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Introduction: Sodium-glucose cotransporter 2 (SGLT2) is expressed in the human peritoneum, and 
preclinical studies suggest that SGLT2 inhibitors may enhance ultrafiltration by reducing glucose ab-
sorption from peritoneal dialysis (PD) solutions. This study evaluated whether empagliflozin increases 
ultrafiltration volume (UFV) in patients on PD.

Methods: In this multicenter, randomized (1:1), double-blind, placebo-controlled crossover trial, patients 
on PD received empagliflozin (10 mg/d) or placebo for 8 weeks, separated by a 4-week washout period. 
The primary outcome was the change in daily UFV from baseline to week 8 in each treatment period. 

Results: Of 40 randomized patients, 37 received treatment and were analyzed. The median age was 66 
years, PD duration was 2.8 years, and 46% were female. At baseline, median daily UFV was 476 ml with 
4500 ml of glucose-based dialysate. At week 8, change in UFV did not significantly differ between 
treatments (− 38 ml; 95% confidence interval [CI]: − 120 to 44; P = 0.36). No heterogeneity was observed in 
subgroups by diabetes or peritoneal membrane transport characteristics. Empagliflozin had no signifi-
cant effect on UFV or dialysate glucose or sodium concentrations, assessed by peritoneal equilibration 
test (PET). Urinary glucose excretion increased by 2698 mg/d (95% CI: 343–5052), without changes in 
urine volume, sodium, or protein excretion. Adverse events occurred in 47% with empagliflozin and 29% 
with placebo; serious adverse events occurred in 11% and 6%, respectively.

Conclusion: Empagliflozin did not significantly improve UFV in patients on PD, suggesting limited short-
term clinical utility.
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V olume overload is common in patients on PD and contributes to cardiovascular complications, 
technique failure, and mortality, making adequate

ultrafiltration essential. 1 Ultrafiltration in PD depends 
on the osmotic gradient generated by glucose-based 
dialysate; however, this gradient dissipates over time 
because of glucose absorption into the systemic cir-
culation. 2 Using higher-glucose dialysate to enhance 
ultrafiltration can accelerate peritoneal membrane 
damage and cause metabolic complications. 3 These 
limitations highlight the need for novel therapeutic 
strategies to improve fluid removal without increasing 
glucose load.
SGLT2 is expressed in the human peritoneum, 4-6 

and a preclinical model suggests that its inhibition
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reduces peritoneal glucose absorption, preserving the 
osmotic gradient and enhancing ultrafiltration. 5 

SGLT2 inhibition may mitigate peritoneal fibrosis and 
angiogenesis—key drivers of long-term ultrafiltration 
failure. 6,7 These findings have generated interest in 
SGLT2 inhibitors for PD, though human data remain 
limited. Some observational studies of patients on PD 
have reported increased UFV with SGLT2 
inhibitors, 8-11 but the results have been inconsistent 
and potentially confounded.
To address this gap, we conducted a randomized, 

double-blind, placebo-controlled, crossover trial to 
determine whether empagliflozin, an SGLT2 inhibitor, 
could improve daily UFV in patients undergoing PD, 
and to assess its potential harm. We hypothesized that 
empagliflozin would enhance UFV by preserving the 
glucose-driven osmotic gradient through inhibition of 
peritoneal glucose absorption.

METHODS
Study Design and Participants
The EMPOWERED trial was a multicenter, random-
ized, double-blind, placebo-controlled, crossover 
study evaluating the safety and efficacy of once-daily 
empagliflozin 10 mg in patients undergoing PD. 12 A 
crossover design was chosen to minimize interindi-
vidual variability in UFV and enhance statistical po-
wer, anticipating a limited sample size and expected 
within-subject consistency. The study was conducted 
at 4 hospitals in Japan between December 2023 and 
November 2024. The study protocol has been previ-
ously published. 13 The trial was registered in the 
Japan Registry of Clinical Trials (jRCTs051230081) and 
received approval from the Osaka University Clinical 
Research Review Committee (Approval No. S23004), as 
well as the ethics committees of all participating in-
stitutions. The study complied with the Declaration of 
Helsinki, and all participants provided written 
informed consent.
Eligible participants were adults aged 18 to 90 years 

who had been on PD for $ 3 months, were using $ 3 
L/d of glucose-based PD solution, and had chronic 
heart failure per the approved indication of empagli-
flozin in Japan. Heart failure criteria included 
biomarker elevation, echocardiographic findings, or 
previous hospitalization (Supplementary Table S1). 
Key exclusions were SGLT2 inhibitor use within 3 
months and peritonitis within the preceding 2 months.

