
Title
Domain-adaptive semi-supervised learning for
efficient rare pathological lesion detection
with minimal annotation

Author(s) Matsui, Isao; Matsumoto, Ayumi; Imai, Atsuhiro
et al.

Citation npj Digital Medicine. 2025, 8, p. 778

Version Type VoR

URL https://hdl.handle.net/11094/103691

rights
This article is licensed under a Creative
Commons Attribution-NonCommercial-NoDerivatives
4.0 International License.

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka



npj | digitalmedicine Article
Published in partnership with Seoul National University Bundang Hospital

https://doi.org/10.1038/s41746-025-02160-6

Domain-adaptive semi-supervised
learning for efficient rare pathological
lesion detection with minimal annotation

Check for updates
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Yasuyuki Nagasawa15, Keiji Fujimoto16, Yuka Kurokawa17, Sawako Kato18, Ryohei Kaseda19,
Masahiro Koizumi20, Yasuo Kusunoki21, Masaki Ohya22, Yoshimasa Kawazoe23, Hiroyuki Abe24,
Yuta Matsukuma25, Takaaki Kosugi26, Yoshiyasu Ueda27, Naohiko Fujii28, Masanobu Takeji21,
Akira Suzuki29, Katsuyuki Nagatoya30, Kazumasa Oka31, Yutaka Ando32, Masaaki Izumi33,
Toshiyuki Komiya34, Tatsuo Tsukamoto35, Imari Mimura36, Takahiro Kuragano37, Toshiaki Nakano25,
Kazuhiko Tsuruya26, Yasuhiko Ito12, Tetsuo Minamino9, Osamu Yamaguchi13, Suguru Yamamoto19,
Hirotaka Komaba20, Kengo Furuichi16, Kei Fukami17, Shin-ichi Araki38, Takao Masaki39, Naotake Tsuboi40,
Hitoshi Yokoyama16, Akira Shimizu41, Tetsuo Ushiku24, Shoichi Maruyama18, Motoko Yanagita7,42,
Masaomi Nangaku36, Ryohei Yamamoto43, Kazunori Inoue1 & Yoshitaka Isaka1,3

Artificial intelligence for rare pathological lesion detection faces dual challenges: expert annotation
scarcity and domain shifts across institutions. Using multi-institutional kidney biopsies from 22
hospitals with 3 scanner types (NDPI, VSI, SVS), we demonstrate that model performance decreases
dramatically across domains,with up to70.3%reduction indetectionprecision for rare lesions suchas
crescents and segmental sclerosis (comprising only 2-3% of annotations). We present an approach
integrating semi-supervised learning with residual CycleGAN-based domain adaptation, reducing
mean Fréchet inception distance between institutions from 55.9 to 20.2 while preserving diagnostic
morphology.We identified context-dependent optimal strategies: semi-supervised learningwith 50%
confidence threshold excelled in same-hospital scenarios (15.2-17.7% improvement for rare lesions),
while our combined GAN-Semi-Supervised approach demonstrated superior performance in cross-
scanner scenarios between NDPI and VSI formats (up to 63.4% improvement for crescents). This
methodology enables robust performance across diverse healthcare settings with minimal expert
annotation.

Histopathological examination remains the gold standard for diagnosing
numerous diseases. However, this critical process faces significant chal-
lenges, including interobserver variability and time-intensive analysis1,2.
Although artificial intelligence (AI) has transformed medical imaging,
pathology lags behind radiology in terms of clinical AI implementation,
with Food and Drug Administration (FDA)-approved pathology systems
predominantly limited to specific applications3. This disparity stems from
two critical challenges: the extensive annotation burden in medical ima-
ging, which is particularly pronounced in pathology requiring specialized
expertise, and the substantial domain shifts unique to pathology caused by

inter-institutional variations in staining protocols and scanning
equipment4.

Semi-supervised learning offers a promising solution to annotation
constraints by leveraging both labeled and unlabeled data through con-
sistency regularization and pseudo-labeling5–9. However, these methods
have primarily been validated on datasets with balanced class distributions.
Rare pathological findings typically comprise only 2–3% of data, yet they
often indicate severe diseases that require immediate intervention. This
extreme class imbalance significantly inhibits reliable pseudo-labeling5,6,10.
Concurrently, domain shift across institutions significantly affects model
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performance in multicenter pathology studies4,11,12. Cycle-consistent gen-
erative adversarial networks (CycleGANs) have emerged as a promising
approachbywhich to address these variations throughunsupervised image-
to-image translation13–15. However, recent studies have demonstrated that
conventional CycleGANs may inadvertently alter critical morphological
features during transformation, particularly in fine-grained structures
relevant to diagnosis, andmay thereby compromise diagnostic accuracy16–18.

Recent advances in foundation models and self-supervised learning
have shown potential in medical imaging19–21. Our previous work on self-
supervised learning for cropped glomerular image classification demon-
strated improved performance with minimal annotations22. While these
approaches offer powerful representations, they encounter challenges in
pathological lesion detection: precise spatial localization requirements favor
specialized object detection architectures over global representation
models23, computational demands of large foundation models limit clinical
practicality24, and extreme class imbalance requires specific handling
mechanisms that are not inherently addressed by general-purpose models.

In this study, we investigated the effectiveness of combining semi-
supervised learning withmodified CycleGAN-based data augmentation for
the detection of rare pathological lesions, using glomerular lesions in kidney
biopsy images as test cases. We selected You Only Look Once version 8
(YOLOv8) as our detection framework owing to three key advantages: its
lightweight architecture enables deployment on standard clinical hardware,
its object detection-specific design is optimized for precise localization, and
its distributed focal loss directly addresses class imbalance challenges. These
characteristics make YOLOv8 particularly suitable for rare lesion detection
while allowing the seamless integration of our semi-supervised and domain
adaptation techniques.

Our investigation aimed to (1) evaluate semi-supervised learning with
YOLOv8 for rare lesion detection, (2) explore the benefits of combining this
approach with residual CycleGAN-based domain adaptation, and (3)
identify optimal training strategies that minimize annotation burden while
maintaining robust performance across diverse clinical settings. Though
demonstrated on renal pathology, our approach addresses universal chal-
lenges in pathological image analysis and offers broadly applicable metho-
dological innovations that complement recent advances in medical
imaging AI.

