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 a b s t r a c t

We developed a deep learning (DL) framework based on convolutional neural networks (CNNs) to predict elastic 
constants of hexagonal materials by leveraging high image-recognition capability of CNNs. Resonant frequency 
data were converted into three-channel RGB images, referred to as "elasticity images" for CNN training. Without 
mode identification, the trained models accurately predicted all five independent elastic constants. We reveal 
that the average Young modulus is a critical for classification of hexagonal materials based on their elasticity 
images. Furthermore, we extended the Blackman diagram, originally developed for cubic crystals, to hexagonal 
systems, enabling a substantial reduction of five-dimensional elastic-constant space. We then established a two-
step DL scheme: first, classification using the average Young modulus, followed by regression of the five elastic 
constants in the classified average-Young-modulus class. The prediction error was approximately 5% for the 
principal elastic constants and 1.5% for the average Young modulus.

Elastic constants are fundamental physical quantities that govern the 
deformation behavior of materials under external forces. They are indis-
pensable for the design and analysis of structures and devices in various 
engineering applications. Furthermore, since elastic constants strongly 
reflect interatomic potentials, they serve as crucial benchmarks for val-
idating the value obtained from theoretical models, such as density-
functional-theory calculations [1–6]. Consequently, the accurate mea-
surement of elastic constants is of great importance both in scientific 
studies and practical applications.

In particular, the measurement of elastic constants in hexagonal 
crystal systems is of high significance. For example, gallium nitride 
(GaN) and silicon carbide (SiC), which have garnered attention as 
power semiconductor materials, belong to the hexagonal system [7,8]. 
Moreover, even lower-symmetry materials and composite materials 
can often be approximated with sufficient accuracy as hexagonal ma-
terials in practical applications. For instance, unidirectionally fiber-
reinforced composites [9], which are important engineering materi-
als because of their high stiffness and toughness, lotus-type porous 
metals [10,11] with lightweight and high energy absorption capac-
ity, and biological bone tissues [12] exhibit hexagonal symmetry on 
a macroscopic scale [13–16]. Due to the prevalence of such materi-
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als, establishment of a technique for determining the elastic constants 
of hexagonal materials remains a central issue in the materials science
field.

Conventional ultrasonic techniques such as the pulse-echo method 
[17] and resonance method [18,19] have long been used for the elastic-
constant measurements. However, in materials with low symmetry, 
where the number of independent elastic constants is large, these tech-
niques require specimens cut along multiple crystallographic orienta-
tions, which is challenging for small samples.

To overcome these limitations, the resonance-ultrasound-
spectroscopy (RUS) method has been developed [20–27]. This 
technique enables the determination of all independent elastic con-
stants from a single small specimen by measuring many free-vibration 
resonance frequencies and fitting the calculated resonance frequencies 
to them through inverse calculation. However, a major drawback of 
the RUS method lies in the difficulty of mode identification. If the 
correspondence between measured and theoretical resonance modes 
is incorrect during the inverse process, the resultant elastic constants 
are physically meaningless. To avoid this problem, it is generally 
needed to calculate the resonance frequencies that closely match 
the corresponding experiments in the inverse calculation, meaning a 
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contradiction in that prior knowledge of the elastic constants close to 
the true values are required.

To address this issue, a variety of strategies have been proposed 
[21,25,26]. For example, mode selective excitation and detection were 
performed using electromagnetic acoustic transducers by controlling the 
direction of the magnetic field [28,29], and the vibrational mode figure 
was measured at each resonance using laser Doppler interferometry to 
achieve complete mode identification [30–32]. However, these methods 
require sophisticated experimental setups and expert-level understand-
ing in acoustics and materials-science fields, limiting their accessibility. 
Alternative approaches such as using Bayesian estimation [33] have also 
been proposed; however, even in these methods, the dependence on ini-
tial values becomes more pronounced as the crystal symmetry decreases.