Randomization and Masking
Participants were randomly assigned (1:1) to receive 
either placebo followed by empagliflozin 10 mg/d, or 
vice versa, using a permuted block randomization 
method stratified by study site. Randomization was

performed by a study statistician. The randomization 
table was embedded in the electronic data capture 
system and revealed to each site upon patient enroll-
ment. Prelabeled study drug bottles were dispensed by 
blinded pharmacists at each site. All participants, in-
vestigators, and study staff remained blinded 
throughout the trial. The appearance and packaging of 
empagliflozin and placebo tablets were identical.

Procedures
The study followed a 2-period crossover design, with 
each treatment period lasting 8 weeks, separated by a 
4-week washout phase. Participants visited the clinic 
every 4 weeks for follow-up assessments, including 
physical examination, body weight, heart rate, and 
seated blood pressure measurements (averaged from 2 
readings), with adverse events systematically collected 
at each visit. During each visit, 24-hour urine samples 
were collected (Supplementary Figure S1). At both the 
beginning and end of each treatment period, body 
composition was assessed using bioimpedance analysis, 
and a FAST PET was performed. 14 Adherence was 
evaluated using patient interviews at each visit and by 
tablet counts at the end of each treatment period. 
Further methodological details on biomarker analyses 
and PET are provided in Supplementary Text 1.

Outcomes
The primary outcome was the change in daily UFV 
from baseline to week 8 of each treatment period. Daily 
UFV was self-recorded by participants and calculated 
as the mean of 5 values from the most recent 7 days, 
excluding the highest and lowest values. UFV derived 
from non–glucose-based solutions, such as icodextrin, 
was excluded from the analysis. Secondary outcomes 
included changes in 24-hour urine parameters, PET-
based metrics (UFV and dialysate sodium, glucose, 
interleukin-6, and carbohydrate antigen 125concen-
trations), N-terminal pro-B-type natriuretic peptide 
(NT-proBNP) levels, body weight, blood pressure, and 
body composition. To assess the impact on residual 
kidney function, urinary kidney injury molecule-1 
concentrations were measured at the end of each 
treatment period.

Sample Size Calculation
Our preliminary data indicated that 5 patients on PD 
treated with empagliflozin 10 mg/d experienced a 
mean increase in daily UFV of 90 ml. Notably, a UFV 
increase of this magnitude has been associated with an 
18% reduction in mortality risk in previous studies. 15 

Therefore, we assumed that a 90 ml/d difference in 
UFV between treatment arms would represent a clini-
cally meaningful effect. In the University of Osaka PD
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cohort, the SD of UFV changes was calculated as 
114 ml. However, for conservative planning, we 
assumed a higher SD of 150 ml. Although within-
subject variability is typically smaller than between-
subject variability, we conservatively assumed a 1:1 
ratio between them to avoid underestimating vari-
ability in the crossover design. Under this assumption, 
both the within-subject SD and the between-subject 
SD were set at approximately 106 ml. Using these es-
timates, we calculated that a sample size of 30 partic-
ipants would provide 90% power to detect a 90 ml/ 
d difference in UFV between treatment arms, with a 2-
sided α level of 0.05. To account for potential drop-
outs, the target sample size was set at 36.

Statistical Analysis
Descriptive statistics were used to summarize baseline 
characteristics and are presented as medians with 
interquartile ranges. The primary analysis followed a 
modified intention-to-treat approach, defined here as 
the full analysis set, which included all randomized 
participants who received $1 dose of study drug and 
had $1 postbaseline assessment. A mixed-effects 
model for repeated measures was applied to evaluate 
differences between empagliflozin and placebo, with 
treatment, period, and treatment-by-period interaction 
as fixed effects, and individual participants as random 
effects. An unstructured covariance matrix was spec-
ified to model within-subject correlations across 
treatment periods. For skewed variables, data were 
log-transformed before modeling. Geometric mean ra-
tios and their 95% CIs were obtained by exponenti-
ating the differences in least-squares means estimated 
from the mixed-effects model for repeated measures. A 
prespecified sensitivity analysis using the same model 
was conducted after excluding data from participants 
with suspected catheter dysfunction, defined as a 
drainage volume < 80% of the instilled volume or an 
instillation time $ 20 minutes. In addition, a post hoc 
sensitivity analysis evaluated the change in total daily 
UFV, including icodextrin-associated ultrafiltration. 
Prespecified subgroup analyses of the primary 
outcome were based on age, sex, diabetes status, use of 
icodextrin-containing PD solution, 24-hour urine vol-
ume, and glucose load from dialysate. Peritoneal 
membrane characteristics were considered, as assessed 
through the PET, including glucose concentration in 
dialysate effluent and the dialysate-to-serum creatinine 
ratio. Secondary outcomes for continuous variables 
were analyzed using the same mixed-effects model for 
repeated measures approach as the primary outcome, 
except for urinary kidney injury molecule-1, for which 
the absolute value at the end of each treatment period 
was used as the dependent variable. Adverse events

