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ARTICLE INFO ABSTRACT

Keywords: For maintenance, repair, and rehabilitation of highway pavements, implementing efficient repairs to extend
Deterioration prediction model pavement service life can be achieved through proper actions on various types of deterioration process. In this
Copula

study, a multi-dimensional deterioration process model using continuous quantities is developed considering
the interaction between pavement surface and load-bearing capacity deterioration. The proposed model
contributes to formulating preventive maintenance repair plans cognizant of this interaction. Specifically,
progression of pavement deterioration is modeled by the continuous deterioration hazard model to estimate
the heterogeneity that represents the deterioration rate specific to each pavement deterioration process; i.e.,
surface and sub-surface deterioration. Furthermore, the developed multi-dimensional deterioration process
model expresses the correlation of the heterogeneity parameters of the interacting deterioration processes using
an Archimedian copula and is used to estimate the progression of each deterioration process. The characteristics
of each deteriorating process are discussed from the viewpoint of timely repair planning. Finally, the proposed
model is verified through an application case study using actual highways inspection data.

Pavement management
Infrastructure planning

1. Introduction Understanding and quantifying these interrelationships is essential for
comprehensive pavement deterioration modeling.

Efficient pavement repair is advocated to extend the service life of In road asset management, various statistical approaches have been

pavements for which the introduction of preventive maintenance strate-
gies is important. In the maintenance and management of highway
pavements, it is necessary to consider the performance of pavements in
terms of safety and driving comfort. Adey et al. (2020) lists important
considerations for road service that include comfort and safety; so road
managers should develop new and improve existing strategies to bet-
ter pavement condition. The road surface condition indices including
cracking rate, rutting depth, and International Roughness Index (IRI),
may be regularly obtained through road condition surveys in countries
with the economic and human resources to do so. Pavement condition
inspection data can be used to estimate deterioration rates and develop
plans for maintenance, repair and rehabilitation of highway pavements.
In addition, pavement sub-surface conditions may be known through
estimating the deflection rate using the Falling Weight Deflectometer
(FWD). The FWD survey can be used to estimate pavement load-
bearing capacity by measuring its deflection rate at specific locations.
Pavement surface conditions such as cracking, rutting, and roughness,
and sub-surface conditions like load-bearing capacity derived from
FWD tests, are inherently interrelated (e.g., Nakamura et al. (2022)).

* Corresponding author.

developed to predict infrastructure deterioration using inspection data.
While a range of deterioration modeling frameworks exist, the method-
ology proposed in this study is rooted in the Markov model, which
has served as a foundational approach in the field. Among these,
the Markov deterioration hazard model developed by Tsuda et al.
(2006) has been widely applied due to its intuitive formulation and
compatibility with condition-state-based inspection data. This family
of models has been further extended—for example, into the mixed
Markov deterioration hazard model that enables quantification of het-
erogeneity for each evaluation unit (Obama et al.,, 2008), and the
hidden Markov model that handles incomplete monitoring data for
latent deterioration processes (Lethanh and Adey, 2012). While the
Markov framework is commonly used and forms a historical foundation
for deterioration modeling, it has limitations in capturing continu-
ous deterioration processes and the interdependence among multiple
deterioration indicators. To overcome these limitations, the present
study adopts a modeling approach based on continuous quantities and
explicitly incorporates dependency structures using copula functions.
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Conventional Markov models often focus on a single deterioration
indicator and are limited in their ability to represent the statistical
dependency among multiple deterioration processes. Such models do
not adequately capture the joint progression of various types of pave-
ment degradation — such as surface cracking, rutting, and sub-surface
structural weakening — which may evolve simultaneously and influence
one another. To overcome these limitations, this study proposes a
modeling framework that describes the entire deterioration process
using multiple continuous condition indices.

In this framework, the deterioration of each indicator is modeled
using a continuous quantity hazard model that accounts for heterogene-
ity across pavement sections. To represent the dependency structure
among these indicators, copula functions are introduced. Copulas are
particularly suitable for this application because they allow for flexible
modeling of the joint distribution of multiple random variables, while
preserving the marginal distributions of each deterioration process.
This enables the characterization of interdependence among indicators,
even when the data are only partially observed or exhibit asymmetric
relationships. By combining continuous hazard models with copula-
based dependency modeling, the proposed method facilitates multi-
dimensional assessment of pavement condition and supports improved
planning for maintenance, repair, and rehabilitation strategies.

The rest of the paper is organized as follows. The next section
describes the research methodology followed by a description of the
basic concept of the study. The subsequent section details the proposed
multidimensional deterioration process model using continuous quanti-
ties and expression of the correlation among deterioration events using
copulas. Lastly, the applicability of the multidimensional deterioration
process model using continuous quantities is demonstrated through
a case study on highway pavements and the conclusion and future
research work are stated.

2. Basic concept of this study
2.1. Multi-dimensional evaluation of structural deterioration rate

It is common practice in infrastructure management to express
deterioration processes using a single structural health monitoring
index. In pavement management specifically, two approaches are typ-
ically employed: (1) aggregating various distress indicators such as
cracking, rutting, and roughness into a composite index and modeling
its temporal progression, and (2) modeling the progression of each
distress indicator individually over time. Both approaches have their
own strengths and are widely recognized in practice. However, since
infrastructure deterioration often involves multiple interacting mecha-
nisms, a modeling framework capable of jointly considering multiple
deterioration indicators may provide additional insights.

