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Abstract

Progressive Fibrosing Interstitial Lung Disease (PF-ILD) is a severe phenotype of Interstitial
Lung Disease (ILD) with a poor prognosis, typically requiring prolonged clinical observa-
tion and multiple CT examinations for diagnosis. Such requirements delay early detection
and treatment initiation. To enable earlier identification of PF-ILD, we propose ILD-Slider, a
parameter-efficient and lightweight deep learning framework that enables accurate PF-ILD
identification from a limited number of CT slices. ILD-Slider introduces anatomy-based
position markers (PMs) to guide the selection of representative slices (RSs). A PM extractor,
trained via a multi-class classification model, achieves high PM detection accuracy despite
severe class imbalance by leveraging a peak slice mining (PSM)-based strategy. Using
the PM extractor, we automatically select three, five, or nine RSs per case, substantially
reducing computational cost while maintaining diagnostic accuracy. The selected RSs are
then processed by a slice-level 3D Adapter (Slider) for PF-ILD identification. Experiments
on 613 cases from The University of Osaka Hospital (UOH) and the National Hospital
Organization Osaka Toneyama Medical Center (OTMC) demonstrate the effectiveness of
ILD-Slider, achieving an AUPRC of 0.790 (AUROC 0.847) using only five automatically
extracted RSs. ILD-Slider further validates the feasibility of diagnosing PF-ILD from non-
contiguous slices, which is particularly valuable for real-world and public datasets where
contiguous volumes are often unavailable. These results highlight ILD-Slider as a practical
and efficient solution for early PF-ILD identification.

Keywords: PF-ILD identification; parameter-efficient transfer learning; medical image
analysis; interstitial lung disease; chest CT; deep learning
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1. Introduction
Interstitial Lung Disease (ILD) is a chronic condition characterized by lung infiltration

and fibrosis, ultimately leading to respiratory failure. Early diagnosis is crucial for improv-
ing patient survival; however, it remains challenging due to the heterogeneous clinical
presentations of ILD [1]. Although lung biopsy is considered the gold standard for diag-
nosis, it is not always feasible because of patient-related factors such as contraindications,
patient preference, or an inability to undergo the procedure. Moreover, CT examina-
tions over a defined observation period are often required to assess fibrotic progression,
inevitably delaying both diagnosis and treatment initiation.

Diagnosing ILD demands the expertise of specialized pulmonologists, radiologists,
and pathologists, which may not always be readily available. Accurate diagnosis is diffi-
cult, and predicting disease progression is even more challenging due to variability among
patients. One subtype, Progressive Fibrosing Interstitial Lung Disease (PF-ILD), carries a
poor prognosis, with a median survival of only 3–5 years after diagnosis [2–4]. Recently,
the antifibrotic drugs nintedanib and pirfenidone have been shown to slow fibrosis and ex-
tend survival [5,6], making timely and accurate PF-ILD identification essential for initiating
treatment. This underscores the need for reliable early diagnostic methods.

Deep learning has led to significant advances across multiple domains, including
autonomous driving [7], computer-aided diagnosis [8–10], and smart cities [11,12]. In com-
puter vision, the emergence of vision foundation models [13–15] has enabled high per-
formance in large-scale, complex tasks. Medical image analysis has similarly benefited,
achieving remarkable diagnostic accuracy using image data alone [16,17] or in combination
with textual information [18]. These advances have inspired the development of frame-
works to support PF-ILD identification. Typically, identification relies on high-resolution
CT (HRCT) scans, which provide 3D volumetric data. However, applying 3D models to
PF-ILD identification poses two main challenges: (1) large annotated datasets are scarce
and (2) 3D models involve a vast number of trainable parameters, demanding substantial
computational resources.

These challenges highlight the urgent need for data-efficient and lightweight diagnos-
tic frameworks. Parameter-efficient transfer learning (PETL) has gained attention in natural
language processing (NLP) for adapting large models to specific downstream tasks with
minimal parameter updates. Methods such as task-specific adapters [19–21] and prompt
tuning [22–25] introduce small learnable modules or tokens, substantially reducing the
number of trainable parameters. PETL approaches have also been explored in computer
vision, including prefix tuning [26,27], adapters [28,29], and prompt tuning [30–33].

Building on the success of PETL methods [19,28], we propose ILD-Slider, a parameter-
efficient, lightweight framework for PF-ILD identification. ILD-Slider integrates a slice-level
3D Adapter (Slider) with a peak slice mining (PSM)-based position marker (PM) extractor
to identify representative slices (RSs). At the case level, we define anatomy-based PMs
to guide RS selection, as processing all slices is computationally prohibitive. PMs are
manually defined as distinct classes and used to train a multi-class classification model.
Our PSM-based strategy then selects key slices based on PM indices, from which three, five,
or nine RSs are extracted. Finally, these RSs are used to train the Slider for efficient and
accurate PF-ILD identification.

The contributions of this paper are as follows:

• We introduce anatomy-based PMs to guide the selection of RSs for PF-ILD identifica-
tion. A PM extractor, trained with a standard multi-class classification model, achieves
high extraction accuracy despite severe class imbalance. This enables the use of a
small set of RSs instead of full CT volumes, thereby improving diagnostic efficiency
and significantly reducing computational cost.
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• We design a PSM-based strategy to automatically select RSs from PM indices. Using
datasets from two medical facilities, ILD-Slider achieves an AUPRC of 0.790 and an
AUROC of 0.847 with only five extracted RSs. We also propose an effective window
level/width processing for PF-ILD identification, validate its effectiveness, and ana-
lyze domain shifts on different facilities, demonstrating the robustness of our Slider.

• We demonstrate the feasibility of using non-contiguous slices for PF-ILD identification.
This is particularly valuable for real-world and public datasets, where contiguous slices
are often unavailable, underscoring the practicality and generalizability of ILD-Slider.

2. Related Work
2.1. Medical Image Classification

Recently, significant progress has been made in significant progress in applying convo-
lutional neural networks (CNNs) to medical image classification [34], greatly facilitated by
the availability of open-source 2D pre-trained models for related medical tasks has greatly
facilitated these advancements. Such models, typically pre-trained on large-scale natural
image datasets (e.g., ImageNet [35]), can be fine-tuned for various downstream medical
applications. Although medical datasets are generally more difficult to obtain than natural
image datasets, pre-trained weights have proven to be highly beneficial in medical imaging.
Li et al. [36] proposed a shallow convolutional architecture for classifying ILD in lung image
patches. Sakamoto et al. [37] introduced a novel cooperative deep learning method for clas-
sifying diverse pathology-based medical images. Nithiyaraj et al. [38] developed a CT slice
classification model to assist radiologists in selecting diagnostically valuable slices. Due to
the limited availability and imbalance of medical data, weakly supervised, unsupervised,
and self-supervised learning approaches have emerged as promising research directions.
For example, Li et al. [39] proposed a multi-scale convolutional model that utilizes a shared
set of convolutional kernels to extract features with different receptive fields, achieving
strong performance in comparison to medical image classification benchmarks.

