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 A B S T R A C T

For maintenance, repair, and rehabilitation of highway pavements, implementing efficient repairs to extend 
pavement service life can be achieved through proper actions on various types of deterioration process. In this 
study, a multi-dimensional deterioration process model using continuous quantities is developed considering 
the interaction between pavement surface and load-bearing capacity deterioration. The proposed model 
contributes to formulating preventive maintenance repair plans cognizant of this interaction. Specifically, 
progression of pavement deterioration is modeled by the continuous deterioration hazard model to estimate 
the heterogeneity that represents the deterioration rate specific to each pavement deterioration process; i.e., 
surface and sub-surface deterioration. Furthermore, the developed multi-dimensional deterioration process 
model expresses the correlation of the heterogeneity parameters of the interacting deterioration processes using 
an Archimedian copula and is used to estimate the progression of each deterioration process. The characteristics 
of each deteriorating process are discussed from the viewpoint of timely repair planning. Finally, the proposed 
model is verified through an application case study using actual highways inspection data.
1. Introduction

Efficient pavement repair is advocated to extend the service life of 
pavements for which the introduction of preventive maintenance strate-
gies is important. In the maintenance and management of highway 
pavements, it is necessary to consider the performance of pavements in 
terms of safety and driving comfort. Adey et al. (2020) lists important 
considerations for road service that include comfort and safety; so road 
managers should develop new and improve existing strategies to bet-
ter pavement condition. The road surface condition indices including 
cracking rate, rutting depth, and International Roughness Index (IRI), 
may be regularly obtained through road condition surveys in countries 
with the economic and human resources to do so. Pavement condition 
inspection data can be used to estimate deterioration rates and develop 
plans for maintenance, repair and rehabilitation of highway pavements. 
In addition, pavement sub-surface conditions may be known through 
estimating the deflection rate using the Falling Weight Deflectometer 
(FWD). The FWD survey can be used to estimate pavement load-
bearing capacity by measuring its deflection rate at specific locations. 
Pavement surface conditions such as cracking, rutting, and roughness, 
and sub-surface conditions like load-bearing capacity derived from 
FWD tests, are inherently interrelated (e.g., Nakamura et al. (2022)). 
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Understanding and quantifying these interrelationships is essential for 
comprehensive pavement deterioration modeling.

In road asset management, various statistical approaches have been 
developed to predict infrastructure deterioration using inspection data. 
While a range of deterioration modeling frameworks exist, the method-
ology proposed in this study is rooted in the Markov model, which 
has served as a foundational approach in the field. Among these, 
the Markov deterioration hazard model developed by Tsuda et al. 
(2006) has been widely applied due to its intuitive formulation and 
compatibility with condition-state-based inspection data. This family 
of models has been further extended—for example, into the mixed 
Markov deterioration hazard model that enables quantification of het-
erogeneity for each evaluation unit (Obama et al., 2008), and the 
hidden Markov model that handles incomplete monitoring data for 
latent deterioration processes (Lethanh and Adey, 2012). While the 
Markov framework is commonly used and forms a historical foundation 
for deterioration modeling, it has limitations in capturing continu-
ous deterioration processes and the interdependence among multiple 
deterioration indicators. To overcome these limitations, the present 
study adopts a modeling approach based on continuous quantities and 
explicitly incorporates dependency structures using copula functions. 
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Conventional Markov models often focus on a single deterioration 
indicator and are limited in their ability to represent the statistical 
dependency among multiple deterioration processes. Such models do 
not adequately capture the joint progression of various types of pave-
ment degradation – such as surface cracking, rutting, and sub-surface 
structural weakening – which may evolve simultaneously and influence 
one another. To overcome these limitations, this study proposes a 
modeling framework that describes the entire deterioration process 
using multiple continuous condition indices.

In this framework, the deterioration of each indicator is modeled 
using a continuous quantity hazard model that accounts for heterogene-
ity across pavement sections. To represent the dependency structure 
among these indicators, copula functions are introduced. Copulas are 
particularly suitable for this application because they allow for flexible 
modeling of the joint distribution of multiple random variables, while 
preserving the marginal distributions of each deterioration process. 
This enables the characterization of interdependence among indicators, 
even when the data are only partially observed or exhibit asymmetric 
relationships. By combining continuous hazard models with copula-
based dependency modeling, the proposed method facilitates multi-
dimensional assessment of pavement condition and supports improved 
planning for maintenance, repair, and rehabilitation strategies.

The rest of the paper is organized as follows. The next section 
describes the research methodology followed by a description of the 
basic concept of the study. The subsequent section details the proposed 
multidimensional deterioration process model using continuous quanti-
ties and expression of the correlation among deterioration events using 
copulas. Lastly, the applicability of the multidimensional deterioration 
process model using continuous quantities is demonstrated through 
a case study on highway pavements and the conclusion and future 
research work are stated.

2. Basic concept of this study

2.1. Multi-dimensional evaluation of structural deterioration rate

It is common practice in infrastructure management to express 
deterioration processes using a single structural health monitoring 
index. In pavement management specifically, two approaches are typ-
ically employed: (1) aggregating various distress indicators such as 
cracking, rutting, and roughness into a composite index and modeling 
its temporal progression, and (2) modeling the progression of each 
distress indicator individually over time. Both approaches have their 
own strengths and are widely recognized in practice. However, since 
infrastructure deterioration often involves multiple interacting mecha-
nisms, a modeling framework capable of jointly considering multiple 
deterioration indicators may provide additional insights. 

Inspection data for a single deterioration process may not be suf-
ficient to model the entire infrastructure deterioration progression. 
Moreover, the inspection data observed in reality contains a mixture 
of such multiple cases. For this reason, when using data synthesized as 
a single indicator, it is difficult to determine which indicator best rep-
resents the deterioration process. In addition, the deterioration process 
model using a single deterioration event does not provide information 
on the heterogeneity of deterioration processes for each infrastructure 
facility and the correlation between deterioration events.

The term ‘‘entire infrastructure’’ refers to the overall condition of 
a facility as assessed by considering multiple deterioration indicators 
and members jointly, providing a comprehensive view of its perfor-
mance. In contrast, when referring to ‘‘each infrastructure facility’’ in 
the single-indicator context, it denotes the same physical unit (e.g., a 
homogeneous pavement section) but evaluated separately for each 
indicator. 

The multi-dimensional deterioration process model proposed in this 
study is applicable to the case where the deterioration management 
index of a structure is expressed as a continuous quantity and takes into 
2 
account the heterogeneity of the deterioration processes in question. 
The continuous deterioration hazard model uses a baseline model as 
a benchmark case. The heterogeneity of the category is represented 
by the heterogeneity parameter 𝜀 that is distributed according to a 
probability density function 𝑝(𝜀) which makes it possible to evaluate 
the relative deterioration rates of individual structure categories. 𝜀
= 0 corresponds to the benchmark, while 𝜀 > 0 is a structure that 
deteriorates relatively faster than the benchmark, and 𝜀 < 0 is a 
structure that deteriorates relatively slower than the benchmark. Please 
note that the deterioration speed refers to the overall deterioration 
tendency of a facility category, aggregated from the deterioration rates 
of its constituent sections. 

The heterogeneity parameter introduced in this study captures the 
variability observed in pavement deterioration across different pave-
ment sections. This variability naturally arises from differences in 
factors such as construction quality, material characteristics, environ-
mental exposure, traffic loads, and maintenance practices. Explicitly 
modeling this heterogeneity is crucial because pavement sections do 
not deteriorate uniformly, and neglecting this variability could result 
in less accurate deterioration predictions. 