were compared between groups using the safety 
analysis set, which included all participants who 
received $1 dose of the study drug. Multiplicity was 
not adjusted, and missing data were not imputed. All 
statistical analyses were conducted using SAS software 
(SAS Institute, Cary, NC).

RESULTS
Baseline Characteristics
Between December 2023 and May 2024, 41 patients 
were screened, and 40 were randomized to receive 
empagliflozin 10 mg/d in period 1 followed by placebo 
in period 2 (n = 20) or the reverse sequence (n = 20; 
Supplementary Figure S2). In the empagliflozin-first 
group, 1 participant did not initiate treatment, and 3 
discontinued during period 1 because of adverse 
events. In the placebo-first group, 2 did not initiate 
treatment, and 1 discontinued during washout; 2 
further discontinued during period 2 because of 
adverse events. Ultimately, 37 participants (19 in the 
empagliflozin-first group, 18 in the placebo-first group) 
were included in efficacy analyses. Baseline charac-
teristics are presented in Table 1. The median age was 
66 years, with 46% female participants, and 27% had 
diabetes. The median PD duration was 2.8 years. 
Among 31 participants with baseline 24-hour urine 
data, the median urine volume was 492 ml, with 19% 
having < 200 ml/d. Regarding PD prescriptions, 81% 
were on icodextrin-based solutions. The median 
daily UFV was 476 ml (mean: 467 ml), and median daily 
glucose-based PD solution volume was 4500 ml 
(Supplementary Figure S3). Adherence to study 
medication, defined as $ 80% tablet intake confirmed 
by tablet counts, was high, with 100% adherence in 
period 1 and 94% in period 2 (31 of 33 participants).

Primary Outcome
At the start of placebo treatment, the median daily 
UFV was 435 ml (mean: 492 ml), changed by − 5 ml 
(95% CI: − 60 to 50) after 8 weeks. With empagliflozin, 
the baseline median UFV was 487 ml (mean: 476 ml), 
changing by − 43 ml (95% CI: − 101 to 16). The 
between-treatment difference in 8-week UFV change 
was − 38 ml (95% CI: − 120 to 44; P = 0.36; Table 2, 
Figure 1). A prespecified sensitivity analysis demon-
strated a comparable, nonsignificant difference of − 38 
ml (95% CI: − 129 to 54; P = 0.40). Similarly, the 
difference in daily UFV at week 4 did not reach sta-
tistical significance (11 ml; 95% CI: − 82 to 104; 
P = 0.82; Figure 1). Moreover, a post hoc analysis 
incorporating total UFV, including icodextrin-
associated ultrafiltration, revealed no significant 
treatment effect (− 27 ml; 95% CI: − 101 to 47; 
P = 0.46). Subgroup analyses showed consistent
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effects across prespecified categories (Figure 2). The 
daily volume of glucose-based PD solution, as well as 
the use of icodextrin, high-concentration glucose so-
lutions, and loop diuretics, remained stable during the 
study (Supplementary Table S2, Supplementary 
Figure S4).

Secondary Outcomes
PET Parameters
Empagliflozin treatment for 8 weeks did not affect 
PET-based UFV (mean difference − 5 ml; 95% CI: − 122 
to 112; P = 0.93; Table 2, Figure 1). No significant

changes were observed in dialysate glucose 
(− 20 mg/dl; 95% CI: − 63 to 23; P = 0.34) or sodium 
levels (1.0 mEq/l; 95% CI: − 0.4 to 2.3; P = 0.15). In-
flammatory and mesothelial biomarkers also remained 
unchanged, with interleukin-6 ratio of 1.11 (95% CI: 
0.85–1.45; P = 0.42) and carbohydrate antigen 125 
ratio of 0.96 (95% CI: 0.86–1.06; P = 0.38).

