

Title	Surgical and orthodontic approach for a patient with a severely constricted maxillary arch caused by bilateral cleft lip and palate
Author(s)	Oka, Ayaka; Kurosaka, Hiroshi; Nakatsugawa, Kohei et al.
Citation	Orthodontic Waves. 2020, 79(2/3), p. 127-134
Version Type	AM
URL	https://hdl.handle.net/11094/103596
rights	This is an Accepted Manuscript version of the following article, accepted for publication in Orthodontic Waves. Oka A., Kurosaka H., Nakatsugawa K., et al. Surgical and orthodontic approach for a patient with a severely constricted maxillary arch caused by bilateral cleft lip and palate. Orthodontic Waves 79(2/3), pp. 127-134 (2020). It is deposited under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

1 1 ***Surgical and orthodontic approach for a patient with a***
2 2 ***severely constricted maxillary arch caused by bilateral cleft***
3 3 ***lip and palate***

4
5 5 ¹ Ayaka Oka, D.D.S., Ph.D., ^{2*} Hiroshi Kurosaka, D.D.S., Ph.D., ³ Kohei Nakatsugawa,
6 6 D.D.S., Ph.D., and ⁴ Takashi Yamashiro, D.D.S., Ph.D.

7
8 8 ¹ Assistant Professor, Department of Orthodontics and Dentofacial Orthopedics, Osaka
9 University Graduate School of Dentistry, Osaka, Japan
10 10 ² Associate Professor, Department of Orthodontics and Dentofacial Orthopedics, Graduate
11 School of Dentistry, Osaka University, Osaka, Japan.
12 12 ³ Postgraduate student, Department of Orthodontics and Dentofacial Orthopedics, Osaka
13 University Graduate School of Dentistry, Osaka, Japan
14 14 ⁴ Professor, Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate
15 School of Dentistry, Osaka, Japan

16
17 17 *Corresponding Author: Dr. Hiroshi Kurosaka
18 1-8 Yamadaoka Suita Osaka 565-0871 Japan
19 Tel 81-6-6879-2958 Fax 81-6-6879-2960
20 E-mail kurosaka@dent.osaka-u.ac.jp

21
22
23 23 **Financial disclosure :** There are no financial disclosures or commercial interests from any
24 authors.

25 25 **Running title:** Surgical and orthodontic approach for a BCLP patient

26 26 **KEY WORDS:** bilateral cleft lip and plate, syndromic phenotype, surgically assisted
27 maxillary expansion

28

1 1 **ABSTRACT**

2 Cleft lip and/or palate (CLP) is one of the most frequent craniofacial defects that could

3 happen in 1/500 to 1/1000 live birth depending on different racial background. Among

4 different patterns of facial cleft, complete bilateral cleft lip and palate (BCLP) is one of the

5 most challenging cases for orthodontic and surgeons because of their deformed maxillary

6 dental arch and severe skeletal discrepancy. It is also well known that CLP could occur as

7 part of the phenotype in certain congenital diseases. However, from its extremely diversified

8 phenotypic combination, some of the cases that we encounter remains difficult to diagnose.

9 From these reasons, it is important to continuously report the outcome of orthodontic

10 treatment in such cases which exhibit syndromic phenotypes with CLP.

11 In the present case report, an 18-year-old man with complete bilateral cleft lip and

12 palate, skeletal Class III and open-bite with maxillary constriction, in addition to hypospadias,

13 bubonocele, opisthotonus, and hypertonia was treated with edgewise appliance therapy

14 combined with orthognathic surgery. The treatment began with surgically assisted rapid palatal

15 expansion (SARPE) in anteroposterior and transverse dimensions with a three-way expander

16 to increase the maxillary anteroposterior length and width. After the expansion, the patient

17 underwent Le Fort I osteotomy and bilateral sagittal split osteotomy to correct skeletal Class

18 III and open bite. At the end of the surgical and orthodontic treatments, functional occlusion

1 and an improved facial profile were achieved. We also discuss his diverse general phenotype
2
3
4 due to his congenital disease.
5
6
7 3
8
9
10 4
11 5
12 6
13
14 7
15
16 8
17
18 9
19 10
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1 1 **INTRODUCTION**