Results
Study population and dataset characteristics
Both the development and test cohorts predominantly included patients
with chronic kidney disease (CKD) stages G2-3bA3, encompassing a broad
spectrum of renal pathologies (Supplementary Tables 1 and 2).

The image dataset, acquired from 22 distinct medical institutions,
comprised 3 file formats (NDPI, VSI, and SVS) corresponding to different
slide scanners, with whole slide image (WSI) counts per institution ranging
from 50 to 249 in the development cohort and from 42 to 221 in the test
cohort (Table 1). Annotations in the PAS-stained images classify the glo-
merular structures into four categories: glomeruli (excluding global
sclerosis, crescents, and segmental sclerosis), global sclerosis, crescents, and
segmental sclerosis (Supplementary Fig. 1). Global sclerosis represented
approximately 16% of all annotations, whereas crescent and segmental
sclerosis were relatively rare, constituting only 2–3%of the total annotations
(Table 1).

A feature analysis of the cropped glomerular images revealed that
scanner type was the primary factor contributing to image variability, with
distinct clustering patterns observed across hospitals (Fig. 1a and Supple-
mentary Fig. 2). In the feature space, globally sclerotic glomeruli demon-
strated relatively cohesive distribution patterns, whereas crescent and
segmental scleroses exhibited more dispersed distributions with partial
clustering (Fig. 1a). The quantification of domain shifts using the Fréchet
inception distance (FID) confirmed these visual observations, with a high
mean FID value of 55.9 across all hospital pairs (Fig. 1b). A single hospital
using the SVS format exhibited substantial domain shifts, particularly when
comparedwithVSI-format hospitals (Fig. 1b). These findings highlight that

the detection of crescents and segmental sclerosis presents particularly
challenging tasks across different scanner types.

Development of baseline supervised models and their
performance
For model training and evaluation, the WSIs were divided into non-
overlapping patches of three sizes (Supplementary Fig. 3 and Supplemen-
tary Table 3). We strategically selected three representative hospitals to
develop baseline supervised models and efficiently optimize the hyper-
parameters. Hospitals 02 (NDPI format), 06 (VSI format), and 22 (SVS
format, sole provider) were selected as representatives of each scanner file
format. While Hospitals 01 and 02 had similar numbers of WSIs, Hospital
02 was selected for its higher number of annotated lesions, and Hospital 06
for its substantial data volume and because it is the lead authors’ affiliated
institution.

Initial supervised learning was performed independently on data from
each selected hospital. The hospital data was divided at the WSI level into
development and test sets in approximately equal proportions (Table 1 and
Supplementary Fig. 4). The development set was further split at the WSI
level by performing five iterations of random training-validation splits with
a 2:1 ratio. Higher proportions were allocated to the validation and test sets
to ensure adequate representation of rare glomerular lesions. We assessed
the model robustness across three distinct test categories: Category 1 (Cat.
1), comprising images from the same hospital but not used during model
development; Category 2 (Cat. 2) comprising images from different hos-
pitals using identical scanner types, and Category 3 (Cat. 3), comprising
images obtained using different scanner types (Supplementary Fig. 4a).
Category 3 was further subdivided as follows. For the NDPI/VSI-based
models, Cat. 3-1 represents a cross-evaluation between these formats, and
Cat. 3-2 describes the evaluation of the SVSdata. For the SVS-basedmodels,
Cat. 3-1 and Cat. 3-2 represent the evaluations of the NDPI and VSI data,
respectively.

The baseline models demonstrated lower detection performance for
rare lesions compared to common ones, with AP50 values for crescents and
segmental sclerosis class consistently lower than those for glomerulus class
across all test categories (Table 2). Additionally, these models exhibited
significant performance degradation (indicated by bold values in Table 2)
when tested on images from different hospitals, even those using identical
scanner types. This cross-institutional performance decline was particularly
pronounced for rare lesions when evaluating across different scanner types,
with crescent detection AP50 showing a dramatic 70.3% reduction (from
0.64 to 0.19, calculated as 1–(0.19/0.64)) when the VSI-derived Hospital 06
model was evaluated on NDPI format images. Similar substantial degra-
dation was observed for segmental sclerosis detection, highlighting the
pronounced impact of domain shift on rare lesion identification.

Optimization of baseline supervised models before semi-
supervised learning
To optimize the model performance before implementing semi-supervised
learning, we first evaluated the detection performance for different patch
sizes. Using large patch predictions as a reference, medium patches showed
comparable performance,whereas small patches demonstrated significantly
decreased performance (Supplementary Table 4). We then tested whether
restricting model training to only large and medium patches (LM models)
would improve efficiency, but we found no significant improvement over
models trained with all patch sizes and occasionally observed decreased
performance (Supplementary Table 5). Consequently, we retained all patch
sizes formodel trainingwhile restricting the evaluation to large andmedium
patches.

We also evaluated three augmentation strategies that target patches
containing rare lesions (crescent or segmental sclerosis). Contrary to
expectations, none of these strategies improved the detection performance
compared with non-augmented models, and some even decreased perfor-
mance (Supplementary Table 6). Additionally, benchmark comparison
with a pathology foundation model revealed that our standard YOLOv8
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Fig. 1 | Visualization of glomerular features from PAS-stained kidney biopsy
images. a t-distributed stochastic neighbor embedding (t-SNE) plots showing the
distribution of features extracted from glomerular images using ImageNet-
pretrained ResNet50. Top row: distribution by hospital source (left) and develop-
ment/test split (right). Bottom row: distribution by WSI scanner type (left) and
pathological annotation (right). Points representing crescent and segmental

sclerosis lesions are enlarged for better visibility owing to their rarity. b Heatmap
visualization of the Fréchet inception distance (FID) among hospitals, with a high
mean FID value of 55.9 across all hospital pairs. WSI whole slide image, NDPI
Hamamatsu Photonics file format, VSI Evident file format, SVS Leica file format,
Hosp hospital.
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approach consistently outperformed UNI-based models across evaluation
scenarios (Supplementary Table 7)25. Based on these comprehensive find-
ings, models trained with all patch sizes and without specific augmentation
(Baseline YOLO) were selected as the foundation for subsequent semi-
supervised learning experiments.