Inspection data for a single deterioration process may not be suf-
ficient to model the entire infrastructure deterioration progression.
Moreover, the inspection data observed in reality contains a mixture
of such multiple cases. For this reason, when using data synthesized as
a single indicator, it is difficult to determine which indicator best rep-
resents the deterioration process. In addition, the deterioration process
model using a single deterioration event does not provide information
on the heterogeneity of deterioration processes for each infrastructure
facility and the correlation between deterioration events.

The term “entire infrastructure” refers to the overall condition of
a facility as assessed by considering multiple deterioration indicators
and members jointly, providing a comprehensive view of its perfor-
mance. In contrast, when referring to “each infrastructure facility” in
the single-indicator context, it denotes the same physical unit (e.g., a
homogeneous pavement section) but evaluated separately for each
indicator.

The multi-dimensional deterioration process model proposed in this
study is applicable to the case where the deterioration management
index of a structure is expressed as a continuous quantity and takes into

Transportation Research Interdisciplinary Perspectives 34 (2025) 101732

account the heterogeneity of the deterioration processes in question.
The continuous deterioration hazard model uses a baseline model as
a benchmark case. The heterogeneity of the category is represented
by the heterogeneity parameter ¢ that is distributed according to a
probability density function p(¢) which makes it possible to evaluate
the relative deterioration rates of individual structure categories. &
= 0 corresponds to the benchmark, while ¢ > 0 is a structure that
deteriorates relatively faster than the benchmark, and ¢ < 0 is a
structure that deteriorates relatively slower than the benchmark. Please
note that the deterioration speed refers to the overall deterioration
tendency of a facility category, aggregated from the deterioration rates
of its constituent sections.

The heterogeneity parameter introduced in this study captures the
variability observed in pavement deterioration across different pave-
ment sections. This variability naturally arises from differences in
factors such as construction quality, material characteristics, environ-
mental exposure, traffic loads, and maintenance practices. Explicitly
modeling this heterogeneity is crucial because pavement sections do
not deteriorate uniformly, and neglecting this variability could result
in less accurate deterioration predictions.

2.2. Modeling the correlation structure using copulas

When evaluating the deterioration rate of infrastructure facilities
using multiple deterioration management indices, the heterogeneity
parameter, which represents the heterogeneity of the deterioration rate
for each degradation process may show the correlation between the
processes. In this study, multivariate copulas are used to express the
dependency structure among event multivariate marginal distributions
(see e.g., Nelsen (1999) for the use of copulas). The copulas are used to
merge the marginal distribution functions of multiple random variables
with their joint distribution functions. This study is unique in that
joint distribution functions can be estimated while maintaining the
probability structure of the multivariate marginal distributions.

Consider a case in which two types of deterioration events, A and
B, are used to evaluate the deterioration state of multiple infrastructure
facilities. The relationship between copulas, heterogeneity, marginal
and joint distributions of parameters is shown schematically in the
three-dimensional space (Fig. 1). The vertical planes in Fig. 1 show
the marginal distribution functions of each heterogeneity parameter,
allowing for relative evaluation of the deterioration rate of each event.
The upper horizontal plane in Fig. 1 shows the joint distribution of the
heterogeneity parameter pairs (¢4, €5) plotted in a two-dimensional
space.

The information on the spatial distribution state of the heterogene-
ity parameters provides transition trends based on correlations among
the heterogeneity parameters, as well as deterioration rates for indi-
vidual deterioration events. For example, if two types of deterioration
events are considered, the total deterioration rate for the two types
of events can be expressed in terms of the rate of deterioration of
each event. Additionally, in the two-dimensional space for two types
of deterioration events, the deterioration characteristics of a structure
can be classified into four categories in each quadrant. In the first
quadrant (¢4 > 0 and ez > 0), the two deterioration events are both
relatively faster than in the benchmark case. The second (¢4, > 0 and
ep < 0) and fourth (¢4, < 0 and €5 > 0) quadrants correspond to
the progression of either deterioration events A or B is superior to
that of the benchmarking case, while the other is inferior, respectively.
The third (¢, < 0 and €5 < 0) quadrant can be evaluated as the
progression of both events being slower than that of the benchmarking
case. Moreover, the conditional probability density of a heterogeneity
parameter, given that the other heterogeneity parameter is known,
can be calculated using a copula and marginal distributions of the
heterogeneity parameters as shown in the lower horizontal plane in Fig.
1.



K. Sasai et al.

Marginal distribution of &g

Transportation Research Interdisciplinary Perspectives 34 (2025) 101732

Marginal distribution of &, 1
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Fig. 1. Joint distribution of heterogeneity parameters and copula.

