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Abstract 

Background: 

The development of dentition begins in the embryonic oral cavity and progresses in the 

branchial arches and alveolar bone. Continuous cellular and molecular crosstalk occurs 

during crown formation, after which the tooth germ begins to migrate apically through the 

alveolar process into the oral cavity. It eventually comes in contact with its antagonist in the 

contralateral jaw to establish functional occlusion. Any defect in either step can result in 

delayed tooth development, the spectrum of which varies from a congenitally missing tooth 

to an impacted tooth (infraocclusion) with an eruption problem, both of which can impair 

oral function.  

Highlight: 

Congenitally missing teeth or eruption problems may result from genetic mutations. Several 

different mutations have been identified, each causing a distinct phenotype. Thus, it is 

imperative that medical providers understand the fundamentals of these genetic principles 

that govern such dental diseases. 

Conclusion: 

In this review, we focus on several diseases, including congenitally missing teeth and tooth 

eruption problems. We review these diseases with aspect to their association with a 
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particular syndrome, as well as independently in a non-syndromic capacity. We also review 

previously identified genetic mutations and discuss the possible mechanisms that cause 

individual phenotypes by analyzing previous investigations. We also discuss future 

prospects of how genetic diagnosis and precision medicine could impact the clinical 

environment in the field of dentistry.  

Ethical Approval: 

Present study has been carried out in accordance with The Code of Ethics of the World 

Medical Association and approved by Institutional Review Board of Osaka University 

Graduate School of Dentistry. 

 

Keywords: Tooth development, Tooth agenesis, Tooth eruption, Primary failure of 

eruption.  

 

Introduction 

The dentition comprises one of the major organs in the oral cavity and plays a significant 

role in multiple orofacial functions. Its developmental process is initiated during the mid-

gestation stage, and after the crown is formed, the tooth will start to erupt and eventually 

come into contact with the opposing tooth to establish functional occlusion. Many previous 
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investigations have revealed cellular and molecular mechanisms in each step of tooth 

development using human and animal models. In particular, because of the rapid 

progression of genomic sequencing technology, multiple genetic causes of missing teeth, 

including oligodontia, have been identified, including AXIN2, EDA, LRP6, MSX1, PAX9, 

WNT10A, and WNT10B, which cover more than 90% of reported cases of oligodontia [1]. 

Interestingly, most of these genes have already been shown to be critical for tooth 

development in animal experiments (Figure 1). Additionally, recent genetic investigations 

have revealed new genetic causes of congenital missing teeth [2-4]. After crown formation, 

the tooth root begins to form. During root formation, teeth usually emerge inside the oral 

cavity, and occasionally, individuals present problems with tooth eruption (Figure 1). Tooth 

eruption can be divided into intraosseous and supraosseous eruption [5]. Deficits in each 

step may lead to distinguished clinical phenotypes, such as impacted teeth or 

infraocclusion. Some congenital systemic diseases may be associated with these dental 

anomalies, which strongly indicates a mechanistic connection between specific gene 

mutations and developmental deficits in dentition at a specific stage. In this review, we 

describe current knowledge of the genetic causes of dental anomalies, especially focusing 

on tooth agenesis and failure of eruption. Furthermore, we discuss future directions, such 

as methods of diagnosing and appropriate clinical management for these conditions. 
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The roles of specific genes which may cause tooth agenesis in humans 

Tooth development initiates with the patterning of the dental placode and thickening of the 

embryonic oral epithelium. Signal transduction from the thickened dental epithelium 

induces cell proliferation of the underlying mesenchyme, delivering cranial neural crest cells 

in order to progress the development of dentition. A number of studies have revealed 

critical genetic and environmental factors for tooth development [6, 7]. After identification, 

some of the genes were deemed the causative agents in congenital missing teeth in 

humans. The Human Gene Mutation Database (HGMD) reported that more than 90% of 

the cases of tooth agenesis harbor mutations either in PAX9, WNT10A, MSX1, WNT10B, 

LRP6, AXIN2, or EDA [1]. Among these genes, MSX1 was one of the first discovered to 

cause congenital missing teeth in humans by missense mutations [8]. Intense expression of 

Msx1 can be seen in the mesenchyme of the developing dentition [9]. Accordingly, null 

mutations in Msx1 in mice leads to missing molars by inhibiting the proliferation of 

mesenchyme cells [10]. Later, nonsense heterozygous mutations in MSX1 were reported to 

cause Witkop syndrome, which is also associated with nail deformities and tooth agenesis 

[11].  
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Pax9 is strongly expressed in the dental mesenchyme and null mice exhibit tooth 

developmental arrest at the bud stage, most likely because of the loss of the transcription 

of other critical genes for tooth development, such as Msx1 and Bmp4 [12, 13]. Canonical 

Wnt signaling is widely accepted to be critical at various stages of tooth development [14]. 

