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Resource Aware Deep Learning Model Partitioning
and Allocation for Inference Task in Clusters With

Heterogeneous Graphics Processing Units
Akishige Ikoma , Yuichi Ohsita , Member, IEEE, and Masayuki Murata , Life Member, IEEE

Abstract—Deep learning (DL) models have rapidly evolved, and
their scales have become larger. Pipeline parallelism is used to
execute a large-scale DL model. In pipeline parallelism, DL models
are partitioned and allocated graphics processing units (GPUs) to
execute each partition. However, to execute numerous DL services
in clusters with heterogeneous GPUs, a DL model partitioning
that considers a specific type and number of GPUs available
and the GPUs allocated for the service is required. We propose
resource aware model partitioning and allocation (RAMPA) to
execute more DL services while satisfying the performance require-
ments. RAMPA minimizes the allocation of important resources
for future DL service execution to avoid inhibiting future DL
service execution. We define the resource allocation cost based on
resource importance. Furthermore, we formulate the impact of
model partitioning and allocated resources on service performance.
We define an optimization problem to minimize resource alloca-
tion costs while satisfying service performance requirements. We
evaluated the effectiveness of RAMPA by simulating the execution
of DL services in clusters with heterogeneous GPUs. The results
demonstrate that more services can be executed while satisfying
performance requirements compared to the conventional method.
RAMPA enabled efficient GPU utilization to deliver many DL
services.

Index Terms—Deep learning (DL) model partitioning, resource
allocation, pipeline parallelism, GPU cluster.

I. INTRODUCTION

IN RECENT cloud computing, several deep learning (DL)
services, such as computer vision, natural language process-

ing, and streaming video processing, have been provided [1].
Accordingly, the DL models used by DL services are rapidly
evolving. Large language models with up to 100 billion param-
eters [2] and vision models with over 10 billion parameters [3]
have emerged.

Received 2 October 2024; revised 6 April 2025; accepted 26 October 2025.
Date of publication 30 October 2025; date of current version 8 December 2025.
This work was supported in part by JST SPRING under Grant JPMJSP2138
and in part by JSPS KAKENHI under Grant JP24K14914. Recommended for
acceptance by D. Dechev. (Corresponding author: Akishige Ikoma.)

Akishige Ikoma was with the Graduate School of Information Sci-
ence and Technology, Osaka University, Suita 565-0871, Japan (e-mail:
a-ikoma@ist.osaka-u.ac.jp).

Yuichi Ohsita is with the D3 Center, The University of Osaka, Toyonaka
560-0043, Japan (e-mail: yuichi.ohsita.cmc@osaka-u.ac.jp).

Masayuki Murata is with the Graduate School of Information Science and
Technology, The University of Osaka, Suita 565-0871, Japan (e-mail: mu-
rata@ist.osaka-u.ac.jp).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TCC.2025.3626959, provided by the authors.

Digital Object Identifier 10.1109/TCC.2025.3626959

To deliver several DL services, cloud service providers con-
struct graphics processing unit (GPU) clusters. In GPU clusters,
multiple GPUs are interconnected through a network. Through
cooperation among multiple GPUs, GPU clusters enable the ex-
ecution of DL services that cannot be executed on a single GPU.
Furthermore, owing to the fast release cycle of GPU products,
GPU clusters are typically equipped with GPUs with various
performances [4]. Hereinafter, this GPU cluster is referred to as
cluster with heterogeneous GPUs.

A cluster with heterogeneous GPUs is typically multi-
tenant [5] and multiple services require simultaneous execution.
However, the demand for cloud DL services is so high that the
number of GPUs in a cluster is insufficient [6]. To make matters
worse, service providers cannot always configure clusters with
plentiful GPUs owing to the rising cost of using GPUs [7]. The
efficient use of GPUs in a cluster with heterogeneous GPUs to
simultaneously execute many DL services is an important issue
to be resolved in the cloud computing field.

During the allocation of execution resources for DL services
in a cluster with heterogeneous GPUs, a GPU with sufficient per-
formance is allocated to satisfy the following three performance
requirements:
� Throughput requirement: Sufficient throughput to com-

plete all requested DL service tasks.
� Execution latency requirement: Completion of service

tasks within an acceptable time for the service users.
� Memory requirement: Sufficient memory capacity of GPU

to execute the DL model.
However, if the memory and computing capacity of the GPUs

in the cluster are insufficient for the size and computational
complexity of the DL model, DL services cannot satisfy the
listed performance requirements. Pipeline parallelism is used to
address this problem [8]. In pipeline parallelism, a DL model is
partitioned, and a GPU is allocated for each partition. Here-
inafter, this partitioning is referred to as the pipeline stage.
Throughput increases because the input data for DL service
can be processed in parallel at each pipeline stage. Furthermore,
larger DL models can be executed via the cooperation of multiple
GPUs. Therefore, pipeline parallelism is crucial to satisfying the
throughput and memory requirements of services that provide
inference for streaming data and inference using a large-scale
DL model.

Two key points need to be considered when executing
many services using pipeline parallelism in a cluster with
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heterogeneous GPUs. First, the impact of pipeline parallelism on
service performance needs to be considered. Although pipeline
parallelism can improve throughput, execution latency increases
owing to communication delays between pipeline stages [9].
Furthermore, when the execution resource for the next pipeline
stage is processed, the input data from the previous stage wait
until the resource becomes available. If the execution latency
of one pipeline stage is excessively large, the overall execution
latency will be larger.

Second, currently available resources in the cluster need to be
considered. If a sufficient number of GPUs with large memory
and/or high computing capacity are available, DL service tasks
can be executed with fewer GPUs, even on larger-scale DL mod-
els. Therefore, if consideration for a specific type and number
of GPUs currently available in GPU clusters is lacking, it can
result in excess GPU allocations for each service. Consequently,
GPUs for executing future services may be rapidly depleted, and
the number of services that can be executed simultaneously is
constrained.

