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Abstract

Aims/hypothesis Ferroptosis, a regulated form of cell death characterised by excessive lipid peroxidation, plays a critical role
in acute kidney injury (AKI). Individuals with diabetes have an elevated risk of developing AKI. However, the contribution
of ferroptosis to the heightened susceptibility to AKI in diabetic kidney disease (DKD) remains unclear. This study aimed
to investigate whether DKD influences ferroptosis susceptibility in proximal tubular epithelial cells (PTECs), focusing on
autophagy and AMP-activated protein kinase (AMPK) signalling.

Methods We examined the association between ferroptotic signatures and autophagy/AMPK pathways in human kidney
biopsy specimens. To explore the roles of autophagy and AMPK in modulating ferroptosis in PTECs during DKD, we
subjected streptozocin (STZ)-induced type 1 diabetic mice and type 2 diabetic db/db mice to ischaemia—reperfusion injury.
Primary Azg5-deficient and wild-type PTECs were used to further investigate the underlying cellular mechanisms.

Results Analysis of human kidney biopsy specimens revealed an increased ferroptotic signature (4-hydroxynonenal immu-
nostaining), impaired autophagy (SQSTMI1 accumulation) and AMPK inactivation (reduced p-AMPK) in PTECs of indi-
viduals with DKD. In STZ-treated Atg5 knockout (AtgSKO) mice, experiments combining ischaemia—reperfusion injury
with ferrostatin-1 treatment showed that autophagy suppressed ferroptotic susceptibility. Additionally, susceptibility to
ferroptosis was heightened in db/db mice following ischaemia—reperfusion injury; however, this effect was mitigated by
enhancing autophagy through rapamycin treatment. In primary PTECs isolated from Atg5KO mice, ferroptotic cell death and
lipid peroxidation were significantly increased, together with elevated mitochondrial reactive oxygen species. Mitochondrial
DNA/RNA depletion substantially abolished ferroptotic effects in Atg5KO cells. Furthermore, high-glucose treatment inac-
tivated AMPK and promoted ferroptosis, whereas treatment with the AMPK activator 5-aminoimidazole-4-carboxyamide
ribonucleoside (AICAR) attenuated ferroptosis in vitro and reduced vulnerability to AKI in DKD models.
Conclusions/interpretation These findings demonstrate that impaired autophagy and inactivated AMPK heighten suscep-
tibility to ferroptosis in DKD, suggesting that therapeutic strategies targeting autophagy and AMPK activation may reduce
ferroptosis-associated kidney injury in individuals with diabetes.
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What is already known about this subject?

e Individuals with diabetes exhibit an increased risk of developing acute kidney injury (AKI)

e  Ferroptosis, a regulated form of cell death characterised by excessive lipid peroxidation, plays a critical role in the
pathogenesis of AKI

e Indiabetes, proximal tubular epithelial cells (PTECs) exhibit impaired autophagy and suppression of AMP-
activated protein kinase (AMPK) signalling, a key nutrient-sensing pathway

What is the key question?

e Does diabetic kidney disease (DKD) influence ferroptosis susceptibility in PTECs and, if so, what are the underlying
mechanisms?

What are the new findings?

e The ferroptotic signature was elevated in proximal tubules of individuals with DKD, accompanied by impaired
autophagy and AMPK inactivation

e Impaired autophagy increased ferroptotic susceptibility by elevating mitochondrial reactive oxygen species in the
diabetic kidney

e High glucose-induced AMPK inactivation promoted ferroptosis in PTECs

How might this impact on clinical practice in the foreseeable future?

e Therapeutic strategies that enhance autophagy or activate AMPK may mitigate ferroptosis-related kidney injury in
individuals with DKD, offering a potential avenue for renoprotective interventions in diabetes
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Introduction

Diabetes affects more than 500 million individuals glob-
ally, and this number is projected to rise steadily [1].
Approximately 40% of individuals with diabetes develop
diabetic kidney disease (DKD), a complication that can
progress to kidney failure requiring dialysis or transplan-
tation, as well as cardiovascular disease and premature
mortality [2]. Individuals with diabetes also exhibit an
increased risk of acute kidney injury (AKI) [3, 4], and pos-
sess reduced renal recovery capacity following AKI [5].
AKI is now widely recognised as a significant risk factor
for the onset of chronic kidney disease and eventual kidney
failure [6, 7]. Moreover, individuals who experience AKI
are at increased risk for long-term morbidity and mortality
[8]. Although it is critical that AKI susceptibility is man-
aged in individuals with DKD, the mechanisms respon-
sible for their heightened vulnerability to AKI remain
incompletely understood.

Ferroptosis is a regulated form of cell death driven
by excessive lipid peroxidation [9]. While it was ini-
tially implicated in cancer pathogenesis, ferroptosis has
also been linked to a range of non-malignant conditions,
including neurodegeneration, liver and lung fibrosis, and
autoimmune diseases [10]. Multiple studies have shown
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that ferroptotic cell death occurs in proximal tubular epi-
thelial cells (PTECs) [11, 12], which has prompted major
advances in ferroptosis research in the kidney that have
established ferroptotic cell death in PTECS as a central
mechanism in various forms of AKI [13]. However, the
role of ferroptosis in increased susceptibility to AKI in
DKD remains largely unexplored [14]. Furthermore, the
mechanisms driving ferroptosis in this context remain
poorly understood.

Our previous research highlighted the critical role of
macroautophagy/autophagy, a highly conserved intracellular
degradation system that regulates cellular homeostasis [15],
in reducing the vulnerability of PTECs to AKI [16, 17]. To
investigate this, we used Azg5 knockout (Atg5SKO) mice and
cells, as autophagy-related gene 5 (ATGS) binds to ATG12
and ATGI16L1, resulting in an E3-like ligase complex that
is essential for autophagosome membrane elongation [18].
Furthermore, we demonstrated that type 1 and type 2 diabetes
cause dysregulated autophagy in PTECs [19]. While a few
studies have suggested that autophagy suppresses ferroptosis
via selective autophagic processes such as lysophagy [20],
most evidence indicates that autophagy, particularly selec-
tive autophagy, participates in the initiation or execution
of ferroptosis through targeted degradation of proteins or
organelles, giving rise to the concept of ‘autophagy-depend-
ent ferroptosis’ [21]. For example, one study showed that
knockout or knockdown of Azg5 and Azg7 limited ferroptosis
via nuclear receptor coactivator 4 (NCOA4)-mediated fer-
ritinophagy [22]. Other studies have highlighted roles for
various forms of selective autophagy, such as lipophagy,
clockophagy and chaperone-mediated autophagy, in pro-
moting ferroptotic cell death through selective degradation
of specific proteins or organelles [23-25]. However, given
our previous findings that autophagy protects against kidney
injury [16, 17], it is conceivable that autophagy may attenu-
ate ferroptotic susceptibility in PTECs. However, the spe-
cific impact of autophagy on ferroptosis in PTECs remains
unclear.