Wnt10a is known to be expressed at the enamel knot in mice, which is a signaling center in 

the epithelium of developing teeth during the initiation stage [15]. Unlike the phenotype in 

humans, eliminating Wnt10a from mice did not result in the loss of teeth, but rather caused 

the development of successional teeth [16]. Interestingly, there was still some phenotypic 

overlap between human patients and mouse models, such as smaller crown size and 

tourodontism [16]. It is obvious that different molecular mechanisms for developing teeth 

between humans and rodents result in this puzzling finding. However, the detailed reason 

for this phenotypic discrepancy is yet to be explained. Wnt10b has also been expressed at 

the enamel knot similar to Wnt10a, and its mutation has been shown to cause oligodontia 

in humans [15, 17]. Although it is speculated that a delayed WNT signaling pathway gives 

rise to tooth agenesis in humans with the mutation of WNT10B, there is still no reliable 

animal model to explain the molecular and cellular mechanisms underlying this situation 

[18, 19]. Lrp5 and Lrp6 function as co-receptors of Wnt signaling [20]. Mutations in LRP6 in 

humans have also been reported to result in oligodontia [21]. Additionally, eliminating Lrp6 
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from mouse embryos resulted in a substantial reduction in Wnt activity around the 

developing frontonasal process, which, in turn, causes a cleft lip phenotype [22]. Specific 

LRP5 mutations in humans cause significant notches in both the mesio- and disto-labial 

developmental grooves, resulting in a fork-like morphology in incisors [23]. These results 

indicate that canonical Wnt signaling through Lrp5 and Lrp6 plays a critical role in the 

development of dentition, and can result in a variety of tooth phenotypes, such as tooth 

agenesis and/or morphological defects. Axin2 is expressed in both the epithelium and 

mesenchyme during mouse tooth development, and its mutation causes tooth agenesis in 

humans [24]. Axin2 is known to play an inhibitory role in canonical Wnt signaling, and thus, 

its mutation is estimated to result in exaggerated canonical Wnt signaling. These results 

indicate that both enhanced and reduced canonical Wnt signaling could disturb tooth 

development and result in congenital missing teeth in humans. Mutation of genes related to 

the Eda/Edar/NF-kB signaling pathway in humans is well known to cause ectodermal 

dysplasia, the primary phenotype of which includes a lack of ectodermal appendages such 

as hair, nails, various secreting glands, and teeth [25, 26]. Animal experiments revealed 

that EDA and EDAR interactions regulate the epithelial signaling center of the tooth germ 

and thus, a lack of either of these genes would lead to dental anomalies such as smaller 

teeth and enamel hypoplasia, which phenocopy human ectodermal dysplasia [27, 28].  
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Problem of eruption 

After the tooth crown forms in the embryonic facial prominences, the tooth migrates 

vertically and emerges in the oral cavity and eventually occludes with its antagonist. This 

process is roughly divided into two phases: intraosseous eruption and supraosseous 

eruption [5, 29]. During intraosseous eruption, dental follicle cells were identified as the 

critical tissue for recruiting and activating osteoclasts around the crown of the tooth [30]. 

Continuous molecular investigations, especially in the field of bone metabolism, have 

identified many common molecules that are critical for tooth eruption. Rankl and its 

receptor rank were shown to be irreplaceable for osteoclastogenesis as well as tooth 

eruption, and elimination of these factors results in osteopetrosis with unerupted molars in 

mice [31, 32]. Interestingly, the Rankl mutation was discovered in cases of osteopetrosis in 

humans, who also frequently exhibit impacted teeth [33]. These results indicate that the 

normal process of osteoclast development plays a crucial role in intraosseous tooth 

eruption.  

