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Enhanced twin delayed DDPG with
prioritized experience replay and
Noisy Nets for regional economic
dispatch

Chang Xu%2*“, Naoki Hayashi?, Masahiro Inuiguchi, Wong Jee Keen Raymond?,
Hazlie Mokhlis3 & Hazlee Azil Illias®

Integrating renewable energy into power systems introduces significant challenges in balancing
generation costs and grid stability, necessitating advanced solutions for the Economic Dispatch
Problem (EDP). While classical mathematical and meta-heuristic methods face scalability and
computational efficiency limitations, reinforcement learning (RL) offers a promising alternative

due to its adaptability to high-dimensional and dynamic environments. This study employs Twin
Delayed DDPG (TD3), an enhanced version of Deep Deterministic Policy Gradient (DDPG). TD3
integrates Prioritized Experience Replay (PER) and Noisy Networks (Noisy Nets) for the EDP in a
regional microgrid with photovoltaic (PV) generation. PER improves sample efficiency by prioritizing
high-error transitions, while Noisy Nets enhance exploration through adaptive parameter noise.
Experiments demonstrate that combining these techniques with TD3 achieves a 54.6% reduction in
testing operation cost and a 95.3% decrease in cumulative power unbalance compared to the baseline
TD3. The improvements are validated across various deterministic and stochastic RL models, with
TD3+PER+Noisy Nets outperforming others in cost efficiency and stability. The findings demonstrate
the proposed approach’s capability to optimize microgrid dispatch while providing a scalable and
practical framework for power system control.

The widespread adoption of sensors has enabled the development of smart grids that offer grid operators detailed
insights into power generation and transmission. At the same time, higher penetration of renewable energy
on the generation side introduces new challenges. Output from renewable sources is intermittent and variable
because it depends on natural conditions. A primary operational objective in smart-grid energy management
is to dispatch fuel-based generators efficiently to maximize renewable-energy utilization. Consequently, these
issues are commonly framed as the EDP in power systems.

Solutions to the EDP can be categorized into three main approaches: classical mathematical methods, meta-
heuristic techniques, and Al-based algorithms'?. Classical mathematical methods are the earliest approaches
developed for solving EDPs. These methods are generally applied to simplified problems, where the objective
focuses on generation costs, typically modeled by quadratic functions, and the system features relatively few
constraints’. A representative classical mathematical method based on quadratic programming, which considers
line flow and emission constraints, was proposed in 1998 and tested on a power system with five generation
units and ten buses®. However, classical mathematical methods generally perform poorly when applied to large-
scale and complex power systems. Significant system simplifications are often required to ensure computational
feasibility?, particularly when the system involves many constraints®. As modern power systems continue to
grow in complexity, the computational time required by classical mathematical methods increases exponentially,
rendering them unsuitable for addressing contemporary large-scale optimization problems.

In contrast, meta-heuristic techniques®” offer a promising alternative for optimizing modern complex power
systems®. These methods provide approximate yet acceptable solutions within reasonable computational time
and are applicable across various optimization problems. Among them, population-based meta-heuristics excel
at global exploration and at escaping local optima. The trade-off is higher computational cost and additional
parameter tuning’. For solving EDPs, trajectory-based meta-heuristics have been explored in some studies'?, but
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population-based meta-heuristics are more widely adopted!. In particular, numerous hybrid algorithms have
been proposed to address various dispatch-related challenges. Awadallah et al.'! introduced the Memetic Salp
Swarm Algorithm (MSSA), which integrates the global exploration capability of the Salp Swarm Algorithm
with an adaptive local search strategy to enhance solution accuracy in EDPs. Shaban et al.!? proposed the
Growth Optimizer (GO), a novel metaheuristic inspired by human learning and introspection processes,
which demonstrated superior robustness and outperformed various contemporary algorithms across multiple
benchmark dispatch systems. Similarly, Fahim et al.!* developed a hybrid Jaya and Teaching-Learning-Based
Optimization (TLBO) algorithm that integrates complementary mechanisms from different metaheuristics to
handle non-smooth cost functions and complex operational constraints, thereby improving solution reliability.

Although meta-heuristic methods outperform classical mathematical approaches, the increasing scale of
modern power systems leads to a substantial expansion of the search space, resulting in prolonged computational
times required to obtain satisfactory solutions'*. This limitation becomes even more pronounced when the
dispatch horizon is divided into finer time intervals, as the number of decision variables grows proportionally
with the time step resolution. Similarly, larger system scales, with more distributed generators, storage units,
and network constraints, expand the search space. In addition, meta-heuristic methods often require extensive
parameter tuning and multiple iterations to prevent premature convergence, which increases the computational
burden and limits their practicality for real-time or near-real-time applications.

With advancements in deep learning, RL-based approaches'>!® have been introduced into power system
control'”!®, Compared to meta-heuristic methods, RL-based approaches are more capable of handling high-
dimensional data and are well-suited for online execution due to their rapid decision-making ability based
on the current state!®. Chis et al. * developed an RL-based strategy for electric vehicle (EV) charging. Linear
programming (LP) was first employed to determine the optimal daily charging actions under various scenarios
based on historical datasets, and the Fitted Q-Iteration algorithm?! was subsequently applied to learn the
optimal policy. This approach effectively reduced users’ long-term EV charging costs while simplifying daily
charging decisions by eliminating the need to solve complex linear programming problems each day. Hou et
al. 22 proposed a hybrid approach combining mixed-integer linear programming (MIP) and deep Q-learning
(DQN). After training the DQN model, online execution was enhanced using commercial MIP solvers to ensure
that all operational constraints were strictly enforced, which standard DQN policies alone could not guarantee.
Additionally, Claessens et al. 2* integrated a convolutional neural network (CNN) into the Fitted Q-Iteration
framework to approximate the Q-function, thereby extracting state-time features from thermostatically
controlled loads and reducing electricity costs while achieving near-optimal performance in simulations. A
summary of the above-reviewed EDP research works is presented in Table 1.

Beyond the scope of economic dispatch, reinforcement learning has also been combined with graph-based
and federated frameworks to address challenges in distribution systems. For instance, an unrolled spatiotemporal
graph convolutional network (USGCN) was applied to state estimation and forecasting by capturing renewable-
related spatiotemporal correlations 2% A full-model-free adaptive graph deep deterministic policy gradient
(FAG-DDPG) approach was proposed for multi-terminal soft open point voltage control, leveraging graph
attention to enhance feature extraction and policy learning 2. Furthermore, a prototype federated reinforcement
learning framework with a physics-aware spatiotemporal transformer (STT-PFRL) was introduced for privacy-
preserving and robust voltage regulation under renewable uncertainties 2°. These studies demonstrate the
broader applicability of reinforcement learning and graph-based techniques beyond dispatch problems.

In RL-based power system control, many studies have focused on integrating RL with other algorithms to
improve performance rather than enhancing the RL algorithm structure itself. However, RL algorithms can
be structurally modified to improve performance in control applications. To incorporate RL improvement
techniques into power system control, this study proposes a TD3 controller enhanced with PER and Noisy
Nets to address the EDP problem in regional power grids. PER enhances the sample efficiency of the standard
TD3 model by prioritizing transitions that contribute more significantly to learning, thereby accelerating
convergence and improving overall performance. In parallel, Noisy Nets introduce adaptive exploration by

Category Model Key features Limitations Reference
Classical . . . s .
. . . Suitable for small-scale systems; handles generation cost with Poor scalability; not suitable for complex modern | 5
mathematical | Quadratic programming . R 3
polynomial approximation systems

methods

Memetic salp swarm Combines global exploration of SSA with adaptive local search; Additional computational effort due to 1

algorithm (MSSA) improves convergence and solution accuracy hybridization; requires parameter tuning
Meta- Growth optimizer (GO) Inspired by .human learning and introspection; robust performance Algquthm still new; requires further validation 12
heuristic across multi-scale EDP benchmarks in diverse scenarios
techniques

Jaya and teaching-
learning-based
optimization (TLBO)

Integrates complementary mechanisms from different metaheuristics;
effective for non-smooth cost functions and operational constraints

Complexity of coordination may increase
implementation difficulty

Al-based / RL
methods

Fitted Q-Iteration + LP

Offline training via LP; online decision-making for EV charging

Requires historical data; less generalizable to
unseen scenarios

DQN + MIP

Combines DQN policy learning with strict operational constraint
enforcement via MIP

Online execution depends on commercial
solvers; more computationally intensive

22

CNN + Fitted
Q-Iteration

Learns state-time features for control of thermostatically controlled
loads

Training requires large data; tailored to specific
applications

Table 1. Summary of representative methods for solving economic dispatch problems (EDPs).

Scientific Reports |

(2025) 15:43610

| https://doi.org/10.1038/s41598-025-27320-2

nature portfolio



http://www.nature.com/scientificreports

www.nature.com/scientificreports/

injecting parameterized noise into the network, enabling the agent to explore the action space more effectively
and avoid premature convergence to suboptimal policies. The primary contributions of this study are as follows:

1. Ahybrid reinforcement learning controller is developed by integrating PER and Noisy Nets within TD3. This
structural enhancement improves sample efficiency and adaptive exploration without relying on external
hybridization frameworks or optimization solvers, simplifying deployment.