Recently, convolutional neural networks (CNNs) have drawn atten-
tion for their superior ability in image-based classification and regres-
sion tasks. CNNs are capable of learning local feature representations 
from input image without manual intervention. Leveraging this im-
age recognition capability, various studies have utilized CNNs to ana-
lyze data structured in two-dimensional formats [34–36]. Based on this, 
we proposed a novel elastic-constant prediction method utilizing CNNs 
[37], where we converted the mechanical resonance spectra into the 
elasticity images and trained originally developed CNNs with them with 
corresponding elastic constants, resulting in the prediction of the elastic 
constants of cubic materials with ∼10% errors without mode identifi-
cation and inverse calculation. In that study, the Blackman diagram – 
a plot of 𝐶12∕𝐶11 against 𝐶44∕𝐶11, graphically categorizing the elastic 
properties of cubic materials [38,39]– was necessary to constrain the 
range of the dataset, which reduced the dataset size by 60% and con-
tributed to improved prediction accuracy [37]. However, extending this 
approach to hexagonal systems presents further difficult challenges. Due 
to the five-dimensional space of independent elastic constants in hexag-
onal symmetry, the network has to be trained with a vast dataset to 
accurately predict all five constants simultaneously, which is computa-
tionally demanding task and difficult to optimize for high accuracy. Fur-
thermore, unlike the cubic case, no diagram analogous to the Blackman 
diagram exists for hexagonal crystals. Consequently, it is not possible to 
restrict the dataset range, and with two additional variables compared 
to the cubic case, the number of required data points can easily exceed 
one hundred million.

Motivated by this challenge, we focus on the average Young mod-
ulus (𝐸Ave), the Young modulus of an isotropic solid that is elastically 
averaged in all directions for the anisotropic solid, because we find it to 
be the most strongly encoded physical quantity in the elasticity image. 
Based on 𝐸Ave, we find Blackmann-diagram like relationships for hexag-
onal systems and succeed in significantly reducing the elastic-constant 
ranges to be examined. We thus propose a two-step prediction method: 
First is the classification scheme based on 𝐸Ave, which effectively nar-
rows down the candidate range of the dataset, and second is the regres-
sion process for the five elastic constants around the predicted 𝐸Ave as a 
constraint. This method allows for the prediction of the elastic constants 
of hexagonal materials without mode identification and inverse calcu-
lation even missing modes are involved. We demonstrate that the pre-
diction errors of the main elastic constants can be suppressed to ∼5%, 
confirming the effectiveness of our approach.

The elastic-constant matrix 𝐶𝑖𝑗 for hexagonal systems is generally 
expressed with the five independent elastic constants 𝐶11, 𝐶12, 𝐶13, 𝐶33, 
and 𝐶44 as:

[

𝐶𝑖𝑗
]
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(1)

In the RUS method, a rectangular parallelepiped specimen with edges 
parallel to the three crystallographic axes is prepared for determining 

the 𝐶𝑖𝑗 . In this study, we consider rectangular parallelepiped specimens 
with the side-length ratio of 5:3:4, where the edge with the intermedi-
ate length (ratio = 4) is aligned with the 𝑐-axis. Restricting the speci-
men shape to this dimensional ratio is not usually a problem in the RUS 
method, because the RUS method anyway requires cutting a specimen 
from the sample, which can be prepared according to this dimensional 
ratio. Furthermore, our previous study indicates that deviation from this 
edge ratio insignificantly affects the prediction accuracy [37].

Using the Ritz method for Hamilton’s principle, the resonant frequen-
cies are calculated by solving an eigenvalue problem [21]
(

𝚪 − 𝜌𝜔2𝐈
)

𝐮 = 0, (2)

where 𝐈 denotes the unit matrix, 𝜌 is the mass density, 𝜔 is the angular 
frequency, and 𝐮 is the vector made of coefficients of basis functions 
for displacements. The components of the matrix 𝚪 are determined by 
the elastic constants and dimensions of the specimen, and they are in-
versely proportional to a product of two side-length dimensions. Because 
the side-length ratio is maintained, the matrix 𝚪 can be represented by 
𝑉 − 2

3 𝚪𝐑 with that for the reference specimen, 𝚪𝐑. Here, 𝑉  denotes the 
volume ratio of the specimen to the reference specimen with side lengths 
of 5mm, 3mm, and 4mm. Therefore, Eq.  (2) can be rewritten as
(