Dental follicle cells are considered critical for the generation of osteoclast cells during tooth 

eruption. Additionally, previous research has revealed that developing dental follicle cells 

express multiple genes that are important for bone metabolism [34]. Among these genes, 



9 

 

CSF1 has been shown to differentiate monocytes into preosteoclasts, which, in turn, 

expresses RANK on its surface to bind to RANKL, which is expressed at the surface of 

osteoblasts for the maturation of osteoclasts [35]. Strong expression of CSF1 has been 

detected in developing dental follicle cells [36]. Importantly, loss of Csf1 function in both 

mouse and rat models results in impacted molar and osteopetrosis with deficient 

osteoclastogenesis, which phenocopies the knockout mice of either Rank or Rankl [37, 38]. 

The detailed roles of CSF1 in dental follicles were also shown to inhibit the expression of 

OPG, which is a negative regulator of the RANK signaling pathway [39] (Figure 2). Other 

factors secreted from dental follicles have also been investigated their roles in 

osteoclastogenesis, such as SFRP1 [34]. On the other hand, there are diseases in humans 

that exhibit problems in intraosseous eruption, such as cleidocranial dysplasia (CCD). In 

CCD, multiple impacted teeth as well as supernumerary teeth can be seen [40]. In contrast, 

mice with disrupted Runx2 show delayed tooth development [41]. This phenotypic paradox 

has not been fully understood, but it is probably due to the fact that in humans, most impacted 

and supernumerary teeth are successors, while mice do not have successor teeth. 

Interestingly, human CCD dental follicle cells have been shown to exhibit altered gene 

expression profiles compared to healthy controls, especially the level of OPG or the 

Rankl/OPG ratio, which may underlie the etiology of impacted teeth in CCD patients [42]. 
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These results indicate that intraosseous eruption results in impacted teeth, and its etiology 

is highly related to the activity of osteoclast cells around the tooth germ, which is regulated 

by the Rank/Rankl signaling pathway. For intraosseous tooth eruption, dental follicle cells 

play pivotal roles in activating osteoclastogenesis around the superior alveolar bone of the 

tooth germ, and its dysregulation could also result in impacted teeth (Figure 2).  

After the crown emerges in the oral cavity, other mechanisms distinguished from 

intraosseous eruption, called supraosseous eruption, take place until the tooth contacts the 

antagonist to create a functional unit of occlusion. This supraosseous eruption is supported 

by tooth eruption and vertical alveolar growth [43]. Tooth ankylosis is a representative 

situation that can delay both of these mechanisms and result in the failure of occlusal contact. 

Ankylosis is known result from the physical fusion of the cementum and alveolar bone without 

periodontal ligament space, which could result in infraocclusion [44]. Primary failure of 

eruption (PFE) is also represented by its infraocclusion because of the failure of 

supraosseous eruption and vertical growth of alveolar bone, while affected teeth still maintain 

the periodontal ligament [45, 46]. Interestingly, the function of the dental follicle in activating 

osteoclasts is not affected in PFE patients; therefore, the eruption path is superior to the 

dentition [47]. The genetic etiology of PFE is relatively well studied, and mutations in PTHR1 

are known to cause this situation in humans [48]. The PTH signaling pathway is critical for 
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tooth eruption and eliminating PTHrP results in impacted teeth in mice [49]. Further, a recent 

study revealed that conditional knockout mice eliminated PTH1R from the dental follicle and 

its descendent cells phenocopy human PFE by showing unaffected eruption pathways and 

impacted dentition with malformed roots [29]. Other systemic diseases caused by 

homozygous mutations in PTHR1 include severe chondrodysplasia [50, 51] and Eiken 

syndrome [52], which are associated with multiple impacted deciduous teeth. These results 

indicate that the PTH signaling pathway exhibits a dose-dependent phenotype, as 

homozygous mutation of PTHR1 results in more severe systemic defects, while PFE harbors 

a heterozygous mutation. A previous study also revealed that not all cases that exhibit the 

typical phenotype of PFE harbor mutations in PTHR1, and negative genetic tests cannot 

completely exclude the possibility of PFE [46]. Grippaudo et al. revealed that 8 out of 29 

familial cases that exhibited typical infraocclusion in mixed dentition harbored a mutation in 

PTHR1 [53]. Indeed, new genes have been reported in patients with PFE by comprehensive 

genomic sequencing [54]. These results strongly indicate that there are still other genetic 

factors responsible for infraocclusion or PFE [46]. GNAS is a G-coupled protein that directly 

binds to PTHR1 to transduce the intercellular PTH signaling pathway [55]. Interestingly, 

mutations in GNAS in humans cause pseudohypoparathyroidism type 1a (PHP1a), which 

also results in tooth eruption defects [56, 57]. It is still unclear whether there are any 
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differences in terms of the reaction for orthodontic traction by different mutations in different 

genes or genomic loci. It is also important to point out that these dental phenotypes frequently 

co-exist in the same patient, which indicates genetic interaction or shared common 

mechanisms between missing teeth and delayed eruption [58, 59].  