2. The enhancement modules (PER and Noisy Nets) are modular and transferable across different reinforce-
ment-learning controllers, including DDPG, SAC, and MPO, demonstrating generalizability across deter-
ministic and stochastic policy models in power system control.

3. In aregional power grid environment with realistic pricing, renewable generation, and battery storage, the
proposed controller outperforms multiple baselines in operational cost minimization and power balance,
indicating suitability for near real-time dispatch.

The remainder of this paper is structured as follows: Section II introduces the background of improvement
techniques and control models, including DDPG, SAC, and MPO. Section III presents the structure of the
proposed PER+Noisy Nets TD3 controller. Section IV describes the modeling of the regional grid used as an
environment for the RL controller and details the proposed model’s hyperparameters. Section V discusses
numerical results and comparative analysis. Finally, Section VI provides the conclusions.

RL improvement techniques and controlling models

This section introduces several well-known RL improvement techniques and widely adopted RL-based control
models. Some of these methods are also selected for comparison with the proposed approach in subsequent
sections.

With the advancement of deep learning, RL has gained significant attention, with documented cases of
exceeding human baselines on specific tasks. Unlike supervised learning, which requires manually labeled
datasets and is limited to performing at most as well as the training data, RL enables models to achieve
superhuman performance?’. Hessel et al.?® tested six different DQN variants on 57 Atari 2600 games, with three
of them (DQN+PER, Dueling DQN, and Distributional DQN) achieving higher scores than human experts.
Beyond classic video games, RL has also demonstrated superior performance in more complex scenarios.
Vinyals et al.”” employed a multi-agent RL algorithm with an actor-critic structure to play StarCratft II, achieving
a ranking above 99.8% of officially ranked human players after reaching the highest Grandmaster level. These
results underscore the strong control performance and stability of RL algorithms.

RL improvement techniques

To enhance RL performance, numerous improvement techniques have been proposed. Some of the most notable
include Double Q-learning, PER, Dueling Network Architecture, Multi-step Learning, Distributional RL, and
Noisy Nets. Compared to the standard DQN architecture, these techniques improved performance in Atari
benchmarks. When these enhancements were integrated into a single agent, Rainbow?, it achieved the highest
scores, exceeding human performance by more than a factor of two. This demonstrates that combining multiple
improvements can substantially boost model performance.

The problems addressed in these game-related studies are highly complex. The RL agent must process state
representations composed of pixel-based images, which are influenced by game mechanics and randomness.
Furthermore, the action space in such environments is often high-dimensional, requiring the agent to select from
a vast range of possible actions®. In contrast, RL-based controllers for power systems operate in a significantly
less complex environment. Given this difference in complexity, applying these RL improvement techniques to
power system control problems should be feasible and often sufficient for power-system control problems.

Mathematical formulation of the economic dispatch problem
In the environment adopted in this study, generator fuel costs are represented as convex quadratic functions,
while grid transactions are modeled linearly with sales valued at a discounted coefficient. Penalties on power
unbalance beyond the grid exchange capacity are modeled linearly, and basic operational constraints such as
generator ramping and battery state-of-charge updates are also included.

However, several features reflecting physical operating limits make the formulation of the EDP problem non-
convex. Distributed generators can either be off or operate only within a bounded range, the battery dynamics
involve clipping at the minimum and maximum SOC, and the grid exchange is asymmetric due to capped
transactions, different buy and sell prices, and penalties for excess or shortage. These characteristics introduce
discontinuities and non-smooth dynamics.

As a result, the environment represents the EDP as a non-convex optimization problem with quadratic costs
and piecewise-linear constraints, rather than as a simple convex quadratic program. This complexity motivates
the use of reinforcement learning, which can learn effective dispatch policies offline and then apply them in real
time without repeatedly solving a difficult optimization problem.

RL-based controlling models
DQNs’! introduced neural networks to approximate Q-values in reinforcement learning, enabling effective
control in discrete action spaces. However, DQNs face limitations in handling continuous action problems.

To address this, the actor-critic framework>2 has become a foundational architecture in RL. In this framework,
the actor learns a policy mg(s) to select actions, while the critic estimates the value function Q(s, a) to evaluate
and guide the actor’s updates. Traditional actor-critic methods adopt on-policy learning with stochastic policies,
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where the actor outputs a probability distribution over actions. Based on the type of policy used, actor-critic
models are typically categorized into deterministic and stochastic approaches.

Deterministic policy models

Deep Deterministic Policy Gradient (DDPG)** is a widely used RL algorithm designed for continuous action
spaces. As its name suggests, DDPG employs a deterministic policy, meaning the actor directly outputs a specific
action without sampling. To mitigate training instability in actor-critic architectures, DDPG introduces target
networks to stabilize the critic updates. Additionally, it adopts an experience replay buffer to enable off-policy
learning, improving data efficiency and reducing training costs. However, DDPG suffers from an overestimation
bias in Q-values. Since the critic updates by maximizing the Q-value, network approximation errors or noise
can lead to overestimated Q-values. To address this issue, TD3 was proposed as an improvement over DDPG.

Stochastic policy models

SAC* is a stochastic policy algorithm based on the maximum entropy framework. Unlike conventional RL
algorithms that solely aim to maximize the expected cumulative reward, SAC seeks to optimize both reward
maximization and policy entropy simultaneously. The standard RL objective is to learn a policy that maximizes
the expected cumulative reward:

oo
7" = argmax E Z’ytr(st,at) . (1)

t=0

In contrast, SAC optimizes for an augmented objective function that includes an entropy regularization term:

oo

Tt = argmj}xE Z (Wtr(st,at) +aH (7r(|st))) , (2)

t=0

where the entropy term H (7 (+|s¢)) is defined as
H (n(:|st)) = —Ea~r [logm(alst)] - 3)

In the above formulations, 7 represents the policy and 7™ denotes the optimal policy. The expectation operator
E[] ensures the optimization focuses on the long-term average reward rather than any individual high-reward
instance. ~ is the discount factor, which balances short-term and long-term rewards. r(s¢, a;) represents the
reward function. The entropy term H (7 (+|s;)) measures the action variety of the policy, with a larger entropy
indicating greater exploration. The temperature coefficient « is a tunable hyperparameter that controls the
importance of the entropy term in the objective function. A larger « results in more stochastic policies, whereas
a smaller o leads to more deterministic behavior. During training, « is automatically adjusted to balance
exploration and exploitation.

Compared to TD3, SAC differs primarily in its actor structure. While TD3 employs a deterministic policy
network that directly outputs actions, SAC utilizes a stochastic policy network that outputs an action distribution,
from which actions are sampled using the reparameterization trick. Despite this difference, SAC and TD3 share a
common feature in their critic design. Similar to TD3, SAC employs two independent critic networks to mitigate
the problem of Q-value overestimation.

By incorporating the entropy term into the objective function, SAC enhances exploration without relying
on external noise to introduce action variability. This leads to a more diverse set of actions, thereby improving
overall performance. Additionally, this modification enhances the model’s robustness, as the policy is less likely
to become overly dependent on specific actions.

MPO? is another stochastic policy algorithm inspired by Expectation-Maximization (EM) techniques and
probabilistic inference. Its key feature is constraining policy updates to remain close to the previous policy,
ensuring training stability. MPO decomposes policy optimization into two alternating steps:

1. E-Step: Given state s, sample N actions a; using the current policy, then compute Q-values Q(s, a;) using the
critic. The probabilities of these actions are then adjusted using a SoftMax transformation:

exp (Q(-i;‘%’))

) 4)
N Q(s,aj) (
Zj:l €Xp (TJ>

where the temperature parameter 7 controls the update intensity. A higher  produces smoother updates, while
a lower 7 leads to more aggressive updates.

w(as|s) =

2. M-Step: The policy is updated via weighted maximum likelihood to favor high-Q actions.

By constraining updates through temperature regulation, MPO ensures stable training. However, while this
temperature-based regulation offers improved stability, it also introduces trade-offs. The constraint on policy
updates results in increased computational complexity. This may limit the practical applicability of MPO in
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environments with high-dimensional action spaces. Moreover, the reduced exploration due to temperature
constraints makes the algorithm more susceptible to getting stuck at a local minimum. In such scenarios, the
policy might converge prematurely to suboptimal solutions. This limits the model’s ability to explore a diverse
set of actions and learn a more globally optimal policy.

For EDP in power systems, the complexity is significantly lower than in high-dimensional RL applications.
Moreover, real-world constraints limit the available data for training. Using excessively complex control models
may not necessarily yield better performance. It could lead to unstable or inefficient training. Considering the
complexity of the environment, this study proposes an improved TD3 controller for optimizing the operation of
aregional power grid. The previously discussed DDPG, SAC, and MPO algorithms are employed as benchmarks
to evaluate and compare the performance of the proposed improved TD3 model.