Semi-supervised learning parameter optimization and perfor-
mance evaluation
Our semi-supervised approach involved generating pseudo-labels for
images from other hospitals in the development cohort using Baseline
YOLO and then combining high-confidence pseudo-labeled patches with
the original labeled data for model training (Fig. 2). To determine optimal
parameters, we evaluated various confidence thresholds (50%, 70%, and
90%) and iteration strategies (Fig. 3 and Supplementary Fig. 5). A pooled
model using a completely labeled dataset served as an upper performance
benchmark. The models using a 90% threshold (Semi-90-1) showed
minimal improvement over the baseline (Fig. 3). For the 70% and 50%
thresholds, we tested both single-iteration models (Semi-70-1, Semi-50-1)
and second-iteration models (Semi-70-2, Semi-50-2) trained using refined
pseudo-labels from their respective first-iteration models. Notably, the
second-iteration models frequently underperformed compared with the
first-iterationmodels, indicating that a single iteration was optimal (Fig. 3).

Between Semi-70-1 and Semi-50-1, the 50% threshold model
demonstrated superior performance, improving nine AP50 metrics in
Category1, versus sevenmetricswith a 70%threshold (both improved three
metrics for rare lesions). In Category 2, the Semi-50-1 improved three AP50
metrics, all for rare lesions, whereas the Semi-70-1 improved threemetrics,
but only two for rare lesions. Category 3 evaluations showed comparable
results for these thresholds. Based on these trends, we selected the Semi-50-
1 (Semi-Supervised YOLO) as the optimal configuration.

Semi-supervised learning using external datasets from the Kidney
Precision Medicine Project (KPMP) demonstrated performance improve-
ments in several Category 1 and 2 evaluations (Supplementary Fig. 6). The
category 3 evaluations showed mixed results, with some parameters
improving and others deteriorating, similar to the results of the primary
analysis.

Modified CycleGAN-based augmentation strategy to mitigate
domain shift
Despite improvements through semi-supervised learning, domain shift
remains a significant challenge. While Semi-Supervised YOLO models
achievedmultipleAP50 improvements in the same-hospital evaluations, the
benefits were minimal when assessed using data from other institutions
(Fig. 3). To address these domain shifts, we implemented a residual
CycleGAN (Supplementary Fig. 7)18. In addition to the conventional
CycleGAN loss functions, residual loss was introduced to prevent excessive
transformation, thus enabling the transformation of pathological images
while preserving their morphological integrity, which is essential for
retaining diagnostically important fine structures.

Wedevelopedhospital-specific residualCycleGANmodels to generate
style-transformed images and subsequently validated their morphological
fidelity (Fig. 4, Tables 3, 4, and Supplementary Figs. 8–11). Feature analysis
confirmed a significant reduction in domain gaps among institutions, with
the mean FID value decreasing from 55.9 to 20.2 across all hospital pairs
(Supplementary Fig. 10). Visual assessment by expert nephrologists
demonstrated high preservation of diagnostic morphology across residual
CycleGAN transformations (Tables 3, 4). Overall, 86.3 ± 3.3% of trans-
formed images received Score 0 (no artifacts), with an additional
12.7 ± 2.8% classified as clinically acceptable (Score 1). Only 0.9 ± 0.4%
images showed diagnostic impairment (Score 2). Class-specific analysis
revealed that normal glomeruli demonstrated the highest fidelity, while
global sclerosis and segmental sclerosis showed slightly more transforma-
tion artifacts but remained predominantly clinically acceptable (Table 3).
Transformation artifacts in global sclerosis and segmental sclerosis pre-
dominantly occurred in areas with sclerotic tissue, where relatively uniformT
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intensity regions appearedmore susceptible to residual CycleGAN-induced
texture variations (Supplementary Fig. 11). Crescent lesions maintained
highmorphological preservation (Table 3). Scanner-specific transformation
analyses showed variable performance, with within-scanner transforma-
tions achieving better fidelity scores compared to cross-scanner transfor-
mations (Table 4). However, even in cross-scanner transformations, only
0.3 to 2.1% images showed diagnostic impairment.

Our implementation then followed three key steps. First, we developed
hospital-specific style transformations, training 21 separate residual
CycleGANs for each baseline hospital (Fig. 4a). Second, we trained the
GAN-Augmented YOLO models using both the original images from the
baseline hospital and their residualCycleGAN-transformedversions. Third,
we combined this approach with semi-supervised learning using GAN-
Augmented models to generate pseudo-labels for images from other hos-
pitals and selected patches with confidence scores above 50% to train the
GAN-Semi-Supervised YOLO models (Fig. 4c). We systematically com-
pared four model configurations: Baseline YOLO, Semi-Supervised YOLO,
GAN-Augmented YOLO, and GAN-Semi-Supervised YOLO (Fig. 4d).

Performance comparison across different model training stra-
tegies and testing scenarios
We evaluated our four modeling approaches using radar charts to visualize
the AP50 values for each glomerular class across the different testing cate-
gories. For the three hospitals, the performance patterns varied according to
lesion type and testing scenario (Fig. 5). For the glomerulus class, all models
demonstrated consistently high detection performances, with the AP50
values typically exceeding 0.9. Global sclerosis detection showed similar
patterns, with slightly more pronounced variations among the models. For

rare lesions, the differences between the training strategies became more
apparent. In crescent detection, Category 1 testing showed that Semi-
Supervised YOLO (blue lines in Fig. 5) and GAN-Semi-Supervised YOLO
(red) improved performance, whereas GAN-Augmentation alone (yellow)
often decreased performance. However, in Category 3 testing, the Semi-
Supervised YOLO (blue) showed limited improvement, whereas the com-
bined GAN-Semi-Supervised approach (red) demonstrated superior per-
formance. For segmental sclerosis detection, which is the most challenging
task, GAN-Semi-Supervised YOLO (red) showed advantages in cross-
scanner evaluation.

