en-
hances the detectability of weak sound sources. The dual geo-
metric constraint strategy, by combining 2D and 3D spatial
geometric information, enhances the robustness of data associ-
ation in complex motion scenarios and effectively reduces the
occurrence of identity switch errors. Experiments on two
benchmark datasets demonstrate that AVCLNet outperforms
existing methods in core metrics, particularly in scenarios with
overlapping speech and noise interference. Future work will
explore more lightweight model designs and expand to dynamic
open scenarios, promoting the deployment and generalisation of
audio‐visual multimodal trackers in real‐world applications.
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