Inspired by these works, we adopt a conventional CNN model to extract representative
slices from each case and address the extreme class imbalance through both oversampling
and downsampling. Furthermore, we demonstrate that the proposed method can effectively
select a small set of informative slices for PF-ILD identification.

2.2. Parameter-Efficient Transfer Learning (PETL)

In NLP, prompting is a widely used technique for guiding large language mod-
els (LLMs) to better adapt to downstream tasks [40]. For instance, in-context learning
(ICL) [41–45] and visual ICL [32,46–49] demonstrates remarkable generalization across
diverse tasks via , but often relies on carefully crafted, manually designed prompts. How-
ever, fully fine-tuning large-scale models is computationally expensive due to the vast
number of parameters involved. To address this issue, parameter-efficient transfer learning
(PETL) methods have been proposed. These approaches optimize only a small subset of the
model’s parameters or introduce additional lightweight modules, such as adapters [19,50]
and prompt tuning [51,52], achieving performance comparable to full fine-tuning while
substantially reducing computational cost.

Building on the success of PETL in NLP, recent research has extended these techniques
to computer vision [30,31] and vision–language modeling [14,26,27]. In these domains,
PETL typically involves either partial fine-tuning of the backbone model or the insertion of
learnable prompts into image inputs. For example, Pan et al. [28] enhanced a traditional
adapter [19] with a 3D convolutional layer, enabling the Vision Transformer (ViT) [53] to
effectively carry out video action recognition tasks. This method updates only a small frac-
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tion of the model’s parameters, making adapters an attractive solution for computationally
constrained medical applications such as CT slice analysis.

Inspired by these developments, we explore adapter-based PETL methods to improve
performance in medical imaging tasks involving CT scans.

2.3. Prognostic Prediction for ILD

Furukawa et al. [54] developed a classification approach for idiopathic pulmonary
fibrosis (IPF), a major subtype of PF-ILD with a poor prognosis. They employed a semantic
segmentation model to delineate fibrotic regions in the lungs and compared the results with
non-invasive measures using a diagnostic algorithm for IPF. Ryerson et al. [55] introduced
the GAP model to predict mortality risk in chronic ILD. The ILD-GAP model demonstrated
robust performance in estimating mortality rates across major subtypes of chronic ILD and
at all disease stages. Walsh et al. [56] evaluated the performance of a widely used deep
learning model for diagnosing fibrotic diseases—the systematic Objective Fibrotic Imaging
Analysis Algorithm (SOFIA)—in predicting usual interstitial pneumonia and found that it
outperformed radiologists in identifying progressive fibrotic lung disease.

To the best of our knowledge, only a few published studies have explored machine
learning-based approaches for PF-ILD identification. We are the first to propose the use of
representative slices for PF-ILD identification and demonstrate promising results.

3. Method
3.1. Study Population

We collected chest CT scans from patients diagnosed with ILD at The University of
Osaka Hospital (UOH) and the National Hospital Organization Osaka Toneyama Medical
Center (OTMC). In this study, we utilized a dataset that was previously established in our
prior work [57]. Patient inclusion and the definition of PF-ILD followed the same criteria as
described therein, namely ≥10% fibrosis on HRCT and a relative decline of either ≥ 10% or
>5% to <10% in forced vital capacity (FVC), accompanied by clinical deterioration or radi-
ological progression during overlapping two-year windows, with baseline ≥ 45%. Initially,
we identified 1126 ILD cases (UOH, 462; OTMC, 664), which was reduced to 1049 after
excluding cases with inadequate CT image quality or incomplete lung coverage (UOH,
28; OTMC, 49). Of these, we further excluded cases missing labels that were required to
ascertain PF-ILD status (UOH, 31; OTMC, 405), leaving 613 cases for PF-ILD identification.

3.2. Overview

Let S = {x1, x2, . . . , xN} denote the dataset used for PF-ILD identification, consisting
of N cases. Each case is represented as xi = {x1

i , x2
i , . . . , xM

i }, where M denotes the number
of CT slices. We employ a classification model Sθ , together with a PSM module to extract
PMs. RSs are then selected based on the detected PMs and subsequently fed into the
proposed diagnostic framework.

As illustrated in Figure 1, we define three types of PMs: apical lung, tracheal bifur-
cation, and upper diaphragm. A CNN-based PM extractor is trained to identify these
PMs, while the PSM module is applied during inference to select the most relevant slices.
To address the severe inter-class imbalance during training, we adopt an oversampling
strategy for the PM classes and downsample the non-PM class to balance the dataset.
After PM extraction, the RSs corresponding to these PMs are selected and input into a
vision foundation model (DINOv2 [13]) with a frozen backbone. A slice-level 3D Adapter
(Slider) equipped with trainable adapters is inserted into each transformer block, enabling
parameter-efficient fine-tuning for downstream PF-ILD identification.
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Figure 1. Overview of the proposed ILD-Slider framework. A PM extractor and PSM are used to
identify the predefined PMs: apical lung, tracheal bifurcation, and upper diaphragm. To address
severe class imbalance, the PM extractor is trained on a class-balanced dataset constructed by
oversampling the PM classes and undersampling the Non-PM class. Based on the extracted PMs, RSs
are selected for subsequent PF-ILD identification. Finally, a lightweight slice-level 3D Adapter (Slider),
equipped with tunable adapters in each transformer block, performs the final PF-ILD identification.

3.3. Position Marker Selector
3.3.1. PM Extractor Training

In our dataset, the CT scans have a default slice interval of 4 mm, resulting in approxi-
mately 75 slices per case. We define and label three PMs to represent distinct anatomical
landmarks in the lungs:

The apical lung (upper) PM. The slice where aerated lung parenchyma first appears in
either hemithorax is labeled as the upper PM. During the operation, (i) the air in the trachea
is ignored, (ii) when both the current slice and the next caudal slice show early parenchyma,
the more superior slice is selected, and (iii) at asymmetric onset, the earlier-appearing
hemithorax is used.

The tracheal bifurcation (middle) PM. The slice where the trachea first begins to
bifurcate into the right and left main bronchi. A slice is considered the middle PM if all
the following criteria hold: (i) when the next caudal slice displays unequivocal bifurcation
but the previous superior slice does not, the current slice is selected as the middle PM (the
first-bifurcation level), and (ii) two distinct bronchial lumens are present and separated by
a soft-tissue wall (no longer a single circular tracheal lumen).

The upper diaphragm (lower) PM. The lower PM is defined as the axial slice located
three to four slices superior to the level where aerated lung parenchyma completely disap-
pears bilaterally. We determine the disappearance level using the following operational
criteria: (i) the next caudal slice shows no aerated lung parenchyma in both hemithoraces,
whereas the previous superior slice still shows aerated parenchyma; (ii) if one lung disap-
pears earlier, we continue scrolling caudally until both lungs are absent; (iii) we ignore any
low-attenuation regions that are not aerated lung parenchyma.