To validate the generalizability, we extended our analysis to eight
additional hospitals: Hospitals 04, 08, 10, 12, 14, 16, 18, and 20 (Supple-
mentary Fig. 12). The results showed a lower performance in hospitals with
smaller training datasets (hospitals with higher ID numbers typically had
fewer samples, as shown in Table 1). For crescent detection, Semi-
Supervised YOLO (blue) improved the performance in Category 1 testing,
whereas GAN-Semi-Supervised YOLO (red) excelled in Category 3 eva-
luations. For segmental sclerosis, Semi-Supervised YOLO (blue) generally
outperformed other models in Category 1, whereas GAN-Semi-Supervised
YOLO (red) demonstrated advantages in Category 3-1 testing. However, in
Category 3-2 testing, no consistent improvement was observed with any
approach, highlighting the difficulty in adapting to the SVS scanner format.

Investigation of SVS format limitations through single-hospital
simulation
To investigatewhether the limited performance improvements on SVS data
resulted from single-hospital origin effects, we conducted simulation
experiments using Hospital 02 (NDPI) and Hospital 06 (VSI) as source

Fig. 2 | Semi-supervised learning framework for
glomerular lesion detection. Schematic overview of
our four-step semi-supervised learning approach:
(1) Baseline supervised model (Baseline YOLO)
development using data from a single hospital; (2)
generation of pseudo-labels for data from other
hospitals using the Baseline YOLO, selecting images
with prediction confidence above a predetermined
threshold; (3) semi-supervised learning by com-
bining original labeled data with high-confidence
pseudo-labeled data to create the Semi-Supervised
YOLO model; (4) performance evaluation compar-
ing Baseline YOLO and Semi-Supervised YOLO
across three test categories: Category 1 (same hos-
pital), Category 2 (other hospitals using same
scanner type), and Category 3 (other hospitals using
different scanner types).
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hospitals.We compared GAN-Semi-Supervisedmodels with limited cross-
format diversity against our main models, incorporating all available hos-
pitals. The simulation revealed variable effects of single-hospital limitations
(Supplementary Table 8). Hospital 02-based models showed decreased
performance when cross-format training was limited to a single VSI hos-
pital, with a notable reduction in segmental sclerosis detection. Conversely,
Hospital 06-based models maintained overall performance when cross-

format training was limited to a single NDPI hospital, though with
decreased global sclerosis performance and improved crescent detection.
These findings indicate that single-hospital limitations can affect cross-
scanner performance, but the impact varies depending on scanner combi-
nation and source hospital characteristics. The limited performance
improvements observed for SVS data likely result from multiple con-
tributing factors beyond single-hospital origin alone.
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Cross-institutional generalization and optimal strategy selection
To identify the optimal approach for each scenario, we performed sys-
tematic comparisons, using the mAP50 as the metric (Fig. 6a). The color-
coded matrix revealed that Semi-Supervised YOLO (blue panel in Fig. 6a)
most frequently excelled in Category 1. For Category 2, Semi-Supervised
YOLO (blue) generally performed the best, although GAN-based approa-
ches (yellow and orange) showed advantages for specific hospitals. Notably,
in Category 3-1 testing, the GAN-Augmented (yellow) and GAN-Semi-
Supervised YOLOs (orange) dominated, with the latter showing the highest
prevalence of statistically significant improvements and the greatest mag-
nitude of improvement. In Category 3-2 evaluations, several GAN-based
approaches (yellow and orange) demonstrated improvements over baseline
models.

An analysis of the improvement rates by glomerular class, aggregated
across hospitals within the same test category, revealed that the greatest
performance gainswere achieved for rare lesions, particularly crescents (Fig.
6b). For both crescent and segmental sclerosis detection, the Semi-
Supervised YOLO showed statistically significant improvements in same-
hospital evaluations (Category 1). Semi-Supervised YOLO also demon-
strated significant performance improvement for global sclerosis detection
in the same-hospital evaluations (Category 1). However, for pathological
analysis models, achieving robust performance not only on the same-
institution data but also across different institutions is critically important.
From this perspective, while Semi-Supervised YOLO showed significant
improvement for crescent detection in the challenging cross-scanner sce-
narios between NDPI and VSI formats (Category 3-1), it failed to improve
performance for global sclerosis and segmental sclerosis in these demanding
conditions.

In contrast, GAN-Semi-Supervised YOLO demonstrated superior
cross-institutional generalization capabilities, particularly for global
sclerosis, crescent, and segmental sclerosis detection in Category 3-1 eva-
luations. For crescent detection, GAN-Semi-Supervised YOLO achieved
performance improvements even in the most difficult Category 3-2 eva-
luations. Importantly, although residual-CycleGAN effectively addressed
domain shifts between different hospitals and between NDPI and VSI
scanner types, residual-CycleGAN-based adaptation alone tended to reduce
performance on the source-hospital test data. This tradeoff highlights the
value of our combined GAN-Semi-Supervised approach, which maintains
strong performance across all testing scenarios.

Model interpretability analysis reveals enhanced feature learning
To understand the underlying mechanisms of performance improvement,
we conducted explainability analysis using Gradient-weighted Class Acti-
vation Mapping (Grad-CAM) to visualize model attention patterns.
Comparative analysis between Baseline YOLO and GAN-Semi-Supervised
YOLO revealed distinct differences in attentionmechanisms across various
pathological scenarios. For false positive reduction, our analysis demon-
strated that GAN-Semi-Supervised YOLO exhibitedmore refined attention
patterns. In cases where Baseline YOLO incorrectly classified atrophic
tubules as global sclerosis, the improvedmodel showed reduced attention to
tubular structures while maintaining focus on actual glomerular regions
(Supplementary Fig. 13a). Similarly, for segmental sclerosis misclassified as
normal glomeruli by Baseline YOLO, GAN-Semi-Supervised YOLO
demonstrated enhanced attention to sclerotic segments (Supplementary

Fig. 13b). For false negative reduction, GAN-Semi-Supervised YOLO
showed improved sensitivity in detecting subtle pathological features. In
cases where Baseline YOLO failed to detect atypical crescents withminimal
capillary loops, GAN-Semi-Supervised YOLO successfully focused atten-
tion on crescent formations, enabling accurate detection of these challen-
ging lesions (Supplementary Fig. 14). These findings suggest that the
combined domain adaptation and semi-supervised learning approach
enablesmore robust feature learning, leading to improved discrimination of
pathological structures.