We propose resource aware model partitioning and alloca-
tion(RAMPA). RAMPA aims to minimize the allocation of
important resources for future DL service execution to avoid
inhibiting future DL service execution. We define the resource
allocation cost for GPU and network links in terms of the
resource importance. Furthermore, we formulate the impact of
model partitioning, allocated GPUs, and paths on execution
latency and throughput. Subsequently, to comprehensively con-
sider resource allocation and model partitioning, we define an
optimization problem to minimize the resource allocation costs
while satisfying the service performance requirements. By com-
paring with other model partitioning and allocation methods, we
demonstrate that RAMPA can run additional DL services while
satisfying performance requirements. Furthermore, we compare
the execution performances of the services allocated by RAMPA
with those allocated by the conventional method. Finally, we
investigate whether RAMPA could allocate DL services within
a practical computation time.

The main contributions of this study are as follows:
� We formulate the impact of model partitioning, allocated

GPUs, and paths on execution latency and throughput.
� We define an optimization problem to execute more DL

services simultaneously.
� We demonstrate that RAMPA can run more DL services

while satisfying the performance requirements.
The remainder of this paper is organized as follows: Section II

discusses the related work. Section III provides an overview
of clusters with heterogeneous GPUs. Section IV provides an
overview of RAMPA. Section V validates whether more DL
services can be executed by RAMPA and discusses DL ser-
vice execution performance and computational time. Finally,
Section VI concludes the paper.

II. RELATED WORK

In GPU clusters, pipeline parallelism is used when the mem-
ory and computing capacity of the GPUs are insufficient for
the size and computational complexity of the DL model. In

pipeline parallelism, a DL model is partitioned into multiple
pipeline stages, and each pipeline stage is allocated to a GPU.
Larger-size DL models can be executed by the cooperation of
multiple GPUs. Each pipeline stage is processed in parallel.
The throughput increases because the amount of data that can
be processed simultaneously increases. However, the execution
latency and throughput change based on the process of the DL
model that is executed by the GPU at each pipeline stage. An
appropriate model partitioning and allocation method is required
to exploit pipeline parallelism.

Several model partitioning and allocation methods have been
proposed [8], [9], [10]. Huang et al. proposed a pipeline par-
allelism method, GPipe, to achieve the fast training of large
models [8]. Gpipe maximizes the efficiency of the pipeline
parallelism by minimizing the variance in the estimated compu-
tational cost of each pipeline stage. Narayanan et al. proposed a
pipeline parallelism method, PipeDream, to minimize the large
model training time [10]. PipeDream partitions the DL model to
minimize the maximum execution latency for each pipeline stage
by estimating the execution latency of each pipeline stage and
the communication time between the stages based on the DL
model. Zhuohan et al. proposed a model partitioning method,
AlpaServe, to execute the maximum number of DL services to
satisfy the execution latency requirements of a requested set
of services [9]. AlpaServe partitions DL models to minimize
the maximum execution latency for each pipeline stage and
selects a combination that maximizes the number of services that
satisfy the performance requirements of services. These methods
achieve a high-performance DL model execution. However, they
do not consider the impact of the performance of allocated
resources on service execution performance because they are
targeted for execution on homogeneous architectures. Therefore,
most of the reported methods cannot achieve proper model
partitioning and resource allocation to satisfy the performance
requirements of clusters with heterogeneous GPUs.

A method that considers the impact of the performance of
allocated resources on the service execution performance has
been proposed [11]. Hu et al. proposed a pipeline parallelism
method, PipeEdge, for fast inference of large DL models in a het-
erogeneous device-connected environment [11]. Their method
maximizes the throughput by model partitioning and resource
allocation to minimize the maximum execution latency for each
pipeline stage, considering the resource performance and com-
munication delays.

Conventional methods aim to maximize DL service perfor-
mance requested at a given time and do not consider the re-
sources allocated to future services. Consequently, the number
of executable DL services is limited. We previously proposed
a resource allocation method to execute more services simulta-
neously by considering future service execution [12]. However,
the method does not target DL service execution using pipeline
parallelism in GPU clusters. Thus, a comprehensive consider-
ation of resource allocation and model partitioning to execute
many DL services in a GPU cluster is required.

Fig. 1 shows three examples of DL model partitioning and
allocation in a GPU cluster comprising three GPU servers
with eight GPUs. In each example, three services with long
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Fig. 1. Example of DL model partitioning and allocation.

execution latency requirements using model_A and three ser-
vices with short execution latency requirements using model_B
are allocated. In Fig. 1(a), a DL model is partitioned to maximize
throughput and allocate GPUs within the same GPU server to
minimize execution latency. Consequently, the GPUs within
each server are fragmented, forcing GPUs for newly allocated
services to communicate with longer delays. In Fig. 1(b), the
allocation of GPUs in servers with numerous available resources
is avoided. Under this policy, GPUs on different servers can be
used for services that use model_A, which accepts longer delays.
Consequently, GPUs are not fragmented, and some GPUs are
available for running services with shorter execution latency
requirements. In Fig. 1(c), in addition to the resource allocation
policy in Fig. 1(b), the number of model partitions should be
as low as possible to reduce allocated GPUs. In this policy,
the performance is not maximized; however, the performance
requirements can be satisfied. Consequently, all GPUs on one
server are available. Therefore, additional services can be pro-
vided. Accordingly, model partitioning and resource allocation
must be performed considering the resources to be used for
services and the resource allocation situation to execute more
DL services.

III. CLUSTER WITH HETEROGENEOUS GPUS

A. Overview of Cluster With Heterogeneous GPUs

In this study, it is assumed that DL services are executed in a
GPU cluster with multiple types of GPUs. This cluster comprises
multiple racks equipped with multiple GPU servers. GPUs in
each rack are aggregated using a network switch. Network
switches are connected to each other to form an inter-rack
network. For the flexible cooperation of multiple GPUs, we
assume that any GPUs in the cluster, regardless of the rack or
server, can collaborate to process by abstracting the GPUs. This
abstraction method was proposed by Jin et al. [13].