The labeling procedure is rule-based and reproducible without requiring radiological
expertise. For quality assurance, an experienced physician reviewed and approved the
final set of annotations, confirming the anatomical validity of the definitions.

To train a PM extractor, we construct a classification dataset SPM, in which each slice is
assigned a PM class label. Since only one slice per case belongs to each PM class, the dataset
exhibits severe imbalance between PM and non-PM categories. To address this issue, we
apply a combination of oversampling and downsampling: specifically, non-PM slices are
randomly downsampled by 75%, while PM slices are oversampled to match the number
of non-PM samples. Furthermore, we adopt a weighted loss function to penalize false
positives and further mitigate the effects of class imbalance.
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3.3.2. Peak Slice Mining (PSM)

After training, we apply a case-level PSM function, r, to select one slice per PM class
for each case. Given a case, xn ∈ S , with M slices, the PM extractor, Sθ , outputs a confidence
tensor, cn ∈ RM×C, where C is the number of PM classes.

To obtain a normalized confidence distribution over slices for each class, we apply
the softmax function, σ(·), along the slice dimension M, independently for each class.
For every PM class c, this ensures that the probabilities across all M slices in the case sum
to 1. Formally, we can express this as follows:

σ(cn)m,c =
exp(cn,m,c)

∑M
m′=1 exp(cn,m′ ,c)

, (1)

rc = arg max
m

σ(cn)m,c, ∀c ∈ {1, . . . , C}. (2)

where σ(cn)m,c denotes the normalized probability that the m-th slice in case xn corresponds
to PM class c. For each c ∈ {1, . . . , C}, we select the slice index rc with the highest
probability as the representative PM slice. Formally, the PSM function r maps the confidence
tensor cn to the set of selected indices:

R = r(cn) = {r1, r2, . . . , rC}. (3)

The set, R, thus contains one peak slice for each PM class, which is subsequently input
into the downstream PF-ILD identification task.

3.3.3. Representative Slice (RS) Extraction

During preprocessing, DICOM files are converted into PNG format, and slices within
each case are renamed sequentially from the apical lung to the diaphragm. This conversion
facilitates RS extraction based on the predefined PMs. We adopt three RS extraction
strategies, using three, five, or nine RSs, as shown in Figure 2. For the 3-RS strategy,
the upper RS is defined as the slice located at one-third of the distance between the apical
lung PM and the tracheal bifurcation PM; the middle RS is the tracheal bifurcation PM
itself; and the lower RS is the slice located at one-third of the distance between the tracheal
bifurcation PM and the upper diaphragm PM. For the 5-RS strategy, we select slices at one-
third and two-thirds of the interval between the apical lung PM and the tracheal bifurcation
PM, the tracheal bifurcation PM itself, and two-thirds and one-third of the interval between
the tracheal bifurcation PM and the upper diaphragm PM. For the 9-RS strategy, we extend
the 3-RS approach by including the immediate neighboring slices before and after each of
the three selected RSs, resulting in nine slices in total.

By anchoring RS extraction to PMs, we eliminate the need to account for inter-patient
variations in lung size and morphology. This approach allows the model to focus on consis-
tent, anatomically defined features, thereby standardizing RS selection across all cases.

3.4. PF-ILD Identification
3.4.1. Preliminaries

Adapters [19] were originally introduced as a PETL technique in NLP. An adapter
module typically consists of a down-projection linear layer followed by an up-projection
linear layer. Given an input feature matrix, X ∈ RL×d, at the i-th layer, the adapter
transformation can be formulated as follows:

Adapter(X ) = X + f (WdownX )Wup, (4)
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where Wdown ∈ Rd×p is the down-projection weight matrix, Wup ∈ Rp×d is the up-
projection weight matrix, and f (·) denotes a non-linear activation function. The bottleneck
dimension p is typically defined as p = d

δ , where δ is the reduction factor.

Upper
Diaphragm

Tracheal
Bifurcation

Apical
Lung

3-RS

5-RS

9-RS +1Upper 1/3−1 +1Lower 1/3−1

Lower 1/3Lower 2/3Tracheal
Bifurcation

Upper 2/3Upper 1/3

Lower 1/3Tracheal
Bifurcation

Upper 1/3

Tracheal
Bifurcation

−1 +1

Figure 2. Visual examples of the position markers (PMs) and representative slices (RSs). The locations
of the PMs and RSs are indicated on the longitudinal CT view, with the corresponding axial CT slices
shown alongside (best viewed in color). The PMs include apical lung (upper), tracheal bifurcation
(middle), and upper diaphragm (lower). The RSs are shown from top to bottom as 3-RS, 5-RS, and 9-
RS. Here, −1 and +1 denote the adjacent slices superior and inferior to the current slice, respectively.

Adapters have shown strong performance in NLP tasks, as they only introduce a small
number of task-specific trainable parameters while keeping the backbone model frozen.
This not only reduces memory usage and computational cost but also mitigates catastrophic
forgetting, a common issue with full fine-tuning [19].

3.4.2. Slice-Level 3D Adapter (Slider)

A conventional adapter is limited to 2D feature representations and only performs
spatial modeling across tokens. However, CT scans are inherently 3D, and in PF-ILD
identification, the spatial arrangement of slices along the axial dimension (superior to
inferior) encodes critical anatomical and pathological progression. Inspired by the ST-
Adapter [28], we extend the standard adapter by introducing a slice-level 3D Adapter
(Slider) to efficiently capture inter-slice dependencies. Similarly to the original adapter, our
Slider includes a down-projection layer, a non-linear activation layer, and an up-projection
layer. Between these layers, we insert a depth-wise separable 3D convolution layer to
perform slice-level reasoning. Formally, the Slider transformation is defined as follows:

3D-Adapter(X ) = X + f (3DConv(WdownX ))Wup, (5)

where X ∈ RT×L×d denotes the patch features from T CT slices, f (·) is a non-linear ac-
tivation function, and 3DConv is a depth-wise 3D convolution operating across the slice
dimension T and the spatial patch grid. As in the conventional adapter, Wdown ∈ Rd×p

and Wup ∈ Rp×d are the down-projection and up-projection weight matrices, respectively.
The bottleneck dimension p is defined as p = d

δ , where δ is the reduction factor. Be-
fore applying 3DConv, the down-projected features are reshaped from sequence format to
volumetric form, i.e., X ′ ∈ RT×L×d → X ′′ ∈ RT×H×W×d, where H and W denote the patch
grid height and width, respectively. This reshaping enables the 3D convolution to jointly
model spatial and slice-level contexts.