24-hour Urine Collection Parameter 
Empagliflozin significantly increased urinary glucose 
excretion versus placebo (mean difference 2698 mg; 
95% CI: 343–5,052; P = 0.03; Table 2, Supplementary

Table 1. Baseline characteristics
Characteristic Empagliflozin then placebo (n � 19) Placebo then Empagliflozin (n � 18) Overall (N � 37)

Age, yrs 65 (56–78) 72 (60–76) 66 (60–76)

Female sex, n (%) 10 (53) 7 (39) 17 (46)

Kidney disease a

Chronic glomerulonephritis 4 (21) 2 (11) 6 (16)

Diabetic kidney disease 4 (21) 5 (28) 9 (24)

Nephrosclerosis 5 (26) 3 (17) 8 (22)

Others 7 (37) 8 (44) 15 (41)

Atrial fibrillation, n (%) 2 (11) 0 (0) 2 (5)

Diabetes mellitus, n (%) 5 (26) 5 (28) 10 (27)

NYHA class, n (%)

Class I 18 (95) 15 (83) 33 (89)

Class II 1 (5) 3 (17) 4 (11)

PD modality, n (%)

APD 9 (45) 6 (35) 15 (41)

CAPD 11 (55) 11 (65) 22 (59)

PD duration, yrs 2.6 (1.3–4.9) 2.8 (1.0–4.4) 2.8 (1.1–4.5)

Body weight, kg 60.4 (50.6–66.2) 57.1 (53.2–63.9) 57.9 (53.1–64.0)

Body mass index, kg/m 2 22.3 (20.7–24.3) 22.6 (20.7–24.0) 22.4 (20.7–24.0)

SBP, mmHg 138 (124–144) 136 (108–144) 136 (123–144)

DBP, mmHg 82 (67–90) 86 (70–96) 74 (62–86)

LVMI, g/m 2 92 (88–102) 84 (72–120) 91 (75–104)

LAVI, ml/m 2 30 (24–45) 47 (41–65) 42 (30–48)

Serum albumin, g/dl 3.2 (2.7–3.7) 3.1 (2.7–3.5) 3.2 (2.7–3.6)

Serum creatinine, mg/dl 10.1 (8.2–13.1) 10.7 (6.6–12.6) 10.7 (7.3–12.6)

NT-proBNP, pg/ml 3105 (1950–9450) 4220 (1269–9700) 3570 (1505–9575)

24-h urine volume, ml 421 (243–620) 566 (274–800) 492 (243–786)

PD solution a

– Icodextrin-based solution, n (%) 17 (90) 13 (72) 30 (81)

– Low-glucose concentration (1.35% or 1.36%), n (%) 15 (83) 15 (83) 30 (83)

– Intermediate-glucose concentration (2.27% or 2.5%), n (%) 10 (56) 6 (33) 16 (44)

– Total volume of glucose-based solution, ml/d 5538 (3100–6000) 4500 (3000–5394) 4500 (3050–6000)

Daily Ultrafiltration volume, ml/d

Glucose-based solution only 561 (113–800) 435 (228–835) 476 (166–824)

Including icodextrin solution 919 (675–1170) 899 (463–1248) 919 (588–1200)

D/S creatinine ratio 0.73 (0.65–0.81) 0.68 (0.61–0.74) 0.70 (0.62–0.80)

Medication

ACE inhibitors/ARB/ARNI 18 (95) 14 (78) 32 (86)

Loop diuretics 15 (79) 15 (83) 30 (81)

MRA 5 (26) 4 (22) 9 (24)

Beta-blockers 12 (63) 9 (50) 21 (57)

ACE, angiotensin–converting enzyme; APD, automated peritoneal dialysis; ARB, angiotensin receptor blockers; ARNI, angiotensin receptor–neprilysin inhibitor; CAPD, continuous 
ambulatory peritoneal dialysis; D/S concentration ratio, dialysate/serum concentration ratio; DBP, diastolic blood pressure; LAVI, left atrial volume index; LVMI, left ventricular mass 
index; MRA, mineralocorticoid receptor antagonist; NT-proBNP, N-terminal pro-B-type natriuretic peptide; Abbreviations: NYHA, New York Heart Association; PD, peritoneal dialysis; 
PET, peritoneal equilibration test; SBP, systolic blood pressure.
Data are presented as median (interquartile range) for continuous measures, and n (%) for categorical measures.
a Multiple answers allowed.
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Figure S5), but had no significant effect on urine 
volume (125 ml; 95% CI: − 48 to 299; P = 0.15), so-
dium excretion (8.7 mEq; 95% CI: − 2.6 to 20.0; P = 
0.13), or creatinine clearance (ratio: 1.02; 95% CI: 
0.71–1.48; P = 0.90). There was a nonsignificant 
trend toward lower urine protein excretion

(ratio: 0.60; 95% CI: 0.31–1.17; P = 0.13) and urinary 
kidney injury molecule-1 (ratio: 0.85; 95% CI: 
0.71–1.02; P = 0.08). Post hoc subgroup analysis by 
baseline urine volume (# 200 vs. > 200 ml) showed 
consistent effects across subgroups (Supplementary 
Table S3).