𝚪𝐑 − 𝑉
2
3 𝜌𝜔2𝐈

)

𝐮 =
(

𝚪𝐑 − 𝐶̃𝐈
)

𝐮 = 0. (3)

Note that 𝐶̃ indicates the common eigenvalue independent of mass den-
sity and volume (or 𝑉 ) of the specimen, purely reflecting the elastic 
property of the material. We thus introduce the elasticity parameter 𝐶̃𝑛
given by

𝐶̃𝑛 = 4𝜋2𝑉
2
3 𝜌𝑓 2

𝑛 , (4)

where 𝑓𝑛 is the 𝑛th resonance frequency.
Fig. 1 shows an overview of the elastic-constant determination with 

deep learning proposed in this study. The resonant spectrum obtained 
by, for example, the tripod piezoelectric transducers [30] (Fig. 1(a)) 
gives numerous number of resonant frequencies, and using the first 100 
frequencies, we create the elasticity image composed of three binary 
images by converting the resonant frequencies into the elasticity pa-
rameters in Eq.  (4) as follows.

We set minimum and maximum boundaries for 𝐶̃𝑛 to be 3950 and 
592,500 TPa⋅m−2, respectively, between which the 100 elasticity pa-
rameters of most specimens are expected to be included, although some 
higher modes of very stiff materials exceed the maximum boundary and 
are excluded in the elasticity image. For example, for titanium with the 
reference dimensions, the lower and upper limits of 𝐶̃𝑛 correspond to the 
resonant frequencies of 0.149MHz and 1.82MHz, respectively, where 
the fundamental mode (0.264 MHz) and the 100th mode (1.35 MHz) 
are included.

The 𝐶̃𝑛 values are mapped onto a 30×30 pixel grid by dividing the 
𝐶̃𝑛 range into 900 equal intervals and recording the binary presence (1) 
or absence (0) of a resonance mode in each interval (Fig. 1(b)). The 
three binary layers are generated using different mapping strategies as 
shown in Fig. 1(c): (i) The red layer assigns values spirally from the 
center outward, (ii) the green layer maps values spirally from the outer 
edge inward, and (iii) the blue layer maps values raster-wise from top to 
bottom. These layers are combined into a single RGB image represent-
ing the material’s elastic behavior (Fig. 1(d)). For instance, as shown 
in Fig. 1(e), softer materials tend to produce localized, non-overlapping 
pixel patterns, whereas stiffer materials generate more distributed and 
overlapping patterns across layers. These spatial characteristics are ef-
fectively learned by our CNNs.

We have successfully reduced the dataset size by referring the Black-
man diagram [37], which plots the ratio of elastic constants 𝐶44∕𝐶11 on 
the horizontal axis and 𝐶12∕𝐶11 on the vertical axis; it has been used 
to discuss the elastic properties of cubic crystals [38,39]. However, the 
Blackman diagram is proposed for cubic materials, and it is unavailable 
for hexagonal systems.
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Fig. 1. Schematic diagram of deep learning scheme we propose. (a) RUS experimental setup with needle-llike tripod transducers. (b) Conversion of resonant 
frequencies into elasticity parameters. (c) Three methods for distributing 900 elastic parameters within 30x30 pixels. (d) Construction of the elasticity image and 
dataset. (e) Elasticity images for three hexagonal materials with different average Young modulus 𝐸Ave. (f) The two-step deep-learning scheme for predicting the five 
independent elastic constants.

We then extend the concept of the Blackman diagram to hexagonal 
systems in order to constrain the range of elastic constants in our dataset. 
In implementing this, we find that the average Young modulus 𝐸Ave is 
a key factor as discussed later and, therefore, adopt this instead of 𝐶11, 
because 𝐸Ave is highly dependent on 𝐶11 as shown in Fig. 2(a). Thus, 
we select 𝐸Ave, 𝐶33, 𝐶12, 𝐶13, and 𝐶44 as the five elastic constants of 
hexagonal systems for preparing the elasticity images. (Note that 𝐶11
can be calculated from these five elastic constants.)