By inserting this adapter module into each transformer block of a frozen ViT backbone,
the model can extract richer 3D representations without modifying the pre-trained weights.
In PF-ILD identification, this allows the model to capture disease-related structural patterns
that evolve across lung slices, thereby enhancing PF-ILD identification.
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3.4.3. Preprocessing

Scanner mask normalization. In this study, we utilize datasets collected from two
different medical facilities. Due to variations in diagnostic equipment, such as differences
in CT scanner models (see Figure 3a), we observe inconsistencies in non-anatomical regions
across scans. To address this issue, we apply a unified scanner mask to both the OTMC and
UOH datasets. Specifically, we generate a binary scanner mask from the UOH dataset and
subsequently apply it to the OTMC dataset. The UOH dataset is also processed using the
same standardized mask to ensure consistency across both datasets.

Scanner MaskOTMC

UOH

Final Image

(a) Scanner mask normalization

Mask 
extraction

Add

Enhanced Lung

PE-Specific

Mediastinal 
DICOM

RGB Image

(b) RGB windowing processing

Figure 3. (a) Scanner mask normalization: We extract the scanner mask from UOH and use it on data
from OTMC to mitigate the disparity across the two facilities. (b) RGB windowing processing: We
perform three different types of organ-specific windowing and concatenate them into an RGB image.
“PE” stands for pulmonary embolism.

RGB windowing processing. To enhance visual features that are relevant to PF-ILD,
we perform a multi-window image fusion process, starting with the original DICOM scans
(see Figure 3b). Windowing is performed in Hounsfield units (HU), and each DICOM
image is converted into three separate single-channel window images:

• Enhanced lung window: Level = −700 HU; width = 700 HU;
• Pulmonary embolism (PE)-specific window: Level = 100 HU; width = 700 HU;
• Mediastinal window: Level = 40 HU; width = 400 HU.

Each windowed image is resized to 518× 518 and then stacked to form a three-channel
image of size 518× 518× 3, analogous to an RGB image, for compatibility with the DINOv2
pre-trained backbone. This transformation enhances the visibility of fibrotic regions in the
lung fields within the PNG outputs, thereby improving the model’s ability to accurately
identify PF-ILD cases.

4. Experiments
4.1. Experimental Setup
4.1.1. Datasets

We performed a basic screening process on our datasets, confirming that each patient
contributed only one case and ensuring that there was no data leakage between the training
and test sets. After screening, 434 cases from the UOH and 615 cases from the OTMC
remained, totaling 1049 CT scans. Among these, 403 cases from the UOH and the 210 cases
from OTMC were retained with PF-ILD labels, as shown in Table 1.

PM extractor dataset: We randomly select 200 cases from each facility (400 cases in
total) from the 1049 available cases, regardless of PF-ILD status. All images are converted
from the original DICOM format to 8-bit PNG format based on HU, using a Level of
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−700 HU and a Width of 700 HU, followed by scanner mask normalization. The dataset is
split into 70%, 15%, and 15% for training, validation, and testing, respectively.

PF-ILD identification dataset: We use all available cases with PF-ILD labels for iden-
tification, totaling 613 cases (403 from the UOH and 210 from the OTMC). These cases
undergo scanner mask normalization and RGB windowing processing to better highlight
fibrotic regions based on clinical knowledge. The dataset is also divided into 70%, 15%,
and 15% for training, validation, and testing, respectively.

Table 1. Number of non-PF-ILD and PF-ILD cases from the two facilities. UOH and OTMC denote
The University of Osaka Hospital (UOH) and the National Hospital Organization Osaka Toneyama
Medical Center (OTMC), respectively.

Facility Non-PF-ILD PF-ILD Total

UOH 236 167 403
OTMC 130 80 210

4.1.2. Implementation Details

All PM extractor and Slider modules are implemented in the PyTorch framework (ver-
sion 1.13.1) and trained on servers equipped with two NVIDIA RTX 6000 Ada Generation
GPUs. For the PM extractor, we use EfficientNet-b4 [58] as the classification backbone.
Input images are resized to 256 × 256 and normalized to the intensity range [0, 1]. Models
are trained for 20 epochs with a batch size of 256 using weighted cross-entropy loss and
the Adam optimizer [59], with an initial learning rate of 1 × 10−3. Data augmentation is
applied during training. For the Slider, we employ DINOv2 [13] as the vision foundation
model backbone, with the adapter dimension d set to 192, corresponding to a reduction
factor δ = 4. Input images are resized to 518 × 518. Models are trained for 80 epochs
with a batch size of 8 using class-weighted cross-entropy loss (weight ratio 1:1.5), scanner
mask normalization, and RGB windowing processing. Optimization is performed using
the Adam optimizer, with an initial learning rate of 2 × 10−4, a cosine annealing learning
rate scheduler, and a dropout rate of 0.3.

4.1.3. Evaluation Metrics

1-Up-Down Accuracy. To evaluate the performance of the PM extractor, we adopt
a relaxed evaluation criterion called 1-Up-Down Accuracy. In clinical practice, the slice
immediately above or below the ground-truth PM often contains similar anatomical fea-
tures. Therefore, we consider a prediction correct if the predicted slice index, m̂, satisfies
the following inequality:

|m̂ − m∗| ≤ 1, (6)

where m∗ denotes the ground-truth PM slice index. The 1-Up-Down Accuracy is then
defined as follows:

1-Up-Down Accuracy =
1
N

N

∑
i=1

1(|m̂i − m∗
i | ≤ 1), (7)

where N is the number of evaluated cases and 1(·) is the indicator function, which returns
1 if the condition is true and 0 otherwise.

For the PF-ILD identification task, we adopt several metrics for evaluation:
AUROC. The Area Under the Receiver Operating Characteristic Curve (AUROC)

is widely used for binary classification and measures the model’s ability to distinguish
between healthy and diseased samples across various classification thresholds. Given
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predicted scores, ŷi, and true labels, yi ∈ {0, 1}, for i = 1, . . . , N, the AUROC is defined
as follows:

AUROC =
1

N+N−
∑

i:yi=1
∑

j:yj=0
1
(
ŷi > ŷj

)
, (8)

where N+ and N− are the number of healthy and diseased samples, respectively.
The metrics below are calculated from the following components of the confusion

matrix at a specific threshold of 0.5: True Positives (TPs), True Negatives (TNs), False
Positives (FPs), and False Negatives (FNs).

Accuracy (Acc.) measures the proportion of all samples that are correctly classified:

Accuracy =
TP + TN

TP + TN + FP + FN
(9)

Recall (Rec.) measures the proportion of actual positive samples that are correctly
identified and is crucial for minimizing missed diagnoses:

Recall =
TP

TP + FN
(10)

Precision (Prec.) measures the proportion of positive predictions that are correct,
indicating the reliability of a positive diagnosis:

Precision =
TP

TP + FP
(11)

Specificity (Spec.) measures the proportion of actual negative samples that are cor-
rectly identified, reflecting the model’s ability to rule out the condition:

Specificity =
TN

TN + FP
(12)

F1-Score (F1) is the harmonic mean of precision and recall, providing a balanced
measure of a model’s performance, which is especially useful in cases of class imbalance:

F1-Score = 2 · Precision · Recall
Precision+ Recall

=
2TP

2TP + FP + FN
(13)

AUPRC. The Area Under the Precision–Recall Curve (AUPRC) is another threshold-
independent metric. It summarizes the trade-off between precision and recall across all
possible thresholds. The AUPRC is particularly informative for imbalanced datasets, as it
focuses on the performance of the minority (positive) class and is less influenced by the
large number of true negatives than the AUROC.