In diabetes, altered nutrient signalling due to hyper-
glycaemia contributes to the pathogenesis of DKD [26].
Among these nutrient signals, AMP-activated protein kinase
(AMPK), which is activated under energetically stressed
conditions in which cellular ATP levels are reduced, has
been shown to protect against proximal tubular injury in
various diabetic animal models [27, 28]. AMPK plays a cen-
tral role in reprogramming cellular metabolism from anab-
olism to catabolism, including the regulation of lipid and
glucose metabolism as well as autophagy. AMPK enhances
autophagy through multiple mechanisms, primarily by
phosphorylating tuberous sclerosis complex 2 (TSC2) and
regulatory-associated protein of mammalian target of rapa-
mycin (mTOR) to inhibit mammalian target of rapamycin

complex 1 (mTORC1), and by directly activating Unc-51-
like autophagy activating kinase 1 (ULK1), which is a key
kinase for autophagy induction [29]. However, the role of
AMPK in ferroptosis within the diabetic kidney has not been
elucidated.

Based on this information, we hypothesised that the dia-
betic kidney exhibits increased susceptibility to ferroptosis
due to impaired autophagy and AMPK inactivation. To test
this hypothesis, we investigated the mechanisms by which
DKD promotes ferroptosis, focusing on impaired autophagy
and AMPK inactivation in the proximal tubules of the strep-
tozocin (STZ)-induced mouse model of type 1 diabetes and
the db/db mouse model of type 2 diabetes.

Methods

Mice Arg5™F:kidney androgen-regulated protein (KAP)-
Cre and Arg5"F;N-myc downstream-regulated gene 1
(NDRG1)-Cre®T? mice on the C57BL/6 background
have been described previously [16, 30, 31]. To gener-
ate Arg5""F;KAP-Cre (PTEC-specific Atg5-deficient mice;
hereafter referred to as Atg5SKO mice, used for in vivo
work) and Arg5"F;NDRG1-Cre®R"? (tamoxifen-inducible
PTEC-specific Atg5-deficient mice, Atg5KO cells used for
in vitro work), AthFIF mice were crossed with the KAP-
Cre or NDRG1-Cref®T? transgenic mice, respectively, at
the University of Osaka. B6.BKS(D)-Lepr™“*/J (dbldb) or
B6.BKS(D)-Lepr™*/J (db/m) mice were purchased from
CLEA Japan (https://www.jax.org/strain/000697). To induce
a type 1 diabetes-like condition, mice were treated with 50
mg/kg STZ (Sigma-Aldrich; S0130) intraperitoneally for
four consecutive days at 8 weeks of age. Ferrostatin-1 (Fer-
1) (Sigma-Aldrich; SMLO0583) (5 mg/kg) or vehicle (0.1 ml
DMSO [Sigma-Aldrich]/normal saline [154 mmol/l NaCl]
at a ratio of 0.01:1) was administered intraperitoneally 30
min before and immediately after ischaemia—reperfusion
injury. Rapamycin (LC Laboratories, Woburn, MA, USA;
R-5000) (0.4 mg/kg) or vehicle (0.1 ml DMSO/ethanol; 1:1
ratio) was administered intraperitoneally daily for 3 days
prior to ischaemia—reperfusion injury. 5-aminoimidazole-
4-carboxyamide ribonucleoside (AICAR) (Wako; 2627-69-
2) (500 mg/kg) was administered intraperitoneally for 7 days
prior to ischaemia—reperfusion injury. Kidney ischaemia was
induced and tubular injury was assessed as described previ-
ously [31]. In brief, the animals were anaesthetised and kept
on a homeothermic table. For unilateral clamping, back inci-
sions were made to expose the kidney pedicles. The pedicles
were then clamped for 35 min to induce kidney ischaemia,
followed by clamp release for reperfusion. Kidney tubular
cells of the cortex were examined by three nephrologists (S.
Matsui, J. Nakamura and T. Yamamoto) in a blind manner,
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and were scored from 0 to 10 according to the percentage of
damaged tubules. Tubular damage was defined as the pres-
ence of cell necrosis, which was evaluated in this study by
loss of brush border, tubular dilation and cast formation. At
least ten high-power fields (x400) were reviewed for each
periodic acid—Schiff-stained slide. No animals, samples or
data points were excluded from the analysis. All animal pro-
cedures were approved by the Animal Research Committee
of Osaka University (01-042-018) and complied with the
Japanese Animal Protection and Management Law (No. 25).

Cell culture Immortalised wild-type PTEC lines were cul-
tured as previously described [16]. Wild-type PTECs were
maintained in low-glucose (LG) DMEM (Nacalai Tesque;
08456-65) supplemented with 5% FBS (Sigma-Aldrich;
F7524) at 37°C in a humidified atmosphere of 5% CO, and
95% air. Cells were treated with 1 pmol/l erastin2 (Sigma-
Aldrich; SML2794), 5 pmol/l Fer-1 (Sigma-Aldrich;
SMLO0583) and 0.5 mmol/l AICAR (Wako; 2627-69-2). To
evaluate the effects of high glucose (HG) on AMPK and
acetyl-CoA carboxylase (ACC), cells were cultured in LG
or HG DMEM (Nacalai Tesque; 16971-55) for 72 h and
then treated with AICAR for 24 h before harvest. To evalu-
ate the effects of AMPK on ferroptosis, PTECs were treated
with erastin2 in the presence or absence of 5 pmol/l Fer-1
or 0.5 mmol/l AICAR for 24 h. To assess autophagic activ-
ity, PTECs were treated with 200 nmol/l bafilomycin Al
(Cayman Chemical; 11038) for 2 h at 37°C before harvest.

Isolation of primary murine renal tubules Primary murine
PTECs were isolated from 5-week-old Arg5™F (control cells)
or Atg5F/ F-NDRG1-Cre"R™ male mice (hereafter referred to
as Atg5KO cells) treated with tamoxifen at 3 weeks of age,
as described previously [16] (see electronic supplementary
material [ESM] Methods for further details).