Research methodology

In this study, the combined improvement techniques are introduced into the power system control model to
enhance its performance when addressing the EDP. Two improvement techniques are selected for integration,
namely PER and Noisy Nets. The overall framework of the proposed TD3+PER+Noisy Nets method is illustrated
in Fig. 1. The following subsections provide detailed explanations of each component and the training process.

TD3
TD3% is an enhancement over DDPG and forms the core of the controller design in this study. Compared to
DDPG, TD3 introduces several key improvements:

 Dual Critic Networks TD3 maintains two critic networks simultaneously and computes two Q-values for each
state-action pair. During the update process, the smaller Q-value is selected to mitigate the overestimation
bias that is commonly observed in single-critic architectures. This conservative approach helps ensure that the
estimated Q-values are not overly optimistic.

o Delayed Policy Updates The actor network is updated less frequently than the critic networks. This strategy
guarantees that the critic networks can converge to more accurate Q-value estimates before the actor is up-
dated, thereby promoting training stability.

o Target Policy Smoothing To further stabilize the target Q-value estimation, target policy smoothing is em-
ployed. When calculating the target Q-value, noise is added to the action generated by the target policy net-
work. Specifically, the perturbed action is computed as follows:

a' =7y (s')+n, n~clip(N(0,0),—c,c), (5)

where g/ (s) denotes the action produced by the target policy network for the next state s’, and # is noise
sampled from a Gaussian distribution with mean 0 and standard deviation o, which is then clipped to the
interval [—c, c]. Importantly, this noise is not introduced for the purpose of exploration; rather, it encourages the
critic to consider Q-values over a local neighborhood of actions, thereby promoting a smoother Q function that
is less prone to overestimation.

The selection of TD3 as the primary controller in this study is motivated by its demonstrated stability and
robustness in continuous control tasks. The additional structural improvements in TD3 (especially in stabilizing

Critic Network Actor Network

E ____________________________________________ : :' ___________________ | B Regional Grid
: Q Value i Delay ! i'a; EDP

] i Update! Actor R Environment
E i i Optimizer E

: Critic L Critic : ! J' i

i Network 2 Network 1 ! i Noisy i

: soft : : Network :

| | Update cindats soft update: I !
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! Critic Target Target s ! :

' | Optimizer Critic 2 Critic 1 i ! Target !

E Target L 4 | @ | : E Actor i

' QValue (y) min(qy, q2) : : + noise !
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Fig. 1. The structure of the proposed TD3+PER+Noisy Nets controller.
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the critic network) are critical when combining the controller with other techniques. In particular, the subsequent
integration of PER and Noisy Nets necessitates a robust baseline to ensure that a reliable policy can be obtained.

PER

Prioritized Experience Replay (PER)% is an extension of the conventional Experience Replay mechanism. In
traditional Experience Replay, a replay buffer is used to store transitions, i.e., the state, action, reward, and next
state (s, a,, s’) obtained from interactions with the environment. This allows the RL algorithm to perform
off-policy updates by sampling experiences from the buffer, thereby increasing sample efficiency by reusing past
experiences multiple times without requiring additional environment interactions. Typically, experiences in the
buffer are sampled uniformly with the probability:

1

P(i)= — 6
()= + ©
where N is the capacity of the replay buffer. In contrast, PER assigns a priority to each transition based on its
temporal-difference (TD) error. The sampling probability for a given transition i is defined as:

a

P(i) = Tplpq, (7)
i Pi
where p; = |;| + €, §; denotes the TD error of transition i,  is a small positive constant that ensures every
transition has a non-zero probability of being sampled (even when é; = 0), and a is a hyperparameter that
determines the degree of prioritization. When a = 0, the sampling becomes uniform, larger values of a bias the
sampling process towards transitions with larger TD errors.
Since non-uniform sampling introduces bias (i.e., transitions with high TD errors are sampled more
frequently, potentially reducing sample diversity), importance sampling weights are incorporated into the loss
function to counteract this bias. The importance sampling weight for a transition i is given by:

B
1
we= <Np<>) | ®

where 3 is another hyperparameter that adjusts the extent of the correction. The weighted loss function is then
expressed as:

L= %sz (s —Q(sivai))Q’ ©
i=1

with m being the minibatch size, y; the target value for transition i, and Q(s;, a;) the current Q-value estimate.
PER effectively accelerates learning by focusing on transitions that are more informative for the learning
process. This process is particularly advantageous in settings with high interaction costs. A typical example
is a power-system environment, where operating costs and power-unbalance metrics must be computed
repeatedly. Furthermore, PER is generalizable to any off-policy algorithm utilizing a replay buffer, and its code
implementation is relatively simple.

Noisy Nets
Enhancing exploration in RL is essential for improving the quality of the solutions obtained. A common strategy
is to inject external noise into the policy, for instance, by adding Gaussian noise directly to the deterministic
action output:

a=mn(s)+n, n~N(0,0o°), (10)

where a means the output action and 7 denotes the added noise, and 7 (s) is the original action determined by
the policy based on state s. While this method is straightforward and can facilitate exploration, the fixed noise
intensity may be insufficient in complex environments. To overcome this limitation, Noisy Nets*® are introduced
as a more adaptive approach. As can be seen from Fig. 2, instead of adding noise directly to the action output,
Noisy Nets incorporate noise into the parameters (weights and biases) of the neural network itself. This approach
allows the magnitude of the noise to be learnable, thereby endowing the network with a more powerful and
context-sensitive exploration capability. Consider a standard linear layer represented as:

y=wzr+b, (11)

where w and b denote the weight matrix and bias vector, respectively, and x and y represent the input and output
of the layer. When Noisy Nets are employed, the layer is modified as follows:

y=@ "+ 0e)z+pu’ +o" 0. (12)

In this expression, x* and p® are the deterministic parameters, while o and ¢® represent the learnable
noise scaling factors. The variables £ and £” are random noise samples drawn from a predefined distribution
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Fig. 2. The comparison between Noisy Nets and conventional noise injection.

(typically a Gaussian) and @ denotes element-wise multiplication. By integrating noise directly into the network
parameters, Noisy Nets achieve adaptive exploration that is directly tied to the agent’s interactions with the
environment. In the proposed method, only the actor network is replaced with a Noisy Net architecture, as
applying Noisy Nets to the critic networks was found to introduce training instability.

Training process

Require: Environment &, stochastic policy 7 with noise, replay buffer %
Ensure: Trained actor and critic networks
1: Initial Data Collection:
2: for r =1 to 10,000 do
Collect transition (s;,day, rs,s¢+1) using T with exploration noise
4 Store in replay buffer %
5: end for
6: Off-Policy Training:
7
8
9

w

: for episode = 1 to 450 do
: Sample minibatch from % with priority based on TD errors
: Update critics using TD targets and priorities

10: Update actor policy using policy gradient

11: Soft-update target networks periodically

12: Collect new samples using current policy and add to A
13: Record losses and evaluation metrics

14: Save best model parameters when performance improves
15: end for

16: Post-Training Evaluation

Algorithm 1. Training Framework of this study

This study evaluates four models: TD3, DDPG, SAC, and MPO. All models are based on an actor-critic
architecture, and the fundamental training framework is maintained consistently across experiments, as outlined
in Algorithm 1. The training process comprises several stages:

1. Initial Data Collection Initially, a stochastic policy augmented with extra exploration noise is employed to
interact with the environment. A total of 10,000 steps are collected and stored in the replay buffer.

2. Off-Policy Training Following the initial data collection, off-policy training is conducted over 450 episodes.
At each training iteration, a minibatch of 256 transitions (s, a¢, 7t, St+1) is sampled from the PER buffer
using priority sampling. The sampling probability for each transition is determined by its TD error, so that
transitions with larger errors are more likely to be selected. For each sampled transition, the following update
steps are performed:
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a. Critic Update The target actor network generates a new action for the next state s;11, incorporating ad-
ditional policy noise for robustness. Subsequently, two target critic networks compute the Q-values for
the generated action. The smaller of the two Q-values is selected to reduce the overestimation bias and is
used to calculate the TD target (also known as target Q-value). The current critic networks then compute
their respective Q-values for the sampled transitions, and the TD errors are computed accordingly. These
TD errors inform the update of the critics’ parameters via the loss function. Additionally, the computed
TD errors are used to update the priorities of the corresponding transitions in the PER buffer.

b. Actor Update The actor network, implemented as a Noisy Net, produces an action for the current state s;
. A single critic network then evaluates the Q-value corresponding to this action. The actor’s parameters
are updated in the direction that maximizes the Q-value, following a policy gradient method.

c. Target Network Update After a fixed number of iterations, soft updates are applied to synchronize the tar-
get networks with their corresponding online networks. This step is critical for maintaining the stability
of the training process.