Table 2. Summary statistics for the primary outcome and secondary outcomes

Parameters Treatment Baseline Week 8
Within-treatment change 

(95% CI)
Difference in change vs placebo 

(95% CI) P-value

Primary outcome

Daily ultrafiltration volume, ml EMPA 487 (187–842) 393 (156–767) − 43 (− 101 to 16) –38 (− 120 to 44) 0.36

PBO 435 (155–812) 467 (153–777) − 5 (− 60 to 50)

Secondary outcomes

4-h peritoneal equilibration test (PET) parameters

Ultrafiltration volume, ml EMPA 395 (250–555) 427 (278–520) − 14 (− 101 to 73) − 5 (− 122 to 112) 0.93

PBO 410 (264–500) 400 (260–520) − 9 (− 89 to 72)

Effluent dialysate glucose, mg/dl EMPA 816 (693–945) 801 (706–887) − 7 (− 39 to 26) − 20 (− 63 to 23) 0.34

PBO 810 (698–924) 794 (733–963) 13 (− 17 to 44)

Effluent dialysate sodium, mEq/l EMPA 128 (126–130) 129 (126–131) 0.6 (− 0.4 to 1.5) 1.0 (− 0.4 to 2.3) 0.15

PBO 128 (126–131) 129 (125–131) − 0.4 (− 1.3 to 0.5)

D/S creatinine ratio EMPA 0.68 (0.60–0.76) 0.70 (0.60–0.77) 0.01 (− 0.02 to 0.03) 0.02 (− 0.01 to 0.05) 0.10

PBO 0.69 (0.62–0.79) 0.68 (0.61–0.75) − 0.02 (− 0.04 to 0.00)

Effluent dialysate IL-6, pg/ml EMPA 15.6 (9.3–31.9) 17.0 (10.7–34.8) 1.06 (0.86–1.31) a 1.11 (0.85–1.45) a 0.42

PBO 16.6 (11.1–31.2) 15.3 (9.7–25.6) 0.96 (0.79–1.16) a

Effluent dialysate CA125, U/ml EMPA 17.4 (14.2–27.6) 19.1 (13.7–26.6) 1.02 (0.94–1.11) a 0.96 (0.86–1.06) a 0.38

PBO 18.6 (12.4–27.7) 19.2 (14.0–27.2) 1.07 (0.99–1.16) a

24-h urine collection parameter

Urine volume, ml EMPA 440 (243–764) 430 (284–872) 121 (3–240) 125 (− 48 to 299) 0.15

PBO 402 (220–786) 416 (226–776) − 4 (− 112–104)

Urine glucose, mg EMPA 199 (61–489) 761 (270–2363) 2198 (528–3868) 2698 (343–5052) 0.03

PBO 247 (86–514) 199 (51–556) − 499 (− 2116 to 1117)

Urine sodium, mEq EMPA 32 (15–48) 34 (18–68) 8.9 (0.0 to 17.9) 8.7 (− 2.6 to 20.0) 0.13

PBO 33 (16–48) 28 (14–56) 0.2 (− 8.0 to 8.4)

Urine protein, mg EMPA 302 (169–521) 215 (88–518) 0.69 (0.47 to 1.02) a 0.60 (0.31 to 1.17) a 0.13

PBO 354 (80–775) 402 (143–609) 1.16 (0.79–1.69) a

Creatinine clearance, mL/min b EMPA 1.3 (0.4–3.2) 0.8 (0.4–3.5) 1.03 (0.84–1.27) a 1.02 (0.71–1.48) a 0.90

PBO 0.7 (0.4–2.7) 1.2 (0.4–3.2) 1.00 (0.83–1.22) a

Urinary KIM-1, ng/ml EMPA NA 0.77 (0.63–1.26) NA 0.85 (0.71–1.02) a 0.08

PBO NA 1.11 (0.51–1.32) NA

Hemodynamic and fluid balance related parameters

NT-proBNP, pg/ml EMPA 3200 (1540–8770) 3505 (1410–5050) 1.02 (0.84–1.23) a 0.79 (0.61–1.02) a 0.07

PBO 3630 (1270–8690) 4580 (1900–12100) 1.29 (1.08–1.54) a

Body weight, kg EMPA 57.5 (51.8–64.2) 57.2 (52.9–64.6) − 0.6 (− 1.1 to 0.0) − 0.6 (− 1.4 to 0.2) 0.12