2.2. Modeling the correlation structure using copulas

When evaluating the deterioration rate of infrastructure facilities 
using multiple deterioration management indices, the heterogeneity 
parameter, which represents the heterogeneity of the deterioration rate 
for each degradation process may show the correlation between the 
processes. In this study, multivariate copulas are used to express the 
dependency structure among event multivariate marginal distributions 
(see e.g., Nelsen (1999) for the use of copulas). The copulas are used to 
merge the marginal distribution functions of multiple random variables 
with their joint distribution functions. This study is unique in that 
joint distribution functions can be estimated while maintaining the 
probability structure of the multivariate marginal distributions.

Consider a case in which two types of deterioration events, A and 
B, are used to evaluate the deterioration state of multiple infrastructure 
facilities. The relationship between copulas, heterogeneity, marginal 
and joint distributions of parameters is shown schematically in the 
three-dimensional space (Fig.  1). The vertical planes in Fig.  1 show 
the marginal distribution functions of each heterogeneity parameter, 
allowing for relative evaluation of the deterioration rate of each event. 
The upper horizontal plane in Fig.  1 shows the joint distribution of the 
heterogeneity parameter pairs (𝜀𝐴, 𝜀𝐵) plotted in a two-dimensional 
space.

The information on the spatial distribution state of the heterogene-
ity parameters provides transition trends based on correlations among 
the heterogeneity parameters, as well as deterioration rates for indi-
vidual deterioration events. For example, if two types of deterioration 
events are considered, the total deterioration rate for the two types 
of events can be expressed in terms of the rate of deterioration of 
each event. Additionally, in the two-dimensional space for two types 
of deterioration events, the deterioration characteristics of a structure 
can be classified into four categories in each quadrant. In the first 
quadrant (𝜀𝐴 > 0 and 𝜀𝐵 > 0), the two deterioration events are both 
relatively faster than in the benchmark case. The second (𝜀𝐴 > 0 and 
𝜀𝐵 < 0) and fourth (𝜀𝐴 < 0 and 𝜀𝐵 > 0) quadrants correspond to 
the progression of either deterioration events A or B is superior to 
that of the benchmarking case, while the other is inferior, respectively. 
The third (𝜀𝐴 < 0 and 𝜀𝐵 < 0) quadrant can be evaluated as the 
progression of both events being slower than that of the benchmarking 
case. Moreover, the conditional probability density of a heterogeneity 
parameter, given that the other heterogeneity parameter is known, 
can be calculated using a copula and marginal distributions of the 
heterogeneity parameters as shown in the lower horizontal plane in Fig. 
1.
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Fig. 1. Joint distribution of heterogeneity parameters and copula.
3. Multi-dimensional deterioration process model with continu-
ous quantities

3.1. Continuous quantity deterioration hazard model

For each multidimensional deterioration event 𝑑 (𝑑 = 1,… , 𝐷), the 
deterioration management index of facility 𝑖 (𝑖 = 1,… , 𝐼) is denoted as 
𝑥𝑖𝑑 and the elapsed time since the most recent construction (renewal) 
as 𝑡𝑖. The more the deterioration progresses, the larger the value of the 
deterioration indicator becomes. The progression of the deterioration 
process is formulated as 
𝑥𝑖𝑑 = exp(−𝐵𝑖

𝑑 )𝑓𝑑 (𝑡
𝑖, 𝜷𝑑 ) (1a)

𝐵𝑖
𝑑 = 𝐳𝑖𝜽′𝑑 − 𝜀𝑘𝑑 + 𝜎𝑑𝑤

𝑖
𝑑 (1b)

where 𝐵𝑖
𝑑 is the deterioration characteristic coefficient of facility 𝑖, 

which can be expressed using the characteristic variable term 𝐳𝑖𝜽′𝑑 , the 
heterogeneity term 𝜀𝑘𝑑 and the error term 𝜎𝑑𝑤𝑖

𝑑 as shown in Eq. (1b). In 
Eq. (1b), 𝐳𝑖 = (𝑧𝑖,1,… , 𝑧𝑖,𝑀 ) is the characteristic variable vector affecting 
the deterioration of facility 𝑖, 𝜽𝑑 = (𝜃1𝑑 ,… , 𝜃𝑀𝑑 ) is the characteristic 
parameter vector, 𝜀𝑘𝑑 is the heterogeneity parameter expressing the 
unique deterioration rate in the group 𝑘 (𝑘 = 1,… , 𝐾) to which facility 
𝑖 belongs, 𝑤𝑖

𝑑 is the random error term expressing the deterioration 
factor unique to facility 𝑖, and 𝜎𝑑 is the deviation parameter. The 
heterogeneity parameter 𝜀𝑘𝑑 is assumed to follow a normal distribution 
with mean 0 and variance 𝜙2

𝑑 . to reflect symmetric variability around 
the mean deterioration rate, without imposing skewness toward faster 
or slower deterioration.  Also, 𝑓𝑑 (𝑡𝑖, 𝜷𝑑 ) is a deterioration model that 
represents the baseline deterioration process (hereafter, the baseline 
model) and is a monotonically increasing function with respect to 𝑡𝑖. 
Also, 𝜷𝑑 = (𝛽1𝑑 ,… , 𝛽𝑁𝑑 ) is the unknown parameter vector that char-
acterizes the baseline model. If exp(−𝐵𝑖 ) = 1 holds, the deterioration 
𝑑

3 
curve is identical to the baseline model. If the theoretical deterioration 
curve can be derived from a kinematic model, then it can be used as 
the baseline model. If no theoretical model exists, it is necessary to 
approximate the baseline model using, for example, a flexible function. 
By taking the logarithm on both sides of Eq. (1a), 
𝑦𝑖𝑑 = ln 𝑓𝑑 (𝑡𝑖, 𝛽𝑑 )

= ln 𝑥𝑖𝑑 + 𝐳𝑖𝑑𝜃
′
𝑑 − 𝜀𝑖𝑑 + 𝜎𝑑𝑤

𝑖
𝑑

(2)

is obtained where 𝑦𝑖𝑑 = ln 𝑓𝑑 (𝑡𝑖, 𝜷𝑑 ) is the non-linearized lifetime index. 
The stochastic error term 𝑤𝑖

𝑑 is assumed to follow the probability 
density function of the standard Gumbel distribution expressed as 

𝑔𝑤(𝑤𝑖
𝑑 ) = exp{−𝑤𝑖

𝑑 − exp(−𝑤𝑖
𝑑 )} (3)

where 𝐸(𝑤𝑖
𝑑 ) = 𝛾 = 0.57722⋯ is an Euler constant.