Discussion
This study demonstrated that combining semi-supervised learning with
residual CycleGAN-based domain adaptation enhances rare pathological
lesion detection across diverse clinical settings while minimizing the
annotation burden. Our approach addresses two fundamental challenges in
AI-assisted pathological image analysis: limited expert annotations and
domain shifts inherent in multicenter studies.

Our semi-supervised learning approach effectively leveraged unlabeled
data, particularly for rare lesions. A 50% confidence threshold for pseudo-
labeling yielded optimal results, suggesting that for rare entities, including
more diverse samples with moderate confidence provides a greater benefit
than does restricting to only the highest-confidence predictions. Notably, a
single iteration of pseudo-labeling proved optimal, with second-iteration
models frequently underperforming, likely owing to the amplification of
initial prediction errors leading to confirmation bias10,26–28.

Although semi-supervised learning improved same-hospital perfor-
mance, its benefits diminished across different scanner types. Previous
studies on semi-supervised learning have not quantitatively evaluated such
domain shifts, making this finding significant6–9. Our systematic compar-
ison revealed context-dependent optimal strategies. For same-hospital
testing, the Semi-SupervisedYOLOgenerally excelled, suggesting thatwhen
domain shifts were minimal, pseudo-labeling alone was sufficient. Con-
versely, models that use only GAN augmentation often exhibit decreased
performance in same-hospital testing. This observation highlights the value
of our combined GAN-Semi-Supervised approach, which balances domain
adaptation with semi-supervised learning benefits and maintains robust
performance across diverse testing scenarios. Notably, the greatest perfor-
mance gains by GAN-Semi-Supervised YOLO were achieved for rare
lesions, addressing the critical class imbalance challenges in pathology.

We benchmarked our approach against a state-of-the-art pathology
foundationmodel, UNI25, which was used as a frozen feature extractor for a
detection head. Our end-to-end fine-tuned YOLOv8 model demonstrated
superior performance on our specific task. This result does not refute the
power of foundation models, but rather highlights several key considera-
tions for their application. Firstly, foundationmodels like UNI are typically
pre-trained on vast archives of Hematoxylin-eosin (HE)-stained images,
whereas our dataset utilizes PAS staining; this significant difference in
staining protocol likely limits the direct transferability of features. Secondly,
our results suggest that for a specific andfine-grained detection task, end-to-
end fine-tuning of a task-oriented model can be more effective than relying
on features from a general-purpose foundationmodel. This underscores the
importance of considering the trade-offs between the vast but general
knowledge of foundation models and the focused efficiency of specialized
models, particularly for deployment in specific clinical workflows.

Fig. 3 | Performance comparison of semi-supervised learning models with dif-
ferent confidence thresholds and iterations. The performances of the baseline and
semi-supervised models for the three hospitals (Hospitals 02, 06, and 22) were
evaluated using mAP50 and class-specific AP50. The models included a baseline
model (trained with single-hospital data); semi-supervised models with confidence
thresholds of 90% (Semi-90-1), 70% (Semi-70-1 for the first iteration and Semi-70-2
for the second iteration), and 50% (Semi-50-1 for the first iteration, Semi-50-2 for
the second iteration); and a pooled model representing the maximum achievable
performance using all labeled data. Statistical significance was assessed using

Dunnett’s test with the baseline model as a reference. Asterisks indicate statistically
significant differences (P < 0.05), with circles and triangles indicating improvement
and deterioration, respectively. For the pooled models, significance testing was
performed without using improvement/deterioration indicators, as these represent
different training paradigms. Colors represent the different test categories: Category
1 (black), Category 2 (blue), and Category 3 (red/orange). Individual data points are
represented as lighter-colored dots, along with their mean values and 95% con-
fidence intervals. AP50 average precision at 50% Intersection over Union, mAP50,
mean AP50.
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Fig. 4 | Integration of residual CycleGAN-based data adaptation with a semi-
supervised learning strategy. a Residual CycleGAN-based data adaptation strategy
for GAN-Augmented YOLO development. Images from a baseline hospital are
transformed using residual CycleGANs to match the characteristics of all other
hospitals in the development set. For each baseline hospital, 21 separate residual
CycleGANs were developed for style transfer to each target hospital. The original
and style-transferred imageswere combined to train aGAN-Augmented YOLO. b t-

SNE visualization of features from all glomerular regions in GAN-augmented
images, colored by source hospital (left), source scanner type (middle), and anno-
tation type (right). c Semi-supervised learning process in which GAN-Augmented
YOLOs generate pseudo-labels for original images fromother hospitals. Imageswith
confidence values above 50%were combinedwith original training data to create the
GAN-Semi-Supervised YOLO model. d Evaluation strategy comparing different
model configurations in Figs. 5 and 6.
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Our findings have several practical implications: (1) effective AI sys-
tems can be developed with minimal expert annotation through a strategic
combination of semi-supervised learning and domain adaptation, (2)
addressing variations between scanner types is crucial when deploying
pathologyAI systems across institutions, (3) the computational efficiency of
YOLOv8 enables deployment in standard clinical hardware, and (4) the
efficacy of our approach for rare lesion detection addresses a critical gap in
current pathology AI systems.