3. Multi-dimensional deterioration process model with continu-
ous quantities

3.1. Continuous quantity deterioration hazard model

For each multidimensional deterioration event d (d = 1,..., D), the
deterioration management index of facility i (i = 1, ..., I) is denoted as
xii and the elapsed time since the most recent construction (renewal)
as t'. The more the deterioration progresses, the larger the value of the
deterioration indicator becomes. The progression of the deterioration

process is formulated as

Xy = exp(—=BY) f4(t', B) (1a)
Bl =20 — X + 5,0, (1b)
where B’ is the deterioration characteristic coefficient of facility i,

d )
which can be expressed using the characteristic variable term z/@’,, the

heterogeneity term 5’; and the error term o, w; as shown in Eq. (1b). In
Eq. (1b), z' = (2, ..., z"M) is the characteristic variable vector affecting
the deterioration of facility i, 8, = (6),....6)7) is the characteristic
parameter vector, e’; is the heterogeneity parameter expressing the
unique deterioration rate in the group k (k = 1, ..., K) to which facility
i belongs, w! is the random error term expressing the deterioration
factor unique to facility i, and o, is the deviation parameter. The
heterogeneity parameter e§ is assumed to follow a normal distribution
with mean O and variance d)i. to reflect symmetric variability around
the mean deterioration rate, without imposing skewness toward faster
or slower deterioration. Also, f,(', B,) is a deterioration model that
represents the baseline deterioration process (hereafter, the baseline
model) and is a monotonically increasing function with respect to #.
Also, B, = (/3;, ,ﬂj’ ) is the unknown parameter vector that char-
acterizes the baseline model. If exp(-B,) =1 holds, the deterioration

curve is identical to the baseline model. If the theoretical deterioration
curve can be derived from a kinematic model, then it can be used as
the baseline model. If no theoretical model exists, it is necessary to
approximate the baseline model using, for example, a flexible function.
By taking the logarithm on both sides of Eq. (1a),

yi, =In fy(t;, ) @
=Inx!, + 2,0, - &, + o ),
is obtained where y; =In f,(#, B,) is the non-linearized lifetime index.

The stochastic error term wfi is assumed to follow the probability

density function of the standard Gumbel distribution expressed as
gu(Wh) = exp{—w!;, — exp(~w)))} 3)
where E(w',) =y = 0.57722 - is an Euler constant.
Rewrite Eq. (2) as
yii - lnxfj -76, + ef{

wh = 4

04

and perform a variable transformation of the probability density func-
tion Eq. (3). As a result, the probability density function representing
the conditional distribution of the lifetime index y; until the dete-
rioration management index value x| is reached for facility i with
deterioration characteristic z' is expressed as

. . . .

1 y;—lnxb—z;0d+£;
Ew

Oq Oy

y. —Inxi —z @ +¢
=iexp{_exp<_ d d a’d d (5)
o4 04

iy g i
Yy lnxd zd9d+sd}

ay (Y 1 x4 24)

Od
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Table 1
Selected Archimedian copulas.
D
Copula Generating function ¢(u,) Distribution function C(u, ... ,up) Probability density function c(u,, ... ,up) = W
1 D
Gumbel —Inu)" D 1 Partial differentiation of the distribution function
—Inu _ _ ayt
a€(1,0) d expl—{ Xy (=Inuy)) 7] at any time since there is no general form
Clayton PV + day (T2, upe!
Y Loge—n P =D+ 1) L@ )}(H,”T‘,Z” )
a € (0,00) a = Ch u* =D+ 1)«
Frank In{exp(—auy) — 1} 1y [] T12, (exp(—au 1) Partial differentiation of the distribution function
a € (0,0) —In{exp(—a) — 1} a {exp(-=a)-1}P-1 at any time since there is no general form

The lifetime index y/, = In f,(, ;) contains an unknown parameter
B, If we denote the first derivative of the lifetime index as f, (¥, ;) =
df,(t, By)/dr, then

¥, = JaWPd) 1
Sa@,Ba)
is satisfied. Thus, the probability density function representing the
conditional distribution of real life /' until the control level x is

(6)

reached is
o F ot Inf,(t")—Inx — 2@, + X
o(t'|x};,2') = M -expq —exp| - d a 4_d
o4 fq(th) oy -
Infy(t) —Inx, —2'6) + &
Od

From Eq. (3), the survival function is expressed as
A ) .
S, (w)=1- (w')dw
w(Wy) /_oo 8uw(Wy) )
=1 —exp{—exp(-wj)}

For a facility i with deterioration characteristic z’, the probability
that the deterioration control index value has not reached x; when
the lifetime index yg has passed can be expressed using the survival
function

) o .
o ¥, —Inx!, —2'0) + &)
Sy(yil|x;,z’)=sw< e
d

¥y —Inx!, -2/ + X
=1—exp{—exp(— d d 4 _d
Od

Furthermore, the survival function with respect to the real elapsed
time 7 is defined as

o Inf,;(t) —Inx!, —2'¢, +
S,(t'|x,,z") = 1 —exp { —exp < — d d 4__d 10)

04

9

Thus, a survival function Eq. (10) can be derived for the continuous
quantity deterioration hazard model.

3.2. Correlation structure of multi-dimensional deterioration events

The joint probability distribution of the heterogeneity parameters
5’; for d(= 1, ..., D) types of deterioration events in a certain category
k(= 1,...,K) is represented using a copula C. “Facility categories”
refers to groups of infrastructure units that share similar functional or
structural characteristics and are therefore expected to exhibit compa-
rable deterioration patterns. An overview of copulas is given below.
For a detailed review of copulas, please refer to Nelsen (1999) and Joe
(1997, 2014).

Let P(gy,...,€p) be the continuous joint distribution function of D
random variables ¢, ..., £, with marginal distributions P, ..., Py, then
from Sklar’s Theorem (Sklar, 1973), there exists a copula C uniquely
satisfying

P(ey,...,ep)=C (P (€1).....Pp (£p)) an

The C(P,(g), ..., Pp(ep)) generated by applying the marginal distribu-
tions P;(g}), ..., Pp(ep) to the copula C is a joint distribution function
with the marginal distributions in the interval [0, 1].