Rewrite Eq. (2) as 

𝑤𝑖
𝑑 =

𝑦𝑖𝑑 − ln 𝑥𝑖𝑑 − 𝐳𝑖𝜽′𝑑 + 𝜀𝑘𝑑
𝜎𝑑

(4)

and perform a variable transformation of the probability density func-
tion Eq. (3). As a result, the probability density function representing 
the conditional distribution of the lifetime index 𝑦𝑖𝑑 until the dete-
rioration management index value 𝑥𝑖𝑑 is reached for facility 𝑖 with 
deterioration characteristic 𝐳𝑖 is expressed as 

𝑞𝑦
(

𝑦𝑖𝑑 ∣ 𝑥𝑖𝑑 , 𝒛
𝑖
𝑑
)

= 1
𝜎𝑑

𝑔𝑤

(

𝑦𝑖𝑑 − ln 𝑥𝑖𝑑 − 𝒛𝑖𝑑𝜽
′
𝑑 + 𝜀𝑖𝑑

𝜎𝑑

)

= 1
𝜎𝑑

exp

{

−exp

(

−
𝑦𝑖𝑑 − ln 𝑥𝑖𝑑 − 𝒛𝑖𝑑𝜽

′
𝑑 + 𝜀𝑖𝑑

𝜎𝑑

)

−
𝑦𝑖𝑑 − ln 𝑥𝑖𝑑 − 𝒛𝑖𝑑𝜽

′
𝑑 + 𝜀𝑖𝑑

𝜎𝑑

}

(5)
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Table 1
Selected Archimedian copulas.
 Copula Generating function 𝜁 (𝑢𝑑 ) Distribution function 𝐶(𝑢1 ,… , 𝑢𝐷) Probability density function 𝑐(𝑢1 ,… , 𝑢𝐷) =

𝜕𝐷𝐶(𝑢1 ,… , 𝑢𝐷)
𝜕𝑢1 ⋯ 𝜕𝑢𝐷

 
 Gumbel

(− ln 𝑢𝑑 )𝛼 exp[−{
∑𝐷

𝑑=1(− ln 𝑢𝑑 )𝛼}
1
𝛼 ]

Partial differentiation of the distribution function  
 𝛼 ∈ (1,∞) at any time since there is no general form  
 Clayton 1

𝛼 (𝑢−𝛼𝑑 − 1) (
∑𝐷

𝑑=1 𝑢
−𝛼
𝑑 −𝐷 + 1)−

1
𝛼

{
∏𝐷−1

𝑑=1 (1 + 𝑑𝛼)}(
∏𝐷

𝑑=1 𝑢
−𝛼−1
𝑑 )  

 𝛼 ∈ (0,∞) (
∑𝐷

𝑑=1 𝑢
−𝛼
𝑑 −𝐷 + 1)−

1
𝛼
−𝐷  

 Frank ln{exp(−𝛼𝑢𝑑 ) − 1}
− 1
𝛼 ln

[

1 +
∏𝐷

𝑑=1{exp(−𝛼𝑢𝑑 )−1}
{exp(−𝛼)−1}𝐷−1

] Partial differentiation of the distribution function  
 𝛼 ∈ (0,∞) − ln{exp(−𝛼) − 1} at any time since there is no general form  
The lifetime index 𝑦𝑖𝑑 = ln 𝑓𝑑 (𝑡𝑖, 𝜷𝑑 ) contains an unknown parameter 
𝜷𝑑 . If we denote the first derivative of the lifetime index as ̇𝑓𝑑 (𝑡𝑖, 𝜷𝑑 ) =
𝑑𝑓𝑑 (𝑡𝑖, 𝜷𝑑 )∕𝑑𝑡𝑖, then 

𝑑𝑦𝑖𝑑 =
̇𝑓𝑑 (𝑡𝑖, 𝜷𝑑 )
𝑓𝑑 (𝑡𝑖, 𝜷𝑑 )

𝑑𝑡𝑖 (6)

is satisfied. Thus, the probability density function representing the 
conditional distribution of real life 𝑡𝑖 until the control level 𝑥𝑖𝑑 is 
reached is 

𝜏(𝑡𝑖|𝑥𝑖𝑑 , 𝐳
𝑖) =

̇𝑓𝑑 (𝑡𝑖)
𝜎𝑑𝑓𝑑 (𝑡𝑖)

⋅ exp

{

−exp

(

−
ln 𝑓𝑑 (𝑡𝑖) − ln 𝑥𝑖𝑑 − 𝐳𝑖𝜽′𝑑 + 𝜀𝑘𝑑

𝜎𝑑

)

−
ln 𝑓𝑑 (𝑡𝑖) − ln 𝑥𝑖𝑑 − 𝐳𝑖𝜽′𝑑 + 𝜀𝑘𝑑

𝜎𝑑

} (7)

From Eq. (3), the survival function is expressed as 

𝑆𝑤(𝑤𝑖
𝑑 ) = 1 − ∫

𝑤𝑖
𝑑

−∞
𝑔𝑤(𝑤𝑖

𝑑 )𝑑𝑤

= 1 − exp{− exp(−𝑤𝑖
𝑑 )}

(8)

For a facility 𝑖 with deterioration characteristic 𝐳𝑖, the probability 
that the deterioration control index value has not reached 𝑥𝑖𝑑 when 
the lifetime index 𝑦𝑖𝑑 has passed can be expressed using the survival 
function 

𝑆𝑦(𝑦𝑖𝑑 |𝑥
𝑖
𝑑 , 𝐳

𝑖) = 𝑆𝑤

(

𝑦𝑖𝑑 − ln 𝑥𝑖𝑑 − 𝐳𝑖𝜽′𝑑 + 𝜀𝑘𝑑
𝜎𝑑

)

= 1 − exp

{

−exp

(

−
𝑦𝑖𝑑 − ln 𝑥𝑖𝑑 − 𝐳𝑖𝜽′𝑑 + 𝜀𝑘𝑑

𝜎𝑑

)} (9)

Furthermore, the survival function with respect to the real elapsed 
time 𝑡𝑖 is defined as 

𝑆𝑡(𝑡𝑖|𝑥𝑖𝑑 , 𝐳
𝑖) = 1 − exp

{

−exp
(

−
ln 𝑓𝑑 (𝑡𝑖) − ln 𝑥𝑖𝑑 − 𝐳𝑖𝜽′𝑑 + 𝜀𝑘𝑑

𝜎𝑑

)}

(10)

Thus, a survival function Eq. (10) can be derived for the continuous 
quantity deterioration hazard model.

3.2. Correlation structure of multi-dimensional deterioration events

The joint probability distribution of the heterogeneity parameters 
𝜀𝑘𝑑 for 𝑑(= 1,… , 𝐷) types of deterioration events in a certain category 
𝑘(= 1,… , 𝐾) is represented using a copula 𝐶. ‘‘Facility categories’’ 
refers to groups of infrastructure units that share similar functional or 
structural characteristics and are therefore expected to exhibit compa-
rable deterioration patterns.  An overview of copulas is given below. 
For a detailed review of copulas, please refer to Nelsen (1999) and Joe 
(1997, 2014).

Let 𝑃 (𝜀1,… , 𝜀𝐷) be the continuous joint distribution function of 𝐷
random variables 𝜀1,… , 𝜀𝐷 with marginal distributions 𝑃1,… , 𝑃𝐷, then 
from Sklar’s Theorem (Sklar, 1973), there exists a copula 𝐶 uniquely 
satisfying 
𝑃 (𝜀1,… , 𝜀𝐷) = 𝐶

(

𝑃1
(

𝜀1
)

,… , 𝑃𝐷
(

𝜀𝐷
))

(11)

The 𝐶(𝑃1(𝜀1),… , 𝑃𝐷(𝜀𝐷)) generated by applying the marginal distribu-
tions 𝑃1(𝜀1),… , 𝑃𝐷(𝜀𝐷) to the copula 𝐶 is a joint distribution function 
with the marginal distributions in the interval [0, 1].