Antibodies and reagents Antibodies against the following
proteins were used in this study: low density lipoprotein
receptor-related protein 2 (LRP2/MEGALIN; a generous
gift from T. Michigami, Department of Bone and Mineral
Research, Osaka Medical Center and Research Institute
for Maternal and Child Health, Japan), sequestosome 1
(SQSTM1/p62; Medical and Biological Laboratory [PM045]
for western blotting; Progen [GP62C] for immunostain-
ing), ATG5 (Medical and Biological Laboratory; PM050),
microtubule-associated protein light chain 3 (MAP1LC3;
Cell Signaling Technology; 2755), p-actin (ACTB; Sigma-
Aldrich; A5316), 4-hydroxynonenal (4HNE; Japan Institute
for the Control of Aging; MHN-020P), hepatitis A virus cel-
lular receptor 1 (HAVCR1/KIM1; R&D Systems; AF1750),
glutathione peroxidase 4 (GPX4) (Abcam; ab125066), acyl-
CoA synthetase 4 (ACSL4) (Abcam; ab155282), phospho-
rylated AMPK (p-AMPK; Cell Signaling Technology;
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2535), AMPK (Cell Signaling Technology; 2532), phospho-
rylated ACC (p-ACC; Cell Signaling Technology; 3661),
ACC (Cell Signaling Technology; 3662). The biotinylated
secondary antibodies were anti-rabbit IgG (BA-1000), anti-
mouse IgG (BA-2001), anti-goat IgG (BA-5000) and anti-
guinea pig IgG (BA-7000) (all Vector Laboratories). The
horseradish peroxidase-conjugated secondary antibodies
were anti-rabbit IgG (P0448) and anti-mouse IgG (P0447)
(both DAKO) and the Alexa Fluor-conjugated secondary
antibodies were anti-guinea pig Alexa Fluor 488 (A11073),
anti-mouse Alexa Fluor 555 (A21422) and anti-rabbit Alexa
Fluor 647 (A21245) (all Invitrogen).

Histological analysis Histological analysis was performed
as previously described [31]. Antigen retrieval on paraffin-
embedded sections, electron microscopy, succinate dehy-
drogenase (SDH) staining on fresh-frozen sections, and
assessment of kidney injury were performed according to
established protocols [31, 32]. TUNEL staining was per-
formed using an ApopTag peroxidase in situ apoptosis
detection kit (EMD Millipore; S7100). For SDH staining,
5-10 non-overlapping high-power (x400) fields in the corti-
cal region of each kidney section were captured and analysed
using NIH Image] software [33]. The positively stained area
was expressed as a percentage of the total tissue area. For
all quantitative or semi-quantitative analyses of histological
staining, a minimum of ten high-power fields per kidney
were independently reviewed by three nephrologists (S. Mat-
sui, J. Nakamura and T. Yamamoto) in a blinded manner.

Cell death assays Cell death assays were performed in six-
well plates. Ferroptosis was induced in primary PTECs and
immortalised wild-type PTECs using erastin2 at 20 pmol/l
and 1 pmol/l, respectively. At the specified time points, cells
(including floating dead cells) were collected and stained
with 5 ug/ml propidium iodide. After 15 min, cell viabil-
ity was evaluated using the Cytek Northern Lights system
(Cytek Biosciences) and analysed using FlowJo software
(version 10).

Lipid peroxidation analysis To assess lipid peroxidation,
cells were stained with 5 umol/l BODIPY 581/591 C11 in
500 pl HBSS for 10 min at 37°C. The cells were then washed
twice with HBSS, and analysed by flow cytometry using the
Cytek Northern Lights system equipped with a 488 nm laser.

Assessment of mitochondrial function and biogenesis To
evaluate mitochondrial membrane potential, reactive oxygen
species (ROS) production and mitochondrial lipid peroxida-
tion, primary PTECs were cultured on 35 mm glass-bottom
dishes. Mitochondrial membrane potential was assessed
by staining with 50 nmol/l tetramethylrhodamine ethyl
ester (Invitrogen) for 30 min at 37°C. Mitochondrial ROS
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production was evaluated using 0.3 pmol/l MitoSOX Red
(Invitrogen) for 15 min. Mitochondrial lipid peroxidation
was measured by incubating cells with 5 pmol/l MitoPerOx
(Abcam) for 30 min. Fluorescent images were acquired using
an Olympus FV3000 microscope, and the mean fluorescence
intensity in fluorescence-positive areas was quantified using
Imagel] software. More than five images were obtained for
each sample (150 cells per sample).

RNA-seq analysis and bioinformatics Control and
Atg5KO cells were treated with 20 pmol/l erastin2 for 24
h before RNA isolation. RNA-seq was performed by the
Center of Medical Innovation and Translational Research
(Osaka University) and Macrogen Japan. Reads were pre-
processed using FastQ Quality Trimmer (version 0.0.14).
Trimmed reads were aligned to the reference genome
(mm10, GRCm38; https://hgdownload.soe.ucsc.edu/downl
oads.html) using HISAT2 (version 2.1.0) with default
parameters. Read counts for each sample were calculated
using FeatureCounts (version 1.4.6). Data normalisation and
statistical analysis were performed using the Bioconductor
package edgeR (version 3.26.8). Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway gene set enrichment
analysis (GSEA) (www.gsea-msigdb.org/gsea/index.jsp)
[34, 35] was carried out using gseKEGG in the clusterPro-
filer package (version 4.6.2) [36]. RNA-seq data were depos-
ited in the NCBI Gene Expression Omnibus (GSE298268).

Kidney biopsy specimens Human kidney specimens were
obtained from individuals who underwent kidney biopsy at
Osaka University Hospital. Samples with DKD were identi-
fied based on pathological criteria for diabetic nephropathy.
Non-DKD specimens included samples with no significant
pathological abnormalities, benign nephrosclerosis or IgA
nephropathy. The extent of SQSTM1/p62 aggregation was
quantified as the number of aggregates per centimetre corti-
cal length. The percentage of positively stained areas for
4HNE, SQSTM1/p62, p-AMPK and p-ACC was assessed
in at least five randomly selected high-power fields (x400)
within the cortex. All immunohistochemical evaluations
were independently conducted by three nephrologists (S.
Matsui, J. Nakamura and T. Yamamoto) in a blinded man-
ner. All human studies were approved by the Institutional
Review Board of Osaka University Hospital (IRB numbers
17334, 20504 and 15234-8). We have complied with all of
the relevant ethical regulations, and informed consent was
obtained from the individuals who underwent kidney biopsy.