3. Continuous Data Collection and Model Saving As training progresses and the performance of the actor im-
proves, new samples are continuously collected from interactions with the environment and added to the
replay buffer. This process ensures that the buffer always contains up-to-date experiences, which is crucial for
the continual refinement of the model. During each episode, the critic loss, actor loss, and various environ-
mental evaluation metrics are recorded. The parameters of the actor and critic networks are saved when the
operational cost reaches its optimal performance, thereby designating the best model for subsequent testing.

4. Post-Training Evaluation After the completion of training, the best model is evaluated in an independent
testing environment using unseen data. Key performance metrics such as overall operational cost and power
unbalance are calculated to validate the model’s effectiveness in practical applications.

In summary, each component of the proposed method contributes a distinct advantage: TD3 ensures the
stability of the critic during training; PER enhances sample efficiency and accelerates convergence; and Noisy
Nets provide an adaptive mechanism for improved exploration. The synergistic integration of these techniques
results in a high-performance controller that is robust and reliable for continuous control tasks in power system
operations.

Experiment settings

This section details the modeling of the regional grid used as the environment in this study and outlines the
hyperparameters for the TD3 controller and the integrated improvement techniques. The experimental setup
is designed to rigorously evaluate the performance of the RL controllers under realistic operational conditions.

Modeling of regional grid

The environment employed in this study originates from a publicly available framework introduced by Shengren
et al.?2. The original study formulated the problem using a MIP solver to guarantee strict satisfaction of
operational constraints. Although the initial purpose of that framework was constraint-oriented optimization,
it also provides a well-structured setting for evaluating RL controllers under realistic economic dispatch
conditions. Accordingly, the environment was employed in this study with an extended training period of 11
months and a testing period of 1 month.

As can be seen from Fig. 3, the environment comprises two main components: a regional grid and a main
grid. The regional grid consists of a solar farm, three distributed generators with distinct generation parameters, a
battery energy storage system (BESS), and various loads. The BESS is modeled by considering its energy capacity,
state-of-charge (SOC) limits, maximum charging and discharging rates, round-trip efficiency, and a degradation
factor. At each time step, the SOC is updated based on the charging or discharging action while constrained
within the allowable range. This simplified formulation captures the essential operational characteristics of the
BESS while remaining computationally efficient for integration into the reinforcement learning framework. For
the solar farm and loads, simulation data and collected real-world data are used rather than detailed numerical
models. In contrast, the generation cost of the fuel-based generators and the charging/discharging process of
the BESS are represented using mathematical models. The main grid functions as a backup supplier. When the

Regional Grid

Fig. 3. The components of the environment used in the experiments.
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regional grid’s generation is insufficient, electricity is purchased from the main grid; conversely, if the regional
grid produces excess power, it is sold back to the main grid to maintain power balance. Real-time electricity
prices are defined based on historical data. In addition to operational costs, the analysis accounts for power
unbalance. The transmission line linking the main grid and the regional grid has a specified power limit. When
a generation shortfall requires imports beyond this limit, an unbalance penalty is incurred. This penalty is added
to the total operational cost to reflect the higher expense associated with disrupted power balance.

The overall objective in this environment is to minimize the total operational cost of the regional grid.
Achieving this objective requires an optimal strategy for utilizing the BESS to counteract the intermittent nature
of solar power output and for efficiently scheduling power generation among the three fuel generators. The
reward function for the environment is defined as follows:

3

1

re = — m (CBESS + Zl CGi,t + CtE + Cpenalty)a (13)
CPCh _ Pdis
SOCi41 = max (Socmm, min (Socm, SOC; + 77’0*/’7‘1) ) : (14)
2
Ca,, =a; (PGM) +biPg;, +ci, (15)
E _ ptPtN7 PtN<07

“ _{ BpPN, PN >0, (1o
Cpenalty :Punbalance * Kpenalty (17)

where Cgess denotes the operational cost of the BESS (set to 0 in this experiment), CG,, , represents the
generation cost of fuel-based generator ¢ at time ¢ with cost coeflicients a;, b, and ¢;, and C;” accounts for the
revenue from electricity transactions at time ¢ (with p; as the real-time electricity price and 3 set to 0.5 to reflect
the price differential between buying and selling electricity). P is the power transmitted between the main
grid and the regional grid. Cpenalty is the penalty cost associated with power unbalance, with Kpenalty set to 20
(substantially higher than the standard electricity price to emphasize the importance of maintaining balance).
For the BESS, the parameters include the total capacity C, SOC limits SOCmin and SOCmax, maximum
charging and discharging power (P£", P**), and charging and discharging efficiencies (1, 74).

The divisor of 2000 serves as a reward-scaling constant that limits the numerical magnitude of the reward
signal. This value approximates the upper bound of the total daily operating cost in the studied environment and
is used solely to stabilize optimization. Since the reward is defined as the negative total cost, the scaled reward
becomes a negative quantity, typically around —200. The intent of this scaling is not to normalize rewards to
the range [0, 1], but rather to prevent excessively large gradients and to facilitate stable and comparable learning
dynamics across experiments. For further details regarding the operational constraints of the target environment,
please refer to the original work 22,

The test environment used in the experiments has the same structure and parameter settings as the training
environment. The key difference lies in the dataset used: the original study?? utilizes a one-year dataset containing
load demand, electricity price, and PV generation data. In the training environment, only the first 11 months
of this dataset are used for model training, while the test environment is evaluated on the data from the final
month. This separation ensures that the model is assessed on unseen data, providing a robust evaluation of its
generalization ability and real-world applicability. The dispatch problem considered in this study corresponds to
a day-ahead scheduling framework. Each episode covers a 24-hour horizon with an hourly resolution, i.e., the
time interval between decision steps is set to 1 hour.

Hyperparameters selection
The hyperparameters for the RL training process and the PER mechanism are summarized in Table 2a. These
settings are critical to ensuring the rapid convergence and stability of the models under investigation.

This study evaluates multiple models, including the baseline TD3, TD3 augmented with Noisy Nets, TD3
integrated with PER, and TD3 combining both PER and Noisy Nets. Additionally, the study considers DDPG,
SAC, and MPO models enhanced with both PER and Noisy Nets. All models share similar architectural
frameworks and hyperparameter configurations, with key parameters such as Target Step, Max Capacity,
Discount Factor, and Soft Update Factor kept consistent with those reported in the original work?2. The baseline
model, a plain TD3 without any enhancement techniques, serves as the benchmark for performance comparison.

The episode numbers of 300 and 450 were selected based on preliminary experiments, which demonstrated
that the models converged within this range even without the use of PER. Furthermore, incorporating PER
further accelerates convergence. The choice of the number of neurons per hidden layer and the number of
layers was constrained by the computational overhead introduced by Noisy Nets. Since each neuron in a Noisy
Net requires individual noise generation, the network size was limited to maintain reasonable training times
while preserving adequate model capacity for the environment. The learning rate, batch size, and optimizer were
selected following standard practices and demonstrated sufficient effectiveness in experiments, negating the
need for more complex alternatives.

The PER hyperparameters used in this experiment are summarized in Table 2b. These parameters are
configured to maintain a balance between prioritizing high-error transitions and ensuring sufficient sample

Scientific Reports |

(2025) 15:43610 | https://doi.org/10.1038/s41598-025-27320-2 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Parameter ‘ Value ‘ Description

(a) Hyperparameters for the training process

Episode number 300, 450 | The total number of training episodes was set to 450 for TD3 and 300 for the remaining models.

Learning rate le-4 Learning rate used by the optimizer.

Optimizer Adam The Adam optimizer is selected for its robustness, eliminating the need for a more complex alternative.

Mini batch size 256 Number of samples drawn from the replay buffer per update.

Layer number 4-5 Depth of the RL network.

Neuron number per hidden layer | 64 Chosen based on a trade-off between computational efficiency and model performance.

Discount factor () 0.995 Balances immediate and future rewards.

Soft update factor (1) le-2 Controls the smoothness of target network updates to prevent abrupt parameter changes and stabilize the policy network’s output.

(b) Hyperparameters of PER

Max capacity 50,000 | Maximum size of the experience replay buffer; a larger buffer ensures that high-priority samples do not dominate the updates.
Alpha 0.5 Prioritization exponent (a) that controls the influence of the TD error on the sampling probability.

Beta start value 0.4 Initial value of the importance sampling weight (/3), which corrects for the bias introduced by prioritized sampling.

Beta frames 2e6 The number of frames over which £ is linearly increased from the start value to 1.

Target step 1000 Number of samples collected before updating the replay buffer.

Table 2. Hyperparameters for the training process and PER.

diversity. The values for Alpha and the Beta start value (0.5 and 0.4, respectively) are adopted from the
recommended settings in the Rainbow network®®, which have been demonstrated to yield robust outcomes.
During training, 3 is increased gradually from 0.4 to 1 over 2 million frames (as controlled by the Beta Frames
parameter), thereby ensuring that the importance sampling corrections become increasingly effective and
contribute to stabilizing the learning process. Preliminary tests explored alternative combinations of Alpha and
initial Beta value, but none outperformed the default configuration; therefore, the recommended settings were
retained.