In addition,
4 
• For any 𝑢𝑑 = 𝑃𝑑 (𝜀𝑑 ) ∈ [0, 1] (𝑑 = 1,… , 𝐷): 
𝐶(𝑢1,… , 𝑢𝑑−1, 0, 𝑢𝑑+1,… , 𝑢𝐷) = 0 (12)

• For any 𝑢𝑑 = 𝑃𝑑 (𝜀𝑑 ) ∈ [0, 1] (𝑑 = 1,… , 𝐷): 
𝐶(1,… , 1, 𝑢𝑑 , 1,… , 1) = 𝑢𝑑 (13)

• For all (𝑢11,… , 𝑢1𝐷), (𝑢21,… , 𝑢2𝐷) ∈ [0, 1]𝐷 satisfying 𝑢1𝑑 ≤ 𝑢2𝑑 : 
2
∑

𝑖1=1
⋯

2
∑

𝑖𝐷=1
(−1)

∑𝐷
𝑠=1 𝑖𝑠𝐶(𝑢𝑖11 ,… , 𝑢𝑖𝐷𝐷 ) ≥ 0 (14)

A function 𝐶 in which all the three properties described above 
are satisfied is defined as a copula. In this case, the joint probability 
density function 𝑝(𝜀) of the heterogeneity parameter vector 𝜀𝑑 =
(𝜀1𝑑 ,… , 𝜀𝐾𝑑 ) of individual deterioration events is the copula distri-
bution function 𝐶(𝑃1(𝜀1),… , 𝑃𝐷(𝜀𝐷)) or probability density function 
𝑐(𝑃1(𝜀1),… , 𝑃𝐷(𝜀𝐷)) can be expressed as 

𝑝(𝜀) =
𝜕𝐷𝐶(𝑃1(𝜀1),… , 𝑃𝐷(𝜀𝐷))

𝜕𝑃1(𝜀1)⋯ 𝜕𝑃𝐷(𝜀𝐷)

𝐷
∏

𝑑=1
𝑝𝑑 (𝜀𝑑 )

= 𝑐(𝑃1(𝜀1),… , 𝑃𝐷(𝜀𝐷))
𝐷
∏

𝑑=1
𝑝𝑑 (𝜀𝑑 )

(15)

where 𝜀 = (𝜀1,… , 𝜀𝐷) holds. The probability density function 𝑝𝑑 of the 
marginal distribution 𝑃𝑑 follows a normal distribution 

𝑝𝑑 (𝜀𝑑 ) = − 1
√

2𝜋𝜙2
𝑑

exp

(

−
𝜀𝑑2

2𝜙2
𝑑

)

(16)

Various copulas have been proposed to represent joint probability 
distributions using information about the marginal distribution. This 
study, employs the one-parameter Archimedian copula model (Genest 
and Rivest, 1993). The model structure has been widely used espe-
cially in financial fields due partly to its well-known random number 
generation method and subsequent practicality. The distribution func-
tion 𝐶(𝑢1,… , 𝑢𝐷) of the one-parameter Archimedian copula among 𝐷
variables whose marginal distribution functions are 𝑃1(𝑥1) = 𝑢1,… ,
𝑃𝐷(𝑥𝐷) = 𝑢𝐷 can be expressed using the generating function 𝜁 (𝑢𝑑 ) as 

𝐶(𝑢1,… , 𝑢𝐷) = 𝜁−1
( 𝐷
∑

𝑑=1
𝜁 (𝑢𝑑 )

)

(17)

For the Archimedian copula, the following property holds 
𝐶(1,… , 1, 𝑢𝑑1 , 1,… , 1, 𝑢𝑑2 , 1,… , 1) = 𝐶(𝑢𝑑1 , 𝑢𝑑2 ) (18)

In this study, three types of Archimedian copulas were consid-
ered: the Gumbel copula (Gumbel, 1960), the Clayton copula (Clayton, 
1978), and the Frank copula (Frank, 1979). Table  1 shows the generat-
ing function, distribution function, and probability density function for 
the Gumbel, Clayton and Frank copulas. The multivariate joint proba-
bility density functions of the Gumbel and Frank copulas are difficult 
to express in general form and are obtained by partial differentiation 
of the distribution functions as needed, depending on the number of 
variables.

In addition, the parameters of the Gumbel copula satisfy 𝛼 ∈ (1,∞)
and those of the Clayton and Frank copulas satisfy 𝛼 ∈ (0,∞). In order 
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(a) Acquisition pattern 1.

  
(b) Acquisition pattern 2.

 

Fig. 2. Data acquisition patterns of a certain facility category 𝑘.
to select an appropriate copula, Breymann et al. (2003) proposed a cop-
ula selection method based on the information criterion considering the 
selection among copulas with different number of parameters. In this 
study, the Widely Applicable Information Criteria (WAIC) by Watanabe 
(2010), which has asymptotically the same expected value and variance 
as the generalization loss, was adopted as the information criterion 
for copula selection. The WAIC is suitable as an evaluation index for 
statistical models with complex structures including irregular models.

3.3. Observability of deterioration events and connectivity conditions

Deterioration state of a facility may be evaluated by different types 
of management indices for deterioration. However, it is not always 
possible to obtain data on the indices at the same inspection period. 
Furthermore, depending on facilities, it may not be possible to ac-
quire inspection data on all deterioration events. Due to the partial 
observable nature of such multidimensional deterioration events, it is 
impossible to evaluate multidimensional deterioration events using a 
single aggregated deterioration management index. It may however 
be considered that a correlation exists between the different indices 
derived from survey data. Therefore, in this study, the entire multi-
dimensional deterioration process is estimated using partially observed 
information obtained from different deterioration processes.

In formulating the multi-dimensional model by estimating the un-
known parameters of copulas, the concurrent observability of deteri-
oration event data in relation to categories must be considered. For 
instance, consider 8 facility categories 𝑘 = 1,… , 8 and 5 deterioration 
events 𝑑 = 1,… , 5 as shown in Fig.  2. A black circle in the figure 
signifies where a deterioration event index has been measured. In Fig. 
2(a), deterioration events 2, 3, and 4 are observed for the category 1, 
and events 1, 4, and 5 are observed for the category 4. In this example, 
by using the inspection data for the category 1 and 4, the correlation 
structure among all deterioration events 1,… , 5 can be estimated using 
copulas. In this case, the deterioration events are said to satisfy the con-
nectivity condition. In Fig.  2(b), there is no category in which the first 
three events (1, 2, and 3) and the last two events (4 and 5) are observed 
at the same time. In this case, the connectivity condition is not satisfied. 
Since copulas represent the distribution of the concurrent occurrences 
of heterogeneity parameters, it is desirable that the observed data 
satisfy the connectivity condition in order to minimize the estimation 
bias of copulas. In this research, the correlations among deterioration 
events for each category are expressed using copulas assuming that all 
events are connectable.

Let 𝜔𝑘 denote deterioration events observed for the category 𝑘(𝑘 =
1, 2,… , 𝐾). For instance, in Fig.  2(a), deterioration events 2, 3, 4 are 
observed in category 1, and therefore 𝜔1 = {2, 3, 4}. For the category 2, 
only event 1 can be observed, and the deterioration event group can be 
expressed as 𝜔2 = {1}. For arbitrary deterioration events 𝑑, 𝑑′ (𝑑, 𝑑′ =
1,… , 𝐷), the dummy variable 𝛿𝑑,𝑑′  is defined as 

𝛿𝑑,𝑑′ =
{

1 if 𝑘 exists which satisfies 𝑑, 𝑑′ ∈ 𝜔𝑘

0 Otherwise (19)
5 
For a 𝐷×𝐷 matrix 𝐇 whose dummy variable 𝛿𝑑,𝑑′  is a (𝑑, 𝑑′) element, 
the following condition must be satisfied. 