In addition,

» For any u; = Py(e;) €[0,1] (d =1,...,D):

Cuy, ... ug_1,0,uy,q, ..., up) =0 12)
» For any u; = P;(g;) €[0,1] (d =1,...,D):

C(,....Luy1,....,) =uy 13)
« For all (ui, ,ulD), (u%, ,uZD) € [0, 1P satisfying u[li < uﬁ:

2 2 R ‘ '

Z Z(_l)zszl isC(u'll,...,u'g’)ZO a4

=1 ip=l

A function C in which all the three properties described above
are satisfied is defined as a copula. In this case, the joint probability
density function p(¢) of the heterogeneity parameter vector ¢, =
(e;,,..,e"f) of individual deterioration events is the copula distri-
bution function C(P,(g), ..., Pp(ep)) or probability density function
c(Py(g}), ..., Pp(ep)) can be expressed as

D

_ 0PC(P(g), ..., Pplep))
(e) = 9P (e,) - 0Pp(ep) de(‘gd)

d=1 as)

D
= c(Pi(e)), ..., Pplep)) [ | pate)
d=1
where € = (¢, ..., £p) holds. The probability density function p, of the
marginal distribution P, follows a normal distribution

(16

()
paleq) == expl ——
212 24,
Various copulas have been proposed to represent joint probability
distributions using information about the marginal distribution. This
study, employs the one-parameter Archimedian copula model (Genest
and Rivest, 1993). The model structure has been widely used espe-
cially in financial fields due partly to its well-known random number
generation method and subsequent practicality. The distribution func-
tion C(u,, ...,up) of the one-parameter Archimedian copula among D
variables whose marginal distribution functions are P,(x,) = uy,...,
Pp(xp) = up can be expressed using the generating function ¢(u,) as

D
Cluy, ..., up) = ¢! (Z g(ud)> a7
d=1
For the Archimedian copula, the following property holds
Cloos Lug 1y L 1, 1) = Clug ) 18)

In this study, three types of Archimedian copulas were consid-
ered: the Gumbel copula (Gumbel, 1960), the Clayton copula (Clayton,
1978), and the Frank copula (Frank, 1979). Table 1 shows the generat-
ing function, distribution function, and probability density function for
the Gumbel, Clayton and Frank copulas. The multivariate joint proba-
bility density functions of the Gumbel and Frank copulas are difficult
to express in general form and are obtained by partial differentiation
of the distribution functions as needed, depending on the number of
variables.

In addition, the parameters of the Gumbel copula satisfy a € (1, )
and those of the Clayton and Frank copulas satisfy a € (0, o). In order
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Fig. 2. Data acquisition patterns of a certain facility category k.

to select an appropriate copula, Breymann et al. (2003) proposed a cop-
ula selection method based on the information criterion considering the
selection among copulas with different number of parameters. In this
study, the Widely Applicable Information Criteria (WAIC) by Watanabe
(2010), which has asymptotically the same expected value and variance
as the generalization loss, was adopted as the information criterion
for copula selection. The WAIC is suitable as an evaluation index for
statistical models with complex structures including irregular models.

3.3. Observability of deterioration events and connectivity conditions

Deterioration state of a facility may be evaluated by different types
of management indices for deterioration. However, it is not always
possible to obtain data on the indices at the same inspection period.
Furthermore, depending on facilities, it may not be possible to ac-
quire inspection data on all deterioration events. Due to the partial
observable nature of such multidimensional deterioration events, it is
impossible to evaluate multidimensional deterioration events using a
single aggregated deterioration management index. It may however
be considered that a correlation exists between the different indices
derived from survey data. Therefore, in this study, the entire multi-
dimensional deterioration process is estimated using partially observed
information obtained from different deterioration processes.

In formulating the multi-dimensional model by estimating the un-
known parameters of copulas, the concurrent observability of deteri-
oration event data in relation to categories must be considered. For
instance, consider 8 facility categories k = 1,...,8 and 5 deterioration
events d = 1,...,5 as shown in Fig. 2. A black circle in the figure
signifies where a deterioration event index has been measured. In Fig.
2(a), deterioration events 2, 3, and 4 are observed for the category 1,
and events 1, 4, and 5 are observed for the category 4. In this example,
by using the inspection data for the category 1 and 4, the correlation
structure among all deterioration events 1,...,5 can be estimated using
copulas. In this case, the deterioration events are said to satisfy the con-
nectivity condition. In Fig. 2(b), there is no category in which the first
three events (1, 2, and 3) and the last two events (4 and 5) are observed
at the same time. In this case, the connectivity condition is not satisfied.
Since copulas represent the distribution of the concurrent occurrences
of heterogeneity parameters, it is desirable that the observed data
satisfy the connectivity condition in order to minimize the estimation
bias of copulas. In this research, the correlations among deterioration
events for each category are expressed using copulas assuming that all
events are connectable.

Let * denote deterioration events observed for the category k(k =
1,2,...,K). For instance, in Fig. 2(a), deterioration events 2,3,4 are
observed in category 1, and therefore w' = {2,3,4}. For the category 2,
only event 1 can be observed, and the deterioration event group can be
expressed as w® = {1}. For arbitrary deterioration events d,d’ (d,d’ =
1,..., D), the dummy variable §, ; is defined as

if k exists which satisfies d,d’ € of

1
1= 1
Sa.d {0 Otherwise 19)

For a DxD matrix H whose dummy variable 6, ; is a (d,d’) element,
the following condition must be satisfied.

xpH=1 (20)

The symbol X, denotes the Boolean operation of multiplying the matrix
H by D times. The 1 is a D x D-dimensional matrix with all elements
being 1. The condition Eq. (20) is defined as the connectivity condition.