The Blackman diagram shows a relationship between the shear 
modulus (𝐶44) and the off-diagonal modulus (𝐶12) normalized by the 
longitudinal-wave modulus (or the largest modulus) (𝐶11) for a cubic 
crystal. In hexagonal systems, there are two longitudinal-wave moduli 
(𝐶11 and 𝐶33), but we use 𝐶33 because of its high independency from the 
average Young modulus (Fig. 2(a)).

Based on reported elastic constants for 42 existing hexagonal ma-
terials (see Table S1 in Supplementary Information), we find that the 
range of values that the ratio 𝐶33∕𝐸Ave can take is narrow, distributed 
between 0.6 and 2.1, and we divided this range into three regions at 
0.5 intervals as shown in Fig. 2(b). We then constructed the relation-
ships between the normalized shear modulus (𝐶44∕𝐶33) and the normal-
ized off-diagonal moduli (𝐶12∕𝐶33 and 𝐶13∕𝐶33) for the three regions in 
Fig. 2(c)–(e). We refer to these diagrams as the hexagonal Blackmann 
diagrams (hBDs). Interestingly, although 𝐶12, 𝐶13, 𝐶33, and 𝐶44 are in-

dependent, existing materials show characteristic distributions on hBDs. 
For example, in materials where 𝐶33∕𝐸Ave is relatively small, the plots 
tend to be distributed over a wide range on the left side, whereas in ma-
terials with larger 𝐶33∕𝐸Ave values, the plots appear in localized areas. 
This finding indicates that the degrees of freedom in the elastic-constant 
space can be dramatically reduced. We considered the elastic-constant 
spaces colored in Fig. 2(b)–(e) and used them to create the elasticity-
image dataset.

Fig. 1(f) explains the two-step DL method we propose for determin-
ing the five independent elastic constants of hexagonal systems. First, we 
classified hexagonal symmetry materials into 15 classes based on their 
𝐸Ave values. The considered range for the average Young modulus was 
40–470GPa, based on the values of the existing materials. This range 
was divided into 15 classes as follows: The range of 40–90GPa was di-
vided into five classes at 10GPa intervals, the range of 90–190GPa was 
into five classes at 20GPa intervals, the range of 190–270GPa was into 
two classes at 40GPa intervals, the range of 270–390GPa was into two 
classes at 60GPa intervals, and the range of 390–470GPa was classified 
as one class. (As 𝐸Ave increases, the width of each class becomes larger 
to ensure uniform sampling.)

For each class, we randomly selected 792,000 sets of the five 
elastic-constant parameters (𝐸Ave, 𝐶33∕𝐸Ave, 𝐶12∕𝐶33, 𝐶13∕𝐶33, and 
𝐶44∕𝐶33) within the reduced elastic-constant space and constructed the
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Fig. 2. (a) Sensitivity of the average Young modulus to principal elastic constants for 42 existing materials shown in Table S1. (b) A histgram of the ratio between 
𝐶33 and 𝐸Ave for the reported 42 hexagonal materials in Table S1. The distribution is divided into three regions shown with red (0.6-1.1), light blue (1.1-1.6), and 
light yellow (1.6-2.1); and hexagonal Blackman diagrams for 𝐶12 (upper) and 𝐶13 (lower) in the three ranges of 𝐶33∕𝐸Ave of (c)0.6-1.1, (d)1.1-1.6, and (e)1.6-2.1.

corresponding elasticity images. For example, in the class of 𝐸Ave of 
110–130GPa, we consider three spaces defined by (i)110< 𝐸Ave <130, 
0.6< 𝐶33∕𝐸Ave <1.1, and red region in Fig. 2(c), (ii)110< 𝐸Ave <130, 
1.1< 𝐶33∕𝐸Ave <1.6, and light-blue region in Fig. 2(d), and (iii)110<
𝐸Ave <130, 1.6< 𝐶33∕𝐸Ave <2.1, and light-yellow region in Fig. 2(e), 
and randomly selected 528,000, 216,000, and 48,000 points in five-
dimensional spaces (i), (ii), and (iii), respectively, so as to maintain 
nearly the same sampling-point density. Furthermore, to enhance ro-
bustness against missing modes, 0 to 5 resonance modes were randomly 
omitted from the resonance spectra in the training data.