×𝐷𝐇 = 𝟏 (20)

The symbol ×𝐷 denotes the Boolean operation of multiplying the matrix 
𝐇 by 𝐷 times. The 𝟏 is a 𝐷 × 𝐷-dimensional matrix with all elements 
being 1. The condition Eq. (20) is defined as the connectivity condition.

3.4. Partial observation results and joint probability density function

As elaborated above, for each category, correlations between dete-
riorating events are expressed using copulas. It is assumed that deteri-
oration events can be linked to each other even if inspection data for 
all deteriorated events is not necessarily available for each category 
as illustrated in Fig.  2(a). Based on the set of observable deterioration 
events 𝜔𝑘 for a category 𝑘, the dummy variable 𝛿𝑘𝑑 representing the 
relationship between the category and each deterioration event is 
defined as 

𝛿𝑘𝑑 =
{

1 for 𝑑 ∈ 𝜔𝑘

0 for 𝑑 ∉ 𝜔𝑘 (21)

The heterogeneity parameter vector corresponding to observable 
deterioration events in category 𝑘 is expressed as 𝜀̂𝑘 = {𝑃1(𝜀𝑘1)

𝛿𝑘1 ,… ,
𝑃𝐷(𝜀𝑘𝐷)

𝛿𝑘𝐷}. In case 𝛿𝑘𝑑 = 0, 𝑃𝑑 (𝜀𝑘𝑑 )
𝛿𝑘𝑑 = 1 should be satisfied. The 

copula distribution function 𝐶̃(𝐏̂𝑘(𝜀̂𝑘)) expressing correlations between 
marginal distributions of partial heterogeneity parameter vectors 𝜀̂𝑘 is 

𝐶̃(𝐏̂𝑘(𝜀̂𝑘)) = 𝐶(𝑃1(𝜀𝑘1)
𝛿𝑘1 ,… , 𝑃𝐷(𝜀𝑘𝐷)

𝛿𝑘𝐷 ) (22)

From the one-parameter Archimedean copula property, Eqs. (18), 
(22) represents the copula’s marginal distribution function for the 
heterogeneity parameter focusing only on deterioration events in the 
set 𝜔𝑘. Let 𝑅𝑘 deterioration events belonging to the set 𝜔𝑘 of observable 
events in the category 𝑘 be denoted by 𝑑𝑘

𝑟𝑘
(𝑟𝑘 = 1,… , 𝑅𝑘) respectively. 

The copula probability density function 𝑐(𝐏̂𝑘(𝜀̂𝑘)) for each category 𝑘
is 

𝑐(𝐏̂𝑘(𝜀̂𝑘)) =
𝜕𝑅𝑘 𝐶̃(𝐏̂𝑘(𝜀𝑘))

𝜕𝑃𝑑𝑘1
(𝜀𝑘

𝑑1
)⋯ 𝜕𝑃𝑑𝑘

𝑅𝑘
(𝜀𝑑𝑘

𝑅𝑘
)

(23)

The joint probability density function 𝑝̂𝑘(𝜀̂𝑘) of the heterogeneity 
parameter vector 𝜀̂𝑘 for the category 𝑘 can be expressed, using the 
copula’s probability density function 𝑐(𝐏̂𝑘(𝜀̂𝑘)), marginal probability 
density function 𝑝𝑑 (𝜀𝑘𝑑 ), and dummy variable 𝛿𝑘𝑑 , as 

𝑝̂𝑘(𝜀̂𝑘) = 𝑐(𝐏̂𝑘(𝜀̂𝑘)) ⋅
𝐷
∏

𝑑=1
{𝑝𝑑 (𝜀𝑘𝑑 )}

𝛿𝑘𝑑 (24)

Using the joint probability density function Eq. (24), even if there 
is no observed data for a certain deterioration event 𝑑′ in a certain 
category 𝑘, given that the inspection data for the remaining deteriora-
tion events 𝑑 is acquired, the marginal distribution of the heterogeneity 
parameter can be estimated.
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3.5. Likelihood function

Consider that several deterioration management indices for each 
deterioration event are available for a structure 𝑖𝑘 (𝑖𝑘 = 1,… , 𝐼𝑘) in 
category 𝑘. The inspection data for deterioration event 𝑑 of structure 
𝑖𝑘 belonging to category 𝑘 is defined as 𝝃𝑖𝑘𝑑 = (𝐱̄𝑖𝑘𝑑 , 𝐭̄

𝑖𝑘
𝑑 , 𝐳̄𝑘𝑑 ), and the total 

visual inspection data collected in 𝜩̄. The symbol ‘‘̄’’ denotes measured 
values. Let 𝝃𝑖𝑘 = {𝝃𝑖𝑘𝑑 ∶ 𝑑 ∈ 𝜔𝑘} specify that the data satisfies the 
connectivity condition. The likelihood of observing the inspection data 
can be expressed with the conditional probability density function of 
the structure’s real life and the joint probability density function of the 
heterogeneity parameters as 

(𝝀|𝝃𝑖𝑘 ) = 𝑐(𝐏̂𝑘(𝜺̂𝑘))
𝐷
∏

𝑑=1

𝐾
∏

𝑘=1

𝐼𝑘
∏

𝑖𝑘=1

{

𝜏(𝝃𝑖𝑘 |𝜷𝑑 ,𝜽𝑑 , 𝜀𝑘𝑑 , 𝜎𝑑 )𝑝𝑑 (𝜀
𝑘
𝑑 )
}𝛿𝑘𝑑 (25)

where 𝝀 = (𝜷,𝜽, 𝜺,𝝈,𝝓, 𝛼) is the parameter vector and 

𝜏(𝝃𝑖𝑘 |𝜷𝑑 ,𝜽𝑑 , 𝜀𝑘𝑑 , 𝜎𝑑 ) =
̇𝑓𝑑 (𝑡𝑖)

𝜎𝑑𝑓𝑑 (𝑡𝑖)

⋅ exp

{

−exp

(

−
ln 𝑓𝑑 (𝑡𝑖) − ln 𝑥̄𝑖𝑑 − 𝐳̄𝑖𝜽′𝑑 + 𝜀𝑘𝑑

𝜎𝑑

)

−
ln 𝑓𝑑 (𝑡𝑖) − ln 𝑥̄𝑖𝑑 − 𝐳̄𝑖𝜽′𝑑 + 𝜀𝑘𝑑

𝜎𝑑

}

(26)

The likelihood (𝝀|𝜩̄) of observing the data set 𝜩̄ is 

(𝝀|𝜩̄) =
𝐷
∏

𝑑=1

𝐾
∏

𝑘=1

[

𝑐(𝐏̂𝑘(𝜺̂𝑘)) ⋅
𝐷
∏

𝑑=1

𝐾
∏

𝑘=1

𝐼𝑘
∏

𝑖𝑘=1

{

𝜏(𝝃𝑖𝑘 |𝜷𝑑 ,𝜽𝑑 , 𝜀𝑘𝑑 , 𝜎𝑑 )𝑝𝑑 (𝜀
𝑘
𝑑 )
}𝛿𝑘𝑑

]

(27)

The parameters in the defined likelihood function can be estimated 
using an iterative procedure such as the Markov Chain Monte Carlo 
(MCMC) method using the Metropolis Hastings (MH) algorithm.