3.4. Partial observation results and joint probability density function

As elaborated above, for each category, correlations between dete-
riorating events are expressed using copulas. It is assumed that deteri-
oration events can be linked to each other even if inspection data for
all deteriorated events is not necessarily available for each category
as illustrated in Fig. 2(a). Based on the set of observable deterioration
events o* for a category k, the dummy variable 5’; representing the
relationship between the category and each deterioration event is
defined as

1 ford € o
{0 for d ¢ w*

The heterogeneity parameter vector corresponding to observable
deterioration events in category k is expressed as & = {P (e’l‘)é’l‘,
PD(e’B)éﬁ}. In case &% = 0, Pd(s’;)‘ss = 1 should be satisfied. The
copula distribution function C(P*(£¥)) expressing correlations between

marginal distributions of partial heterogeneity parameter vectors £* is

5k =

d 2D

CB ) = C(P (D, ..., Pp(ek)’p) (22)

From the one-parameter Archimedean copula property, Egs. (18),
(22) represents the copula’s marginal distribution function for the
heterogeneity parameter focusing only on deterioration events in the
set *. Let R¥ deterioration events belonging to the set w* of observable
events in the category k be denoted by jfk (¥ =1,..., R¥) respectively.
The copula probability density function &(P*(¢%)) for each category k
is

ORE G(Pk(F))

O = ) o
d{((SdAl)"' d’;k(edﬁk)

(23)

The joint probability density function p¥(¢%) of the heterogeneity
parameter vector £¢ for the category k can be expressed, using the
copula’s probability density function éP*(¢*)), marginal probability
density function p, (s’;), and dummy variable 55, as

D
") = e@ &) - [ tpatel ) 24
d=1

Using the joint probability density function Eq. (24), even if there
is no observed data for a certain deterioration event d’ in a certain
category k, given that the inspection data for the remaining deteriora-
tion events d is acquired, the marginal distribution of the heterogeneity
parameter can be estimated.
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3.5. Likelihood function

Consider that several deterioration management indices for each
deterioration event are available for a structure i* (i* = 1,...,I%) in
category k. The inspection data for deterioration event d of structure
i* belonging to category k is defined as :',‘i: = (iff ,f{’f,if;), and the total
visual inspection data collected in E. The symbol ‘"’ denotes measured
values. Let &* = {ff : d € o*) specify that the data satisfies the
connectivity condition. The likelihood of observing the inspection data
can be expressed with the conditional probability density function of
the structure’s real life and the joint probability density function of the
heterogeneity parameters as

D K Ik K
N N i 8
£a1g") = c@ @) [T TTTT { 7" 184:0u- b oarpately } 25)
d=1 k=1 jk=]

where 1 = (8,0, ¢, 0, ¢, a) is the parameter vector and

1G]
Udfd(’_i)

In f, () — ln)‘cfi -7'0 +£s
-exp{ —exp| -
04

CInfy@) —In%, — 70 +¢ }

k
©(&" B4, 04-€4,04) =

Oy
(26)
The likelihood £(4|Z) of observing the data set £ is

D K D K
cal® =111 [ed’k(ék» TI11

d=1k=1 1 k=1

d

& 5k
{T(‘-fl |ﬁd’9d’£§75d)Pd(5§)} ]

lk
k=]
27)

The parameters in the defined likelihood function can be estimated
using an iterative procedure such as the Markov Chain Monte Carlo
(MCMC) method using the Metropolis Hastings (MH) algorithm.

4. Empirical analysis
4.1. Data summary

In the empirical application, the developed multidimensional de-
terioration process model using continuous quantities was applied to
intercity highway pavements in Japan. Intercity highway refers to toll
expressways administered by highway companies, which connect major
cities and are designed for high-speed, long-distance travel. The road
surface condition (cracking rate, rutting area, IRI) and load-bearing
capacity data (D;,;) obtained from the road surface condition and FWD
surveys conducted from 2006 to 2021 were used. The cracking rate
is the percentage of the pavement surface area within a section that
is visibly cracked. The dataset contains information on each location
on the highway pavement, including (1) locational information such
as route name, lane classification, and kilometer post, (2) records of
repair, i.e, when the repairs were carried out and up to which layers
the repairs were undertaken, and (3) pavement composition such as
surface layer, base layer, upper roadbed, and lower roadbed type and
thickness. Pavement’s index for load bearing capacity is defined as

Dy — D
D, = % x 10° (28)

D,,; is an index for evaluating pavement load-bearing capacity based
on the estimated deflection in the asphalt layer (hereinafter called As
layer), where D, is the deflection in mm at the loading point, Dy, is
the deflection in mm at a distance of 90 cm from the loading point,
and A is the design thickness in mm of the As layer. The relation
among the pavement structure and FWD measurements is illustrated in
Fig. 3. D, refers to the deflection due to load propagated throughout
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Table 2

Copula candidates and WAIC.
Copula D,,, - Crack rate D,,, - Rutting D,,, - IRI
Gumbel 18,651 16,751 15,993
Clayton 18,568 16,777 16,013
Frank 18,608 16,787 16,004

the entire pavement structure. Dy, is horizontally 90 cm away from
the loading point and shows the deflection from the load propagated
through the lower roadbed layer. The rationale behind (28) is that
D, — Dy, determines the deflection from the load throughout the As
layer. An original form of (28) was proposed by Araki et al. (2018)
which was further modified by the authors to account for the effect of
layer thickness. The estimated D,,, was also used as a measure of the
subsurface strength of pavements in the empirical study.