2 Cleft lip and/or palate is one of the most frequent craniofacial disorders, exhibiting
3 severe malocclusion and requiring orthodontic treatment. The severity of malocclusion varies
4 depending on the case and complete bilateral cleft lip and palate (BCLP) cases are one of the
5 most challenging situations to manage among all facial cleft pattern [1]. The maxillary dental
6 arch in BCLP cases is frequently collapsed in both the transverse and anteroposterior
7 dimensions [2], [3]. If the skeletal discrepancy remains when the patients are adult, orthodontic
8 treatment combined with various surgical procedure is often required [4].

9 We herein report the orthodontic treatment of an adult male patient with complete BCLP,

10 a constricted maxilla and skeletal Class III with open-bite. The patient in this report was treated
11 with multiple orthognathic surgeries, including surgically assisted rapid palatal expansion
12 (SARPE) in the anteroposterior and transverse dimensions with a three-way expander and
13 consequent Le Fort I osteotomy and bilateral sagittal split osteotomy (BSSO) in order to correct
14 the severe skeletal deficiency and malocclusion. As a result, his facial profile as well as
15 occlusion showed remarkable improvement at the end of orthodontic treatment. Cases that
16 require both lateral and anteroposterior alveolar distraction of the maxilla are rare and further
17 assessment is required to evaluate the treatment outcome and retention.

18 Additionally, it is also well known that certain congenital abnormalities exhibit CLP as

19 a part of their phenotypes, such as EEC syndrome, 22q11.2 deletion syndrome and Turner

1 syndrome [5], [6], [7]. As in this case, there are some patients whose general symptoms do not
2 completely overlap with the existing syndromic phenotype and remain undiagnosed. For these
3 reasons, the continuous reporting of facial cleft cases associated with a general phenotype is
4 important for understanding the etiology and determining possible solutions for improving the
5 facial profile and occlusal relationships of diverse craniofacial disorders.

6

7 HISTORY

8 A 9-year-old boy first visited our hospital with complaints of mandibular protrusion
9 and occlusal disturbance. An examination in infancy had shown a bilateral complete cleft lip
10 and palate, hypospadias, bubonocele, opisthotonus and hypertonia. He also exhibited
11 hypertelorism, short stature, intellectual disabilities and arachnoid cyst at 8 years of age.

12 He had a history of cheiloplasty at 5 and 8 months of age and pushback palatoplasty at
13 16 months of age. At 9 years 3 months of age, maxillary expansion and protraction was initiated
14 with a quad-helix and reverse headgear to improve the anterior and posterior cross-bite that
15 resulted from the skeletal Class III malocclusion and mesial step type terminal plane. The quad-
16 helix could expand the maxillary arch to some extent; however, the orthopedic effect of the
17 reverse headgear was limited (Figure 1A). At 11 years 11 months of age, bilateral alveolar bone
18 grafts from the autogenous iliac bone to the cleft spaces were made to resolve the severe defects
19 in the alveolar bones. At the same time, a tongue flap was utilized to close the palatal fistula.

1 1 Growth hormone treatment was performed from 13 to 18 years of age to overcome his short
2 2 stature, which increased his height from 136 cm to 156.9 cm. Active orthodontic treatment was
3 3 not performed during this period.

4 4 The extraoral examination at 18 years 7 months of age showed severe midfacial
5 5 deficiency, a concave profile and long face with lip incompetency (Figure 2A). The upper
6 6 incisor exposure was very small, even in a full smile. Hypertelorism was found. The occlusion
7 7 was classified as Angle Class III with total cross-bite and anterior open-bite. The maxillary
8 8 dental arch showed anteroposterior and transverse constriction with moderate crowding,
9 9 making the width and length of the maxilla narrower than those of the mandible (Figure 2B).
10 10 The mandibular dental arch exhibited moderate crowding (Figure 2B). The panoramic
11 11 radiograph showed congenitally missing maxillary lateral incisors and a right mandibular
12 12 second premolar as well as an upper wisdom tooth (Figure 2C). The presence of periodontal
13 13 disease was observed in association with horizontal alveolar resorption in both jaws (Figure
14 14 2C). Dental compensation was seen as the lingual inclination of the mandibular molars and
15 15 incisors (Figure 2D). No symptoms or signs of any temporomandibular joint disorder were
16 16 detected. The result of lateral cephalometric analysis was shown in Table 1. The patient also
17 17 exhibited borderline velopharyngeal insufficiency and mild hypernasality.