In the second step, we predicted the five elastic constants using the 
dataset in the class identified by the first step. This two-step strategy 
highly contributes to accurately decoding the elastic constants because 
of significantly narrowed range of the dataset to be used in the regres-
sion stage.

For the first classification step, we adopted the 192-layer CNN ar-
chitecture as shown in Supplementary Figure S1. The network takes a 
30×30 three-layer elasticity image as an input and begins with a 2D 
convolutional layer and a batch normalization layer. This is followed 
by six repetitions of the Subnetwork Unit shown in Fig. S1(b), a ReLU 
activation layer, a 2D max pooling layer, an additional convolutional 
layer and batch normalization layer, and another six repetitions of the 

Subnetwork Unit. Finally, the network includes a ReLU layer, a dropout 
layer, a fully connected layer, a softmax layer, and a classification out-
put layer. Each Subnetwork Unit contains two shortcut connections to 
enhance training stability and enable deep feature learning [40]. Using 
this network, the possible range of the average Young modulus of the 
input material is limited to one class from among 15 classes.

In the second stage, the regression model is applied to a subset of 
data consisting of the class with the highest classification probability and 
its two adjacent classes (one before and one after). The regression task 
aims to output the five independent elastic constants 𝐶𝑖𝑗 for the input 
material. For this purpose, a 194-layer CNN-based regression network 
was constructed as illustrated in Fig. S2, which allows high-precision 
prediction using the reduced dataset by the first-stage classification.

Using the developed deep-learning scheme, we predicted the elas-
tic constants of the 42 existing hexagonal materials by inputing their 
elasticity images, which were created from resonant frequencies cal-
culated by the Ritz method using the true elastic constants. (Because 
the measurement accuracy and the calculation accuracy with the Ritz 
method for the resonant frequencies are extremely high in usual RUS 
methods, it is reasonable to simulate the experiments with the calcu-
lated resonant frequencies.) Fig. 3 shows the prediction errors, defined 
as (𝐶pred − 𝐶true)∕𝐶true. Despite the fact that the input elasticity images 
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Fig. 3. Box plots for prediction accuracy for various elastic constants for the 42 existing hexagonal materials shown in Table S1. Horizontal axis denotes the number 
of missing modes involved in the input elasticity image.

Fig. 4. Contributions of principal elastic constants to resonant frequencies for (a)Ti, (b)Zn, and (c)GaN specimens with the reference size.

were untrained (not included in the dataset), our DL scheme allows 
high-accurate prediction of the elastic constants; the average prediction 
errors for the diagonal components 𝐶11, 𝐶33, 𝐶44, and 𝐶66 are approxi-
mately 5%, and the error in the average Young modulus is about 1.5%. 
The prediction accuracy for the off-diagonal components 𝐶12 and 𝐶13
is, however, lower. This is expected because their contributions to the 
resonance frequencies are smaller. In fact, in the RUS method, the deter-
mination accuracy for the off-diagonal components is generally lower.

The developed CNNs also demonstrate strong robustness to the miss-
ing resonance modes. In RUS experiments, we sometimes fail to detect a 
few resonant modes when the transducer contacts near the nodal points. 
Such a missing mode makes the mode-identification procedure highly 
complicated. On the other hand, a missing mode only blackens one pixel 
among 900 pixels in each layer, and it less affects the elasticity image. 
Actually, when more than six modes were missing, exceeding the max-
imum number considered in the training dataset, the prediction accu-
racy remains nearly unaffected. As the number of missing modes in-
creases, the diagonal elastic constants and the average Young modulus 
are slightly overestimated. This is attributed to the sparsity in the elas-
ticity image caused by missing pixels, which led the network to infer a 
stiffer material.

We here discuss the significance of the average Young modulus for 
successful prediction achieved in this study. There are two typical rela-
tionships between the elastic constants of a single crystal and its macro-
scopically isotropic aggregate. One is the Voigt relationship under uni-
form strain throughout the aggregate. The resultant averaged bulk mod-
ulus 𝐵𝑉

Ave and averaged shear modulus 𝐺𝑉
Ave are given as follows for 

hexagonal materials.