4. Empirical analysis

4.1. Data summary

In the empirical application, the developed multidimensional de-
terioration process model using continuous quantities was applied to 
intercity highway pavements in Japan. Intercity highway refers to toll 
expressways administered by highway companies, which connect major 
cities and are designed for high-speed, long-distance travel.  The road 
surface condition (cracking rate, rutting area, IRI) and load-bearing 
capacity data (𝐷𝑖𝑛𝑑) obtained from the road surface condition and FWD 
surveys conducted from 2006 to 2021 were used. The cracking rate 
is the percentage of the pavement surface area within a section that 
is visibly cracked.  The dataset contains information on each location 
on the highway pavement, including (1) locational information such 
as route name, lane classification, and kilometer post, (2) records of 
repair, i.e, when the repairs were carried out and up to which layers 
the repairs were undertaken, and (3) pavement composition such as 
surface layer, base layer, upper roadbed, and lower roadbed type and 
thickness. Pavement’s index for load bearing capacity is defined as 

𝐷𝑖𝑛𝑑 =
𝐷0 −𝐷90

𝐴
× 106 (28)

𝐷𝑖𝑛𝑑 is an index for evaluating pavement load-bearing capacity based 
on the estimated deflection in the asphalt layer (hereinafter called As 
layer), where 𝐷0 is the deflection in mm at the loading point, 𝐷90 is 
the deflection in mm at a distance of 90 cm from the loading point, 
and 𝐴 is the design thickness in mm of the As layer. The relation 
among the pavement structure and FWD measurements is illustrated in 
Fig.  3. 𝐷  refers to the deflection due to load propagated throughout 
0

6 
Table 2
Copula candidates and WAIC.
 Copula 𝐷𝑖𝑛𝑑 - Crack rate 𝐷𝑖𝑛𝑑 - Rutting 𝐷𝑖𝑛𝑑 - IRI 
 Gumbel 18,651 16,751 15,993  
 Clayton 18,568 16,777 16,013  
 Frank 18,608 16,787 16,004  

the entire pavement structure. 𝐷90 is horizontally 90 cm away from 
the loading point and shows the deflection from the load propagated 
through the lower roadbed layer. The rationale behind (28) is that 
𝐷0 − 𝐷90 determines the deflection from the load throughout the As 
layer. An original form of (28) was proposed by Araki et al. (2018) 
which was further modified by the authors to account for the effect of 
layer thickness. The estimated 𝐷𝑖𝑛𝑑 was also used as a measure of the 
subsurface strength of pavements in the empirical study.

Pavement deterioration is a complex process consisting of road 
surface and load-bearing capacity deterioration, and prior research 
has attempted to examine their relation (e.g., Kaito et al. (2014) 
and Kamiya (2023)). It is considered that a correlation exists between 
the road surface and load-bearing capacity deterioration indices. The 
uncertainty of this correlation was expressed using copulas. In addition, 
since the FWD survey is a method to diagnose the pavement load-
bearing capacity by dropping a weight on the pavement surface and 
measuring the amount of deflection caused by the weight, it is difficult 
to obtain load-bearing capacity indices over a wide area and at a 
high frequency because it may necessitate road traffic restriction which 
is undesirable for road users. On the other hand, the road surface 
condition surveys conducted using a moving vehicle do not require 
traffic restrictions. Thus, even when inspection results are only partially 
observed in some inspections (deterioration events), the multidimen-
sional deterioration process model can be used to estimate the entire 
multidimensional deterioration process using consolidated data from 
multiple deterioration events and structure categories.

The total number of structure categories in the data was 3565 
with each pavement section being 10 m long, the minimum unit of 
the road surface index evaluation length. Of these categories, 312 
categories contained both road surface and load-bearing capacity data, 
thus satisfying the connectivity condition.

The schematic representation of the analytical framework is shown 
in Fig.  4. The following sections discuss the framework in detail.

4.2. Estimated results

For the estimation of parameters, data samples of drainage pave-
ments, which is a standard type of the surface layer throughout Japan’s 
intercity highway pavement, are used for analysis to avoid potential 
biases from incorporating different types of surface layer. For the pave-
ment load-bearing capacity, 𝐷𝑖𝑛𝑑 was used, whereas for the road surface 
condition, three indices were used; i.e., the cracking rate, rutting depth, 
and IRI. In order to independently evaluate the relationship between 
the load-bearing capacity index and each road surface index, a mul-
tidimensional deterioration process model using individual continuous 
quantities was applied to analyze a total of three combinations: (1) 𝐷𝑖𝑛𝑑
- cracking rate, (2) 𝐷𝑖𝑛𝑑 - rutting depth, and (3) 𝐷𝑖𝑛𝑑 index - IRI. The 
characteristic variable groups were defined as granular roadbed and 
cement stabilized roadbed. The characteristic variable was specified 
using the following dummy variable. 

𝑧𝑖 =
{

0 When point 𝑖 is a granular roadbed
1 When point 𝑖 is a cement stabilized roadbed (29)

By estimating the parameter 𝜽 based on the characteristic variable 
𝑧𝑖, the effect of using granular or cement stabilized roadbeds as the 
subgrade can be evaluated.

Table  3 shows the estimated parameters of the load-bearing ca-
pacity indices 𝜷𝐷𝑖𝑛𝑑 ,𝜽𝐷𝑖𝑛𝑑 , 𝜎𝐷𝑖𝑛𝑑 , the 95% confidence intervals of the 
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Fig. 3. Pavement structure and FWD measurements.
Fig. 4. Overview.
Table 3
Estimated parameters for load-bearing capacity 𝜷,𝜽, 𝜎.
 Parameter Mean Upper 5% Lower 5% Geweke statistics 
 𝛽𝐷𝑖𝑛𝑑

1 74.81 96.58 44.57 −0.156  
 𝛽𝐷𝑖𝑛𝑑

2 1.126 1.137 1.109 0.086  
 𝛽𝐷𝑖𝑛𝑑

3 151.5 162.5 142.2 0.677  
 𝜃𝐷𝑖𝑛𝑑 1.602 2.271 0.353 1.697  
 𝜎𝐷𝑖𝑛𝑑 1.322 1.422 1.171 −0.257  

Bayesian estimation, and the Geweke statistics. Similarly, Table  4 
shows results for road indices (cracking: 𝜷𝑐𝑟𝑎𝑐𝑘,𝜽𝑐𝑟𝑎𝑐𝑘, 𝜎𝑐𝑟𝑎𝑐𝑘, 𝛼𝑐𝑟𝑎𝑐𝑘, rut-
ting: 𝜷𝑟𝑢𝑡,𝜽𝑟𝑢𝑡, 𝜎𝑟𝑢𝑡, 𝛼𝑟𝑢𝑡, IRI: 𝜷𝐼𝑅𝐼 ,𝜽𝐼𝑅𝐼 , 𝜎𝐼𝑅𝐼 , 𝛼𝐼𝑅𝐼 ). For cracking, only 
𝛽𝑐𝑟𝑎𝑐𝑘1  and 𝛽𝑐𝑟𝑎𝑐𝑘2  are shown assuming that 𝛽𝑐𝑟𝑎𝑐𝑘3 = 0 for a newly 
constructed or repaired pavement. The parameters showed high con-
vergence with the Geweke diagnostics falling within the [−1.96, 1.96] 
limits with 0 specifying perfect convergence. These parameters can be 
used to generate illustrative performance curves shown in Figs.  5–8. 
The results showed that cement stabilized pavements have longer life 
compared to granular roadbed pavements for all performance curves as 
cement stabilization increases subbase strength.