18

19 **TREATMENT PLAN AND PROGRESS**

1 At 18 years 7 months of age, anteroposterior and transverse expansion of the maxilla
2 using SARPE was performed. The premaxilla and posterior segments were separated to
3 perform maxillary expansion in both the anterior and transverse directions (Figure 3). We fixed
4 the three-way expander with miniscrews to the maxillary posterior alveolar segments to correct
5 both transverse and anteroposterior constriction (Figure 3A). The expansion in the
6 anteroposterior direction and that in the transverse direction were performed for 16 days with
7 0.5-mm expansion/per day and 1.0-mm expansion/per day, respectively (Figure 3B). All of the
8 wisdom teeth were extracted during SARPE. Preadjusted fixed appliances were then bonded
9 onto the maxillary and mandibular dentition to align and level the teeth, and preoperative
10 orthodontic treatment was started. The dental compensation was corrected in preparation for
11 the orthognathic surgery. Preoperative orthodontic treatment was performed by extracting the
12 lower left second bicuspid to relieve the crowding and maintain the lower incisor inclination.

13 The patient underwent two jaw orthognathic surgeries after orthodontic preparation at 21

14 years 3 months of age. The maxilla was set forward 6.5 mm to improve the remaining mid-
15 facial deficiency and low exposure of the upper incisors. The maxilla was also rotated 4.0°
16 clockwise to correct the open-bite. The mandible was set back 2 mm and rotated counter-
17 clockwise for open-bite correction with BSSO. Tongue reduction was also performed as the
18 same time as two-jaw surgery to improve the stability of obtained normal occlusion. Temporary

1 anchorages were placed in the area of the maxillary and mandibular anterior teeth after the two-
2
3
4 jaw surgery for intermaxillary fixation.
5
6

7 After postoperative orthodontic treatment had been continued for 10 months to obtain
8
9 mutually protected occlusion, all appliances were removed (Figure 4). We tried to make the
10
11 postoperative orthodontic treatment as short as possible to prevent further alveolar bone
12
13 resorption. Begg-type retainers were placed on both arches for retention. Speech assessment
14
15 after the removal of the appliances did not show a significant difference from the start of
16
17 orthodontic treatment.
18
19
20
21
22
23
24
25
26
27
28
29

30 **RESULTS**

31
32 SARPE with a three-way expander dramatically corrected the anteroposterior and
33
34 transverse constricted maxillary arch (Figure 3). As a result, the maxillary width was increased;
35
36 the intercanine width increased from 20.3 mm to 38.5 mm, and the first molar basal arch width
37
38 increased from 63.5 mm to 71.6 mm. The anteroposterior length was also increased; the
39
40 perpendicular distance between the line connecting the upper incisors and the line connecting
41
42 the distal surfaces of the first molars increased from 29.0 mm to 33.8 mm. Three-dimensional
43
44 superimposition also revealed an improved maxillary arch form after SARPE (Figure 5).
45
46
47
48
49
50
51
52
53
54

55 Subsequent Le Fort I osteotomy improved the midfacial deficiency associated with the
56
57 skeletal Class III relationship and skeletal open-bite by setting back and counter-clockwise
58
59
60
61
62
63
64
65

1 rotating the mandible through BSSO (table 1). The posttreatment facial photographs showed a
2 preferable straight-type facial profile without lip incompetency (Figure 4). The upper incisor
3 exposure was also notably improved in a full smile. Intraoral photographs showed mutually
4 protected occlusion with proper overjet and overbite (Figure 4). After two-year of retention
5 period, the good occlusion and facial profile were well maintained (Figure 6). Superimposed
6 lateral cephalometric tracings of the each stage were shown in Figure 1. A slightly relapse was
7 shown in that the lower incisors were tipped labially (Figure 1 and table 1).