PBO 58.1 (53.0–66.2) 58.8 (52.6–67.2) 0.0 (− 0.5 to 0.6)

Systolic blood pressure, mmHg EMPA 131 (123–142) 131 (121–146) 0.7 (− 5.8 to 7.1) 1.5 (− 7.8 to 10.9) 0.74

PBO 136 (126–150) 134 (122–145) − 0.9 (− 7.1 to 5.4)

Diastolic blood pressure, mmHg EMPA 83 (72–94) 82 (68–92) − 2.0 (− 6.0 to 1.9) − 4.2 (− 10.1 to 1.7) 0.16

PBO 82 (66–89) 82 (70–91) 2.2 (− 1.7 to 6.0)

Intracellular fluid volume, L c EMPA 17.9 (13.1–20.3) 17.6 (15.6–20.3) 0.1 (− 0.8 to 1.0) 0.1 (− 1.1 to 1.4) 0.85

PBO 18.3 (14.4–19.7) 18.8 (14.9–20.3) 0.0 (− 0.9 to 0.9)

Extracellular fluid volume, L c EMPA 14.7 (12.3–18.2) 15.2 (12.3–18.2) − 0.3 (− 0.9 to 0.2) − 0.5 (− 1.1 to 0.2) 0.14

PBO 14.6 (13.1–16.6) 14.4 (13.1–18.6) 0.2 (− 0.4 to 0.7)

CA125, carbohydrate antigen 125; CI, confidence interval; D/S concentration ratio, dialysate/serum concentration ratio; EMPA, empagliflozin; IL-6, interleukin-6; KIM-1, kidney injury 
molecule 1; NT-proBNP, N-terminal pro-B-type natriuretic peptide; PBO, placebo.
a Estimated values are presented as the geometric mean ratios.
b Calculated as the average of renal urea clearance and creatinine clearance based on 24-hour urine collection and corresponding serum values.
c Body composition was assessed using 2 distinct bioimpedance spectroscopy devices across study sites. Detailed methodology and device specifications, including changes in 
intracellular and extracellular fluid volumes assessed by bioimpedance devices, are provided in the Supplementary Table 4.
Descriptive statistics are presented as median (interquartile range) to summarize the distribution of continuous variables. Treatment effects are estimated as the difference between 
empagliflozin and placebo using linear mixed-effects models, which included treatment, period, and treatment-by-period interaction as fixed effects, and individual participants as 
random effects. As these models estimate mean differences, the reported descriptive statistics are provided for illustrative purposes only and should not be interpreted as direct 
estimates of treatment effect.
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Hemodynamic and Fluid Balance–related 
Parameters
Empagliflozin treatment showed a nonsignificant 21% 
reduction in NT-proBNP levels versus placebo (ratio: 
0.79; 95% CI: 0.61–1.02; P = 0.07; Table 2). Body weight 
and extracellular fluid volume tended to be lower, with 
mean reductions of 0.6 kg (95% CI: − 1.4 to 0.2; P = 0.12) 
and 0.5 L (95% CI: − 1.1 to 0.2; P = 0.14), respectively. 
No significant differences were seen in blood pressure.

Adverse Events
Overall, adverse events were reported in 17 of 36 
participants (47%) during empagliflozin treatment and 
in 10 of 34 (29%) during placebo treatment (Table 3), 
with no specific event category accounting for the 
difference (Supplementary Table S5). Serious adverse

events occurred in 4 patients (11%) on empagliflozin 
and 2 (6%) on placebo; peritonitis was the most com-
mon, with 3 cases overall. No deaths, diabetic ketoa-
cidosis, hypoglycemia, amputations, genital infections, 
or urinary tract infections were reported. The reasons 
for treatment discontinuation are summarized in 
Table S6. Importantly, most adverse events that led 
to treatment discontinuation were judged to be unre-
lated to the study drug.