The WAIC of the entire model including copulas is shown in Table  2. 
Three types of copulas were used: Gumbel, Clayton, and Frank copulas. 
From the same table, the Clayton copula was selected as the best copula 
for the 𝐷𝑖𝑛𝑑 - cracking rate, and the Gumbel copula for the 𝐷𝑖𝑛𝑑 - rutting 
and 𝐷𝑖𝑛𝑑 - IRI as they achieved minimum WAIC scores. The flexible 
function 𝑓𝑑 (𝑡, 𝜷) (polynomial function, power function, exponential 
function) representing the baseline model for each indicator was also 
evaluated using WAIC, from which the exponential function 𝑓𝑑 (𝑡, 𝜷) =
𝛽 (𝛽 𝑡 − 1) + 𝛽  was employed for each pair of indicators.
1 2 3
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Table 4
Estimated parameters for road surface indices 𝜷,𝜽, 𝜎.
 Parameter Mean Upper 5% Lower 5% Geweke statistics 
 

Cracking

𝛽𝑐𝑟𝑎𝑐𝑘1 0.395 0.405 0.375 0.071  
 𝛽𝑐𝑟𝑎𝑐𝑘2 1.311 1.315 1.304 0.838  
 𝜃𝑐𝑟𝑎𝑐𝑘 1.410 1.443 1.356 0.883  
 𝜎𝑐𝑟𝑎𝑐𝑘 1.120 1.129 1.103 −1.491  
 𝛼𝑐𝑟𝑎𝑐𝑘 0.866 1.330 0.210 0.273  
 

Rutting

𝛽𝑟𝑢𝑡1 5.007 5.154 4.784 −1.629  
 𝛽𝑟𝑢𝑡2 1.086 1.087 1.083 1.531  
 𝛽𝑟𝑢𝑡3 2.164 2.191 2.117 0.655  
 𝜃𝑟𝑢𝑡 0.302 0.312 0.284 0.924  
 𝜎𝑟𝑢𝑡 0.451 0.457 0.438 −0.981  
 𝛼𝑟𝑢𝑡 1.085 1.182 1.002 0.938  
 

IRI

𝛽𝐼𝑅𝐼1 0.771 0.793 0.727 0.816  
 𝛽𝐼𝑅𝐼2 1.143 1.145 1.139 −0.548  
 𝛽𝐼𝑅𝐼3 0.041 0.047 0.034 −0.143  
 𝜃𝐼𝑅𝐼 0.270 0.286 0.243 0.403  
 𝜎𝐼𝑅𝐼 0.606 0.613 0.593 −1.439  
 𝛼𝐼𝑅𝐼 1.084 1.178 1.003 −1.571  

Fig. 5. Performance curve based on 𝐷𝑖𝑛𝑑 .

4.3. Joint probability density functions for heterogeneity parameters

In the multidimensional deterioration process model with continu-
ous quantities, the copula probability density function and the marginal 
probability density function can be used to represent the joint proba-
bility density functions of the heterogeneity parameters for multiple 
deterioration events. The joint probability density functions of the 
heterogeneity parameters of the 𝐷𝑖𝑛𝑑 -crack rate, 𝐷𝑖𝑛𝑑 -rutting and 𝐷𝑖𝑛𝑑 -
IRI are shown in Figs.  9–11. From the joint probability plots, although 
the variation of the heterogeneity parameter of the 𝐷𝑖𝑛𝑑 -crack rate 
of Fig.  9 was the largest among the three road surface indices, its 
correlation coefficient with the heterogeneity parameter of the 𝐷
𝑖𝑛𝑑
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Fig. 6. Performance curve based on cracking.

Fig. 7. Performance curve based on rutting.

Fig. 8. Performance curve based on IRI.

Fig. 9. Joint probability density for (𝜀𝐷𝑖𝑛𝑑
, 𝜀𝑐𝑟𝑎𝑐𝑘). 
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Fig. 10. Joint probability density for (𝜀𝐷𝑖𝑛𝑑
, 𝜀𝑟𝑢𝑡).

Fig. 11. Joint probability density for (𝜀𝐷𝑖𝑛𝑑
, 𝜀𝐼𝑅𝐼 ).

was 0.597, confirming a positive correlation between pavement surface 
cracking and subsurface deterioration. The 𝐷𝑖𝑛𝑑 -rutting in Fig.  10 had 
the smallest correlation coefficient at 0.160, with both heterogeneity 
parameters concentrated around 0. The 𝐷𝑖𝑛𝑑 -IRI of Fig.  11 also showed 
the same trend as the 𝐷𝑖𝑛𝑑 -rutting, but the variability of the IRI hetero-
geneity parameter was relatively larger, with a correlation coefficient 
of 0.219.

The joint probability density functions of the heterogeneity parame-
ters presented above showed that in this empirical study, the 𝐷𝑖𝑛𝑑 -crack 
rate combination has interactive effects for both deterioration processes 
(surface and subsurface). In the 𝐷𝑖𝑛𝑑 -crack rate combination, the joint 
probability density function has a distorted shape in the third quadrant 
because the Clayton copula with the lowest WAIC score was used for 
estimation. For the Clayton copula, the degree of dependence among 
random variables is relatively strong in the lower left and weak in the 
upper right of the plot. This means that the correlation is particularly 
strong in the third quadrant, where both heterogeneities take small 
values, and that when either the 𝐷𝑖𝑛𝑑 or the crack rate takes small 
values.

Three types of Archimedian copulas; i.e., the Gumbel, Clayton, and 
Frank copulas were used in the estimation of the correlation between 
the surface and subsurface deterioration events. However, it is desirable 
to estimate using a variety of copulas as candidates so as to select 
models that further reduce the WAIC.
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Fig. 12. Probability density function for 𝜀𝐷𝑖𝑛𝑑
 (when 𝜀𝑐𝑟𝑎𝑐𝑘 = 1).
Fig. 13. Variation of load bearing capacity index due to differences in road surface index.
4.4. Multidimensional deterioration process

As discussed in detail earlier, the FWD test used to estimate pave-
ment load-bearing capacity requires traffic restrictions, whereas road 
surface condition surveys do not. Hence, cases where the load-bearing 
capacity index is unknown and the road surface index is known (mea-
sured multiple times) are prevalent in the data set. Therefore, the 
unknown load-bearing capacity index can be quantitatively predicted 
using the joint probability density functions of the load-bearing ca-
pacity index and the heterogeneity of each road surface index. In 
this application case, a positive correlation was observed between the 
cracking rate and the load bearing capacity index, and there was a 
weak correlation for the combination of the load bearing capacity 
index - rutting area and the load bearing capacity index - IRI, so 
a joint probability density function for the heterogeneity parameters 
(𝜀𝐷𝑖𝑛𝑑

, 𝜀𝑐𝑟𝑎𝑐𝑘) shown in Fig.  9 was used to predict the unknown load 
bearing capacity index.