Pavement deterioration is a complex process consisting of road
surface and load-bearing capacity deterioration, and prior research
has attempted to examine their relation (e.g., Kaito et al. (2014)
and Kamiya (2023)). It is considered that a correlation exists between
the road surface and load-bearing capacity deterioration indices. The
uncertainty of this correlation was expressed using copulas. In addition,
since the FWD survey is a method to diagnose the pavement load-
bearing capacity by dropping a weight on the pavement surface and
measuring the amount of deflection caused by the weight, it is difficult
to obtain load-bearing capacity indices over a wide area and at a
high frequency because it may necessitate road traffic restriction which
is undesirable for road users. On the other hand, the road surface
condition surveys conducted using a moving vehicle do not require
traffic restrictions. Thus, even when inspection results are only partially
observed in some inspections (deterioration events), the multidimen-
sional deterioration process model can be used to estimate the entire
multidimensional deterioration process using consolidated data from
multiple deterioration events and structure categories.

The total number of structure categories in the data was 3565
with each pavement section being 10 m long, the minimum unit of
the road surface index evaluation length. Of these categories, 312
categories contained both road surface and load-bearing capacity data,
thus satisfying the connectivity condition.

The schematic representation of the analytical framework is shown
in Fig. 4. The following sections discuss the framework in detail.

4.2. Estimated results

For the estimation of parameters, data samples of drainage pave-
ments, which is a standard type of the surface layer throughout Japan’s
intercity highway pavement, are used for analysis to avoid potential
biases from incorporating different types of surface layer. For the pave-
ment load-bearing capacity, D,,, was used, whereas for the road surface
condition, three indices were used; i.e., the cracking rate, rutting depth,
and IRL In order to independently evaluate the relationship between
the load-bearing capacity index and each road surface index, a mul-
tidimensional deterioration process model using individual continuous
quantities was applied to analyze a total of three combinations: (1) D,
- cracking rate, (2) D,,,; - rutting depth, and (3) D,,,; index - IRI. The
characteristic variable groups were defined as granular roadbed and
cement stabilized roadbed. The characteristic variable was specified
using the following dummy variable.

Z = {0 When point i is a granular roadbed 29)

1 When point i is a cement stabilized roadbed

By estimating the parameter 6 based on the characteristic variable
z;, the effect of using granular or cement stabilized roadbeds as the
subgrade can be evaluated.

Table 3 shows the estimated parameters of the load-bearing ca-
pacity indices pPmd, @Pind cPina, the 95% confidence intervals of the
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Fig. 3. Pavement structure and FWD measurements.
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Table 3
Estimated parameters for load-bearing capacity g, 0, c.
Parameter Mean Upper 5% Lower 5% Geweke statistics
ﬁID”“’ 74.81 96.58 44.57 -0.156
ﬂzp”“’ 1.126 1.137 1.109 0.086
ﬁf”“’ 151.5 162.5 142.2 0.677
OPua 1.602 2.271 0.353 1.697
6P 1.322 1.422 1.171 -0.257

Bayesian estimation, and the Geweke statistics. Similarly, Table 4
shows results for road indices (cracking: perack gerack gerack gerack -yt
ting: g, 0™ o™ o, IRL: pIRI IR GIRI oIRIy For cracking, only
perak and p5rek are shown assuming that pi* = 0 for a newly
constructed or repaired pavement. The parameters showed high con-
vergence with the Geweke diagnostics falling within the [-1.96, 1.96]
limits with O specifying perfect convergence. These parameters can be
used to generate illustrative performance curves shown in Figs. 5-8.
The results showed that cement stabilized pavements have longer life
compared to granular roadbed pavements for all performance curves as
cement stabilization increases subbase strength.

The WAIC of the entire model including copulas is shown in Table 2.
Three types of copulas were used: Gumbel, Clayton, and Frank copulas.
From the same table, the Clayton copula was selected as the best copula
for the D,,, - cracking rate, and the Gumbel copula for the D,,, - rutting
and D;,; - IRI as they achieved minimum WAIC scores. The flexible
function f,(#, ) (polynomial function, power function, exponential
function) representing the baseline model for each indicator was also
evaluated using WAIC, from which the exponential function f,(t, f) =
B1(B," — 1) + B3 was employed for each pair of indicators.