DISCUSSION
This randomized crossover trial is the first to evaluate the 
efficacy and safety of an SGLT2 inhibitor in the dialysis 
population. We found that 8 weeks of empagliflozin did 
not significantly increase daily UFV from glucose-based

a b

c

Figure 1. Changes in daily ultrafiltration volume and PET parameters. (a) Estimated mean daily ultrafiltration volume by treatment group 
(empagliflozin or placebo) at each time point, based on a linear mixed-effects model. Error bars indicate 95% CIs. (b) Daily ultrafiltration 
volume from glucose-based peritoneal dialysis solution is shown as mean ± SD at each study visit, stratified by treatment sequence 
(empagliflozin → placebo and placebo → empagliflozin). (c–e) Each parameter is presented as mean ± SD over time by treatment 
sequence (left panels), and as estimated 8-week treatment differences (empagliflozin minus placebo) with 95% CIs (right panels). (c) 
Ultrafiltration volume during PET. (Continued)
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dialysate, as confirmed by PET measures of UFV and 
dialysate glucose concentration. Importantly, although 
efficacy on UFV was not demonstrated, we observed a 
numerically higher incidence of adverse events with 
empagliflozin treatment (47% vs. 29%), highlighting the 
need for careful safety evaluation of SGLT2 inhibitors in 
this population.
Previous data on SGLT2 inhibitors and UFV in PD have 

been limited and conflicting. 8-11 For example, a 
prospective observational study of 50 diabetic patients 
on PD reported increased UFV after 6 months of 
dapagliflozin. 11 Another study found higher UFV 
among patients who continued SGLT2 inhibitors after

starting PD than in those who discontinued. 8 

Conversely, a Spanish retrospective study (n = 16) and 
a single-arm trial (n = 20) found no significant changes 
in UFV or glucose absorption. 9,10 Consistent with these 
latter findings, our randomized trial demonstrated no 
significant impact of empagliflozin on daily UFV, PET-
based UFV, or dialysate glucose concentration.
Several factors may explain the lack of UFV increase 

by empagliflozin. First, systemic administration may not 
achieve therapeutic intraperitoneal concentration suffi-
ciently to inhibit local glucose uptake. Second, SGLT2 
may be less important for peritoneal glucose uptake 
than other transporters, such as SGLT1 and GLUT

d

e

Figure 1. (Continued) (d) Glucose concentration of PET dialysate effluent. (e) Sodium concentration of PET dialysate effluent. CI, confidence 
interval; PET, peritoneal equilibration test.
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isoforms. 16-18 Third, previous studies showing increased 
UFV used longer treatment durations ($ 6 months), 8,11 

suggesting that membrane-related benefits might 
emerge over time. Supporting this, animal studies have 
demonstrated antifibrotic and antiangiogenic effects of

SGLT2 inhibitors, which could preserve membrane 
integrity and sustain UF by preventing long-term 
structural damage. 6,7,19 These findings underscore the 
need to investigate whether SGLT2 inhibitors exert 
structural effects on the peritoneal membrane and 
whether such effects, if any, can translate into 
improved fluid management and clinical outcomes in 
PD patients.
Residual kidney function is a key determinant of 

outcomes in patients on PD. 20 SGLT2 inhibitors exhibit 
renoprotective effects down to estimated glomerular 
filtration rate levels of ∼20 ml/min per 1.73 m 221,22 and 
may help maintain residual kidney function in patients 
on PD. In our study, 8 weeks of empagliflozin had no 
significant effect on creatinine clearance—calculated as 
the mean of urinary urea and creatinine clearances—or 
urine volume. Although empagliflozin modestly 
increased urinary glucose excretion (∼2.7 g/d), this was 
substantially lower than levels observed in nondialysis 
patients, 23 suggesting minimal osmotic diuresis and 
consistent urine output. 24 In addition, the diuretic effect 
of glucosuria may be limited in the context of very low 
glomerular filtration rate. Moreover, even in nondialysis 
populations, glucose-induced diuresis is often mitigated 
within 24 to 48 hours by neuroendocrine compensation, 
including increased antidiuretic hormone and 
aquaporin-2 expression. 24 Notably, empagliflozin

Figure 2. Subgroup analysis of changes in daily ultrafiltration volume with empagliflozin versus placebo. Forest plot displaying subgroup 
analyses of the difference in daily ultrafiltration volume (ml/d) between empagliflozin and placebo. Each subgroup shows the mean change in 
ultrafiltration from baseline to the end of each 8-week treatment period, along with the estimated treatment effect and corresponding 95% CIs. 
A positive value indicates greater ultrafiltration with empagliflozin. *The glucose load was defined as the total glucose amount from all 
glucose-based peritoneal dialysis solutions used at baseline, calculated by multiplying the glucose concentration and the daily volume for each 
solution and summing the results. CI, confidence interval; D/S, dialysate-to-serum concentration ratio; PET, peritoneal equilibration test.