Fig. 2 shows the DL services execution process. We assume
that service deployment requests are sent to a cluster at any
time. Once a DL service deployment request is sent to the

Fig. 2. Overview of service processing.

cluster, the corresponding DL model is partitioned into mul-
tiple pipeline stages. Subsequently, the execution GPU for each
pipeline stage and the communication paths between GPUs are
allocated. Following resource allocation, the allocated GPUs
load the corresponding model partition into the memory of the
GPU from the storage devices in the GPU cluster. Once these
processes are completed, the DL service is executed. In this
study, it is assumed DL services perform inference processing
on the input data. Following deployment, the data for inference
are sent to the deployed service. Note that each GPU does
not communicate with any storage device during execution.
Therefore, communication with a storage device does not affect
the service execution performance.

B. Information Considered for Model Partitioning and
Allocation

The notations for the information considered for DL model
partitioning and allocation are listed in Table I.

1) GPU Cluster Information: We represent the sets of avail-
able GPUs, network links, and switches as G, L, and S, re-
spectively. For each GPU g ∈ G, we define the floating-point



1108 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 13, NO. 4, OCTOBER-DECEMBER 2025

TABLE I
NOTATION OF THE GPU CLUSTER AND SERVICE EXECUTION REQUEST

operations per second (FLOPS) fg and GPU memory capacity
mg . We define the set of paths that can be established between
any GPU pair as R. Each path is a subset of the set L of network
links. For each network link l ∈ L, we define the bandwidth bl
and the propagation delay tpl . For each switch s ∈ S, we define
the switching processing time tss.

2) DL Service Execution Information: In this study, we rep-
resent a set of execution services as K. For each service, we
denote ak using the DL model used for each service k ∈ K.
As the execution information of a service k ∈ K, operation
graph G(Vak

, Eak
) representing the relationship between the

operations required to execute DL model ak, throughput re-
quirement γk, and execution latency requirement δk is provided.
An operation corresponds to the layer of the DL model and
can be a single pipeline stage in pipeline parallelism. In this
study, we only target inferences using the DL model in the
DL service task. Therefore, the operation graph is constructed
without considering training processes such as backpropagation.
Model partitioning and allocation for training is future work.

In the operation graph of DL model a, each node v ∈ Va

corresponds to the operation, and each edge e ∈ Ea represents
the relationships between operations. For each operation v ∈ Va,
we define the amount of memory consumed to execute the
operation as wv . In addition, we define tgv,g as the execution
latency for executing operation v ∈ Va on GPU g ∈ G. For
each operation graph edge e ∈ Ea, the intermediate data size
transferred between the corresponding operations is defined as
de. These are set by prior profiles. Furthermore, for the operation
graph edge e, we define the source nodevse and target nodevte. We
define the set of paths between operations v, v′ ∈ Va as Rv

a,v,v′ .
This is a subset of the set of operation graph edges.

Fig. 3. Example of mapping of the operation graph to GPU cluster.

C. Mapping the Service Execution Request

To represent DL model partitioning and allocation, we map
the nodes and edges of the operation graph to the GPUs and
paths in the cluster, respectively. Fig. 3 shows the mapping of
the operation graph and the GPU cluster when the DL model
is partitioned by four pipeline stages. Each GPU executes all
the operations mapped to the GPU. The number of GPUs to
which the operation graph nodes are mapped corresponds to the
number of pipeline stages. In addition, communication occurs
between GPUs to send data to the subsequent pipeline stage. To
determine the path in this communication, the mapping between
an operation graph edge and a path between GPUs to which the
operations are mapped.
χ(v, g) denotes the mapping between an operation and a GPU.

When an operation v ∈ Va of model a is executed on GPU g ∈
G, χ(v, g) = 1 and χ(v, g) = 0 otherwise.
υ(e, r) denotes the mapping between an operation graph edge

and the path between GPUs. When an operation graph edge
e ∈ Ea of model a is mapped to a path r ∈ Rg1,g2 between
GPU pairs g1, g2 ∈ G, υ(e, r) = 1 and υ(e, r) = 0 otherwise.

IV. RESOURCE AWARE MODEL PARTITIONING

AND ALLOCATION

In this study, we propose RAMPA to run several DL services
while satisfying performance requirements. RAMPA determines
(1) the number of pipeline stages, (2) GPUs executing each
pipeline stage and the path between GPUs, and (3) operations
corresponding to each pipeline stage. First, we formulate the
impact of model partitioning, allocated GPUs, and paths on
execution latency and throughput. Subsequently, we define the
allocation costs for GPUs and network links in the cluster to
avoid the allocation of resources required for future requested
services. Finally, we define an optimization problem to deter-
mine the model partitioning and allocation that can minimize the
allocation cost while satisfying the performance requirements to
execute numerous DL services simultaneously.

A. Impact of Model Partitioning, Allocated GPUs, and Paths
on Execution Latency and Throughput

We formulate the impact of model partitioning and resource
allocation on throughput and execution latency. In this study, it
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Fig. 4. Overview of pipeline cycle.

is assumed that data in a pipeline stage are output to the next
pipeline stage in such a manner that no data conflicts occur.
Therefore, data are sent to the next stage in a cycle that does
not cause data conflicts. This cycle is referred to as the pipeline
cycle, and we estimate performance based on the pipeline cycle.
An overview of the pipeline cycle is shown in Fig. 4.

1) Throughput of Service: As the pipeline stages can be
processed in parallel, the throughput is the inverse of the pipeline
cycle. Throughput Pk of service k ∈ K is obtained as follows:

Pk =
1

Tu
k

(1)

where Tu
k denotes the pipeline cycle of service k.