Quantitative real-time PCR Tissue RNA was extracted
using TRIzol reagent (Invitrogen) according to the manu-
facturer’s instructions. Real-time SYBR Green PCR analyses
(Thermo Fisher Scientific) were performed using a QuantS-
tudio 7 Flex real-time PCR system (Applied Biosystems) to

quantify mRNA expression levels in the kidney. The primer
sequences used were: Sdha (F: 5'- TTACCTGCGTTTCCC
CTCAT-3"; R: 5'-AAGTCTGGCGCAACTCAATC-3"),
Pgcla (F: 5" -TGATGTGAATGACTTGGATACAGACA-3';
R: 5'-GCTCATTGTTGTACTGG TTGGATATG-3"), Scad
(F: 5" -TTACCTGGCCTACTCCATCG-3"; R: 5'-TGATCC
ACTGTTGCTTCTGC-3"), Lcad (F: 5'- GCATCAACA
TCGCAGAGAAA-3"; R: 5'-ACGCTTGCTCTTCCCAAG
TA-3"), Vicad (F: 5'- GCATCTTGCTCTATGGCACA-3";
R: 5'-CACTCGAGGGCTCTGTTAGG-3"), mtCo2 (F:
5-ATAATCCCAACAAACGACCT-3"; R: 5'-CTCGGT
TATCAACTTCTAGCA-3"), mtNdI (F: 5 -CTAGCAGAA
ACAAACCGGGC-3"; R: 5'-CCGGCTGCGTATTCTACG
TT-3"), mtActb (F: 5'-ACCGTGAAAAGATGACCCAG-3;
R: 5'-AGCCTGGATGGCTACGTACA-3") and Actb (F:
5'-TGACAGGATGCAGAAGGAGA-3"; R: 5'-ACATCT
GCTGGAAGGTGGAC-3") (F, forwards; R, reverse).

Western blot analysis Western blot analyses were per-
formed as previously described [37]. Briefly, proteins were
extracted using Cell Lysis Buffer (Cell Signaling Tech-
nology; 9803) with complete protease inhibitor cocktail
(Roche; 11697498001), separated by SDS—PAGE, and then
transferred to PVDF membranes (GE Healthcare). We used
10-20% gradient gels to detect proteins of low molecular
mass such as MAP1LC3.The membranes were blocked in
a blocking solution comprising 1.0% BSA in TBS contain-
ing 0.1% Tween-20, and incubated with primary antibodies
overnight at 4°C. After being washed, the membranes were
incubated with secondary antibodies for 1 h at room tem-
perature. After additional washes, chemiluminescent signals

Table 1 Characteristics of individuals with or without DKD whose
kidney sections were used for immunostaining

Non-DKD (n=16) DKD (n=16)
Age (years) 535+ 187 563 +15.2
Female sex (%) 4 (25%) 2 (12.5%)
Creatinine (pmol/l) 98 + 16 114 £ 35
eGFR (ml/min per 1.73 m?)  54.5 + 15.1 51.3+22.1
Urinary protein (g/gCr) 1.65 +1.25 2.62+2.25
BMI (kg/m?) 229+29 24.6 + 3.6
HbA . (mmol/mol) 364 +44 49.4 + 6.4*
HbA, (%) 5.48 +£0.40 6.67 + 0.58*
RPS classification () Class I 4
Class Ila 3
Class IIb 6
Class 11T 3

Values for continuous variables are presented as mean + SD; those
for categorical variables are n (%)

Profiles were compared between the groups : *p<0.05 vs non-DKD
RPS, Renal Pathology Society
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were detected using an enhanced chemiluminescence rea-
gent (Clarity Western ECL Substrate, Bio-Rad; 1705061).
Images were obtained using ChemiDoc Touch (Bio-Rad).

Establishment of Rho® renal tubule cells Renal tubule cells
were cultured in DMEM/F12 medium supplemented with
100 ng/ml ethidium bromide (EtBr) (Bio-Rad; 161-0433),
50 pg/ml uridine (Sigma-Aldrich; U3750) and 1 mmol/l
sodium pyruvate (Gibco; 11360070) for 8 days to generate
mtDNA- or mtRNA-depleted cells (Rho® phenotype). The
depletion of mtRNA was confirmed by quantitative real-time

58, Male
MGA
eGFR
40.3 mi/min per 1.73 m?

35, Male
DKD
eGFR
37.7 ml/min per 1.73 m?

PCR. No overt cell death was observed following EtBr treat-
ment; however, cell proliferation was reduced compared
with untreated cells.

Statistical analysis All data are presented as means + SD.
Statistical analyses were performed using JMP software
version 17.2.0 (SAS Institute). Group comparisons were
evaluated using one-way ANOVA followed by post hoc
Tukey—Kramer testing. Comparisons between two groups
were performed using an unpaired Student’s ¢ test where
appropriate. Statistical significance was defined as p<0.05.
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Fig. 1 The ferroptotic signature is increased in PTECs from indi-
viduals with DKD. (a) Representative immunohistochemical images
showing 4HNE, SQSTM1/p62, p-AMPK and p-ACC staining in kid-
ney biopsy samples from individuals with or without DKD, together
with their corresponding age, sex, aetiology and eGFR (ml/min per
1.73 m?). Haematoxylin was used for counterstaining. Scale bars,
50 pm. Regions exhibiting positive immunostaining are shown.
The number of SQSTMI1/p62-positive aggregates per unit cortex
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4HNE cytoplasm expression (%)

4HNE cytoplasm expression (%)

length was quantified. (n=16 per group). (b—d) Correlation of the
4HNE-positive PTEC area with SQSTM1/p62 aggregate count (b),
p-AMPK-positive PTEC area (c¢), and p-ACC-positive PTEC area (d).
Relationships were assessed using Pearson’s correlation with corre-
sponding p values. Data are means + SD. Statistically significant dif-
ferences are indicated by asterisks (p<0.05). MGA, minor glomerular
abnormalities