8 Panoramic X-ray showed that the horizontal level of the alveolar bone had become lower,
9 especially around the lower premolar and molar region, after the fixed orthodontic treatment
10 (Figure 4).

11 12 **DISCUSSION**

13 In order to reconstruct their maxillary arch form and correct the intermaxillary

14 discrepancy, various surgical procedures are required for non-growing patients with BCLP [4].

15 Distraction osteotomy or SARPE have been used for maxillary anterior advancement or lateral

16 expansion in patients with CLP [4], [8], [9]. However, few reports have described the outcomes

17 of SARPE with a three-way expander for maxillary expansion in two directions

18 (anteroposterior and transverse). In this case, the maxilla was constricted transversely and

19 anteroposteriorly in comparison with the mandibular dental arch. We therefore performed

1 SARPE using a three-way expander to increase the maxillary width as well as the
2 anteroposterior length. Instead of 3-way distraction osteotomy, we could have performed multi-
3 section osteotomy to improve the maxillary constriction. However, in our case, we selected 3-
4 way distraction osteotomy to achieve the amount of expansion required for arch coordination.
5 For these reasons, SARPE with a 3-way expander could be efficiently applied to the patient
6 who exhibited severe dental arch constriction in both the lateral and anteroposterior directions.
7 However, due to the higher risk of damaging the root, cases should be selected after careful
8 assessment.

9 We corrected the open-bite via Le Fort I osteotomy and BSSO. Through multiple
10 orthognathic surgeries in the present case, including SARPE with a three-way expander and
11 consequent Le Fort I osteotomy and BSSO, the facial profile as well as occlusion were
12 markedly improved at the end of orthodontic treatment. We could have also selected Le Fort I
13 distraction osteotomy to improve the position of the maxilla, as it has been shown to result in
14 good clinical outcomes [10]. Maxillary anterior segmental distraction osteogenesis (MASDO)
15 is another alternative method to move the maxilla forward, especially when severe
16 velopharyngeal insufficiency exists [11], [12].

17 CLP is also known to occur in the phenotype of certain genetic diseases. Given the
18 present patient's general symptoms of hypertelorism, genitourinary abnormalities, CLP and
19 intellectual disabilities, he was suspected of having Opitz G/BBB syndrome. Opitz G/BBB

1 syndrome is a rare genetic disorder characterized by multiple anomalies along the midline of
2 the body [13], [14], [15]. The various clinical manifestations of Opitz G/BBB syndrome
3 include facial anomaly, laryngotracheal and esophageal defects, genitourinary abnormalities,
4 CLP and intellectual disabilities [14], [16], [17], [18]. Among those clinical manifestations,
5 hypertelorism, hypospadias and CLP are three major anomalies associated with this syndrome
6 [14], [16], [17], [18]. The clinical manifestation of the present case exhibited symptoms that
7 overlapped with those of patients with Opitz syndrome. Therefore, he was suspected of having
8 Opitz G/BBB syndromes by physicians at Osaka University Medical Hospital in Suita City.
9 Genetic testing of MID1 or SPECCL1 are useful for the definitive diagnosis of Opitz G/BBB
10 syndrome [19], [20]. Some patients have also been reported to exhibit chromosome 22q11.2
11 deletion [21]. However, he and his family did not wish to undergo genetic testing, so he
12 remained undiagnosed. There have been various reports published on the underlying genetics
13 and medical treatment of patients with Opitz G/BBB syndrome^{14,16-18}, but reports on
14 orthodontic treatment are limited [22].

15 Opitz G/BBB syndrome is sometimes associated with intellectual disability and/or
16 congenital heart defects, which sometimes require specific care during orthodontic treatment
17 [23]. The present patient showed poor oral hygiene and periodontal disease before the
18 orthodontic treatment. For this reason, he underwent repetitive professional oral care, including
19 instruction on tooth brushing and his oral hygiene substantially improved. However, he

1 experienced difficulty in maintaining oral hygiene, especially immediately after orthognathic
2 surgery which possibly led to the worsening of the periodontal situation.
3
4

5 **CONCLUSIONS**

6 Surgical-orthodontic treatment with SARPE using a three-way expander followed by Le
7 Fort I osteotomy with BSSO was effective for improving the skeletal disharmony, facial profile
8 and occlusion in a patient with BCLP who exhibited a constricted maxilla and skeletal Class
9 III relationship with open-bite.