2) Execution Latency of Service: The execution latency of
the service is the time from the data input to the first pipeline
stage until the completion of execution in the last pipeline stage.
As data are sent to the next stage of every pipeline cycle, the
execution latency of the service is the sum of the pipeline cycle
and communication delay between the pipeline stages in the flow
of input data. In pipeline parallelism, execution latency depends
on the processing of the pipeline stage with the highest latency.
Therefore, the execution latency of a service is the maximum
value of the execution latency when the input data passes through
the corresponding pipeline stage in each path of the operation
graph. Execution latency T r

k of service k ∈ K is obtained as
follows:

T r
k = max

y∈P
v
f
k
,ve

k

{
Tu
k +

∑
e∈y

∑
r∈R

υ(e, r)
(
Tu
k + T c

ak,e

)}
(2)

where Tu
k denotes the pipeline cycle of service k and T c

ak,e

denotes the communication delay in the path mapped to the
operation graph edge e. vfk and vek represent operations that
receive data first and output data last, respectively.

3) Pipeline Cycle: In pipeline parallelism, the input data
from the previous stage are processed until a GPU is available. In
addition, communication between pipeline stages and pipeline
stage processing can overlap [11]. Therefore, to complete pro-
cessing without data conflicts in pipeline parallelism, where data
transition is only forward, the pipeline cycle is the maximum
execution time of each pipeline stage and the communication
delay between stages. However, if the operation graph has
backward edges and the operations are repeated, the data sent
from a later stage to the previous stage must also be considered.
In this case, the pipeline cycle is the maximum execution latency
of the set of pipeline stages that are to be repeated, in addition

to the time mentioned above. Therefore, pipeline cycle Tu
k for

service k ∈ K is obtained as follows:

Tu
k = max

e∈E

∑
r∈R

υ(e, r)·
⎧⎨
⎩
max

(
T e
ak,vs

e
, T c

ak,e

)
e is forward

max
(
T b
ak,vt

e,v
s
e
, T c

ak,e

)
e is backward

(3)

where T e
ak,vs

e
denotes the execution latency in a pipeline stage

corresponding to operation vse . It is the sum of the execution
latencies of all operations mapped by the GPU. T c

ak,e
denotes

the communication delay in the path mapped to the operation
graph edge e. It is the sum of the time required to obtain the
head of the intermediate output data and the transmission delay.
T b
ak,vt

e,v
s
e

denotes the execution latency from the pipeline stage
corresponding to operation vte to the pipeline stage correspond-
ing to operation vse . It is the sum of the execution latency in
the pipeline stages and the communication delay between the
pipeline stages. Mathematical details are given in supplementary
material.

B. Defining the Optimization Problem

We aim to execute several services simultaneously in a cluster
with heterogeneous GPUs. To achieve this objective, we avoid
allocating important GPUs and network links that may be re-
quired for future service requests. This policy is similar to that
proposed in our previous study [12]. However, the method does
not target DL service execution using pipeline parallelism in
GPU clusters. In this study, we define an optimization prob-
lem for model partitioning and resource allocation to execute
numerous services simultaneously.

1) Allocation Cost: We define the allocation costs for GPUs
and network links in the GPU cluster. The concept of allocation
cost aims to minimize the allocation of GPUs and network
links that are important for executing services while satisfying
performance requirements. Fig. 5 shows examples of inefficient
GPU and path allocation. Inefficient GPU allocation in Fig. 5
leads to the rapid depletion of high-performance GPUs, thereby
limiting the number of services that can be executed. Ineffi-
cient path allocation in Fig. 5 increases communication latency
between GPUs and leads to increased routing constraints. To
prevent such problems in this study, higher costs are imposed
on critical resources necessary for executing services that satisfy
performance requirements.

a) GPU allocation cost: GPUs with higher computational
and memory capacities are more capable of satisfying per-
formance requirements. Furthermore, GPUs in the racks with
more available GPUs have more GPUs in close proximity. This
implies that low-latency communication between pipelines is
probable. Therefore, GPUs with high computing and memory
capacities and several available GPUs in the corresponding rack
are important. We define GPU allocation cost as the product of
these factors. GPU allocation costCg

g for GPU g ∈ G is obtained
as follows:

Cg
g = fg ·mg · qg, (4)
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Fig. 5. Example of inefficient GPU and path allocation.

where qg denotes the number of available GPUs in the rack with
GPU g.

b) Network link allocation cost: Network links used as
paths between important GPUs are essential. Furthermore, the
path length should be short for low-latency communication.
Therefore, the network links, which may be the shortest paths
between important GPU pairs, are essential. This policy is
similar to that in our previously proposed resource allocation
method [12]. We set the network link allocation cost using the
same policy as that used in this study.

The potential of network link l ∈ L to be on the shortest path
for the GPU pair g1, g2 ∈ G is the proportion of the number of
shortest paths through link l to the number of shortest paths for
GPU pair g1, g2. The importance of a GPU pair is the sum of the
costs of the two GPUs divided by the shortest number of hops
between them. The network link allocation cost Cl

l for network
link l ∈ L is obtained as follows:

Cl
l =

∑
g1,g2∈G

{(
Nr

g1,g2(l)

Nr
g1,g2

)
·
(
Cg1 + Cg2

Hg1,g2

)}
(5)

where Nr
g1,g2(l) denotes the number of shortest paths through

link l and Nr
g1,g2 denotes the number of shortest paths for GPU

pair g1, g2. Hg1,g2 denotes the shortest hop between GPU pair
g1, g2 ∈ G.

2) Optimization Problem: We define an optimization prob-
lem that outputs mappings between operations and executing
GPUs and between operation graph edges and paths based
on information on the GPU cluster and DL service execution.
Solving this optimization problem minimizes the allocation of
important GPUs and paths for service execution while satisfying
the performance requirements.