For Noisy Nets, the sole hyperparameter is the noise parameter ., which governs the magnitude of the
noise added to the network parameters. In this study, the initial standard deviation for the noise in the Noisy
Linear layers is set to 0.1. This relatively small noise magnitude was selected based on experimental observations
indicating that larger noise levels can adversely affect performance. Specifically, the environment used in this
study is relatively simple. It contains limited inherent randomness and involves fine-grained control of the BESS’s
charging and discharging states. In such an environment, large exploration noise can be detrimental because it
may disrupt the precise control actions required for optimal performance.

For the DDPG model employed in this study, Gaussian exploration noise with a standard deviation of 0.5 is
used. To ensure sustained exploration during training, an exploration rate parameter is implemented; initially,
the exploration rate is set to 1 (ensuring that noise is always added to the action), and it gradually decreases
to 0.3 by the end of training, meaning that 30% of the actions are perturbed by noise. To maintain fairness in
comparison, the TD3 model also incorporates the same Gaussian noise mechanism. In contrast to DDPG, TD3
further integrates policy noise (set to 0.2) and adopts a delayed policy update schedule (with the actor updated
after every two critic updates) to enhance training stability.

For the SAC model, the target entropy is the most critical hyperparameter. While a common default
is —d (where d is the action dimensionality), this study sets the target entropy to —0.25 X d. Preliminary
experiments revealed that setting a smaller target entropy (e.g., —1 or —0.5) promotes excessive exploration,
which is counterproductive in power system control tasks that require precise adjustments. The temperature
parameter for SAC is initially set to 1 and is updated automatically during training.

Finally, for MPO, the hyperparameters include the temperature parameter () and the number of action
samples. To conserve computational resources, the number of action samples is set to 16, which is acceptable
given the relative simplicity of the environment. The temperature parameter 7 is set to 0.2, representing an
aggressive configuration intended to encourage the reuse of high Q-value samples to learn superior policies.
However, experimental results indicate that MPO underperforms relative to algorithms with stronger exploration
mechanisms. This outcome likely reflects MPO’s emphasis on stable updates in high-dimensional settings rather
than on extensive exploration.

Overall, the hyperparameters in this study were selected to facilitate rapid and stable convergence to near-
optimal solutions. Given the complexity of the models and the integration of multiple improvement techniques,
the hyperparameter space is vast, and an exhaustive grid search was impractical under the available computational
resources. The experiments were implemented in Python and conducted on a system equipped with an Intel i9-
10900K processor, 128 GB of RAM, and an NVIDIA RTX 3070 GPU.

Numerical analysis

This section presents a comprehensive numerical analysis of the performance of various RL controllers. Both
the baseline forms and enhanced versions are analyzed, where the enhanced versions refer to RL controllers
integrated with improvement techniques. The results demonstrate the efficacy of integrating RL improvement
techniques into the EDP in power systems and their broad applicability to different off-policy training models.
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Model Training operation cost ($) | Training unbalance (kW) | Testing operation cost ($) | Testing unbalance (kW) | Convergence needed episodes
TD3+Both | 993.69 0 9559.16 35.49 ~200
TD3+PER | 1075.20 1.86 13040.55 151.64 ~ 200
TD3+Noisy | 1227.61 0 17553.63 164.69 ~350
TD3 1660.57 275.05 21074.13 75532 ~350

Table 3. Result comparison between TD3 controllers and its variants.
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— TD3
TD3 + Noisy Nets
TD3 + PER

—— TD3 + Noisy Nets + PER

Actor Loss
fer]

|

© [

a4 ""‘“"“”W‘“"VWMWB

wahaddaf shathda
sy PNl

0 100 200 300 400
Episode

Fig. 4. Actor loss comparison of TD3 variants.

Fairness and reproducibility were ensured by employing a fixed set of 15 random seeds per model, which
mitigated training stochasticity.

Comparison of TD3-based controllers

The performance of the baseline TD3 model is compared with its variants incorporating Noisy Nets, PER, or
both. Table 3 summarizes the key performance metrics, including training operation cost, training unbalance,
testing operation cost, testing unbalance, and the number of episodes required for convergence. The reduction of
actor loss during the training process is illustrated in Fig. 4. A lower actor loss indicates that the policy network
generates actions that align more closely with the critic’s value estimation, thus reducing the discrepancy between
predicted and optimal actions. Consequently, the reduction of actor loss reflects the progressive stabilization of
the policy and serves as evidence of model convergence.

It should be noted that the Training Operation Cost and Training Unbalance are measured at the end of a
series of training episodes, while the Testing Operation Cost and Testing Unbalance represent cumulative values
over the entire test period. In the original study, the total dataset spans one year??. In this study, the training
phase utilizes data from the first 11 months, while the testing phase is conducted on data from the final month.
Evaluating cumulative operational costs over the full 11-month training period would be computationally
prohibitive; therefore, such assessments are deferred to the testing phase to ensure computational efficiency
while maintaining the integrity of performance evaluation.

The reported “Convergence Needed Episodes” is provided as an approximate range. This is due to occasional
instability in the critic’s training process, which can transiently affect the actor’s performance, sometimes
resulting in a sudden increase in the actor’s loss. In some cases, particularly when PER is employed, convergence
can occur as early as 80 episodes; in other instances, the behavior is comparable to that of the plain TD3 model.
Opverall, however, the incorporation of PER consistently accelerates convergence.

A detailed comparison of the data in Table 3 reveals that both improvement techniques, when applied
individually, yield significant enhancements in performance relative to the baseline TD3 model. Specifically,
both training and testing operation costs and unbalance are substantially reduced. Notably, PER is particularly
effective in accelerating convergence and improving performance, an outcome that aligns with findings reported
in the Rainbow literature?>. When PER and Noisy Nets are combined in the TD3 framework, the improvements
are most pronounced: the training operation cost is reduced by 40.2% and the testing operation cost by 54.6%
relative to the baseline. Moreover, the training set achieves a zero unbalance, and the cumulative testing unbalance
is reduced by 95.3%. In this configuration, Noisy Nets enhance the agent’s exploration capabilities, while PER
increases sample utilization through prioritized sampling of high temporal-difference error transitions. Their
combined effect fosters an effective balance between exploration and exploitation, enabling the model to
converge more rapidly and to identify near-global optima in solving the complex EDP.

As shown in Fig. 4, after experiencing an initial period of varying degrees of fluctuation, all TD3 variants
eventually converge during training. Notably, the TD3+PER+Noisy Nets variant, which achieves the best overall
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performance, also exhibits the highest actor loss among all models. While this may seem counterintuitive at
first glance, it is a reasonable outcome. A lower actor loss typically indicates that the actor’s selected actions
are assigned higher Q-values by the critic network. However, when PER is introduced, the critic is trained on
samples with higher TD errors more frequently, making the learning target more complex and potentially less
stable. As a result, the critic provides more challenging feedback to the actor, leading to an increase in actor loss.
This does not imply poorer actor performance; rather, it reflects the increased difficulty of learning under a more
dynamic and informative critic, which can ultimately result in a more effective control policy.

Figure 5 presents the dispatch results of three distributed generation units (DG1-DG3) and the BESS over
the first three days of the testing set. It can be observed that the TD3+PER+Noisy model outperforms the plain
TD3 baseline in balancing load demand and coordinating storage operations.

First, regarding the DG unit outputs, the plain TD3 model exhibits rigid or unstable scheduling patterns. For
instance, DG2 and DG3 remain idle during most periods, causing the system to rely heavily on a single generator
or the BESS, which increases both operational cost and unbalance. By contrast, the TD3+PER+Noisy model
achieves a more flexible allocation, with DG1-DG3 alternately supplying power at different times. This results in
a more balanced dispatch that reduces both cost and system unbalance.

Second, the BESS power and SOC trajectories highlight further differences. Under the plain TD3 model,
charging and discharging events are limited, and SOC remains at relatively low levels, indicating underutilization
of the storage capacity. In contrast, the TD3+PER+Noisy model dynamically adjusts BESS operation in response
toload and PV fluctuations: charging during low-demand periods and discharging during peak demand periods.
The resulting SOC follows a regular cyclical pattern, demonstrating improved peak shaving and valley filling.
This behavior enhances the stabilizing role of storage and ensures reliable operation under load variability.