Statistical comparison. To formally compare the models using each metric, we es-
timated 95% confidence intervals for the between-model difference (∆ = metricSlider −
metricbaseline) using a class-stratified, paired bootstrap at the patient level (B = 5000 resam-
ples; the same resampled indices were applied to both models). Two-sided p-values were
obtained via a within-case score-swapping permutation test for the AUPRC and DeLong’s
test for the AUROC. All tests were two-sided with α = 0.05.

4.1.4. Comparison Methods

For the PM extractor, we evaluate several model families, including ResNet [60],
DenseNet [61], and EfficientNet [58]. For the Slider, we compare our method against
several transfer learning baseline methods:

• Full fine-tuning: fully updates all parameters of the backbone for PF-ILD identification.
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• Partial fine-tuning: updates only the last ViT layer while keeping all other layers frozen.
• Linear probe: trains only the linear classification layer, keeping all other parameters fixed.

4.2. Results of PSM-Based PM Extractor

We evaluate the performance of various backbone models for the PSM-based PM ex-
tractor on the same training and testing datasets using the 1-Up-Down Accuracy metric.
The models span several architecture families, including ResNet [60], DenseNet [61], and Effi-
cientNet [58], and the best-performing model from each family is summarized in Table 2.

Among all the models, EfficientNet-b4 achieves the highest overall performance,
with an average 1-Up-Down Accuracy of 98.33%. Its class-wise performance is also strong,
reaching 100% for the upper PM, 98.33% for the middle PM, and 96.67% for the lower
PM extraction. Within the DenseNet family, DenseNet-169 performs the best, achieving
an average 1-Up-Down Accuracy of 97.78%. Its accuracy for the upper and middle PM
classes is comparable to that of EfficientNet-b4. These results suggest that the upper
PM is a relatively easy prediction target, likely because it corresponds to the slice just
before the lung fields become visible, a visually distinct and consistent anatomical feature.
In contrast, identifying the lower PM is more challenging as there is greater variability in
lung morphology near the diaphragm across patients.

To further validate the effectiveness of the PSM-based PM extractor, we analyze the
deviation of predicted slices from ground-truth PMs using EfficientNet-b4, as shown in
Figure 4. We find that the majority of predictions are either exactly correct or within one
slice of the ground truth. Notably, even incorrect predictions remain within two slices above
or below the reference PM, demonstrating the robustness and reliability of the proposed
PSM-based approach.

Table 2. The results of the PSM-based PM extractor with 1-Up-Down accuracy. The best scores for
each PM are highlighted in bold.

Model Upper PM (%) Middle PM (%) Lower PM (%) Avg. (%)

ResNet-101 98.33 96.67 95.0 96.67
DenseNet-169 100 98.33 95.0 97.78
EfficientNet-b4 100 98.33 96.67 98.33

Figure 4. Statistics on the extracted slices from the PSM-based PM extractor on EfficientNet-b4.

4.3. Results on Slider for PF-ILD Identification

Table 3 summarizes the PF-ILD identification performance of the proposed Slider
model under three different RS configurations. In the 5-RS setting, Slider achieves the
following results: AUPRC = 0.790 (95% CI [0.652, 0.901]) and AUROC = 0.847 (95% CI
[0.760, 0.921]). This corresponds to improvements of +0.008 and +0.033 over full fine-
tuning (AUPRC = 0.782, 95% CI [0.645, 0.894]; AUROC = 0.814, 95% CI [0.706, 0.907]).
As detailed in the Methods (statistical comparison) section, we compared the AUROC
using DeLong’s test, yielding the following result: ∆AUROC = 0.033 (95% CI [−0.049,
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0.115]; z = 0.783; p = 0.434). We compared the AUPRC using a class-stratified, paired
bootstrap of the difference (∆) to obtain 95% CIs, with ∆AUPRC = 0.008 (95% CI [−0.073,
0.086]), and computed a within-case score-swapping permutation p-value (p = 0.854).
All tests were two-sided at the α = 0.05 significance level. Overall, the point estimates
favor Slider, but the differences are not statistically significant; notably, Slider demonstrates
comparable performance with substantially fewer trainable parameters (3.56 M), signifying
its computational efficiency and deployability.

Table 3. Performance of Slider on the PF-ILD datasets across different metrics for 3-RS, 5-RS, and 9-RS
settings. #Params denotes the number of tunable parameters. Rows shaded in light blue indicate our
method. The best score for each setting is shown in bold.

Method RSs #Params (M) Acc. Rec. Prec. Spec. F1 AUPRC AUROC
Full Fine-tuning ×3 86.58 0.720 0.757 0.622 0.696 0.683 0.692 0.797
Partial Fine-tuning ×3 7.09 0.742 0.811 0.638 0.696 0.714 0.738 0.810
Linear Probe ×3 0.0015 0.602 0.946 0.500 0.375 0.654 0.726 0.780
Slider ×3 3.56 0.785 0.703 0.743 0.839 0.722 0.735 0.813
Full Fine-tuning ×5 86.58 0.656 0.838 0.544 0.536 0.660 0.782 0.814
Partial Fine-tuning ×5 7.09 0.688 0.838 0.574 0.589 0.681 0.760 0.832
Linear Probe ×5 0.0015 0.785 0.730 0.730 0.821 0.730 0.724 0.774
Slider ×5 3.56 0.796 0.730 0.750 0.840 0.740 0.790 0.847
Full Fine-tuning ×9 86.58 0.763 0.541 0.800 0.911 0.645 0.771 0.808
Partial Fine-tuning ×9 7.09 0.763 0.811 0.667 0.732 0.732 0.712 0.823
Linear Probe ×9 0.0015 0.731 0.432 0.800 0.929 0.561 0.718 0.768
Slider ×9 3.56 0.731 0.703 0.650 0.750 0.675 0.751 0.821

Across all configurations, 5-RS yields the best overall performance, followed by 9-RS
and then 3-RS. Notably, in the 5-RS setting, Slider outperforms full fine-tuning on nearly all
metrics except recall, highlighting its strong parameter efficiency and effectiveness. Partial
fine-tuning achieves the second-highest AUROC (0.832), confirming that lightweight adap-
tation remains competitive. Linear probe achieves relatively high recall (0.730) but suffers
from low precision and specificity, resulting in a lower AUPRC (0.724) and AUROC (0.774).
These results demonstrate that Slider achieves the best trade-off between model complexity
and diagnostic accuracy, making it particularly well suited for realistic clinical deployment.