While our study presents promising results, it is important to
acknowledge several limitations that also highlight important avenues for
future research. Our approach demonstrated efficacy on PAS-stained glo-
merular lesions in kidney biopsies, but its broader generalizability requires
furthervalidationacrossdifferent organs, pathological conditions, andother
staining protocols. From a technical standpoint, we observed that our
residual CycleGANoccasionally introducedminor visual artifacts on global
and segmental sclerosis lesions. Although a blind review confirmed these
were overwhelmingly acceptable for diagnosis, reducing these artifacts
represents an opportunity for further performance enhancement. Fur-
thermore, the practical deployment of this AI faces hurdles such as inte-
gration into clinical workflows and regulatory approval, andwehave not yet
established a definitive minimum required sample size for new institutions,
as this likely depends on several factors. These limitations naturally guide
future directions. Future work should focus on systematically validating the
model on a wider variety of tissues and investigating minimum data

requirements. Additionally, promising technical advancements could
include exploring hybrid architectures that combine YOLOv8 with Trans-
formers to better capture lesion context, linking themodel’s detections with
clinical data to build prognostic models, and developing more lightweight
model versions to enhance accessibility in resource-constrained settings29–32.

In conclusion, our domain-adaptive semi-supervised learning
approacheffectively addresses thedual challenges of annotation scarcity and
domain shifts in pathological image analysis, particularly regarding rare
lesions. As demonstrated in renal pathology, our methodology may offer
broadly applicable principles for developing efficient and generalizable AI
systems across diverse clinical settings.

Methods
Study design and data acquisition
We conducted a retrospective analysis of native kidney biopsy specimens
from patients aged ≥16 years who underwent renal biopsy between January
2014 and December 2018 in one of 22 Japanese hospitals (Supplementary
Table 9). This study received central ethics approval from the Review Board
of The University of Osaka Hospital (approval number: 17008-13), with
subsequent institutional approval from each participating facility. An opt-
out consent process was used. The study was conducted in accordance with
the Declaration of Helsinki.

PAS-stained kidney biopsy sections were prepared according to the
standard protocol at each participating hospital. The stained slides were
digitized using one of three slide scanners: an Aperio ScanScope (Leica
Biosystems,Wetzlar, Germany), a HamamatsuNanoZoomer (Hamamatsu
Photonics, Shizuoka, Japan), or a VS120 virtual slide microscope (Evident,
Tokyo, Japan), producing images in SVS, NDPI, and VSI formats, respec-
tively. Tissue samples from each biopsy procedure were embedded in a
single paraffin block to generate a single WSI. The digitized WSIs were
compressed to 1/8 of their original dimensions and converted to PNG
format for lossless compression.

Ground-truth labeling and dataset preparation
Ground-truth labels were created using labelImg software by four expert
nephrologists who classified all glomeruli into four categories:
1. Glomerulus (glomeruli without global or segmental sclerosis or cres-

cent formation)
2. Global sclerosis (including both solidified and disappearing types)
3. Crescent (cellular and fibrocellular crescents)
4. Segmental sclerosis (sclerosis involving only a portion of the

glomerular tuft)

Prior to the annotation process, these experts held a consensusmeeting
to establish detailed annotation guidelines, ensuring consistency across all

Table 3 | Visual assessment of residual CycleGAN-
transformed images by nephrologists stratified by
pathological class

No artifacts
(score 0 (%))

Clinically
acceptable
(score 1 (%))

Diagnostic
impairment
(score 2 (%))

Overall assessment

86.3 ± 3.3 12.7 ± 2.8 0.9 ± 0.4

Class-specific assessment

Glomerulus 93.1 ± 2.1 Ref. 6.6 ± 1.9 Ref. 0.3 ± 0.1 Ref.

Global Sclerosis 81.9 ± 4.4 P < 0.01 16.5 ± 3.5 P < 0.01 1.6 ± 0.8 P = 0.32

Crescent 89.8 ± 2.5 P = 0.44 9.9 ± 2.3 P = 0.35 0.3 ± 0.2 P = 0.99

Segmental
Sclerosis

80.6 ± 4.3 P < 0.01 17.9 ± 4.1 P < 0.01 1.5 ± 0.8 P = 0.32

Expert evaluation of morphological fidelity across 9240 transformed images by four independent
nephrologists. Values represent mean ± standard deviation. Score 0: no artifacts; Score 1: minor
artifacts, clinically acceptable; Score 2: significant artifacts with diagnostic impairment. Statistical
comparisonswere performed using Dunnett’s test with the glomerulus as the reference group. Bold
values indicate statistical significance. Ref reference category used as baseline for statistical
comparison.

Table 4 | Visual assessment of residual CycleGAN-transformed images by nephrologists stratified by scanner type
transformation

Pathological class No artifacts (score 0 (%)) Clinically acceptable (score 1 (%)) Diagnostic impairment (score 2 (%))

NDPI to NDPI 86.1 ± 2.5 Ref. 12.4 ± 2.1 Ref. 1.5 ± 1.6 Ref.

NDPI to VSI 81.1 ± 4.0 P = 0.18 18.1 ± 3.7 P = 0.09 0.8 ± 0.9 P = 0.59

NDPI to SVS 79.7 ± 5.0 P = 0.08 20.0 ± 4.6 P = 0.03 0.3 ± 0.6 P = 0.28

VSI to VSI 88.7 ± 3.4 Ref. 10.6 ± 3.0 Ref. 0.7 ± 0.7 Ref.

VSI to NDPI 79.7 ± 3.2 P < 0.01 18.2 ± 2.5 P < 0.01 2.1 ± 1.7 P = 0.21

VSI to SVS 87.2 ± 2.2 P = 0.71 12.1 ± 1.9 P = 0.62 0.7 ± 0.7 P = 0.99

SVS to NDPI 95.9 ± 1.2 3.8 ± 1.0 0.3 ± 0.6

SVS to VSI 91.7 ± 2.6 7.8 ± 1.6 0.5 ± 1.1

Expert evaluation of morphological fidelity across scanner type transformations. Values represent mean ± standard deviation. Score 0: no artifacts; Score 1: minor artifacts, clinically acceptable; Score 2:
significant artifacts with diagnostic impairment. Statistical comparisons performed using Dunnett’s test with same-scanner transformations (NDPI to NDPI, VSI to VSI) as reference groups for each score
category. SVS transformations were not statistically compared due to the absence of a within-SVS reference. Bold values indicate statistical significance. Ref reference category used as baseline for
statistical comparison.
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annotators. To maintain annotation quality, a subset of images was cross-
checked by the lead authors to assess inter-rater agreement.