Opverall, the dispatch results confirm that the TD3+PER+Noisy model not only achieves lower operational
cost and reduced unbalance in numerical terms, but also produces more realistic and practically interpretable

Dispatch Results of DG Units and BESS (3 Days)
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Fig. 5. Dispatch results of DG units and BESS under different models. Illustration of DG1-DG3 and BESS
scheduling in the first three days of the testing set.
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Model Training operation cost ($) | Training unbalance (kW) | Testing operation cost ($) | Testing unbalance (kW)
SAC+Noisy+PER 1180.56 213.80 14370.42 339.54

SAC 1538.84 1.87 16413.88 399.66

Improvements 23.28% - 12.45% 15.04%
DDPG+Noisy+PER | 1907.14 0 20773.47 184.52

DDPG 2147.64 0 21575.91 454.90

Improvements 11.20% - 3.72% 59.44%
MPO+Noisy+PER | 3823.32 166.45 31500.51 1488.39

MPO 4056.81 116.21 38124.18 1740.82

Improvements 5.76% - 17.37% 14.50%

Table 4. Result comparison between RL controllers.
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Fig. 6. Actor loss convergence of DDPG variants.
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Fig. 7. Actor loss convergence of SAC variants.

scheduling strategies. These findings underscore the superiority and application potential of the proposed
approach in solving the economic dispatch problem.

Comparative analysis of RL controllers with enhancement techniques

This study evaluates the generality of the proposed improvement techniques by conducting experiments on
three distinct RL controllers: DDPG, SAC, and MPO. Each controller was evaluated in its baseline configuration
as well as after incorporating Noisy Nets and PER. Table 4 summarizes the performance metrics, including
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Actor Loss Comparison of MPO Variants
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Fig. 8. Actor loss convergence of MPO variants.

training and testing operation costs and system unbalance. The convergence of the actor loss for DDPG, SAC,
and MPO is illustrated in Figs. 6, 7, and 8, respectively.
A detailed analysis of the results for each RL controller is presented in the following subsections.

DDPG with enhancement techniques

DDPG serves as the foundational model for TD3 and is inherently deterministic. As shown in Fig. 6, similar
to TD3, the model converged successfully after experiencing some initial fluctuations during the early stages
of training. The integration of Noisy Nets and PER into DDPG led to a reduction in training operation cost by
11.20% and testing operation cost by 3.72% compared to the baseline DDPG. Notably, the testing unbalance
metric showed a substantial improvement, decreasing by 59.44%. It is also worth emphasizing that both the
original and enhanced DDPG models achieved a training unbalance of 0 kW. This outcome can be attributed to
the deterministic nature of the policy, which enables precise action selection and facilitates effective management
of system unbalance. In general, deterministic models are well-suited for handling such constraints, provided
that the model has sufficient complexity. However, when model capacity is inadequate, even deterministic
policies may face difficulties. In contrast, stochastic policies, which generate action distributions rather than
fixed outputs, often struggle to achieve highly precise control.

Although the improvement in operation cost during testing was less pronounced than in the training phase,
the enhanced model benefited from a more comprehensive state exploration during training. This led to a
marked improvement in the testing unbalance performance, underscoring the importance of robust exploration
in achieving long-term stability.

SAC with enhancement techniques

As a stochastic policy algorithm, SAC demonstrates competitive operational cost performance comparable to
TD3. As shown in Fig. 7, the model converged after passing through an initial dip in actor loss. The negative
values of the actor loss are a result of its definition in SAC and are considered normal. In its baseline configuration,
SAC achieved a lower operation cost than TD3. However, because its policy outputs a probability distribution
over actions, its ability to perform fine-grained control in specific states is limited. This limitation is reflected in
the higher testing unbalance observed with SAC.

The integration of Noisy Nets and PER with SAC resulted in a reduction of the training operation cost
by 23.28% and the testing operation cost by 12.45%. Despite the stochastic policy, the incorporation of these
techniques yielded significant improvements in economic efficiency. It is worth noting that the training
unbalance for the improved SAC model increased relative to the baseline. A possible explanation is that, during
certain episodes, the actor’s stochastic policy might have incidentally produced actions that coincided with
favorable grid conditions, thereby minimizing unbalance. However, such favorable instances are not consistently
reproducible across different episodes or unseen test datasets. Nevertheless, the overall effect of incorporating
Noisy Nets and PER was positive, as evidenced by the reduction in the cumulative unbalance during the testing
period. These findings support the conclusion that the improvement techniques enhance the performance of
stochastic models in terms of both cost reduction and system balance.

Although SAC achieves favorable operational cost performance, its relatively high grid unbalance during
operation limits its suitability as a reliable solver for regional power grid EDP.

MPO with enhancement techniques

As shown in Fig. 8, the actor loss of MPO converged rapidly during training on this EDP environment. MPO is
known for its training stability, especially in high-dimensional action spaces, and consistently converged to an
operation cost of approximately 4000 dollars during training. However, in the context of power system dispatch,
its overall performance in terms of cost efficiency and system unbalance was less competitive compared to other
models. This can be attributed to the design focus of MPO, which emphasizes stable policy updates in complex
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Model | Baseline time (min) | With PER + Noisy Nets (min) | Time increase (%) | Number of episodes
TD3 61.00 85.00 39.34 450
DDPG | 26.25 68.00 159.05 300
SAC 50.67 67.00 32.16 300
MPO |29.33 55.50 89.22 300

Table 5. Comparison of Training time for baseline models and models with PER + Noisy Nets.

environments rather than direct optimization of global performance. Furthermore, as a stochastic policy
method, MPO produces probabilistic action outputs, which can limit its ability to make fine-grained control
adjustments in scenarios where high precision is required.

In the generation dispatch problem for electric power systems, the integration of Noisy Nets and PER into RL
controllers consistently improved performance. Both deterministic and stochastic policy methods experienced
reductions in overall operating costs and enhancements in system balance during testing. Although each
algorithm exhibited different levels of improvement across various performance metrics, the collective evidence
strongly indicates that these improvement techniques contribute positively to the robustness and generalization
capability of RL models when applied to economic dispatch problems.

Among all the methods examined in this study, the deterministic approach, specifically TD3 enhanced
with Noisy Nets and PER, demonstrated the best performance, achieving the lowest operation costs and power
unbalance values in both training and testing environments. This outcome highlights the effectiveness of
combining deterministic policy frameworks with advanced exploration and sampling strategies, particularly in
applications requiring high precision and reliability.

Computational time analysis

Table 5 compares the training time of baseline models with their counterparts enhanced by PER and Noisy
Nets. The results indicate that while these enhancements consistently improve model performance, they also
introduce a noticeable increase in training time. The magnitude of this increase varies across algorithms: DDPG
exhibits the largest increase of approximately 159%, whereas SAC records the smallest at around 32%.

The variation in time overhead can be attributed to differences in algorithmic architecture, sensitivity to
stochastic perturbations, and network update frequency. DDPG, with its relatively simple structure and high
susceptibility to noisy inputs, incurs substantial computational costs when both PER and Noisy Nets are applied.
Conversely, TD3 and SAC incorporate stabilization mechanisms, including target policy smoothing and delayed
policy updates. These mechanisms mitigate the impact of the enhancements, leading to more moderate increases
in training time. The additional computational burden of PER, including priority value computation, sampling
distribution maintenance, and replay buffer updates, affects algorithms to different extents depending on the
efficiency of their implementation and the structure of their replay mechanisms. These factors collectively
explain the observed variation in training time across models.

It should be noted that the reported values reflect single training runs and do not include the extra time
required for hyperparameter tuning. The introduction of PER and Noisy Nets expands the hyperparameter
search space substantially, potentially prolonging the tuning process, especially under constrained computational
resources.

Despite these increases, the proposed method remains practical for power system applications. The
additional training time is within acceptable limits and is justified by the performance gains achieved, making
the approach suitable for scenarios where a balance between solution quality and computational cost is critical.
Furthermore, the inference latency (i.e., the time required for the model to produce a decision, also known as
response time) exhibits no significant variation across different models and environments* and consistently
remains at the millisecond level, which is sufficiently fast. Therefore, the extended training phase does not hinder
the applicability of the method in real-time operational contexts.

Discussion and future research

The numerical results presented above indicate that incorporating RL improvement techniques can improve the
performance of RL controllers for economic dispatch in power systems. Although the environment utilized in
this study is relatively simple (where even the plain TD3 model yields satisfactory solutions), the application of
PER and Noisy Nets, along with careful hyperparameter tuning, brings performance close to global optimality?2.
In this setting, more complex controllers appear to offer limited additional benefits. They also tend to complicate
hyperparameter tuning and increase training time.

A key challenge in this study is the expansion of hyperparameters introduced by the enhancement techniques.
The resulting parameter space is large, making exhaustive grid search impractical. In practice, both academic
and industrial work often fixes most settings to well-established defaults?® and tunes only a small subset that is
most sensitive to performance. Although a systematic tuning framework was not the focus, the chosen settings
follow established RL practice, supporting fairness and reproducibility.

This consideration explains the decision not to include more advanced algorithms such as Rainbow?? and
DreamerV3% in the present experiments. These methods are substantially more complex and are typically
designed for higher-dimensional or perception-heavy tasks, which differ from the EDP formulation studied
here. Their training is also computationally demanding. In practice, effective use often relies on adaptive
hyperparameter tuning or meta-learning procedures; without such support, manual tuning can be slow and
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unreliable. Evaluation of these high-complexity models is deferred to future work when additional computational
resources become available.