4.4. Domain Shift Analysis

In practical applications, domain shifts frequently occur, representing variations be-
tween the training dataset, S , and the target environment. These discrepancies reduce
performance when models are applied beyond their original training distribution. Such
shifts are prevalent across datasets and are widely used as benchmarks to evaluate the ro-
bustness of machine learning models [62]. To investigate ILD-Slider’s resilience to domain
shifts, we train Slider models on datasets from different facilities and evaluate them using
the AUROC with δ = 4. The results are summarized in Table 4.

In general, datasets from different facilities exhibit distinct data regimes. The OTMC
is less heterogeneous, so Slider can learn it more easily, while the UOH dataset is more
heterogeneous. Models trained on a single facility show strong in-domain performance but
suffer from notable degradation when tested on data from a different facility. For example,
the Slider trained on the UOH dataset achieves an AUROC of 0.750 on this data, but the
AUROC increases to 0.896 on OTMC data, whereas the model trained on the OTMC dataset
attains 0.921 on this data, yet the value drops to 0.759 on UOH data. In contrast, the model
trained on both the UOH and OTMC datasets demonstrates the most balanced and robust
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behavior, achieving AUROCs of 0.823 on UOH data, 0.875 on OTMC data, and 0.847 on
the combined UOH and OTMC test set. These findings underscore the importance of
multi-facility training for Slider, which is critical for reliable PF-ILD identification across
different scanners and institutions.

Table 4. Cross-domain evaluation of Slider on AUROC. Each row corresponds to the facility used for
training, and each column corresponds to the facility used for testing.

Domain UOH OTMC UOH and OTMC

UOH 0.750 0.896 0.791
OTMC 0.759 0.921 0.803
UOH and OTMC 0.823 0.875 0.847

4.5. Visualization of TPs, TNs, FPs, and FNs

To better understand the behavior of the proposed model in PF-ILD identification,
representative TP, TN, FP, and FN examples are shown in Figure 5, using Grad-CAM [63]
to highlight attention maps for the predicted class. For TP cases, Slider effectively captures
fibrosis-related features across slices, enabling accurate PF-ILD identification. For TN cases,
the model predominantly focuses on non-lung regions, consistent with the absence of
representative fibrosis in lung tissue. In FP cases, however, Slider incorrectly highlights
fibrotic-like patterns within the lung field; although fibrosis is present, it is insufficient to
confirm PF-ILD, leading to misclassification. These instances illustrate the clinical difficulty
of distinguishing incidental fibrosis from PF-ILD. FN cases further reveal model limita-
tions. For OTMC data, Slider mistakenly attends to non-lung regions (e.g., surrounding
tissues) while overlooking fibrosis within the lungs. Similarly, for UOH data, the model
becomes confused when subtle fibrosis appears in the lung field, leading to missed PF-ILD
identification. These examples emphasize the challenges of PF-ILD detection in real-world
clinical settings.

4.6. Sensitivity to Dataset Size

To investigate whether Slider is sensitive to the size of the training set, S , we train it
on six subsets with different ratios (0.1, 0.2, 0.4, 0.6, 0.8, and 1.0). The results are shown
in Figure 6. Overall, Slider consistently outperforms full fine-tuning across all settings,
demonstrating its robustness to varying dataset sizes. Both methods benefit from larger
training sets, but Slider exhibits a particularly notable improvement when the ratio increases
from 0.2 to 0.4. In contrast, full fine-tuning shows optimal performance gain when this
ratio changes from 0.4 to 0.6. Importantly, Slider requires only 60% of the training data to
surpass full fine-tuning across all dataset sizes, highlighting both its parameter efficiency
and its superior data efficiency.

4.7. Further Analyses on ILD-Slider

This section further investigates the capabilities of ILD-Slider through a series
of experiments.

The dimension on which the Slider should be applied. We set the adapter dimension, p,
to 192 in Equation (5), which corresponds to a scale factor of δ = 4. To systematically investi-
gate the impact of different scale factors δ, we evaluate δ ∈ {1, 2, 4, 6, 8, 12} (corresponding to
p = 768, 384, 192, 128, 96, 64, respectively). The results are summarized in Table 5.
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Figure 5. Visual examples under the 5-RS setting of TP, TN, FP, and FN cases from the OTMC and
UOH datasets. Each case presents the enhanced lung window image (Enhanced Lung), the RGB
windowing-processed image (RGB Image), and the Grad-CAM attention map (Attention Map)
corresponding to the predicted class.

Figure 6. Performance comparison of full fine-tuning and Slider in terms of AUROC across different
training data fractions.
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Table 5. The performance of Slider for different scale factors, δ. The row shaded in light blue indicates
our default settings.

Setting #Params (M) Acc. Rec. Prec. Spec. F1 AUPRC AUROC

δ = 1 14.21 0.710 0.622 0.639 0.768 0.630 0.630 0.811
δ = 2 7.11 0.720 0.730 0.628 0.714 0.675 0.723 0.806
δ = 4 3.56 0.796 0.730 0.750 0.840 0.740 0.790 0.847
δ = 6 2.38 0.710 0.730 0.614 0.696 0.667 0.742 0.797
δ = 8 1.79 0.774 0.730 0.711 0.804 0.720 0.777 0.816
δ = 12 1.19 0.785 0.649 0.774 0.875 0.706 0.770 0.837

We found that the best performance is achieved at δ = 4, with an AUPRC of 0.790
and an AUROC of 0.847. Moreover, this setting provides the most favorable balance
between recall and precision. In contrast, both smaller (δ = 2) and larger (δ = 12) scale
factors yield decreased performance. Notably, a parameter efficiency of δ = 4 (3.56 M
tunable parameters) outperforms both higher-capacity (δ = 1) and lower-capacity settings
(δ = 12), highlighting an effective trade-off between model capacity and diagnostic accuracy
in Slider.

The impact of RGB windowing processing. RGB windowing applies different window
levels and widths to emphasize tissue-specific features, enabling the Slider model to capture
a richer set of visual cues. Table 6 compares Slider’s performance with and without RGB
windowing. Without RGB windowing, its performance markedly drops across most metrics:
the AUROC decreases from 0.847 to 0.808, the AUPRC from 0.790 to 0.762, and specificity
from 0.840 to 0.446, indicating a sharp increase in false positives. Although recall increases
from 0.730 to 0.919 due to the model generating more false positive predictions, this comes
at the cost of reduced precision (0.750 to 0.523) and overall accuracy (0.796 to 0.634).

Table 6. The performance of Slider with (w/) and without (w/o) RGB windowing processing. The
row shaded in light blue indicates our default settings.

Setting Acc. Rec. Prec. Spec. F1 AUPRC AUROC
w/o RGB 0.634 0.919 0.523 0.446 0.667 0.762 0.808
w/ RGB 0.796 0.730 0.750 0.840 0.740 0.790 0.847

These results demonstrate that RGB windowing yields more balanced and robust
diagnostic performance by enhancing the visibility of fibrotic regions while preserving
discriminative power for both positive and negative classes in PF-ILD identification.