3) Objective: The objective is to minimize the sum of the
allocation costs of GPUs and network links allocated to the DL
service that is,

minimize
∑
g∈G

1∑
v∈Vak

χ(v,g)>0C
g
g+

∑
r∈R

∑
e∈Eak

υ(e, r)
∑
l∈r

Cl
l (6)

where 1∑
v∈Vak

χ(v,g)>0 is one when
∑

v∈Vak
χ(v, g) > 0 and

zero otherwise.
4) Constraints: We define four constants. Details of these

formulations are shown in the supplemental material.
a) Mapping constraint: These operations must be mapped

to an available GPU.
b) Throughput requirement: The throughput of the allo-

cated DL service must be larger than the throughput requirement
of the service.

c) Execution latency requirement: The execution latency
of the allocated DL service must be smaller than the execution
latency requirement of the service.

d) Memory requirement: The total memory consumption
of the operations mapped to the GPU and the data size input to
the pipeline stage corresponding to that GPU must be less than
or equal to the GPU memory capacity.

C. Deriving Solutions to Optimization Problem

To derive the optimization problem defined in Section IV-B,
we searched for mappings between the operation graph nodes
and GPU, operation graph edges, and paths. However, such
mappings are a binomial combinational optimization problem,
and resource allocation based on the binomial combinational
optimization problem is NP-hard [14]. Metaheuristic methods
have been used to address such problems. In this study, we solve
this problem using ant colony optimization (ACO).

ACO is a population-based metaheuristic method in which
multiple agents probabilistically search for solutions. ACO is
flexible and can adapt to changes in the environment [15] to flex-
ibly search for solutions even if the resource utilization status in a
cluster changes. In ACO, the pheromone values are first assigned
to GPUs and network links. The higher the pheromone values of
the GPU and network link, the more likely they are to be selected
by the agent. Once multiple agents probabilistically search for
a solution based on pheromones, an optimal solution is selected
from the searched solutions. Finally, the pheromone value in the
optimal solution is increased. This process is repeated several
times.
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TABLE II
NOTATION OF GPU AND PATH ALLOCATION BASED ON ACO

VNE-AC was proposed for resource mapping using
ACO [14]. However, the method allocates only the shortest rout-
ing paths. In this study, because network link allocation costs are
not directly related to communication delays, the performance
requirements may not be satisfied because of communication
delays between GPUs if a path is allocated based on the shortest
path problem. We arranged and used VNE-AC to use ACO to
select network links. However, any method can be used as long
as the solution can be derived.

In deriving the solution using ACO, we changed the number
of pipeline stages from one to the number of operations and
determined the lowest cost solution for each number of pipeline
stages. Thereafter, we derived an optimal solution by selecting
the lowest cost among these solutions. To search for a solution,
the following steps were performed: (1) GPU search, (2) net-
work link search, (3) performance requirement check, and (4)
pheromone update. If the allocation cost exceeds the current
minimum allocation cost, then the process is rejected to avoid
unnecessary processes. The notations used for ACO are listed
in Table II.

1) GPU Search: During the GPU search, the agent prob-
abilistically selects the GPU corresponding to each pipeline
stage from the available GPUs. The objective is to minimize the
allocation cost; therefore, the allocation probability of GPUs
with a low cost is set high. We define GPU g ∈ G allocation
probability pgg as follows:

pgg =
(τg)

α
(

1
(Cg

g )β

)
∑

x∈G
[
(τx)α

1
(Cg

x)β

] ,
2) Network Link Search: In a network link search, the agent

generates sub-agents to explore the paths between the GPUs
selected in the GPU search. Each sub-agent probabilistically
selects a network link from the source GPU. Subsequently, the
sub-agent probabilistically selects the next network link from
the destination node of the first link. This process is repeated
until the destination GPU is reached. We define network link
l ∈ L and allocation probability pll,n as follows:

pll,n =
(τl)

α 1

(Cl
l
)β

∑
x∈L

[
(τx)α

1

(Cl
x)β

]

3) Performance Requirement Check: In this phase, we check
whether the performance requirements are satisfied when the
DL service is executed by the selected GPUs and paths. First,
we calculate the throughput, execution latency, and memory
consumption for each combination of operations executed at

each pipeline stage. Thereafter, we check whether a combination
exists that satisfies the performance requirements. If no com-
bination satisfies the performance requirements, the process is
rejected.

4) Pheromone Update: Following the performance require-
ment check, pheromones of all GPUs and network links decay
based on the pheromone reduction rate rho. However, only the
pheromones of the GPU and network link in the optimal solu-
tion for each iteration are augmented based on the pheromone
increase rate phi and the allocation cost value. The pheromone
enhancement value h is obtained as follows:

h =
φ∑

g∈Gb C
g
g +

∑
l∈Lb Cl

l

The pheromones τg, τl for GPU g ∈ G and network link l ∈ L
are updated as follows:

τg = ρτg + h, τl = ρτl + h,

V. EVALUATION

We evaluate RAMPA through simulations of a cluster with
heterogeneous GPUs and DL service allocation. Other re-
searchers can access and extend our evaluation using our sim-
ulator published below: https://github.com/a-ikoma/RAMPA_
simulation.

A. Settings

We describe the cluster with heterogeneous GPUs, execution
services, and comparative methods used to evaluate RAMPA.