The WSI dataset was divided into development and test sets at
the WSI level. For feature analysis and domain shift assessment,
annotated glomerular regions were cropped from PAS-stained WSIs,

and 2048-dimensional feature vectors were extracted using an Ima-
geNet pre-trained ResNet50 model. FID was computed between
patches from different institutions using a pre-trained Inception v3
model with bootstrap sampling (1000 iterations, 100 images per
iteration).

Fig. 5 | Performance comparison across different training strategies.Radar charts
displaying AP50 values for each glomerular class (glomerulus, global sclerosis,
crescent, and segmental sclerosis) formodels based onHospitals 02, 06, and 22. Each
chart is divided into quadrants representing test categories: first quadrant (Cat. 1),
second quadrant (Cat. 2), third quadrant (Cat. 3-1), and fourth quadrant (Cat. 3-2).
Within each category, data points are arranged in the order specified by the hospital.

The gray-filled area represents the Baseline YOLO performance, whereas the blue,
yellow, and red lines indicate the Semi-Supervised, GAN-Augmented, and GAN-
Semi-Supervised YOLO models, respectively. Mean values are connected by lines,
with individual data points shown as dots. Note that the Category 2 evaluations for
Hospital 22 are absent, as it was the sole hospital providing SVS format data.
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Model development and training
For the baseline supervisedmodel development,WSIs froma single hospital
were selected. We used three representative hospitals (one for each scanner
type) to conduct hyperparameter tuning and establish optimized model
configurations. For each hospital, five iterations of random training-

validation splits with a 2:1 ratiowere performed at theWSI level to train and
validate the models.

We employed the standard YOLOv8l architecture without modifica-
tions, utilizing its anchor-free design that eliminates the need for custom
anchor configurations. The YOLOv8l model was selected over YOLOv8x
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npj Digital Medicine |           (2025) 8:778 12

www.nature.com/npjdigitalmed


due to memory constraints while maintaining comparable detection per-
formance. Eachmodelwas trainedusing a singleGPUwith a batch size of 64
to ensure sufficient representation of rare lesions. Models were initialized
with pre-trained weights from Common Objects in Context (COCO)
datasets and trained for a maximum of 500 epochs with early stopping
(patience = 50). Data augmentation included modified settings for hsv_h
(0.2), degrees (90.0), and flipud (0.5), while maintaining default Ran-
dAugment settings to enhance model robustness across varied imaging
conditions. YOLOv8 utilizes a composite loss function with three weighted
components: CIoU loss (weight=7.5), Varifocal loss (weight=0.5), and
Distribution focal loss (weight=1.5). The total training loss is computed as
the weighted sum of these components.

For model evaluation, inference was performed using a confidence
threshold of 0.001 and Non-Maximum Suppression with IoU threshold of
0.5. Performance metrics were calculated at AP50 following standard object
detection evaluation protocols. All implementations utilized the Ultralytics
YOLOv8 framework without custom modifications to the detection
pipeline.

Semi-supervised learning
For each baseline model, predictions were generated for images from other
institutions. Predictions exceeding predefined confidence thresholds were
converted into pseudo-labels. Semi-supervisedmodels were then developed
by combining the original labeled data with these pseudo-labeled images
and initialized with weights from their corresponding baseline models.

External dataset for semi-supervised learning
PAS-stained kidney biopsy WSIs were downloaded from the KPMP
(https://www.kpmp.org/), accessed on July 7, 2024. A total of 487 SVS files
were obtained from this external source. These imageswere processed using
the same protocol applied to the multi-institutional hospital dataset. The
processed KPMP images were then incorporated into the semi-supervised
learning framework.

Benchmark comparison with a pathology foundation model
We conducted benchmark comparisons using UNI, a general-purpose
foundationmodel trainedonHE-stainedpathology images25.We compared
our standardYOLOv8l approach (COCOpretrainingwith end-to-endfine-
tuning) against UNI as a frozen feature extractor backbone with a trainable
YOLOv8l detection head. The UNI implementation utilized pre-trained
weights from the official repository (https://github.com/mahmoodlab/
UNI), with only detection components trained on our PAS-stained kidney
biopsy dataset. For UNI integration with YOLOv8, we adapted the Yolo-
DinoV2 framework (https://github.com/itsprakhar/Yolo-DinoV2.git),
replacing the original Yolo-DinoV2/ultralytics/nn/modules/pre-
trained_vit.pywith ourmodified version available in ourGitHub repository
to enable UNI backbone integration. Training parameters remained iden-
tical between approaches to ensure fair comparison.

Domain adaptation with residual CycleGAN
To address scanner-specific variations, we implemented a residual Cycle-
GAN to transform images between hospitals. To prevent excessive mor-
phological alterations, we incorporated a residual loss term that constrains

the magnitude of pixel-wise transformations:

L residual ¼ λ residual × ðjjG ABðAÞ � Ajj 1þ jjG BAðBÞ � Bjj 1Þ

where G_AB(A) represents the generated image when transforming real
image A to domain B, G_BA(B) represents the generated image when
transforming real image B to domain A, and ||·||_1 denotes the pixel-wise
L1 norm.

For each source hospital, 21 residual CycleGANs were trained to
generate hospital-matched versions of the dataset. TheseGAN-transformed
images retained their original annotation labels andwere combinedwith the
original images from the source hospital to train the GAN-Augmented
YOLO model.

Visual assessment of residual CycleGAN-transformed images
To validate the morphological fidelity of residual CycleGAN-
transformed images, we conducted a systematic visual assessment by
four independent nephrologists experienced in renal biopsy inter-
pretation. We randomly selected 5 representative glomerular images
from each pathological class from each of the 22 hospitals, resulting in 20
original images per hospital and 440 total original images across all
institutions. These glomerular images were cropped from patch images
based on YOLO annotation boundaries. For domain adaptation vali-
dation, patch images containing these glomeruli were first transformed
using the 21 residual CycleGAN models, and then the corresponding
glomerular regionswere cropped from the transformed patches, yielding
9240 CycleGAN-transformed glomerular images. The nephrologists,
blinded to transformation details, evaluated each transformed image
using a 3-point scoring system: Score 0 (no artifacts—diagnostically
identical to original), Score 1 (minor artifacts present but clinically
acceptable without diagnostic impairment), and Score 2 (significant
artifacts causing diagnostic impairment).