Diabetologia

Results

Ferroptosis signature is increased in PTECs of individuals with
DKD We first examined whether PTECs from individuals with
DKD exhibit an enhanced ferroptosis signature, impaired
autophagy and AMPK inactivation compared with those
from individuals without DKD. No significant differences
were observed for age, eGFR, urinary protein levels or BMI
between the two groups. However, HbA | levels were elevated
in the DKD group (Table 1). The histological severity of dia-
betic nephropathy, as assessed by the Renal Pathology Society

a Control Atg5KO

STZ+Control

Fig.2 Autophagy reduces vulnerability to ferroptosis in the kidneys
of STZ-treated mice. Saline- or STZ-treated control and Atg5SKO
mice were subjected to unilateral ischaemia—reperfusion injury, fol-
lowed by treatment with either vehicle or Fer-1. (a) PAS and (b)
TUNEL staining of the ischaemia-reperfusion-injured renal cortex

classification, ranged from class I to class III (Table 1). Lipid
peroxide accumulation was evident in PTECs from DKD indi-
viduals, as indicated by increased 4HNE expression (Fig. 1a).
Additionally, expression of GPX4 protein, a well-established
ferroptosis-associated biomarker [38], was significantly
downregulated in DKD PTECs and inversely correlated with
4HNE expression (ESM Fig. 1a, b). Furthermore, impaired
autophagy and AMPK inactivation were evident in DKD
PTECs, as indicated by SQSTM1/p62 accumulation and
reduced p-AMPK expression, respectively (Fig. 1a). Notably,
4HNE expression was positively correlated with SQSTM1/
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(%200). Scale bars, 100 pm. Data are means + SD. Statistically sig-
nificant differences are indicated by asterisks (p<0.05). All images
are representative of multiple experiments. PAS, periodic acid—Schiff
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p62 accumulation and negatively correlated with p-AMPK
expression (Fig. 1b). Collectively, these findings indicate that
ferroptosis is elevated in PTECs of individuals with DKD.
Given the observed correlations between ferroptosis markers,
autophagy impairment and AMPK inactivation, we further
explored the potential mechanistic links among these factors
in the context of DKD.

Autophagy suppresses ferroptosis susceptibility in type 1

diabetic kidneys We next investigated whether autophagy
impairment increases ferroptosis susceptibility in PTECs

Vehicle

Rapamycin Fer-1

db/m

db/db

Vehicle Rapamycin Fer-1

Fig.3 Improving autophagy reduces susceptibility to ferroptosis in
dbl/db mouse kidneys. db/m and db/db mice were treated with vehicle,
rapamycin or Fer-1, and subjected to unilateral ischaemia-reperfusion

injury. (a) PAS and (b) TUNEL staining of ischaemia—reperfusion-
injured kidney cortices (n=4—6 per group). The PAS injury score is

db/m

db/db
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in vivo. Our previous study demonstrated that autophagic
activity in nephropathy differs between models of type 1
and 2 diabetes, and that, in type 1 diabetic nephropathy,
elevated basal autophagic activity induces lysosomal stress,
ultimately leading to autophagic stagnation (ESM Fig. 2)
[19]. To assess the combined effects of type 1 diabetes and
dysregulated autophagy on ferroptosis, we treated 8-week-
old Arg5™F mice (control mice) and Atg5KO mice with STZ
or vehicle. At 12 weeks of age, the mice were subjected
to ischaemia—reperfusion injury, a well-established model
of ferroptosis induction in PTECs [12]. To evaluate the
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are means + SD. Statistically significant differences are indicated by
asterisks (p<0.05). All images are representative of multiple experi-
ments. PAS, periodic acid—Schiff
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contribution of ischaemia—reperfusion-induced ferroptosis
in DKD, either vehicle or the ferroptosis inhibitor Fer-1 were
administered. Compared with control mice, STZ-treated con-
trol mice and vehicle-treated Atg5KO mice exhibited severe
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Fig.4 Autophagy inhibits ferroptotic cell death in PTECs. (a)
Representative immunofluorescence images showing SQSTM1/
p62 (green), 4HNE (red) and LRP2/MEGALIN (purple) stain-
ing in the renal cortex of ischaemia-reperfusion-injured control
and Atg5KO mice (n=6-7 per group). Scale bars, 50 pm. (b) Rep-
resentative western blot images of ATGI12-ATGS, SQSTM1 and
MAPILC3 in control and Atg5KO cells. Autophagy deficiency was
confirmed by reduced ATGS expression, accumulation of SQSTM1/

tubular injury, characterised by extensive cellular debris
(Fig. 2a). This injury was further exacerbated in STZ-treated
Atg5KO mice. The number of TUNEL-positive tubular
cells, as well as 4HNE and HAVCR1/KIM-1 expression in
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p62, and impaired conversion of MAPI1LC3-I to MAPILC3-II (n=3
per group). B-Actin (ACTB) was used as the loading control. (¢, d)
Quantification of cell death (c¢) and lipid peroxidation (d) in control
and Atg5KO cells treated with or without 20 pmol/l erastin2 for 48 h.
Data are means + SD. Statistically significant differences are indi-
cated by asterisks (p<0.05). All images are representative of multiple
experiments. IR, ischaemia—reperfusion
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«Fig.5 Loss of Atg5 exacerbates mitochondrial dysfunction and ROS
in PTECs. (a) RNA-seq transcriptomic analysis was performed on
control and Atg5SKO cells treated with erastin2 for 24 h to identify
significantly enriched pathways (n=3) and KEGG pathway GSEA
was carried out. (b, ¢) Mitochondrial membrane potential (b) and
mitochondrial ROS production (c¢) in control and Atg5KO cells
treated with vehicle or erastin2 were assessed using tetramethylrho-
damine ethyl ester (TMRE) and MitoSOX Red staining, respectively.
Quantitative data for relative signal intensity are presented. Over
150 cells were analysed per condition. (d) Representative images of
SDH staining in the renal cortex of ischaemia-reperfusion-injured
control and Atg5KO mouse kidney cortices (n=6—7 per group). Rela-
tive staining intensities are shown. (e) Electron microscopy images
of ischaemia-reperfusion-injured kidneys of control and Atg5SKO
mice. The red arrowhead in control mouse kidneys indicates mito-
chondria enclosed within an autophagosome, while the red arrowhead
in AtgS5KO mouse kidneys indicates outer mitochondrial membrane
rupture (n=3 per group). (f) Quantification of cell death in control,
Atg5SKO, control + Rho® and Atg5KO + Rho cells treated with or
without 20 pmol/l erastin2 for 48 h. Scale bars, 10 pm (b, ¢), 100 pm
(d) and 1 pm (e). Data are means + SD. Statistically significant dif-
ferences are indicated by asterisks (p<0.05). All images are repre-
sentative of multiple experiments. IR, ischaemia—reperfusion

PTEC:s following ischaemia—reperfusion injury, correlated
with the extent of tubular damage (Fig. 2b and ESM Fig. 3a,
b). Notably, Fer-1 administration ameliorated kidney injury
in STZ-treated control mice, vehicle-treated AtgSKO mice
and STZ-treated Atg5KO mice, with no significant differ-
ences in injury observed among the Fer-1-treated groups
(Fig. 2a, b and ESM Fig. 3a, b). These findings suggest that
autophagy mitigates ferroptosis susceptibility in the kidneys
of type 1 diabetic mice.