Table 4
Estimated parameters for road surface indices g, 0, c.
Parameter Mean Upper 5% Lower 5% Geweke statistics
ﬁl""" 0.395 0.405 0.375 0.071
ﬂé”“"‘ 1.311 1.315 1.304 0.838
Cracking gerack 1.410 1.443 1.356 0.883
oerack 1.120 1.129 1.103 —1.491
acrack 0.866 1.330 0.210 0.273
ﬂl”" 5.007 5.154 4.784 -1.629
2"" 1.086 1.087 1.083 1.531
Ruttin By 2.164 2.191 2117 0.655
J o 0.302 0.312 0.284 0.924
o't 0.451 0.457 0.438 —0.981
a™t 1.085 1.182 1.002 0.938
ﬂl”” 0.771 0.793 0.727 0.816
2”” 1.143 1.145 1.139 —0.548
IRI ﬁ3”” 0.041 0.047 0.034 -0.143
IR 0.270 0.286 0.243 0.403
! RI 0.606 0.613 0.593 —1.439
al R 1.084 1.178 1.003 -1.571
0
500
©
£1000
(@)
1500 |= Basecline
—— Granular roadbed
—— Cement stabilized subbase
2000

0 10 20 30 40
Elapsed years

Fig. 5. Performance curve based on D,,,.

4.3. Joint probability density functions for heterogeneity parameters

In the multidimensional deterioration process model with continu-
ous quantities, the copula probability density function and the marginal
probability density function can be used to represent the joint proba-
bility density functions of the heterogeneity parameters for multiple
deterioration events. The joint probability density functions of the
heterogeneity parameters of the D,,,-crack rate, D,,,-rutting and D, ;-
IRI are shown in Figs. 9-11. From the joint probability plots, although
the variation of the heterogeneity parameter of the D, ,-crack rate
of Fig. 9 was the largest among the three road surface indices, its
correlation coefficient with the heterogeneity parameter of the D,,,
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was 0.597, confirming a positive correlation between pavement surface
cracking and subsurface deterioration. The D, ,-rutting in Fig. 10 had
the smallest correlation coefficient at 0.160, with both heterogeneity
parameters concentrated around 0. The D,,;-IRI of Fig. 11 also showed
the same trend as the D, ,-rutting, but the variability of the IRI hetero-
geneity parameter was relatively larger, with a correlation coefficient
of 0.219.

The joint probability density functions of the heterogeneity parame-
ters presented above showed that in this empirical study, the D,,,-crack
rate combination has interactive effects for both deterioration processes
(surface and subsurface). In the D,,;-crack rate combination, the joint
probability density function has a distorted shape in the third quadrant
because the Clayton copula with the lowest WAIC score was used for
estimation. For the Clayton copula, the degree of dependence among
random variables is relatively strong in the lower left and weak in the
upper right of the plot. This means that the correlation is particularly
strong in the third quadrant, where both heterogeneities take small
values, and that when either the D,,, or the crack rate takes small
values.

Three types of Archimedian copulas; i.e., the Gumbel, Clayton, and
Frank copulas were used in the estimation of the correlation between
the surface and subsurface deterioration events. However, it is desirable
to estimate using a variety of copulas as candidates so as to select
models that further reduce the WAIC.



K. Sasai et al.

Transportation Research Interdisciplinary Perspectives 34 (2025) 101732

0.4 T

02r

0.1

probability density

I

=1 -0.5

0 0.11 0.5 1

Fig. 12. Probability density function for e;, ~(when €., = D).

500 -

©
c
£y 1000 -

1500 - heterogeneity (cracking rate)

— )

i

2000 : :
0 5 10

15 20 25 30

Elapsed years

Fig. 13. Variation of load bearing capacity index due to differences in road surface index.

4.4. Multidimensional deterioration process

As discussed in detail earlier, the FWD test used to estimate pave-
ment load-bearing capacity requires traffic restrictions, whereas road
surface condition surveys do not. Hence, cases where the load-bearing
capacity index is unknown and the road surface index is known (mea-
sured multiple times) are prevalent in the data set. Therefore, the
unknown load-bearing capacity index can be quantitatively predicted
using the joint probability density functions of the load-bearing ca-
pacity index and the heterogeneity of each road surface index. In
this application case, a positive correlation was observed between the
cracking rate and the load bearing capacity index, and there was a
weak correlation for the combination of the load bearing capacity
index - rutting area and the load bearing capacity index - IRI, so
a joint probability density function for the heterogeneity parameters
(€p,,,> Ecrack) Shown in Fig. 9 was used to predict the unknown load
bearing capacity index.

If the heterogeneity ¢,,,., = 1 of the crack rate at a point i is known,
then through application of the joint probability density function, the
probability density distribution of the heterogeneity ¢, =~ of the load
bearing capacity index as shown in Fig. 12 can be estimated. The
expected value of e, ~ was 0.11, suggesting that the deterioration rate
was comparatively larger. It is also possible to use the probability den-
sity function to assess hazard risk where heterogeneity is greater than
the expected value. The expected deterioration performance curves of
the load-bearing capacity index are shown in Fig. 13 assuming only
crack rate and ¢,,,., = 0 and ¢,,,., = 1 predicted using the results in Fig.
12. From the same figure, it is possible to quantitatively evaluate load-
bearing capacity deterioration rates when the crack rate heterogeneity
is higher.