If the heterogeneity 𝜀𝑐𝑟𝑎𝑐𝑘 = 1 of the crack rate at a point 𝑖 is known, 
then through application of the joint probability density function, the 
probability density distribution of the heterogeneity 𝜀𝐷𝑖𝑛𝑑

 of the load 
bearing capacity index as shown in Fig.  12 can be estimated. The 
expected value of 𝜀𝐷𝑖𝑛𝑑

 was 0.11, suggesting that the deterioration rate 
was comparatively larger. It is also possible to use the probability den-
sity function to assess hazard risk where heterogeneity is greater than 
the expected value. The expected deterioration performance curves of 
the load-bearing capacity index are shown in Fig.  13 assuming only 
crack rate and 𝜀𝑐𝑟𝑎𝑐𝑘 = 0 and 𝜀𝑐𝑟𝑎𝑐𝑘 = 1 predicted using the results in Fig. 
12. From the same figure, it is possible to quantitatively evaluate load-
bearing capacity deterioration rates when the crack rate heterogeneity 
is higher.
9 
4.5. Practical implications

In this research, the correlation among heterogeneity parameters 
in a continuous quantity deterioration hazard model that takes het-
erogeneity into account was quantified using copulas. Through the 
evaluation of the deterioration rate of infrastructural facilities from 
multiple perspectives, the following pavement intervention consider-
ations can be made. Focusing on Fig.  9, the group located in the 
first quadrant, where the heterogeneity parameter is greater than 0 
for both the road surface and load bearing capacity indices, shows 
faster deterioration progress for both the road surface and load bearing 
capacity. For this group, intensive interventions should be performed, 
taking into account the need for not only repairs of the shallow layers 
such as the surface and base layers, but also large-scale maintenance 
and renewal involving deeper layers including the upper and lower 
roadbeds. Next, for groups in the fourth quadrant, where the hetero-
geneity parameter of the road surface index is greater than 0 and the 
heterogeneity parameter of the load-bearing capacity index is less than 
0, replacement of the surface and base layers should be carried out as 
pavement damage is likely confined only to shallow layers. For groups 
in the second quadrant, where the heterogeneity parameter of the road 
surface index is less than 0 and the heterogeneity parameter of the 
load-bearing capacity index is greater than 0, there is a possibility that 
deterioration is developing in the deeper pavement layers and therefore 
intensive intervention should be conducted and a rehabilitation plan 
that takes into account large-scale rehabilitation and renewal when 
damage appears on the road surface be established. No intervention 
may be required in the quadrant with both heterogeneity parameters 
less than 0, however, regular inspection can be encouraged. Further-
more, the joint probability that a group is located in each quadrant 
of Fig.  9 can be calculated as 0.33 for the first quadrant, 0.17 for 
the second quadrant, 0.33 for the third quadrant and 0.17 for the 
fourth quadrant using the joint probability density function for the 
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heterogeneity parameters. These probabilities represent the proportion 
of the total road sections under observation located in each quadrant, 
and may provide useful information for budget planning and major 
repair projects.

Additionally, when only road surface indices are obtained, it is 
possible to quantitatively evaluate whether the group in question is 
located in the first or second quadrant, or the third or fourth quadrant, 
using fragmentary information in the form of heterogeneity parameters 
of the load bearing capacity index. The ability to represent multidimen-
sional deterioration processes probabilistically from partial observation 
information is an important feature of this research with practical 
applications in the case of incomplete infrastructure monitoring data.

5. Conclusion

This study introduces a copula-based framework that jointly models 
multiple continuous pavement deterioration processes with hetero-
geneity, enabling a more comprehensive representation than conven-
tional single-indicator models. The approach offers practical value by 
revealing interdependencies among deterioration indicators, support-
ing optimized inspection schedules, targeted preventive maintenance, 
and broader application to other transportation infrastructure where 
multi-indicator data are available. 

The proposed model was applied to pavement load-bearing capacity 
and road surface indices (crack rate, rutting depth, and IRI) estimated 
through FWD tests and road surface condition surveys, respectively. 
The correlation structure among deterioration events expressed using 
an Archimedian copula. This representation enabled the evaluation of 
the need for large-scale intervention or preventive repair based on the 
quadrant in which a given pavement section was grouped. Furthermore, 
when the methodology proposed in this study was applied to actual 
highway inspection data, a positive correlation was observed between 
the crack rate and load-bearing capacity index and the correlation 
was particularly strong in areas where the heterogeneity between the 
two was small. To our knowledge, no previous study has visualized 
the interdependent relationships among multiple continuous pavement 
deterioration processes in this manner. 

In this study, all estimated copula correlation parameters were 
positive, reflecting the empirical finding of predominantly positive 
dependencies among the deterioration indicators analyzed. While cop-
ulas allowing for negative correlations do exist, preliminary analy-
ses indicated that negative correlation structures were not signifi-
cant for the dataset examined in this study. Nevertheless, future re-
search could explore additional copula structures capable of capturing 
negative dependencies to verify the robustness of these findings. 

By quantifying interdependencies among deterioration indicators, 
the approach enables maintenance planners to anticipate how changes 
in one condition (e.g., cracking) may influence others (e.g., rutting or 
load-bearing capacity), thus supporting targeted preventive strategies 
such as sealing cracks earlier to slow rutting progression or rein-
forcing structural layers to prevent rapid surface distress. Although 
demonstrated using Japanese highway pavement data, the methodol-
ogy is adaptable to other transportation infrastructure systems – such 
as bridges, tunnels, or rail track – where multi-indicator deterioration 
data are available. 

As a part of future research, the following two issues need to be 
addressed. First, applicability of the proposed method must be verified 
by increasing the number of application cases. The sections analyzed 
in this application case study are those with particularly advanced 
deterioration among the highways under a certain jurisdiction of in-
tercity highway managing company, and generalizability of the results 
is yet to be examined. Therefore, the finding that among the three 
road surface indices, only cracking rate was strongly correlated with 
the load-bearing capacity index is valid only for the sections selected 
for this study application. In the future, it is necessary to apply the 
proposed method to several sections to clarify the interconnectedness 
10 
of the road surface indices and the load-bearing capacity index. Second, 
the different correlations among several deterioration indices need to 
be expressed in more detail. In this study, one-parameter Archimedian 
copulas were used for each combination of load-bearing capacity and 
a road surface index, but it may be preferable to use two-parameter 
Archimedian copulas, which allow for more flexible expressions of 
dependence structures. It is also possible to analyze the correlation 
structure of three or more indicators simultaneously. The correlations 
between deterioration events can be described more precisely by using 
the vine copula (Bedford and Cooke, 2002), which defines different 
types of copulas between each index.
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Notation list

The following symbols are used in this paper:
𝜀𝐴 = heterogeneity parameter for process A
𝜀𝐵 = heterogeneity parameter for process B
𝑑 = deterioration event
𝑖 = facility
𝑘 = category
𝜀𝑘𝑑 = heterogeneity parameter
𝑥𝑖𝑑 = deterioration management index of a facility
𝐵𝑖
𝑑 = deterioration characteristic coefficient of a facility

𝜽𝑑 = characteristic parameter vector
𝐳𝑖 = characteristic variable term
𝜷𝑑 = unknown parameter vector
𝑦𝑖𝑑 = lifetime index
𝑤𝑖

𝑑 = error term
𝑆𝑡 = Survival function to time 𝑡
𝑡𝑖 = real life until control level
𝑃𝑑 = distribution function for event 𝑑
𝐶 = copula
𝜁 = generation function of copula
𝜏 = probability density of real life
𝐷𝑖𝑛𝑑 = load-bearing capacity index
𝑧𝑖 = dummy variable
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