Improving autophagy suppresses susceptibility to ferrop-
tosis in type 2 diabetic kidneys To evaluate the signifi-
cance of ischaemia-reperfusion-induced ferroptosis in
the kidneys of type 2 diabetic mice, in which autophagic
activity is suppressed via mTOR signalling due to ele-
vated plasma insulin levels (ESM Fig. 2) [19], we sub-
jected 12-week-old db/m and db/db mice to ischaemia—
reperfusion injury. Severe tubular injury, marked by
abundant cellular debris, was observed in ischaemia-rep-
erfusion-injured db/db mice but was attenuated by Fer-1
treatment (Fig. 3a). Additionally, treatment with rapa-
mycin, which enhances autophagy by inhibiting mTOR
signalling, ameliorated tubular injury in db/db mice. The
number of TUNEL-positive tubular cells, together with
4HNE and HAVCR1/KIM-1 expression in PTECs follow-
ing ischaemia-reperfusion injury, paralleled the extent of
tubular damage (Fig. 3a, b and ESM Fig. 3c, d). These
findings indicate that improving autophagy suppresses
susceptibility to ferroptosis in db/db mice.

Atg5 deficiency sensitises PTECs to ferroptotic cell death To
confirm whether ischaemia-reperfusion-induced ferroptosis

occurs in autophagy-deficient PTECs in vivo, we analysed
4HNE expression and SQSTM1/p62 accumulation in
ischaemia-reperfusion-injured control and Atg5KO mice.
Although 4HNE expression and SQSTM1/p62 accumula-
tion were minimal in ischaemia—reperfusion-injured con-
trol mice, 4HNE expression was markedly increased in
autophagy-deficient PTECs, as indicated by the occurrence
of SQSTM1/p62-positive PTECs in ischaemia—reperfusion-
injured Atg5KO mice (Fig. 4a).

To further investigate the role of autophagy in ferropto-
sis in PTECs, we isolated renal proximal tubule cells from
Atg5™ mice (hereafter referred to as control cells) and
Atg5"F;NDRG1 mice (tamoxifen-inducible PTEC-specific
Atg5-deficient, hereafter referred to as AtgSKO cells). Cells
were treated with the ferroptosis inducer erastin2. The Arg5
deficiency in AtgSKO cells was confirmed by reduced ATGS
expression, impaired MAP1LC3-I to MAP1LC3-II conver-
sion, and SQSTM1/p62 accumulation (Fig. 4b). Atg5KO
cells exhibited significantly increased susceptibility to
erastin2-induced ferroptotic cell death and lipid peroxida-
tion (Fig. 4c, d). Ferroptotic cell death and lipid peroxida-
tion were completely suppressed by Fer-1 in control and
Atg5KO cells (Fig. 4c, d). Collectively, these findings dem-
onstrate that autophagy suppresses ferroptosis susceptibility
in PTECs.

Autophagy inhibits ferroptosis by reducing mitochondrial
ROS We found that autophagy does not influence several
well-established ferroptosis mechanisms, including the
expression of the key ferroptosis-regulatory proteins ACSL4
and GPX4 (ESM Fig. 4). To explore the mechanisms by
which Azg5 deficiency sensitises PTECs to ferroptosis, con-
trol and Atg5KO cells were treated with erastin2 and sub-
jected to RNA-seq transcriptomic analysis. GSEA revealed a
significant downregulation of the KEGG pathway ‘oxidative
phosphorylation’ in Atg5KO cells (Fig. 5a). The kidney has
the second-highest mitochondrial content and oxygen con-
sumption after the heart [39]. Moreover, it is one of the most
mitophagy-enriched organs [40], where damaged and depo-
larised mitochondria are selectively removed and recycled to
maintain mitochondrial function [41]. Based on the reduced
oxidative phosphorylation observed in Atg5KO cells and the
critical role of mitophagy in maintaining renal mitochondrial
homeostasis, we next focused on mitochondrial alterations
in PTECs.

Upon erastin2 treatment, Atg5KO cells exhibited reduced
mitochondrial membrane potential and increased mito-
chondrial ROS, as assessed by tetramethylrhodamine ethyl
ester and MitoSOX Red staining, respectively (Fig. 5b, c).
Additionally, mitochondrial lipid peroxidation, as indi-
cated by MitoPerOx staining [42], was markedly elevated
in Atg5KO cells under erastin2 treatment (ESM Fig. 5a).
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Consistently, mitochondrial respiratory activity, as assessed
by SDH staining, was significantly reduced in the kidneys
of ischaemia—reperfusion-injured Atg5SKO mice compared
with ischaemia-reperfusion-injured kidneys of control mice
(Fig. 5d). Electron microscopy of ischaemia—reperfusion-
injured kidneys of control mice showed preserved mito-
chondrial morphology and mitophagy, characterised by
mitochondria enclosed within autophagosomes, in PTECs
(Fig. 5e and ESM Fig. 5b). In contrast, ischaemia—reperfu-
sion-injured kidneys of Atg5SKO mice exhibited an absence
of autophagosomes and severe mitochondrial abnormalities,
including smaller mitochondria with increased membrane
density, cristae loss and outer membrane rupture, features
that are consistent with ferroptotic morphology (Fig. Se
and ESM Fig. 5b). These findings suggest that autophagy
deficiency exacerbates mitochondrial dysfunction-induced
ferroptosis.