10 **ETHICAL APPROVAL**

11 The patient consented to publication of the case in writing.

12 **CONFLICT OF INTEREST**

13 The authors declare that no conflicts of interest exist in association with this study.

14 **REFERENCES**

15

16 1. Vargervik K. Growth characteristics of the premaxilla and orthodontic treatment
17 principles in bilateral cleft lip and palate. *Cleft Palate J.* 1983;20(4):289-302.
18

19 2. Hong M, Baek SH. Differences in the Alignment Pattern of the Maxillary Dental
20 Arch Following Fixed Orthodontic Treatment in Patients With Bilateral Cleft Lip and
21 Palate: Anteroposterior-Collapsed Arch Versus Transverse-Collapsed Arch. *J
22 Craniofac Surg.* 2018;29(2):440-444.

1 3. da Silva Filho OG, Valladares Neto J, Capelloza Filho L, de Souza Freitas JA.
2 Influence of lip repair on craniofacial morphology of patients with complete bilateral
3 cleft lip and palate. *Cleft Palate Craniofac J.* 2003;40(2):144-153.
4 4. Nakatsugawa K, Kurosaka H, Mihara K, et al. Orthodontic-Surgical Approach for
5 Treating Skeletal Class III Malocclusion With Severe Maxillary Deficiency in
6 Isolated Cleft Palate. *Cleft Palate Craniofac J.* 2018;1055665618777573.
7 5. Prager TM, Finke C, Miethke RR. Dental findings in patients with ectodermal
8 dysplasia. *J Orofac Orthop.* 2006;67(5):347-355.
9 6. Carpeta S, Pineda T, Martínez MC, et al. 22q11.2 Deletion Syndrome in Colombian
10 Patients With Syndromic Cleft Lip and/or Palate. *The Cleft palate-craniofacial
11 journal : official publication of the American Cleft Palate-Craniofacial Association.*
12 2019;56(1):116-122.
13 7. Russell KA. Orthodontic treatment for patients with Turner syndrome. *Am J Orthod
20 Dentofacial Orthop.* 2001;120(3):314-322.
14 8. Shintaku Y, Tanikawa C, Iida S, Aikawa T, Kogo M, Yamashiro T. Maxillary
15 Expansion and Midline Correction by Asymmetric Transverse Distraction
16 Osteogenesis in a Patient With Unilateral Cleft Lip/Palate: A Case Report. *Cleft
17 Palate Craniofac J.* 2015;52(5):618-624.
18 9. Scolozzi P. Distraction osteogenesis in the management of severe maxillary
19 hypoplasia in cleft lip and palate patients. *J Craniofac Surg.* 2008;19(5):1199-1214.
20 10. Kloukos D, Fudalej P, Sequeira-Byron P, Katsaros C. Maxillary distraction
21 osteogenesis versus orthognathic surgery for cleft lip and palate patients. *The
22 Cochrane database of systematic reviews.* 2018;8(8):CD010403-CD010403.
23 11. Kageyama-Iwata A, Haraguchi S, Iida S, Aikawa T, Yamashiro T. Maxillary Anterior
24 Segmental Distraction Osteogenesis to Correct Maxillary Deficiencies in a Patient
25 With Cleft Lip and Palate. *The Cleft palate-craniofacial journal : official publication
26 of the American Cleft Palate-Craniofacial Association.* 2017;54(4):465-473.
27 12. Tanikawa C, Lee D, Oonishi YY, et al. The Elimination of Dental Crowding and
28 Development of a Proper Dental Arch by Maxillary Anterior Segmental Distraction
29 Osteogenesis for a Patient With UCLP. *The Cleft palate-craniofacial journal : official
30 publication of the American Cleft Palate-Craniofacial Association.* 2019;56(7):978-
31 985.
32 13. Opitz JM. G syndrome (hypertelorism with esophageal abnormality and hypospadias,
33 or hypospadias-dysphagia, or "Opitz-Frias" or "Opitz-G" syndrome)--perspective in
34 1987 and bibliography. *Am J Med Genet.* 1987;28(2):275-285.
35 14. Verloes A, Le Merrer M, Briard ML. BBBG syndrome or Opitz syndrome: new
36 family. *Am J Med Genet.* 1989;34(3):313-316.
37

1 15. Cox TC, Allen LR, Cox LL, et al. New mutations in MID1 provide support for loss of
2 function as the cause of X-linked Opitz syndrome. *Hum Mol Genet*. 2000;9(17):2553-
3 2562.