Single-hospital simulation experiment
To investigate the impact of single-hospital limitations on cross-scanner
generalization, we conducted simulation experiments using Hospital 02
(NDPI) and Hospital 06 (VSI) as source hospitals. We created single-
hospital cross-format GAN-Semi-SupervisedYOLOmodels and compared
them with our main multi-hospital models.
(1) Multi-hospital cross-format models: used our main GAN-Semi-

Supervised YOLOmodels from the primary analysis that incorporated
all available hospitals.

(2) Single-hospital cross-format models: models created using only
one hospital from the target scanner format (Hospital 02 source
with all NDPI hospitals, Hospital 22 (SVS), and single VSI hospital
(Hospital 06); Hospital 06 source with all VSI hospitals, Hospital
22 (SVS), and single NDPI hospital (Hospital 02)), mimicking the
SVS single-hospital situation. The single-hospital models fol-
lowed identical GAN-Semi-Supervised training procedures.
Performance evaluation was conducted on test data from the
single cross-format hospital used in the limited models (Hospital
06 for Hospital 02-based models, Hospital 02 for Hospital 06-
based models).

Fig. 6 | Performance comparison of training strategies across hospitals and
glomerular classes. a Color-coded matrix displaying the best-performing training
strategy for each hospital-testing category combination. Each cell shows the strategy
type (top), its mAP50 value (middle), and its percentage improvement over Baseline
YOLO (bottom). Cell colors indicate statistically significant improvements (P < 0.05,
Dunnett’s test): blue for Semi-Supervised, yellow for GAN-Augmented, and orange
for GAN-Semi-Supervised. Gray cells represent non-significant improvements or
cases in which the baseline performed best. The testing categories are arranged
vertically from Cat. 1 (self-facility) to Cat. 3-2 (different scanner types). bHeatmap

visualization showing relative improvement rates (%) compared to baseline models
across different test data categories (vertical axis) and training strategies (horizontal
axis). Each cell displays the mean improvement rate with significance markers
(upper value) and 95% confidence intervals (lower bracket). Statistical significance
was assessed using Welch’s t test with false discovery rate (FDR) correction within
each test environment: **P < 0.001, *P < 0.01, P < 0.05 (FDR-corrected), †P < 0.05
(uncorrected only). Color intensity represents improvement magnitude using a
blue-white-red scale, where blue indicates deterioration, white represents no change,
and red indicates improvement.
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Color-coded matrix visualization
A color-coded matrix visualization (Fig. 6a) was applied to identify the
statistically superior model for each hospital-category combination. In this
matrix, each cell represented a specific hospital-testing category pairing,
displaying three key pieces of information: (1) the name of the best-
performing model type (Baseline, Semi-Supervised, GAN-Augmented, or
GAN-Semi-Supervised), (2) the absolute mAP50 value achieved by this
model (average of five cross-validation seeds), and (3) the relative perfor-
mance improvement percentage calculated as [(advanced model
mAP50)–baseline mAP50]/(baseline mAP50) × 100%. Cells were color-
coded only when the best model showed statistically significant improve-
ment over the baseline (P < 0.05 by Dunnett’s test).

We created heatmap visualizations to summarize percentage
improvements by testing category for each glomerular class (Fig. 6b).Unlike
the color-coded matrix visualization, which shows hospital-specific eva-
luations, this heatmap presents aggregate performance across all hospitals
within each test category. Performance comparisons in Fig. 6bwere assessed
using Welch’s t test, with relative improvement rates calculated as [(com-
parison model performance—baseline performance)/baseline perfor-
mance] × 100%. Statistical significance was evaluated at α = 0.05, with
Benjamini–Hochberg false discovery rate (FDR) correction applied within
each test data category.

Explainability analysis using gradient-weighted class activation
mapping (Grad-CAM)
To investigate the mechanisms underlying performance improvements, we
implemented Grad-CAM analysis using the YOLOv8 Explainer
framework33. Grad-CAM visualizations were generated for representative
cases demonstrating typical failure modes of Baseline YOLO and corre-
sponding improvements achieved by GAN-Semi-Supervised YOLO. For
each analyzed case, we extracted attention heatmaps overlaid on original
PAS-stained images,with activation intensity representedby color gradients
ranging from blue (low activation) to red (high activation). Ground truth
annotations (GT) and model predictions (Pred) were displayed with
bounding boxes, using abbreviations: Glo (glomerulus), GloSc (global
sclerosis), Cres (crescent), and SegSc (segmental sclerosis).

Computing environment
A custom-built computer with a CPU (Ryzen Threadripper PRO 5975WX,
Advanced Micro Devices, Santa Clara, CA, USA) and GPUs (RTXTM 6000
Ada or RTX™A6000, 48 GB, NVIDIA Corporation, Santa Clara, CA, USA)
was used for all calculations. Ubuntu 22.04 LTS was installed as the oper-
ating system. All methods were implemented using Python 3.8 and
PyTorch 2.2.0.

Performance evaluation and statistical analysis
Statistical analyses were performed using the SciPy Statistics Library in
Python,with aP value < 0.05 considered statistically significant. The specific
statisticalmethods applied for eachcomparisonaredetailed in the respective
figure and table legends.

Data availability
Clinical datasets are private and subject to restrictions to safeguardprivacy.All
the trained models are available at https://drive.google.com/drive/folders/
15tVY1dzanf9ExYxcaNHeZ-n2UE2eQ8fp?usp=sharing and https://drive.
google.com/drive/folders/1kVlOhKmIYmkOTSo1SgipJ2LJTIe_JswG?usp=
sharing.

Code availability
All source code for the model and data preprocessing is available at https://
github.com/NephrologyOsakaUniv/2025-Domain-adaptive-semi-
supervised-learning-for-efficient-rare-pathological-lesion-detection.
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