𝐵𝑉
Ave =

1
9
[

2𝐶11 + 𝐶33 + 2
(

𝐶12 + 2𝐶13
)]

,

𝐺𝑉
Ave =

1
15

[

2𝐶11 + 𝐶33 −
(

𝐶12 + 2𝐶13
)

+ 3
(

2𝐶44 +
𝐶11 − 𝐶12

2

)]

.

The other is the Reuss relationship under the uniform stress, yeilding
𝐵𝑅
Ave =

[

2𝑠11 + 𝑠33 + 2
(

𝑠12 + 2𝑠13
)]−1,

𝐺𝑅
Ave = 15

[

8𝑠11 + 4𝑠33 −
(

4𝑠12 + 8𝑠13
)

+ 6
(

𝑠44 + 𝑠11 − 𝑠12
)]−1.

Here, 𝑠𝑖𝑗 denote the compliance-matrix components of the hexagonal 
crystal. Since the true moduli are expected to lie between Voigt and 
Reuss values [41], Hill simply averaged them (called Hill approxima-
tion) as 𝐵𝐻

Ave = (𝐵𝑉
Ave + 𝐵𝑅

Ave)∕2 and 𝐺𝐻
Ave = (𝐺𝑉

Ave + 𝐺𝑅
Ave)∕2. Using the 

Hill approximation, we deduced the average Young modulus as

𝐸Ave =
9𝐵𝐻

Ave𝐺
𝐻
Ave

3𝐵𝐻
Ave + 𝐺𝐻

Ave

. (5)

We find that 𝐸Ave most contributes to the free-vibration resonant fre-
quencies of a solid among various elastic constants. Fig. 4 shows contri-
bution values of principal elastic constants, including 𝐸Ave, for three rep-
resentative hexagonal materials. It is clearly seen that the contribution 
value of 𝐸Ave is significantly larger than those of other elastic constants 
by a factor of ∼10. This finding indicates that when we understand a 
resonant spectrum as a group of resonance frequencies rather than indi-
vidually, the average Young modulus governs it most strongly, and the 
elasticity image that expresses the overall properties of the resonance 
behavior most strongly depends on the average Young modulus. There-
fore, the classification strategy based on the average Young modulus is 
highly reasonable.

Next, we discuss the frequency resolution in the elasticity image. 
We created the elasticity image by dividing the prescribed range of the 
elasticity parameter into 900 discrete segments, corresponding to a fre-
quency resolution in the kHz range. In contrast, the measurement error 
of the resonant frequency is typically less than 0.001% or in the Hz 
order in the RUS method [42], and one may want to divide the elastic-
ity parameter much more finely to maintain the high frequency reso-
lution of the measurement. However, we intentionally adopt the much 
lower frequency resolution (kHz order) because the reduction in the
resolution minimizes various influences caused by errors in dimensions, 
orientation, mass density and so on. For example, a 0.2% dimension er-
ror would cause less than ∼1-kHz frequency error, which will not affect 
the elasticity image significantly. Therefore, the resolution in the elas-
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Table 1 
Elastic constants of rotus-type porous copper and unidirectionally fiber reinforced composites.

 Porous(17%)  Porous(31%)  B-Al comp.  SiC-Ti comp.
 Experiment [15]  Present  Experiment [15]  Present  Experiment [13]  Presenta  Experimentb  Presentc  Experiment [14]  Presenta  Experimentb  Presentc