To determine whether autophagy suppresses ferroptosis by
reducing mitochondrial ROS, we established primary Rho”
cells by culturing PTECsS in the presence of EtBr for 8 days.
The absence of mitochondrial DNA was confirmed by negligi-
ble transcript levels of Co2 and Nd1 following EtBr treatment
(ESM Fig. 6). There was no significant difference in ferroptotic
cell death between vehicle-treated control cells and Rho con-
trol cells under erastin2 treatment. However, compared with
vehicle-treated Atg5SKO cells, ferroptotic cell death was signif-
icantly reduced in Rho” AtgSKO cells under erastin2 treatment
(Fig. 5f). Collectively, these findings suggest that autophagy
protects against ferroptosis by mitigating mitochondrial ROS
accumulation in PTECs.

HG-induced inactivation of AMPK promotes ferroptosis
in PTECs Next we investigated whether HG influences
AMPK, a central energy regulator, and whether its altered
activity contributes to ferroptosis. In cultured PTECs, HG
treatment led to reduced p-AMPK expression (Fig. 6a).
AMPK regulates lipid metabolism by directly phospho-
rylating ACC1 and ACC2, thereby suppressing fatty acid
synthesis and promoting fatty acid oxidation via activa-
tion of carnitine palmitoyltransferase 1 (CPT1) through
relief of malonyl-CoA-mediated inhibition at the mito-
chondrial outer membrane [43]. As a downstream target
of AMPK, p-ACC expression was significantly reduced
following HG treatment (Fig. 6a). Additionally, HG treat-
ment decreased the mRNA levels of fatty acid oxidation-
related genes, including Cptla (ESM Fig. 7). Further-
more, HG treatment enhanced ferroptotic cell death and
lipid peroxidation under erastin2 treatment (Fig. 6b, c).
In human kidney biopsy specimens, p-ACC expression
was suppressed in PTECs from individuals with DKD
(Fig. 1a). Notably, p-ACC expression was positively
correlated with p-AMPK expression and negatively cor-
related with 4HNE expression in PTECs (Fig. 1d and
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ESM Fig. 1b). These findings suggest that AMPK acti-
vation may play a protective role against HG-induced
ferroptosis.

To determine whether HG promotes ferroptosis via
AMPK inactivation, we treated PTECs with the AMPK
activator AICAR. AICAR restored HG-induced reduc-
tions in p-AMPK and p-ACC expression (Fig. 6a and
ESM Fig. 7) and significantly attenuated HG-induced fer-
roptotic cell death and lipid peroxidation under erastin2
treatment (Fig. 6d). Collectively, these findings indicate
that HG promotes ferroptosis by disrupting the AMPK-
ACC axis.

Given the role of AMPK in regulating autophagy, we fur-
ther investigated whether AICAR ameliorates HG-induced
impairment of autophagy. HG increased the protein levels
of SQSTM1/p62 compared with LG, indicating that HG
induces autophagy impairment (ESM Fig. 8a). Next, we
assessed the autophagic flux index, defined as the propor-
tions of MAP1LC3-II in the presence or absence of bafilo-
mycin Al. AICAR enhanced autophagic flux in HG-treated
PTECs (ESM Fig. 8b). These findings suggest that HG-
induced AMPK dysfunction disrupts not only ACC phos-
phorylation but also autophagy activity.

AMPK activation attenuates ischaemia-reperfusion injury
susceptibility in diabetic mice Based on our in vitro find-
ings, we further examined the role of AMPK in in vivo
DKD models. Consistent with our in vitro results, type 1 and
type 2 diabetic mice exhibited reduced p-AMPK and p-ACC
expression compared with non-diabetic controls (Fig. 7a).
We then investigated whether AMPK activation mitigates
susceptibility to ischaemia—reperfusion-induced ferroptosis
in diabetic mice. Kidney injury severity and the number of
TUNEL-positive tubular cells were significantly increased in
ischaemia—reperfusion-injured STZ-treated and db/db mice
compared with ischaemia-reperfusion-injured non-diabetic
controls (Fig. 7b, c). The effect of this injury was signifi-
cantly attenuated by AICAR treatment in both diabetic mod-
els. Furthermore, AICAR suppressed lipid peroxidation and
reduced tubular injury in diabetic kidneys (Fig. 7d, ). These
findings suggest that AMPK activation enhances resistance
to ferroptosis and protects against ischaemia—reperfusion-
induced kidney injury in diabetic mice.

Discussion

In this study, we found that the ferroptotic signature in
PTECs was elevated in individuals with DKD, accompa-
nied by impaired autophagy and AMPK inactivation. We
also demonstrated that type 1 and type 2 diabetes sensitised
PTEC: to ferroptosis through distinct mechanisms. First,
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impaired autophagy increased susceptibility to ferroptosis by
elevating mitochondrial ROS. Second, HG-induced AMPK
inactivation promoted ferroptosis. These mechanisms may
underlie the heightened ferroptotic vulnerability observed
in DKD mice. A schematic summary is provided in Fig. 8.
Our analysis of human kidney samples revealed that
the ferroptotic signature was elevated in PTECs of indi-
viduals with DKD, positively correlating with dysregulated

autophagy and negatively correlating with AMPK activity.
These findings indicate that increased ferroptosis sensiti-
sation occurs not only in DKD mouse models but also in
human DKD, probably driven by autophagy dysfunction
and AMPK inactivation. Although we assessed lipid per-
oxide accumulation rather than ferroptosis itself in human
samples, membrane lipid peroxidation is a critical event in
the execution of ferroptosis [44], and is therefore a valid
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Fig.6 HG-induced inactivation of AMPK promotes ferroptosis in
PTECs. (a) Representative western blot images of p-AMPK, total
AMPK, p-ACC and total ACC in cultured PTECs incubated with LG
or HG, with or without AICAR (n=3 per group). (b, ¢) Quantifica-
tion of cell death (b) and lipid peroxidation (c) in cultured PTECs
incubated with LG or HG, with or without Fer-1, and treated with or