1) Cluster With Heterogeneous GPUs: We assume a GPU
cluster comprising multiple racks. Each rack contains five GPU
servers with eight GPUs. We evaluate RAMPA in the fol-
lowing four GPU clusters with different GPU and network
performances:
� Base cluster: Neutral GPU cluster for comparison.
� High-bandwidth cluster: GPU cluster with high network

bandwidth.
� High-performance cluster: GPU cluster with many high-

performance GPUs.
� Large cluster: GPU cluster with many GPUs.
A high-bandwidth cluster differs from the base cluster only

in terms of the bandwidth of each network link. In a high-
performance cluster, relatively low-performance GPUs are re-
moved from the base cluster. In all other aspects, the base and
high-performance clusters were identical. In a large cluster,
relatively more GPUs are connected than in the base, high-
bandwidth, and high-performance clusters. In all other aspects,
the base and large clusters were identical. Fig. 6 shows the
base and high-bandwidth clusters, high-performance cluster, and
large cluster. For stable and fast communication between GPUs,
the same type of GPUs in each rack are aggregated using an
optical circuit switch. The optical circuit switches are connected
to each other by an optical fiber to form an inter-rack network.
We assume that the network topology is a two-dimensional torus
topology of 4× 4 with 16 optical circuit switches or 6× 6 with
36 optical circuit switches. For flexible routing, an optical circuit

https://github.com/a-ikoma/RAMPA_simulation
https://github.com/a-ikoma/RAMPA_simulation
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Fig. 6. Evaluation networks.

TABLE III
PARAMETER SETTINGS FOR THE GPU CLUSTER

switch pair is connected to four optical fibers. Connected GPUs
were of the following four types: NVIDIA L4 [16], NVIDIA
V100 [17], NVIDIA A30 [18], and NVIDIA Tesla T4 [19].
Hereinafter, we refer to these as GPU_A, GPU_B, GPU_C,
and GPU_D, respectively. In the high-performance cluster, eight
racks with only GPU_A and GPU_B are connected. GPU_A and
GPU_B performed better than GPU_C and GPU_D in terms of
memory capacity and FLOPS.

The parameters of the GPU clusters used to estimate the
performance and set the allocation costs are listed in Table III.
The bandwidth in the base and high-performance clusters is
10 Gbps, and that in the high-bandwidth cluster is 100 Gbps.
The network link length within a rack is 10 m, and that between
racks is 20 m. The propagation delay of each network link is
0.05 μs and 0.1 μs. By referencing CALIENT’s optical circuit
switch [20], we set the switching delay to 0.03 μs. GPU FLOPS,
memory bandwidth, and memory capacity are based on the data
sheet of each GPU.

2) Execution Service: We assume the following DL services
with different characteristics in throughputs, execution latencies,
and memory requirements:
� Service 1 (High-throughput): Object recognition service

for video streaming using YOLOS [21].

TABLE IV
GENERATION PROBABILITY OF DEPLOYMENT REQUESTS FOR EACH SERVICE

CATEGORY IN EACH ENVIRONMENT

TABLE V
DL MODEL AND PERFORMANCE REQUIREMENTS FOR EACH SERVICE

� Service 2 (High-throughput): Video classification service
for video data using VideoMAE [22].

� Service 3 (Low-delay): Image classification service using
vision transformer [21].

� Service 4 (Low-delay): Fast test generation service using
Gemma2-2b [21].

� Service 5 (Huge model): AI chat service using Gemma2-
27b [21].

� Service 6 (Huge model): AI chat service using Qwen2.5-
32B [23].

These services fall into three categories, High-throughput,
Low-delay, and Huge model, based on the severity of the
performance requirements for the computation complexity. DL
models used in this study were downloaded from Hugging Face.
The throughput, execution latency requirements, and usage DL
model for each service are listed in Table V. Throughput refers to
the number of transactions per second (tps), where one inference
of an input datum is a transaction. The execution latency is
defined as the time required to complete a transaction. In service
1 and 2, one input data sample is set to one frame and one video
data, respectively. In service 3 and 4, one input data sample is set
to one image and 1000 characters of text, respectively. In service
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TABLE VI
PARAMETER SETTINGS FOR EACH DL MODEL

5 and 6, one input data sample is set to 1000 characters of text.
We set the proportion of the number of services to be executed
in the following four environments to evaluate RAMPA:
� Same demand for all services: The proportion of the num-

ber of executed services is balanced.
� High demand for high-throughput services: The proportion

of the number of high-throughput services is high.
� High demand for low-delay services: The proportion of the

number of low-delay services is high.
� High demand for huge model services: The proportion of

the number of huge model services is high.
To simulate each environment, we generate a deployment

request for each service category with a certain probability.
Deployment of services within the same category is random.
The probabilities of each service category are listed in Table IV.

Table VI lists the layer names corresponding to the operations
of each DL model, corresponding to floating-point operations
(FLOPs), amount of memory consumed, and size of the output
data for each operation. The FLOPs and output data sizes are
set by profiling using calflops [24]. Memory consumption is set
to the parameter size of each operation multiplied by 1.2. The
reason for multiplying by 1.2 is to consider the overhead of
the consumed memory. In this evaluation, we set the execution
latency of the operation for each GPU type based on the values
shown in Section III. Execution latency is the sum of FLOPs
divided by GPU FLOPS and memory consumption divided by
GPU memory bandwidth. Therefore, execution latency tgv,g of
operation v in GPU g can be obtained as follows:

tgv,g =
FLOPs(v)

fg
+

dv
Memory_Band(g)

where FLOPs(v) denotes the FLOPS of operation v and
Memory_Band(g) refers to the memory bandwidth of GPU g.
However, more appropriate execution latency estimation meth-
ods may exist, which will be a topic for future studies.

TABLE VII
PARAMETER SETTINGS FOR ACO

TABLE VIII
OBJECTIVE AND CONSIDERATION FOR NUMBER OF MODEL PARTITIONS OF

EACH METHOD

3) Parameter Settings for ACO: We use ACO for GPU and
path allocation. Parameters for ACO are listed in Table VII.