𝐶11  128.85  110.21  59.69  59.53  185.9  236.78  182.6  179.66  189.6  217.54  188.6  182.11
𝐶33  148.62  131.92  78.08  77.66  246.1  290.24  246.1  231.11  246.7  292.50  246.7  237.99
𝐶44  35.04  32.93  33.99  36.22  55.1  55.37  55.4  53.90  56.86  56.86  56.41  54.10
𝐶66  25.81  26.73  16.04  15.86  50.8  52.07  52.8  51.30  54.16  52.7  55.60  55.5
𝐸Ave  76.60  75.03  55.98  56.80  151.14  154.73  151.14  148.07  154.35  157.60  154.35  150.20
𝐶12  77.24  56.76  27.60  27.81  74.9  132.63  76.99  77.09  75.82  112.15  77.34  71.21
𝐶13  94.74  75.03  36.20  36.79  60.3  125.11  59.85  42.67  69.96  105.17  67.75  63.37
𝐶22  183.5  190.6
𝐶55  55.8  55.96
𝐶23  59.4  65.53
a Predicted values from resonant frequencies calculated under orthorhombic symmetry.
b Elastic constants obtained by approximating the orthorhombic system as a hexagonal system.
c Predicted values from resonant frequencies calculated under hexagonal symmetry.

ticity parameter is a key for making the CNN tolerant to various error 
factors.

We also emphasize the important advantage of our DL approach that 
we can use many resonant frequencies up to 100. In conventional RUS 
methods, it is usually possible to measure more than 100 resonant fre-
quencies, but because of the extreme difficulty in mode identification on 
such higher frequencies, we cannot use them in the inverse calculation. 
Conversely, because mode identification is unnecessary in creating the 
elasticity image, such high-frequency modes can be involved and crucial 
in the elasticity image.

As discussed in the introduction, even materials that are not strictly 
hexagonal symmetry can often be approximated as hexagonal when they 
exhibit near-transverse isotropy. Based on this, we investigate whether 
the developed DL method is applicable to three composites: (i) a B-
Al composite consisting of an aluminum matrix unidirectionally rein-
forced with boron fibers, showing orthorhombic symmetry [13]. (ii) 
SiC-Ti composites in which a matrix titanium alloy is reinforced with 
silicon carbide fibers, also showing orthorhombic symmetry [14], and 
(iii) lotus-type porous coppers with unidirectionally aligned voids re-
sembling the structure of lotus roots [15]. The resonance spectra used 
for prediction are theoretically computed from the reported elastic con-
stants show in Table 1 for each material.

The elastic constants predicted by our DL method are compared with 
experiments in Table 1 and Fig. 5. Concerning the porous coppers, the 
prediction accuracy remains higher, while the two composite materi-
als exhibit larger prediction errors. This is likely due to the fact that 
these composites exhibit orthorhombic symmetry, whose spectral fea-
tures cannot be fully captured by a network trained solely on hexago-
nal symmetry data. We then averaged the experimentally determined 
elastic constants around the longitudinal axis of the fibers and derived 
the elastic constants of hexagonal symmetry. This hexagonal approxi-
mation improved the prediction accuracy, demonstrating that our DL 
method can accurately predict elastic constants even for materials with 
heterogeneous and complex structures when they macroscopically ex-
hibit hexagonal symmetry.

In this study, we have establish a deep-learning method for directly 
determining the five independent elastic constants of hexagonal crys-
tals from resonance spectra, without relying on inverse calculation. To 
efficiently constrain the area for training data generation, we devise a 
new constraint diagram for hexagonal elastic constants, inspired by the 
classical Blackman diagram for cubic crystals. This is made possible by 
using the average Young modulus, which most strongly affects the over-
all resonant spectrum. Based on this, we constructed the two-step deep 
learning framework: the first classification network coarsely predicts the 
average Young modulus from the elasticity image created from the res-
onance spectrum. The second regression network then infers the full set 
of elastic constants using the dataset around the class identified by the 
first step.

Fig. 5. Comparison between reported and predicted elastic constants for com-
posite materials for the principal components.

This approach achieved high prediction accuracy; the prediction er-
rors were ∼5% for principal diagonal elastic constants and 1.5% for 
the average Young modulus, even with the presence of the missing res-
onance modes. Furthermore, its applicability was confirmed for compos-
ite materials that are approximately hexagonal symmetry, indicating its 
potential for practical use.
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• Supplementary Information:
– Supplementary Table S1 shows reported and predicted elastic 
constants of 42 materials.

– Supplementary Figures S1 and S2 show CNNs for classification 
and regression, respectively.

• WEB page for predicting five elastic constants of hexagonal materials 
through the DL method developed here: https://insightkk.net/web_
app/CijPredict/
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