Commercial solvers such as CPLEX*' have been widely applied to EDPs through branch-and-bound or
mixed-integer programming formulations. They are capable of producing near-exact solutions in relatively
small-scale or simplified settings. However, their computational burden grows rapidly with the number of
generators, constraints, and time intervals. This makes them less practical for large-scale or real-time applications.
In contrast, the reinforcement learning framework employed in this study avoids repeatedly solving large
optimization problems. Once trained, the controller generates decisions within milliseconds. While solver-based
approaches may deliver slightly higher accuracy in offline conditions, the RL-based method provides superior
adaptability, faster inference speed, and robustness under dynamic operating conditions. These properties are
essential for online power system operation.

Another challenge lies in the fundamental differences between RL environments used in gaming and those in
power system control. In gaming applications, the state space is typically represented by high-dimensional image
frames. In power system scenarios, the state consists of key system parameters computed in real time. As the
scale of power system models increases, the computational cost associated with agent-environment interactions
grows substantially. This is also the reason why additional power system-related parameters, including
CO2 emissions and frequency deviation, were not included in the current experiments. Incorporating these
parameters would significantly increase the computational time required for model-environment interactions.
A practical mitigation is to parallelize the RL environment on multi-core CPU architectures. This approach
reduces the computational burden.

At present, the proposed TD3 model enhanced with PER and Noisy Nets demonstrates satisfactory
performance on the EDP problem within existing regional power grids. In more complex scenarios, such as
regional grids characterized by dynamic pricing and stochastic topologies, retraining the controller for the
new environment is expected to produce effective results. This highlights the adaptability and generalization
potential of the proposed approach across diverse power-system configurations. When the controller is neural
network-based, its capacity should be matched to task complexity. Insufficient capacity risks underfitting,
whereas excessive capacity and weak regularization can lead to overfitting.

Beyond the EDP, future research might extend RL-based controllers to tackle even more challenging
problems, such as stability control in complex power systems, blackout prevention, and management under
extreme conditions. In such scenarios, advanced RL frameworks (e.g., those based on the Rainbow architecture)
may be required to accommodate the diverse constraints and operational conditions present in large-scale
power systems.

Conclusions

This study proposes a novel approach, TD3+PER+Noisy Nets, which integrates RL improvement techniques to
address the EDP in power systems. Unlike methods from past research that combine RL models with external
approaches, such as MIP?, to enhance performance, the proposed pipeline directly refines the RL model’s
workflow through internal architectural modifications. By incorporating Noisy Nets, the agent’s exploration
capability is significantly enhanced, enabling more effective search within the action space. Simultaneously,
the utilization of PER improves sample efficiency and accelerates the training process. Experimental results
demonstrate that the proposed method substantially reduces operational costs while enhancing power balance
during both training and testing phases.

When compared with the baseline plain TD3 model, the TD3+PER+Noisy Nets model achieves a 54.6%
reduction in testing operation cost and a 95.3% reduction in cumulative testing unbalance. Comparative
analyses across various RL models, including both deterministic and stochastic policy methods, further confirm
the general effectiveness of the improvement techniques. Among all evaluated methods, the deterministic
TD3+PER+Noisy Nets model exhibited the best overall performance, achieving the lowest operation cost and
power unbalance in both training and testing environments.

In summary, the proposed method provides an alternative to hybrid approaches by leveraging targeted
improvement techniques to enhance controller performance for specific power system problems. This study not
only establishes a solid theoretical foundation but also offers practical evidence for the successful integration
of RL improvement techniques in solving complex optimization problems in power systems. Future research
should focus on adaptive hyperparameter tuning, parallelized environment simulations, and extending these
techniques to more challenging control tasks, such as stability management and blackout prevention, thereby
paving the way for more robust and efficient RL-based controllers in the energy sector.

Data availability

The datasets and environment analysed during the current study are available in the GitHub repository: https:/
/github.com/EnergyQuantResearch/Optimal-Energy-System-Scheduling-Combining-Mixed-Integer-Program
ming-and-Deep-Reinforcement-Learning.

Received: 26 August 2025; Accepted: 3 November 2025
Published online: 10 December 2025

References
1. Kunya, A. B., Abubakar, A. S. & Yusuf, S. S. Review of economic dispatch in multi-area power system: State-of-the-art and future
prospective. Electric. Power Syst. Res. 217, 109089. https://doi.org/10.1016/j.epsr.2022.109089 (2023).
2. Marzbani, E & Abdelfatah, A. Economic dispatch optimization strategies and problem formulation: A comprehensive review.
Energies 17, 550. https://doi.org/10.3390/en17030550 (2024).

Scientific Reports |

(2025) 15:43610 | https://doi.org/10.1038/s41598-025-27320-2 nature portfolio


https://github.com/EnergyQuantResearch/Optimal-Energy-System-Scheduling-Combining-Mixed-Integer-Programming-and-Deep-Reinforcement-Learning
https://github.com/EnergyQuantResearch/Optimal-Energy-System-Scheduling-Combining-Mixed-Integer-Programming-and-Deep-Reinforcement-Learning
https://github.com/EnergyQuantResearch/Optimal-Energy-System-Scheduling-Combining-Mixed-Integer-Programming-and-Deep-Reinforcement-Learning
https://doi.org/10.1016/j.epsr.2022.109089
https://doi.org/10.3390/en17030550
http://www.nature.com/scientificreports

www.nature.com/scientificreports/

11.
12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.
31.

32.

33.
34.

. Fan, J.-Y. & Zhang, L. Real-time economic dispatch with line flow and emission constraints using quadratic programming. IEEE

Trans. Power Syst. 13, 320-325. https://doi.org/10.1109/59.667345 (1998).

. Parikh, J. & Chattopadhyay, D. A multi-area linear programming approach for analysis of economic operation of the indian power

system. IEEE Trans. Power Syst. 11, 52-58. https://doi.org/10.1109/59.485985 (1996).

. Affijulla, S. & Chauhan, S. A new intelligence solution for power system economic load dispatch. In 2011 10th International

Conference on Environment and Electrical Engineering, 1-5, (2011). https://doi.org/10.1109/EEEIC.2011.5874614

. Aman, M., Jasmon, G., Bakar, A. & Mokhlis, H. A new approach for optimum simultaneous multi-dg distributed generation units

placement and sizing based on maximization of system loadability using HPSO (hybrid particle swarm optimization) algorithm.
Energy 66, 202-215. https://doi.org/10.1016/j.energy.2013.12.037 (2014).

. Kahourzade, S., Mahmoudi, A. & Mokhlis, H. B. A comparative study of multi-objective optimal power flow based on particle

swarm, evolutionary programming, and genetic algorithm. Electric. Eng. 97, 1-12. https://doi.org/10.1007/s00202-014-0307-0
(2015).

. Cho, J.-H., Wang, Y., Chen, I.-R., Chan, K. S. & Swami, A. A survey on modeling and optimizing multi-objective systems. IEEE

Commun. Surv. Tutor. 19, 1867-1901. https://doi.org/10.1109/COMST.2017.2698366 (2017).

. Gendreau, M. & Potvin, J.-Y. Handbook of Metaheuristics 2nd edn. (Springer, New York, 2010).
. Vishwakarma, K. K., Dubey, H. M., Pandit, M. & Panigrahi, B. K. Simulated annealing approach for solving economic load dispatch

problems with valve point loading effects. Int. J. Eng. Sci. Technol. 4, 60-72. https://doi.org/10.4314/ijest.v4i4.7 (2012).
Awadallah, M. A. et al. Memetic salp swarm algorithm for economic load dispatch problems. Sci. Rep. 15, 30539 (2025).

Shaban, A. E., Ismaeel, A. A. K,, Farhan, A, Said, M. & El-Rifaie, A. M. Growth optimizer algorithm for economic load dispatch
problem: Analysis and evaluation. Processes 12, 2593. https://doi.org/10.3390/pr12112593 (2024).

Fahim, K. E., De Silva, L. C., Andiappan, V., Shezan, S. A. & Yassin, H. A novel hybrid algorithm for solving economic load dispatch
in power systems. Int. J. Energy Res. 2024, 8420107 (2024).

Hua, H., Qin, Y., Hao, C. & Cao, J. Optimal energy management strategies for energy internet via deep reinforcement learning
approach. Appl. Energy 239, 598-609. https://doi.org/10.1016/j.apenergy.2019.01.145 (2019).

Radac, M.-B. & Chirla, D.-P. Near real-time online reinforcement learning with synchronous or asynchronous updates. Sci. Rep.
15, 17158. https://doi.org/10.1038/s41598-025-00492-7 (2025).

Cai, M., Xiao, S., Li, J. & Kan, Z. Safe reinforcement learning under temporal logic with reward design and quantum action
selection. Sci. Rep. 13, 1925. https://doi.org/10.1038/s41598-023-28582-4 (2023).

Tightiz, L. & Yoo, J. A robust energy management system for korean green islands project. Sci. Rep. 12, 22005. https://doi.org/10.1
038/s41598-022-25096-3 (2022).