The impact of using representative slices. We support the use of RSs for PF-ILD
identification because they capture anatomically consistent lung parenchyma regions
determined by PMs. To evaluate their effectiveness, we compare the proposed Slider model
using RSs with randomly selected slices across three runs with different random seeds, as
shown in Table 7.

Table 7. The performance of Slider on randomly selected slices (mean ± std over three runs with
different random seeds) and RSs. The row shaded in light blue indicates our method.

Method Acc. Rec. Prec. Spec. F1 AUPRC AUROC
Random 0.738 ± 0.05 0.730 ± 0.09 0.659 ± 0.08 0.744 ± 0.08 0.689 ± 0.06 0.739 ± 0.03 0.817 ± 0.02
Slider 0.796 0.730 0.750 0.840 0.740 0.790 0.847

The results indicate a clear and consistent advantage when using RSs. Compared to
random slices, RSs improve the AUROC from 0.817 to 0.847 and the AUPRC from 0.739 to
0.790, reflecting stronger overall discrimination and more reliable positive class predictions.
Similarly, the F1-Score increases from 0.689 to 0.740. The specificity also increases from 0.744
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to 0.840, indicating that RSs help reduce false positives. These improvements demonstrate
that PM-guided RS selection not only enhances sensitivity to disease-relevant regions but
also minimizes noise from non-informative slices, leading to more accurate and robust
PF-ILD identification with Slider.

Effect of kernel shape in Slider. To assess the impact of incorporating slice-level
information in Slider for PF-ILD identification, we evaluated different 3D convolution
kernel shapes (Table 8). The results show that slice-level modeling plays a crucial role in
achieving strong diagnostic performance. When the kernel only captures spatial context
without inter-slice information (1 × 3 × 3), the AUROC drops to 0.797 and the AUPRC to
0.718, indicating reduced discriminatory ability. Conversely, purely slice-wise kernels (our
default setting) without spatial aggregation (3 × 1 × 1) achieve the best results, with an
AUROC of 0.847 and an AUPRC of 0.790, suggesting that inter-slice context is more critical
than additional spatial filtering for PF-ILD identification.

Table 8. The performance of Slider on different kernel shape settings. The row shaded in light blue
indicates our default settings.

Kerneal Shape Acc. Rec. Prec. Spec. F1 AUPRC AUROC
1 × 1 × 1 0.591 0.919 0.493 0.375 0.642 0.784 0.809
1 × 3 × 3 0.753 0.568 0.750 0.875 0.646 0.718 0.797
3 × 3 × 3 0.763 0.811 0.667 0.732 0.732 0.749 0.843
3 × 1 × 1 0.796 0.730 0.750 0.840 0.740 0.790 0.847

The 3 × 3 × 3 kernel, which combines both spatial and slice-level information, yields a
competitive AUROC (0.843) but underperforms compared to the 3 × 1 × 1 kernal, possibly
due to fine-grained slice-level patterns that are relevant to disease progression being over-
smoothed. The 1 × 1 × 1 kernel, lacking both spatial and slice context, performs worst,
confirming that contextual cues, particularly along the slice dimension, are indispensable
for PF-ILD identification with Slider.

5. Discussion
Clinical translation. ILD-Slider can efficiently identify suspected PF-ILD cases from

a limited number of RSs, supporting its prioritization for longitudinal evaluation and
further examinations. It has the potential to facilitate screening and reading, particularly
in settings with limited access to expert radiologists. However, the final clinical decision
should always rely on both integration of longitudinal assessments and clinical findings.

Longitudinal label interpretation. Although the outcome is defined longitudinally,
a single-time point HRCT can encode prognostic information. Prior studies [64–66] have
shown that baseline fibrotic burden and HRCT features are predictive of progression
and mortality in fibrosing ILD. We therefore hypothesize that ILD-Slider primarily relies
on a fibrosis-weighted parenchymal texture signature, favoring reticulation and traction
bronchiectasis over transient or inflammatory ground-glass changes, as well as on apex-to-
base (craniocaudal) gradients captured by RSs. These imaging characteristics are commonly
observed in fibrosing ILD, particularly when a UIP-like pattern is present (e.g., basal- and
subpleural-predominant fibrosis with an apicobasal gradient).

Limitations. In this study, PF-ILD labels are assigned based on clinical diagnostic
criteria derived from retrospective medical records, including ≥10% fibrosis, a decline in
FVC, and evidence of clinical and radiological progression. Accordingly, estimations made
solely from cross-sectional imaging findings are, by definition, subject to an inevitable
degree of discrepancy. In particular, longitudinal declines in respiratory function may
encompass aspects that are not directly observable through imaging, thereby representing
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a potential factor that constrains the upper bound of the model’s performance. Further-
more, our dataset was collected from two hospitals within the same geographic region in
Japan. It may limit the generalizability of ILD-Slider to other populations, scanners, or
clinical settings.

Future work. To overcome the inherent limitations of imaging alone, future work
should explore multimodal modeling that incorporates pulmonary function metrics, such
as FVC, clinical symptoms, and biomarkers, or directly train models on disease progression
using longitudinal data. In addition, important next steps in this field include external
calibration and validation, decision curve analysis to evaluate clinical utility, and the
development of radiologist-facing user interfaces with enhanced explainability.

6. Conclusions
We propose a new method, ILD-Slider, which is a parameter-efficient and lightweight

framework for PF-ILD identification from a limited number of CT slices. By introducing
anatomy-based PMs and a PSM strategy, ILD-Slider effectively selects RSs, substantially
reducing computational cost while preserving diagnostic accuracy. Extensive experiments
on datasets from two independent medical facilities demonstrated that ILD-Slider achieves
robust performance (an AUPRC of 0.790 and an AUROC of 0.847 with only five RSs), con-
firming its practicality for real-world clinical settings. Furthermore, our analysis highlights
the benefits of RGB windowing processing, cross-domain generalization, and the feasibility
of diagnosing PF-ILD from non-contiguous slices, representing an important step toward
broader applicability on public datasets. These findings underscore ILD-Slider as both a
data-efficient and computationally efficient solution for early PF-ILD identification.

Author Contributions: Conceptualization, J.Z., S.W., K.S., T.N., K.F., H.K., S.K., K.O. and T.T.;
methodology, J.Z., S.W., K.S., B.W., Y.N. and T.T.; investigation, J.Z. and S.W.; formal analysis, J.Z.
and S.W.; validation, J.Z. and S.W.; visualization, J.Z. and S.W.; resources, T.N., K.F. and H.K.; data
curation, T.N., K.F. and H.K.; writing—original draft preparation, J.Z. and S.W.; writing—review and
editing, S.W., K.S., T.N., K.F., H.K., S.K., K.O., Y.N. and T.T.; supervision, S.W., K.S., B.W., S.K., K.O.,
Y.N. and T.T.; funding acquisition, S.W., B.W., Y.N. and T.T. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported by The Nippon Foundation Osaka University Project for Infec-
tious Disease Prevention, JST CREST Grant No. JPMJCR20D3, JST ACT-X Grant No. JPMJAX24C8,
and JSPS KAKENHI No. 24K20795.