4) Comparative Methods: RAMPA can optimize model par-
titioning and allocation by considering both the importance
of allocated resources and number of allocated resources. To
demonstrate their effectiveness, we compared them using the
following two methods. Main differences between two com-
parative methods and RAMPA exist in terms of objectives and
consideration for number of model partitions. The differences
are presented in Table VIII. We describe these methods based
on Table VIII.

a) PipeEdge (PE): PipeEdge [11] is a model partitioning
and allocation method to maximize throughput by considering
the performance of allocated resources. This method minimizes
the maximum execution latency of each pipeline stage by pref-
erentially selecting high-performance GPUs and low-latency
paths. The number of pipeline stages is fixed for each model
in advance. PipeEdge only considers the performance of the
requested service. Resources required to execute future services
may be depleted.

b) No considering allocated resource number(NCAR):
NCAR is a model partitioning and allocation method modified
from PE in terms of the objective to efficiently use resources.
This method minimizes the use of GPUs and links required for
future services to preserve the resources required for future ser-
vices. However, in this method, the number of model partitions
is fixed for each model in advance. It may unnecessarily allocate
a large number of resources, which may constrain the number
of services executed.

NCAR differs from EP only in terms of their objectives, and
RAMPA and NCAR have the same objective. We demonstrate
the effectiveness of the objective setting of RAMPA by com-
paring NCAR and EP. In addition, RAMPA and NCAR differ
in terms of consideration of the number of model partitions.
We demonstrate the effectiveness of model partitioning and
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TABLE IX
SETTING OF THE NUMBER OF PIPELINE STAGES

allocation considering the number of model partitions by com-
paring RAMPA and NCAR.

5) Number of Pipeline Stages in Comparative Methods: In
the comparison methods, the number of pipeline stages is fixed
for each DL model. We evaluate the comparative methods for
all possible pipeline stage number patterns to demonstrate the
effectiveness of optimizing model partitioning and allocation,
including the number of allocated resources. Therefore, we
set the number of pipeline stages to range from the number
of pipeline stages that can be executed on any GPU in this
evaluation environment to the number of pipeline stages that
can be executed only on a GPU with high performance (GPU_A
and GPU_B). The setting of the number of pipeline stages is
presented in Table IX. We evaluate all the combinations of the
number of pipeline stages for the six types of services for each
comparison method. Therefore, we evaluate each comparison
method in 288 different pipeline stage divisions. Hereinafter, in
the comparison method PE, when the number of pipeline stages
for services 1 to 6 are 2, 3, 2, 4, 8, and 5, respectively, it is
denoted as PE(2,3,2,4,8,5).

B. Metric

We measure the number of services that successfully allocated
resources satisfying the performance requirements to evaluate
the ability of RAMPA to execute more DL services. In the evalu-
ation, we continue to generate service deployment requests until
the allocation of services that satisfy performance requirements
fails. The evaluation terminates when the allocation of a service
that satisfies the performance requirements fails.

C. Number of Services Successfully Allocated Resources That
Satisfy Performance Requirements

In Fig. 7, we show the number of services successfully al-
located that satisfy the performance requirements for RAMPA
and the comparative methods for all combinations of the four
different GPU clusters and four different proportions of executed
services. We measured 288 different combinations of pipeline
stages using comparative methods. The results of the compara-
tive methods are shown in Fig. 7; the best case, worst case, and
average of all the combinations are shown. The numbers above
the bars represent the corresponding number of pipeline stages.

First, we compare NCAR and PE, which differ only in terms
of their objectives. NCAR tends to be capable of allocating
more services. This is because it preserves the required GPUs to
execute the future requested services by avoiding the allocation
of resources used by other services. On the other hand, PE only
considers the performance of the requested service. Resources

required to execute future services may be depleted. The effec-
tiveness of considering the resource utilization of other services
to allocate more services was demonstrated. Subsequently, we
compare RAMPA and NCAR. In all environments, RAMPA
allocates the same or better services to satisfy the performance
requirements compared to the best case of NCAR. Furthermore,
the number of model partitions in the NCAR best case varies in
each case. This means that the best partitioning strategy changes
based on how the service arrives and its environment. To execute
more services, it is necessary to consider the number of resources
allocated.

To verify the model partitioning that was performed by
RAMPA, we show the distribution of the number of pipeline
stages of allocated services in the case of the same demand for
all services in Fig. 8. As shown in Fig. 8, RAMPA partitions
the DL model based on the number of pipeline stages in mul-
tiple patterns. This implies that the suitable model partitioning
strategy changes based on the resource allocation situation. For
the execution of numerous services, the optimization of the
resources used and their number is effective based on the current
resource allocation situation.

D. Comparison of Service Execution Performance

Unlike conventional methods, RAMPA does not aim to maxi-
mize performance. Therefore, it may be inferior to conventional
methods in terms of service execution performance. We compare
the service throughput and execution latency of RAMPA and
PE and discuss the limitations of RAMPA on execution perfor-
mance. Figs. 9 and 10 show the average values of throughput
and execution latency for each service in the case of the same
demand for all services in the base cluster. Error bars represent
the maximum and minimum values. The red lines indicate
the performance requirements. The orange bars in the figure
represent RAMPA, and the other bars represent PE.

RAMPA had a smaller average and minimum throughput
than PE for all combinations of pipeline stage numbers. As
PE aims to maximize throughput, this result is similar to that
of Hu et al. [11]. In execution latency, for services apart from
high-throughput services, PE was superior. By contrast, in the
high-throughput service, PE had a lower execution latency than
RAMPA only when the number of pipeline stages was two. This
is because the execution latency is affected by the communi-
cation delay between pipeline stages. If excess pipeline stages
exist, then the communication delay overhead will increase.
When the model was properly partitioned, RAMPA exhibited
a lower service execution performance than PE. However, the
performance requirements were satisfied. RAMPA is effective
when performance requirements are properly set and perfor-
mance maximization is not required.

E. Computational Time for Model Partitioning and Allocation
by RAMPA

Unlike conventional methods, RAMPA considers resource al-
location and optimizes the number of resources allocated. Owing
to these processes, more computational time is required than in
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Fig. 7. Number of services successfully allocated resources that satisfy performance requirements.
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Fig. 8. Distribution of the number of pipeline stages of allocated services in RAMPA.