Liu, G, Liu, J. & Liu, A. Mitigating sub-synchronous oscillation using intelligent damping control of dfig based on improved td3
algorithm with knowledge fusion. Sci. Rep. 14, 14692. https://doi.org/10.1038/s41598-024-65372-y (2024).

Zhang, 7., Zhang, D. & Qiu, R. C. Deep reinforcement learning for power system applications: An overview. CSEE J. Power Energy
Syst. 6, 213-225. https://doi.org/10.17775/CSEEJPES.2019.00920 (2020).

Chis, A., Lundén, J. & Koivunen, V. Reinforcement learning-based plug-in electric vehicle charging with forecasted price. IEEE
Trans. Vehicular Technol. 66, 3674-3684. https://doi.org/10.1109/TVT.2016.2603536 (2017).

Riedmiller, M. Neural fitted q iteration - first experiences with a data efficient neural reinforcement learning method. In Lecture
Notes in Computer Science: Machine Learning: ECML 2005 Vol. 3720 (eds Gama, J. et al.) 317-328 (Springer, Berlin, Heidelberg,
2005).

Shengren, H., Vergara, P. P, Salazar Duque, E. M. & Palensky, P. Optimal energy system scheduling using a constraint-aware
reinforcement learning algorithm. Int. J. Electric. Power Energy Syst. 152, 109230. https://doi.org/10.1016/j.ijjepes.2023.109230
(2023).

Claessens, B. J., Vrancx, P. & Ruelens, E. Convolutional neural networks for automatic state-time feature extraction in reinforcement
learning applied to residential load control. IEEE Trans. Smart Grid 9, 3259-3269. https://doi.org/10.1109/TSG.2016.2629450
(2018).

Wu, H., Xu, Z. & Wang, M. Unrolled spatiotemporal graph convolutional network for distribution system state estimation and
forecasting. IEEE Trans. Sustain. Energy 14, 297-308. https://doi.org/10.1109/TSTE.2022.3211706 (2023).

Wu, H., Xu, Z., Wang, M. & Jia, Y. Full-model-free adaptive graph deep deterministic policy gradient model for multi-terminal soft
open point voltage control in distribution systems. J. Modern Power Syst. Clean Energy 12, 1893-1904. https://doi.org/10.35833/M
PCE.2024.000177 (2024).

Wu, H. & Xu, Z. Prototype federated reinforcement learning for voltage regulation in distribution systems with physics-aware
spatial-temporal graph perception. IEEE Trans. Sustain. Energy https://doi.org/10.1109/TSTE.2025.3581286 (2025).

Retzlaff, C. O. et al. Human-in-the-loop reinforcement learning: A survey and position on requirements, challenges, and
opportunities. J. Artif. Intell. Res. 79, 359-415. https://doi.org/10.1613/jair.1.15348 (2024).

Hessel, M. et al. Rainbow: Combining improvements in deep reinforcement learning. In Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 32, https://doi.org/10.1609/aaai.v32i1.11796(2018).

Vinyals, O. et al. Grandmaster level in starcraft ii using multi-agent reinforcement learning. Nature 575, 350-354. https://doi.org/
10.1038/541586-019-1724-z (2019).

Mnih, V. et al. Playing atari with deep reinforcement learning (2013). ArXiv preprint arXiv:1312.5602

Mnih, V. et al. Human-level control through deep reinforcement learning. Nature 518, 529-533. https://doi.org/10.1038/nature14
236 (2015).

Grondman, I, Busoniu, L., Lopes, G. A. D. & Babuska, R. A survey of actor-critic reinforcement learning: Standard and natural
policy gradients. IEEE Trans. Syst., Man, Cyber., Part C (Appl. Rev.) 42, 1291-1307. https://doi.org/10.1109/TSMCC.2012.2218595
(2012).

Lillicrap, T. P. et al. Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971 (2015).

Haarnoja, T., Zhou, A., Abbeel, P. & Levine, S. Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a
stochastic actor. In Proceedings of the 35th International Conference on Machine Learning, 1861-1870, (PMLR, 2018). https://doi.o
rg/10.48550/arXiv.1801.01290

. Abdolmaleki, A. et al. Maximum a posteriori policy optimisation (2018). ArXiv preprint arXiv:1806.06920
. Fujimoto, S., Hoof, H. & Meger, D. Addressing function approximation error in actor-critic methods. In Proceedings of the 35th

International Conference on Machine Learning, 1587-1596, (PMLR, 2018). https://doi.org/10.48550/arXiv.1802.09477

. Schaul, T,, Quan, J., Antonoglou, I. & Silver, D. Prioritized experience replay (2016). arXiv:1511.05952.

. Fortunato, M. et al. Noisy networks for exploration (2019). arXiv:1706.10295.

. Smirnov, I. & Gu, S. Rlbenchnet: The right network for the right reinforcement learning task (2025). arXiv:2505.15040.

. Hafner, D., Pasukonis, J., Ba, J. & Lillicrap, T. Mastering diverse domains through world models (2024). arXiv:2301.04104.
. Cplex, I. 1. V12. 1: User’s manual for cplex. Int. Bus. Mach. Corporat. 46, 157 (2009).

Author contributions

C.X. conceived the experiments, conducted the experiments, analysed the results, and wrote the manuscript.
N.H. and M.L. contributed to the experimental design and reviewed the manuscript. WJK.R., H.B.M., and
H.A.B.IL reviewed and revised the manuscript. All authors approved the final version of the manuscript.

Scientific Reports |

(2025) 15:43610 | https://doi.org/10.1038/s41598-025-27320-2 nature portfolio


https://doi.org/10.1109/59.667345
https://doi.org/10.1109/59.485985
https://doi.org/10.1109/EEEIC.2011.5874614
https://doi.org/10.1016/j.energy.2013.12.037
https://doi.org/10.1007/s00202-014-0307-0
https://doi.org/10.1109/COMST.2017.2698366
https://doi.org/10.4314/ijest.v4i4.7
https://doi.org/10.3390/pr12112593
https://doi.org/10.1016/j.apenergy.2019.01.145
https://doi.org/10.1038/s41598-025-00492-7
https://doi.org/10.1038/s41598-023-28582-4
https://doi.org/10.1038/s41598-022-25096-3
https://doi.org/10.1038/s41598-022-25096-3
https://doi.org/10.1038/s41598-024-65372-y
https://doi.org/10.17775/CSEEJPES.2019.00920
https://doi.org/10.1109/TVT.2016.2603536
https://doi.org/10.1016/j.ijepes.2023.109230
https://doi.org/10.1109/TSG.2016.2629450
https://doi.org/10.1109/TSTE.2022.3211706
https://doi.org/10.35833/MPCE.2024.000177
https://doi.org/10.35833/MPCE.2024.000177
https://doi.org/10.1109/TSTE.2025.3581286
https://doi.org/10.1613/jair.1.15348
https://doi.org/10.1609/aaai.v32i1.11796
https://doi.org/10.1038/s41586-019-1724-z
https://doi.org/10.1038/s41586-019-1724-z
http://arxiv.org/abs/1312.5602
https://doi.org/10.1038/nature14236
https://doi.org/10.1038/nature14236
https://doi.org/10.1109/TSMCC.2012.2218595
http://arxiv.org/abs/1509.02971
https://doi.org/10.48550/arXiv.1801.01290
https://doi.org/10.48550/arXiv.1801.01290
http://arxiv.org/abs/1806.06920
https://doi.org/10.48550/arXiv.1802.09477
http://arxiv.org/abs/1511.05952
http://arxiv.org/abs/1706.10295
http://arxiv.org/abs/2505.15040
http://arxiv.org/abs/2301.04104
http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Funding
This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-
profit sectors.

Declarations

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to C.X.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives
4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide
a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have
permission under this licence to share adapted material derived from this article or parts of it. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence
and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommo
ns.org/licenses/by-nc-nd/4.0/.

© The Author(s) 2025

Scientific Reports |

(2025) 15:43610 | https://doi.org/10.1038/s41598-025-27320-2 nature portfolio


http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.nature.com/scientificreports

	﻿Enhanced twin delayed DDPG with prioritized experience replay and Noisy Nets for regional economic dispatch
	﻿RL improvement techniques and controlling models
	﻿RL improvement techniques
	﻿Mathematical formulation of the economic dispatch problem
	﻿RL-based controlling models
	﻿Deterministic policy models
	﻿Stochastic policy models


	﻿Research methodology
	﻿TD3
	﻿PER
	﻿Noisy Nets
	﻿Training process

	﻿Experiment settings
	﻿Modeling of regional grid
	﻿Hyperparameters selection

	﻿Numerical analysis
	﻿Comparison of TD3-based controllers
	﻿Comparative analysis of RL controllers with enhancement techniques
	﻿DDPG with enhancement techniques
	﻿SAC with enhancement techniques
	﻿MPO with enhancement techniques


	﻿Computational time analysis
	﻿Discussion and future research
	﻿Conclusions
	﻿References