4.5. Practical implications

In this research, the correlation among heterogeneity parameters
in a continuous quantity deterioration hazard model that takes het-
erogeneity into account was quantified using copulas. Through the
evaluation of the deterioration rate of infrastructural facilities from
multiple perspectives, the following pavement intervention consider-
ations can be made. Focusing on Fig. 9, the group located in the
first quadrant, where the heterogeneity parameter is greater than 0
for both the road surface and load bearing capacity indices, shows
faster deterioration progress for both the road surface and load bearing
capacity. For this group, intensive interventions should be performed,
taking into account the need for not only repairs of the shallow layers
such as the surface and base layers, but also large-scale maintenance
and renewal involving deeper layers including the upper and lower
roadbeds. Next, for groups in the fourth quadrant, where the hetero-
geneity parameter of the road surface index is greater than 0 and the
heterogeneity parameter of the load-bearing capacity index is less than
0, replacement of the surface and base layers should be carried out as
pavement damage is likely confined only to shallow layers. For groups
in the second quadrant, where the heterogeneity parameter of the road
surface index is less than O and the heterogeneity parameter of the
load-bearing capacity index is greater than 0, there is a possibility that
deterioration is developing in the deeper pavement layers and therefore
intensive intervention should be conducted and a rehabilitation plan
that takes into account large-scale rehabilitation and renewal when
damage appears on the road surface be established. No intervention
may be required in the quadrant with both heterogeneity parameters
less than 0, however, regular inspection can be encouraged. Further-
more, the joint probability that a group is located in each quadrant
of Fig. 9 can be calculated as 0.33 for the first quadrant, 0.17 for
the second quadrant, 0.33 for the third quadrant and 0.17 for the
fourth quadrant using the joint probability density function for the
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heterogeneity parameters. These probabilities represent the proportion
of the total road sections under observation located in each quadrant,
and may provide useful information for budget planning and major
repair projects.

Additionally, when only road surface indices are obtained, it is
possible to quantitatively evaluate whether the group in question is
located in the first or second quadrant, or the third or fourth quadrant,
using fragmentary information in the form of heterogeneity parameters
of the load bearing capacity index. The ability to represent multidimen-
sional deterioration processes probabilistically from partial observation
information is an important feature of this research with practical
applications in the case of incomplete infrastructure monitoring data.

5. Conclusion

This study introduces a copula-based framework that jointly models
multiple continuous pavement deterioration processes with hetero-
geneity, enabling a more comprehensive representation than conven-
tional single-indicator models. The approach offers practical value by
revealing interdependencies among deterioration indicators, support-
ing optimized inspection schedules, targeted preventive maintenance,
and broader application to other transportation infrastructure where
multi-indicator data are available.

The proposed model was applied to pavement load-bearing capacity
and road surface indices (crack rate, rutting depth, and IRI) estimated
through FWD tests and road surface condition surveys, respectively.
The correlation structure among deterioration events expressed using
an Archimedian copula. This representation enabled the evaluation of
the need for large-scale intervention or preventive repair based on the
quadrant in which a given pavement section was grouped. Furthermore,
when the methodology proposed in this study was applied to actual
highway inspection data, a positive correlation was observed between
the crack rate and load-bearing capacity index and the correlation
was particularly strong in areas where the heterogeneity between the
two was small. To our knowledge, no previous study has visualized
the interdependent relationships among multiple continuous pavement
deterioration processes in this manner.

In this study, all estimated copula correlation parameters were
positive, reflecting the empirical finding of predominantly positive
dependencies among the deterioration indicators analyzed. While cop-
ulas allowing for negative correlations do exist, preliminary analy-
ses indicated that negative correlation structures were not signifi-
cant for the dataset examined in this study. Nevertheless, future re-
search could explore additional copula structures capable of capturing
negative dependencies to verify the robustness of these findings.

By quantifying interdependencies among deterioration indicators,
the approach enables maintenance planners to anticipate how changes
in one condition (e.g., cracking) may influence others (e.g., rutting or
load-bearing capacity), thus supporting targeted preventive strategies
such as sealing cracks earlier to slow rutting progression or rein-
forcing structural layers to prevent rapid surface distress. Although
demonstrated using Japanese highway pavement data, the methodol-
ogy is adaptable to other transportation infrastructure systems — such
as bridges, tunnels, or rail track — where multi-indicator deterioration
data are available.

As a part of future research, the following two issues need to be
addressed. First, applicability of the proposed method must be verified
by increasing the number of application cases. The sections analyzed
in this application case study are those with particularly advanced
deterioration among the highways under a certain jurisdiction of in-
tercity highway managing company, and generalizability of the results
is yet to be examined. Therefore, the finding that among the three
road surface indices, only cracking rate was strongly correlated with
the load-bearing capacity index is valid only for the sections selected
for this study application. In the future, it is necessary to apply the
proposed method to several sections to clarify the interconnectedness
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of the road surface indices and the load-bearing capacity index. Second,
the different correlations among several deterioration indices need to
be expressed in more detail. In this study, one-parameter Archimedian
copulas were used for each combination of load-bearing capacity and
a road surface index, but it may be preferable to use two-parameter
Archimedian copulas, which allow for more flexible expressions of
dependence structures. It is also possible to analyze the correlation
structure of three or more indicators simultaneously. The correlations
between deterioration events can be described more precisely by using
the vine copula (Bedford and Cooke, 2002), which defines different
types of copulas between each index.
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Notation list

The following symbols are used in this paper:
€4 = heterogeneity parameter for process A
e = heterogeneity parameter for process B
d = deterioration event
i = facility
k = category
= heterogeneity parameter

deterioration management index of a facility

B, = deterioration characteristic coefficient of a facility
0, = characteristic parameter vector
2 = characteristic variable term
B, = unknown parameter vector
yl, = lifetime index
w;, = error term
S, = Survival function to time ¢
¢ = real life until control level

k
&a
1

Xa

P, = distribution function for event d
C = copula

¢ = generation function of copula

7 = probability density of real life
D,,, = load-bearing capacity index

z; = dummy variable
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