without 1 pmol/l erastin2 for 24 h. (d) Quantification of cell death in
cultured PTECs incubated with LG or HG, with or without AICAR,
and treated with or without 1 pmol/l erastin2 for 24 h. Data are means
+ SD. Statistically significant differences are indicated by asterisks
(p<0.05). All images are representative of multiple experiments.
Vehi, vehicle
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«Fig.7 AMPK activation attenuates vulnerability to ischaemia-reper-
fusion injury in diabetic mice. (a) Representative western blot images
of p-AMPK, total AMPK, p-ACC and total ACC in kidney lysates
from non-diabetic, STZ-treated and db/db mice (n=5 per group).
(b, ¢) Representative images of PAS staining (b) and TUNEL stain-
ing (c) of ischaemia-reperfusion-injured renal cortices from non-
diabetic, STZ-treated and db/db mice with or without AICAR treat-
ment, 2 days after unilateral ischaemia-reperfusion injury (n=>5-7
per group). PAS injury scores are presented. TUNEL-positive PTECs
were quantified across at least ten high-power fields (HPF) (x200).
(d, e) Representative immunofluorescence images of 4HNE (d) and
immunohistochemical images of HAVCR1/KIMI (e) in the ischae-
mia—-reperfusion-injured renal cortex. Scale bars, 100 um. Data are
means + SD. Statistically significant differences are indicated by

asterisks (p<0.05). All images are representative of multiple experi-
ments. PAS, periodic acid—Schiff

indicator in kidney tissue. Moreover, the presence of lipid
peroxides in PTECs where ferroptosis has not yet occurred
suggests that ferroptosis may occur when subsequent trig-
gers drive lipid peroxides beyond a lethal threshold. Thus,
lipid peroxide accumulation may represent a primed state of
ferroptosis susceptibility in human kidneys.

A variety of cancer cell lines have been reported to
exhibit autophagy-driven ferroptosis. However, in contrast
to previous reports [21-25], our findings demonstrate that
autophagy confers resistance to ferroptosis in PTECs. This
discrepancy may stem from differences in cell type. For
instance, metabolic profiles vary between cells: primary
renal PTECs, as used in our study, rely predominantly on
fatty acid oxidation [45], whereas cancer cell lines depend
primarily on glycolysis, probably due to mitochondrial drop-
out [46]. This metabolic divergence may influence the effect
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(IR injury)
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ROS
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of Azg5 knockout on ferroptosis susceptibility, as ferroptosis
is regulated by cellular metabolic processes involving lipid
peroxidation, including redox balance, iron handling, mito-
chondrial function and the metabolism of amino acids, lipids
and sugars [10].

We demonstrated that autophagy suppresses ferroptosis
by reducing mitochondrial ROS in PTECs. Recent stud-
ies have shown that mitochondria play diverse, context-
dependent roles in modulating ferroptosis sensitivity [47,
48]. In the context of autophagy, one study reported that
mitophagy protects against ferroptosis by downregulating
mitochondrial ROS [49]. PTECs are mitochondria-rich
and derive their energy primarily from oxidative phos-
phorylation. In mitochondria-rich PTECs, mitochondrial
ROS are inevitably produced as byproducts of oxidative
phosphorylation, making it essential to maintain low mito-
chondrial ROS levels. Autophagy supports this by facili-
tating the clearance of damaged mitochondria through
mitophagy and macroautophagy, thereby preventing ROS
accumulation and preserving mitochondrial quality [15,
50]. Indeed, mitophagy-deficient mice (pinkl knockout or
park2 knockout) exhibit increased susceptibility to ischae-
mia-reperfusion injury [51]. These findings suggest that
autophagy mitigates mitochondrial ROS accumulation and
thereby inhibits ferroptosis in PTECs.

HG-induced AMPK inactivation, together with ACC
dephosphorylation, sensitised cells to ferroptotic cell
death. The role of AMPK in ferroptosis remains contro-
versial [52, 53]; however, one study showed that energy
stress activates AMPK, which phosphorylates and inacti-
vates ACC, thereby suppressing polyunsaturated fatty acid
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Fig. 8 Schematic illustration of the findings of this study. DKD leads
to autophagy impairment and inactivation of AMPK and ACC signal-
ling. Impaired autophagy sensitises PTECs to ferroptotic cell death via

mitochondrial ROS accumulation. Disruption of the AMPK-ACC axis
further increases susceptibility to ferroptosis. IR, ischaemia—reperfusion
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biosynthesis and inhibiting ferroptosis. In light of these
insights, HG-induced disruption of AMPK and ACC may
enhance polyunsaturated fatty acid biosynthesis, increas-
ing susceptibility to ferroptosis in PTECs. Conversely,
activation of AMPK and ACC through AICAR treat-
ment may reduce polyunsaturated fatty acid biosynthesis,
thereby promoting resistance to ferroptosis in PTECs. Fur-
thermore, our findings demonstrate that AICAR enhances
autophagic activity in HG-treated PTECs, suggesting that
AMPK activation may confer resistance to ferroptosis in
PTECs by improving autophagy.

Ferroptosis has garnered attention as a potential target
in cancer therapy [54]. If ferroptosis inducers are applied
clinically, renal tubules that are highly vulnerable to fer-
roptosis may be at risk of injury. Our findings suggest that
autophagy activation may mitigate such effects, protecting
normal cells while allowing ferroptosis induction in can-
cer cells. Although prior studies indicated that autophagy
activation sensitises cancer cells to ferroptosis [21-25], our
data suggest that autophagy may protect renal tubules from
ferroptotic injury. Thus, in therapeutic contexts, autophagy
activation may offer systemic protective benefits.

Our study explains why diabetic individuals with elevated
blood glucose levels are susceptible to AKI, but it may not
fully account for why individuals with well-controlled glu-
cose levels also develop AKI, which is a limitation. How-
ever, diabetic patients are known to experience glycaemic
legacy effects, in which prior hyperglycaemia — even after
subsequent glucose normalisation — causes lasting detrimen-
tal effects through mechanisms such as epigenetic modifi-
cations [55]. These effects may contribute to the persistent
impairment of autophagy and AMPK inactivation in PTECs
of diabetic individuals. Furthermore, while HbA |, levels
below 53 mmol/mol (7.0%) are generally considered indica-
tive of good glycaemic management, patients with HbA
levels around 42 mmol/mol (6%) still have higher blood glu-
cose levels compared with healthy individuals, which may
influence AMPK activity and autophagy status. Consistently,
for our human kidney biopsy samples, individuals in the
DKD group had a mean HbA,, of 49.4 mmol/mol (6.67%)
which was higher than that in the non-DKD group but still
within the range of good glycaemic management, yet still
exhibited impaired autophagy and AMPK inactivation in
PTECs.

In conclusion, we demonstrate that defective autophagy
and AMPK inactivation enhance susceptibility to ferrop-
tosis in DKD. These findings highlight new opportunities
for therapeutic interventions in AKI associated with DKD.
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