Table 3. Number of patients with adverse events by treatment 
periods
Adverse event Placebo (n � 34) Empagliflozin (n � 36)

Any adverse event 10 (29) 17 (47)

Any serious adverse event a 2 (6) 4 (11)

Peritonitis 1 (3) 2 (6)

Peritoneal catheter tunnel infections 1 (3) 0

Acute pancreatitis 1 (3) 0

Uterine cancer 0 1 (3)

Worsening heart failure 1 (3) 0

Death 0 0

Adverse event of special interest

Amputations 0 0

Diabetic ketoacidosis 0 0

Hypoglycemia 0 0

Hypotension 1 (3) 0

Genital infection 0 0

Urinary tract infection 0 0

Data represent the number of patients (%) who experienced at least one adverse event 
of the specified type, including event types with zero occurrences. Adverse events 
observed during the washout period were categorized and recorded as Period 1 
adverse events. The safety analysis set included all patients who received at least one 
dose of the trial drug. Adverse events were coded using the Medical Dictionary for 
Regulatory Activities (MedDRA), version 27.1.
a One patient experienced multiple serious adverse events, resulting in a total event 
count that exceeded the number of affected patients.
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reduced urinary kidney injury molecule-1 by 15% and 
proteinuria by 40%, though these changes were not 
statistically significant. These favorable trends, similar 
to effects seen in nondialysis patients, 25,26 merit further 
investigation in larger, long-term trials.
Interestingly, empagliflozin treatment was associ-

ated with favorable trends, including reductions in 
NT-proBNP by 21%, body weight by 0.6 kg, and 
extracellular fluid volume by 0.5 L, despite no signif-
icant changes in UFV or urine volume. Similar findings 
were reported in a substudy of EMPA-KIDNEY, where 
empagliflozin 10 mg reduced extracellular water by 
0.52 L (95% CI: − 0.72 to − 0.32) and body weight by 
0.9 kg (95% CI: − 1.4 to − 0.3) over 2 months compared 
with placebo. 27 Although the mechanisms underlying 
these changes remain uncertain, reductions in NT-
proBNP may reflect effects beyond fluid removal, 
including direct myocardial actions via inhibition of 
the sodium–hydrogen exchanger, 28 modulation of 
intracellular ion homeostasis, 29 attenuation of oxida-
tive stress and inflammation, 30 or regulation of auto-
phagy, 31,32 as suggested by preclinical studies.
The tendency toward a higher incidence of adverse 

events during empagliflozin treatment compared with 
placebo (47% vs. 29%) is noteworthy. This numerical 
difference did not appear to be driven by any specific 
category of events. Given the limited sample size and 
the exploratory nature of the study, these findings 
should be interpreted with caution. Nonetheless, they 
underscore the importance of close monitoring of 
safety outcomes, particularly in vulnerable pop-
ulations such as patients on PD.
The strength of our study lies in its rigorous ran-

domized, double-blind, placebo-controlled, crossover 
design, which minimizes bias, enhances reliability, and 
reduces interindividual variability. However, 
several limitations merit consideration. First, although 
the sample size was prospectively calculated to detect a 
90 ml/d difference in UFV with sufficient statistical po-
wer, the absence of a significant effect should not be 
interpreted as conclusive evidence of lack of efficacy, 
especially given the relatively small sample size. Second, 
the patient cohort reflects typical Japanese PD practice, 
characterized by infrequent use of high-concentration 
glucose solutions (e.g., 3.86%) and lower prescribed 
dialysate volumes compared with practices in other 
countries. 33 Consequently, the cumulative glucose load 
was limited, potentially attenuating the observable ef-
fects of SGLT2 inhibitors. However, no favorable trends 
were evident even among patients with higher glucose 
exposure, suggesting that the intervention conferred no 
measurable benefit across both low and high glucose load 
contexts. Third, the biomarker criteria used for entry 
(BNP $ 40 pg/ml or NT-proBNP $ 400 pg/ml) represent

relatively low thresholds for patients on dialysis and may 
have allowed inclusion of participants with less advanced 
disease, unlike conventional heart failure trials that 
typically include patients with more advanced symp-
toms. Lastly, the follow-up duration of 8 weeks per 
treatment period was relatively short, potentially 
restricting our ability to observe longer-term effects on 
peritoneal function and fluid balance.
In this randomized, placebo-controlled trial of pa-

tients on PD, empagliflozin did not improve UFV or 
reduce peritoneal glucose absorption. Although no 
enhancement in fluid removal was observed, favorable 
trends in biomarkers of fluid status, tubular injury, 
and proteinuria were noted. Given the limitations of 
sample size, glucose exposure, and follow-up duration, 
longer-term studies are warranted to assess potential 
delayed or indirect benefits—such as preservation of 
peritoneal membrane integrity, maintenance of resid-
ual kidney function, or cardiovascular protection—in 
this vulnerable population.
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