Fig. 9. Throughput for each method.

Fig. 10. Execution latency for each method.



IKOMA et al.: RESOURCE AWARE DL MODEL PARTITIONING AND ALLOCATION FOR INFERENCE TASK IN CLUSTERS 1117

conventional methods. The relationship between computational
complexity and computation time is a limitation of RAMPA.

1) Computational Complexity of RAMPA: We verified the
computational complexity of RAMPA by clarifying the com-
putational complexity of each of the processes described in
Section IV-C.

a) GPU search: In GPU search, the GPU corresponding
to each pipeline stage is selected from the available GPUs in the
GPU cluster. Therefore, the GPU selection is repeated for the
number of pipeline stages, and all available GPUs in the cluster
are checked in each iteration. When the number of pipeline
stages is Np and the number of available GPUs is |G|, the
computational complexity is O(Np|G|).

b) Network link search: In this phase, we probabilistically
select the transit link from the source GPU to the destina-
tion GPU. This process is repeated Np − 1 times because it
is performed to establish the path between GPUs when the
number of pipeline stages is Np. In addition, in the worst-case
scenario, a path through all the nodes is established. Therefore,
the computational complexity is O(Np + |G|).

c) Performance requirement check: In this phase, we
check the performance requirements for each combination of
operations executed for each pipeline stage. When the number
of pipeline stages is Np and that of operations is |Va|, the
computational complexity is O(|Va|Np).

d) Pheromone update: Following GPU and path selection,
the pheromones are updated for all GPUs and network links.
Therefore, the computational complexity is O(|G|+ |L|).

The maximum number of pipeline stages is equal to the num-
ber of operations in the model. Therefore, the above process is
repeated from 1 to |Va| at the maximum. Thus, the computational
complexity of RAMPA is O(|Va|2 · (|G|+ |L|+ |S|) + |Va|3).
From this perspective, the computational complexity of RAMPA
depends on the scale of the cluster and DL model.

2) Discussion on Average Computational Time: We inves-
tigate the relationship between the computational complexity
and computation time of RAMPA to discuss the practicality
of RAMPA. RAMPA depends on the scale of the cluster and
DL model. Therefore, we measure the computational time for
the base cluster and large cluster in Fig. 6. In each cluster, the
relationship between the number of operations and the average
computational time for each model is shown in Fig. 11. Error
bars represent 95% confidence interval.

From the results, in services 5 and 6, where the number
of operations exceeds 40, the computational time was greater
than in the other services. However, in the comparison of ser-
vices 5 and 6 and services 3 and 4, more computation time
was spent on services with fewer operations. This result does
not match with the computational complexity O(|Va|2 · (|G|+
|L|+ |S|) + |Va|3). This is because the number of pipeline
stages required to satisfy performance requirements is signif-
icantly constrained. Once the number of pipeline stages exceeds
a certain level, it becomes impossible to satisfy the execution
latency requirements, and the processes are quickly terminated.
Unnecessary resource exploration can be avoided by considering
performance requirements.

The results also demonstrate that it takes more time for large
clusters with more than 1000 GPUs in all services. This result

Fig. 11. Relationship between the number of operations and average compu-
tational time.

matches with the computational complexity O(|Va|2 · (|G|+
|L|+ |S|) + |Va|3). This means that the model partitioning and
allocation take more time in proportion to the scale of the
GPU cluster. However, in the cases evaluated in this study,
the maximum is within approximately 20 s. This is considered
acceptable for the time it takes to deploy the service prior to
execution.

F. Discussion on the Feasibility of RAMPA

We demonstrated that many DL services can be executed
simultaneously by RAMPA. RAMPA has limitations on the
feasibility. RAMPA estimates the impact of resource allocation
and model partitioning on performance such that services can
be executed while satisfying performance requirements. In this
estimation, the time required to execute an operation of that
DL model on each GPU is required as a parameter. This means
that for RAMPA to be effective, these parameters must be set
accurately. Two approaches exist. First is pre-profiling for DL
models and GPUs. If services can be identified in advance,
RAMPA can be utilized by executing DL models on each GPU
beforehand and leveraging their profiles. However, in cloud
computing, services cannot always be predetermined. Therefore,
an alternative approach involves the proposal of performance
estimation methods in a GPU. Estimation methods based on
GPU performance, such as FLOPS and memory bandwidth, and
DL model execution information, such as FLOPs and data con-
sumption, are considered. If an accurate performance estimation
method is proposed, RAMPA will work well for any services. It
is within the scope of our future work.

VI. CONCLUSION

We proposed RAMPA to execute additional DL services while
satisfying the performance requirements in clusters of heteroge-
neous GPUs. RAMPA minimizes the allocation of important
resources for future DL service execution to avoid inhibiting
future DL service execution. We defined the resource allocation
cost for GPU and network links in terms of resource importance.
Furthermore, we formulated the impact of model partitioning,
allocated GPUs, and paths on the execution latency and through-
put. To comprehensively consider resource allocation and model
partitioning, we defined an optimization problem to minimize
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resource allocation costs while satisfying the service perfor-
mance requirements. We evaluated the effectiveness of RAMPA
by simulating the execution of DL services in a cluster of het-
erogeneous GPUs. The results demonstrated that more services
can be executed while satisfying the performance requirements
compared to the conventional method. By RAMPA, we achieved
efficient GPU utilization to deliver many DL services in clusters
with heterogeneous GPUs.

In the future, we plan to introduce a method for estimating
the execution performance of DL services. In this study, we
estimated performance using execution profiles to allocate DL
services. However, obtaining execution information in advance
for tasks is difficult, such as offloading inference tasks using
the DL model. RAMPA is not a performance maximization
method. Therefore, without accurate insights into the execution
performance, allocations may degrade the performance of the
service. Therefore, an estimation of the execution performance
based on GPU performance, executable programs, and used DL
model information is required.
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