Recently, because of the increase in comprehensive genetic sequencing, a genotype-

phenotype correlation in various tooth eruption defects has been revealed at a rapid speed. 

The ultimate goal of precision medicine in the dental field is to make a precise diagnosis and 

provide the most efficient treatment for individual patients.  

 

Therapeutic strategies for congenitally missing teeth and retarded eruption 

There are a wide variety of treatment options for congenital missing teeth, including no 

treatment, prosthodontic replacement, autotransplantation, and orthodontic space closure. 

Considering the improvements in technology and appliances in modern orthodontic 

treatment, recent trends in space management for congenital missing teeth are moving 

towards orthodontic space closure rather than prosthodontic treatment [60]. However, 

cases with multiple missing teeth, such as oligodontia, usually require a combination of 

treatments in order to achieve ideal occlusion [61]. A recent investigation revealed that the 

systemic phenotype, which includes missing teeth of X-linked hypohidrotic ectocermal 
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dysplasia (XLHED), could be ameliorated by the administration of recombinant fusion 

protein, which consists of the constant domain of IgG1 and the receptor binding domain of 

EDA in the amniotic fluid at certain stages of pregnancy [62]. As for non-syndromic 

congenital missing teeth, possible therapeutic protocols have been investigated to 

regenerate dentition by targeting specific molecules using animal models of tooth agenesis 

[63]. For eruption problems, if the etiology of delayed tooth eruption is caused by 

mechanical obstruction or problems of intraosseous eruption, surgical fenestration and 

luxation followed by the application of orthodontic traction is considered standard procedure 

[46]. Impacted teeth in CCD patients are usually successfully tracted in the oral cavity by 

removing the supernumerary teeth and providing fenestration and orthodontic traction 

(Figure 3). On the other hand, PFE, in which the etiology of infraocclusion is mainly due to 

supraosseous eruption, has a challenging prognosis. It is known that teeth affected by PFE 

are highly resistant to orthodontic traction and usually require either or both alveolar 

osteotomy and prosthodontic approaches in order to achieve functional occlusion (Figures 

3 and 4). Genetic testing of PTHR1 is one way to obtain a definitive diagnosis before 

orthodontic force is applied. However, incomplete penetration of the PTRH1 mutation has 

been reported; thus, continuous research is required to fully understand the molecular and 

cellular etiology of PFE [64]. Precision medicine selects different therapeutic protocols 
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based on individual genetic information. It is now widely applied to cancer treatment, 

especially for the selection of specific drugs for different gene mutations [65]. Considering 

the mechanism of tooth defects, congenital missing teeth or eruption problems by different 

sets of genes require different treatment approaches. For example, congenital missing 

teeth caused by different genes would require different strategies that target individual 

signaling pathways to reactivate tooth development. One of the practical applications of 

precision medicine in the field of orthodontics is the sequencing of PTHR1 to genetically 

diagnose PFE in order to help patients make decisions or select individual treatment 

protocols (Figure 4). 
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Figure Legends 

 

Figure.1. Tooth development from initiation to occlusion. Genes which are known to be 

mutated in tooth agenesis shown in red, intraosseous eruption in blue and extraossesus 

eruption in purple. 

 

Figure.2. Molecular mechanism of intraosseous eruption. Monocytes stimulated by 

CSF1 and RANK signaling pathway will differentiate into matured osteoclast and play 

central roles for intraosseous eruption. 

 

Figure.3. Reaction of impacted teeth for orthodontic traction in patients with 

Cleidocranial dysplasia (CCD) and Primary failure of eruption (PFE). Multiple impacted 

teeth (black asterisk) with supernumerary teeth are detected in the orthopantomogram in 

patient with CCD (A). Orthodontic traction is usually efficient for moving impacted teeth into 

the oral cavity (B). Persistent posterior open bite even after orthodontic traction is observed 

in patient with PFE (C and D). 
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Figure.4. Scheme of current medicine and precision medicine for selecting the 

treatment protocol for PFE.  

 