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki, and approved by the Institutional Review Board of The University of Osaka Hospital
(protocol code 25153(T2), approved date 31 July 2025).

Informed Consent Statement: Informed consent was waived due to the retrospective design of the
study using existing clinical records and imaging data. No new interventions or sample collection
were performed. In accordance with the Ethical Guidelines for Medical and Biological Research
Involving Human Subjects in Japan, information regarding the study was disclosed on the institution’s
website to provide participants with the opportunity to opt out.

Data Availability Statement: The data presented in this study are available on request from the
corresponding authore due to privacy restrictions.

Conflicts of Interest: The authors declare no conflicts of interest.



J. Imaging 2025, 11, 353 18 of 20

References
1. Wells, A.; Hirani, N. Interstitial lung disease guideline. Thorax 2008, 63, v1–v58. [CrossRef] [PubMed]
2. Wijsenbeek, M.; Kreuter, M.; Olson, A.; Fischer, A.; Bendstrup, E.; Wells, C.D.; Denton, C.P.; Mounir, B.; Zouad-Lejour, L.;

Quaresma, M.; et al. Progressive fibrosing interstitial lung diseases: Current practice in diagnosis and management. Curr. Med.
Res. Opin. 2019, 35, 2015–2024. [PubMed]

3. Chen, X.; Guo, J.; Yu, D.; Jie, B.; Zhou, Y. Predictors of mortality in progressive fibrosing interstitial lung diseases. Front. Pharmacol.
2021, 12, 754851. [CrossRef]

4. Nasser, M.; Larrieu, S.; Boussel, L.; Si-Mohamed, S.; Diaz, F.; Marque, S.; Massol, J.; Revel, D.; Thivolet-Bejui, F.; Chalabreysse,
L.; et al. Epidemiology and mortality of non-idiopathic pulmonary fibrosis (IPF) progressive fibrosing interstitial lung disease
(PF-ILD) using the French national health insurance system (SNDS) database in France: The PROGRESS study. Eur. Respir. J.
2020, 56, 444.

5. Roth, G.J.; Binder, R.; Colbatzky, F.; Dallinger, C.; Schlenker-Herceg, R.; Hilberg, F.; Wollin, S.L.; Kaiser, R. Nintedanib: From
discovery to the clinic. J. Med. Chem. 2015, 58, 1053–1063.

6. Li, D.y.; Liu, X.; Huang, J.y.; Hang, W.l.; Yu, G.r.; Xu, Y. Impact of antifibrotic therapy on disease progression, all-cause mortality,
and risk of acute exacerbation in non-IPF fibrosing interstitial lung diseases: Evidence from a meta-analysis of randomized
controlled trials and prospective controlled studies. Ther. Adv. Respir. Dis. 2024, 18, 17534666241232561.

7. Grigorescu, S.; Trasnea, B.; Cocias, T.; Macesanu, G. A survey of deep learning techniques for autonomous driving. J. Field Robot.
2020, 37, 362–386.

8. Asiri, N.; Hussain, M.; Al Adel, F.; Alzaidi, N. Deep learning based computer-aided diagnosis systems for diabetic retinopathy:
A survey. Artif. Intell. Med. 2019, 99, 101701. [CrossRef]

9. Wang, B.; Takeda, T.; Sugimoto, K.; Zhang, J.; Wada, S.; Konishi, S.; Manabe, S.; Okada, K.; Matsumura, Y. Automatic creation of
annotations for chest radiographs based on the positional information extracted from radiographic image reports. Comput. Methods
Programs Biomed. 2021, 209, 106331. [CrossRef] [PubMed]

10. Wang, B.; Chang, J.; Qian, Y.; Chen, G.; Chen, J.; Jiang, Z.; Zhang, J.; Nakashima, Y.; Nagahara, H. DiReCT: Diagnostic Reasoning
for Clinical Notes via Large Language Models. In Proceedings of the Advances in Neural Information Processing Systems,
Vancouver, BC, Canada, 10–15 December 2024; Volume 37, pp. 74999–75011.

11. Zhang, J.; Hu, A. Analyzing green view index and green view index best path using Google street view and deep learning.
J. Comput. Des. Eng. 2022, 9, 2010–2023. [CrossRef]

12. Bhattacharya, S.; Somayaji, S.R.K.; Gadekallu, T.R.; Alazab, M.; Maddikunta, P.K.R. A review on deep learning for future smart
cities. Internet Technol. Lett. 2022, 5, e187. [CrossRef]

13. Oquab, M.; Darcet, T.; Moutakanni, T.; Vo, H.; Szafraniec, M.; Khalidov, V.; Fernandez, P.; Haziza, D.; Massa, F.; El-Nouby, A.; et al.
Dinov2: Learning robust visual features without supervision. arXiv 2023, arXiv:2304.07193.

14. Radford, A.; Kim, J.W.; Hallacy, C.; Ramesh, A.; Goh, G.; Agarwal, S.; Sastry, G.; Askell, A.; Mishkin, P.; Clark, J.; et al. Learning
transferable visual models from natural language supervision. In Proceedings of the International Conference on Machine
Learning, Virtual, 18–24 July 2021; pp. 8748–8763.

15. Kirillov, A.; Mintun, E.; Ravi, N.; Mao, H.; Rolland, C.; Gustafson, L.; Xiao, T.; Whitehead, S.; Berg, A.C.; Lo, W.Y.; et al. Segment anything.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, Paris, France, 1–6 October 2023; pp. 4015–4026.

16. Chan, H.P.; Hadjiiski, L.M.; Samala, R.K. Computer-aided diagnosis in the era of deep learning. Med. Phys. 2020, 47, e218–e227.
[CrossRef]

17. Wu, J.; Wang, Z.; Hong, M.; Ji, W.; Fu, H.; Xu, Y.; Xu, M.; Jin, Y. Medical sam adapter: Adapting segment anything model for
medical image segmentation. Med. Image Anal. 2025, 102, 103547. [PubMed]

18. Shui, Z.; Zhang, J.; Cao, W.; Wang, S.; Guo, R.; Lu, L.; Yang, L.; Ye, X.; Liang, T.; Zhang, Q.; et al. Large-scale and Fine-grained
Vision-language Pre-training for Enhanced CT Image Understanding. In Proceedings of the International Conference on Learning
Representations, Singapore, 24–28 April 2025.

19. Houlsby, N.; Giurgiu, A.; Jastrzebski, S.; Morrone, B.; De Laroussilhe, Q.; Gesmundo, A.; Attariyan, M.; Gelly, S. Parameter-
efficient transfer learning for NLP. In Proceedings of the International Conference on Machine Learning, Long Beach, CA, USA,
9–15 June 2019; pp. 2790–2799.

20. He, J.; Zhou, C.; Ma, X.; Berg-Kirkpatrick, T.; Neubig, G. Towards a unified view of parameter-efficient transfer learning. arXiv
2021, arXiv:2110.04366.
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