4 16. Brooks JK, Leonard CO, Coccato PJ. Opitz (BBB/G) syndrome: oral manifestations.
5 *Am J Med Genet*. 1992;43(3):595-601.

6 17. So J, Suckow V, Kijas Z, et al. Mild phenotypes in a series of patients with Opitz
7 GBBB syndrome with MID1 mutations. *Am J Med Genet A*. 2005;132A(1):1-7.

8 18. Parashar SY, Anderson PJ, Cox TC, McLean N, David DJ. Multidisciplinary
9 management of Opitz G BBB syndrome. *Ann Plast Surg*. 2005;55(4):402-407.

10 19. Kruszka P, Li D, Harr MH, et al. Mutations in SPECC1L, encoding sperm antigen
11 with calponin homology and coiled-coil domains 1-like, are found in some cases of
12 autosomal dominant Opitz G/BBB syndrome. *J Med Genet*. 2015;52(2):104-110.

13 20. De Falco F, Cainarca S, Andolfi G, et al. X-linked Opitz syndrome: novel mutations
21 in the MID1 gene and redefinition of the clinical spectrum. *Am J Med Genet A*.
22 2003;120A(2):222-228.

23 21. McDonald-McGinn DM, Driscoll DA, Bason L, et al. Autosomal dominant "Opitz"
24 GBBB syndrome due to a 22q11.2 deletion. *Am J Med Genet*. 1995;59(1):103-113.

25 22. Regan JP, Szymanski K, Podda S, Gargano F, Kopiecki A. A surgical approach to the
26 craniofacial defects of Opitz G/BBB syndrome. *J Surg Case Rep*.
27 2017;2017(2):rjx032.

28 23. Fontanella B, Russolillo G, Meroni G. MID1 mutations in patients with X-linked
29 Opitz G/BBB syndrome. *Hum Mutat*. 2008;29(5):584-594.

30 **FIGURE LEGENDS**

31 **FIGURE 1.** Superimposed lateral cephalometric tracings on the SN plane at S: A, initial (black
32 line) and pre-SARPE (gray line); B, pre-SARPE (black line) and before two-jaw surgery (gray
33 line); C, before two-jaw surgery (black line) and post-active treatment (gray line); D, post-
34 active treatment (black line) and post-retention (gray line)

1 **FIGURE 2.** Pretreatment records. A, Facial photographs. B, Intraoral photographs. C,
2
3
4 2 Panoramic radiographs. D, Lateral cephalograms.
5
6
7 3
8
9

10 4 **FIGURE 3.** Occlusal photographs of the three-way expander and retainer. A, Before maxillary
11
12 5 expansion. B, After maxillary expansion. C, During maxillary retention. D, Three-way
13
14 6 expander before activation. E, Three-way expander after activation.
15
16
17 7
18
19
20
21
22

23 8 **FIGURE 4.** Post-active treatment records. A, Facial photographs. B, Intraoral photographs. C,
24
25
26 9 Panoramic radiographs. D, Lateral cephalograms.
27

28 10
29
30 11 **FIGURE 5.** Three-dimensional models were superimposed using the surfaces of the palate. A,
31
32
33 12 Pretreatment (yellow); B, post-active treatment (green); C, Superimposition of the pretreatment
34
35
36 13 (yellow) model and post-active treatment model (green).
37
38
39
40
41
42 14
43
44

45 15 **FIGURE 6.** Post-retention records. A, Facial photographs. B, Intraoral photographs. C,
46
47
48 16 Panoramic radiographs. D, Lateral cephalograms.
49
50
51
52 17
53
54
55 18
56
57 19
58
59 20