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Signal transduction is a complex system governing cellular
behavior across physiological and pathological contexts. Ad-
vances in systems biology have positioned cell modeling as a
powerful tool for reconstructing the dynamics and trajectories
of disease processes. Nevertheless, despite progress in Al-
assisted model generation, parameter estimation remains a
challenge, especially under data constraints. In contrast,
molecular dynamics simulations offer crucial, high-resolution
insights by uncovering conformational activation mechanisms
and by extracting kinetic parameters; however, they face
scalability limitations. This review focuses on modeling of the
ErbB signaling system, highlighting recent advances at both
the cellular and molecular scales. Emerging trends, such as
simulation data reuse, machine learning-guided network
inference, and modeling within realistic environmental con-
texts, are now driving a compelling integration of these mo-
lecular and cellular modeling paradigms.
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Introduction

Signal transduction systems consist of intricately inter-
connected biochemical reaction networks modulated by
post-translational modifications, protein interactions,
and enzymatic activities. These systems play a crucial
role in maintaining physiological homeostasis by
dictating cell fate. Consequently, disruptions in these
networks are closely associated with the onset and

progression of numerous human diseases. To gain
quantitative insight into these complex processes,
research has increasingly focused on characterizing their
activation dynamics.

Activation dynamics are unique to individual cells or
tissues, governed by multi-scale regulatory mecha-
nisms. This often spans from small-scale changes, such
as protein phosphorylation and dephosphorylation,
to global-scale modifications including transcriptionally
mediated positive and negative feedback regulations
[1,2]. Despite the rise of machine learning (ML)
and Al technologies, mechanistic modeling with
ordinary differential equations (ODEs) remains
essential for understanding the underlying mechanisms
of complex biological systems, particularly for recon-
structing disease trajectories and predicting cell
fate decisions.

Mathematical models depend critically on prior knowl-
edge of the regulatory network structure, molecular
initial values (concentration), and precise kinetic pa-
rameters, such as binding rate constants (fon, Aoff),
interaction strengths (Kp), and enzyme kinetics (Kp,
Vinax) to accurately capture dynamics in numerical
simulations [3,4] (Figure 1). However, these parameters
are challenging to acquire comprehensively through
experiments. 'The common practice of defining a
simplified network structure and then estimating pa-
rameters via statistical methods or genetic algorithms
requires extensive time-course data (e.g., phosphoryla-
tion patterns), which are often scarce in public data-
bases. Furthermore, the identification of network
structure itself is difficult, as biological networks are
highly cell- and tissue-dependent.

In contrast, structure-based computational approaches,
primarily molecular dynamics (MD) simulations, can
estimate critical kinetic and thermodynamic parame-
ters needed by cell-based models, including binding
free energies (AGy), binding and dissociation rate
constants (#on, £off, respectively), and residence times
(RT) [5]- based on high-resolution structural informa-
tion of target proteins. However, MD applications face
distinct challenges. Many signaling proteins lack com-
plete structural data, such as those containing intrin-
sically disordered regions (IDRs) [6], and their
membrane association complicates interpretations of
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Conceptual framework connecting cellular- and molecular-scale approaches for multiscale analysis of signaling systems. At the cellular scale (top left),
models based on ordinary differential equations (ODEs) provide mathematical representations of signaling networks, capturing kinetic relationships
among molecular components. At the molecular scale (bottom left), simulations such as molecular dynamics (MD) generate localized models that
describe individual protein interactions and conformational dynamics. The two modeling layers are connected through the exchange of kinetic and
network information, while experimental data and structure-prediction methods provide external inputs supporting both levels. Together, they represent
complementary approximations of biological complexity, and their integration provides a foundation for developing whole-cell models (right) that unify

molecular and systems-level behavior.

cell- and tissue-dependent interactions. Current MD
simulations also struggle to capture slow binding and
activation processes observed experimentally.

These bottlenecks are, however, being gradually
solved by implementing emerging computational tools.
Structural prediction tools like AlphaFold [7] are a
promising  approach to modeling full-length
proteins, while algorithmic advances are expanding
the timescale and systems size accessible to MD.
In parallel, natural language processing (NLP) and ML

techniques are aiding the context-dependent recon-
struction of biological networks for ODE and other
models (Figure 2).

In this article, we focus on the ErbB receptor signaling
system, which is implicated in numerous human dis-
eases. We provide an overview of recent advances in
both molecular- and cellular-level simulations, specif-
ically addressing persistent challenges of parameter
estimation and network identification. Ultimately, we
explore how the integration of these multiscale
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Figure 2
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Integrating knowledge database and NLP to model signaling networks. (a) Structured data from knowledge database, combined with ML and deep learning
(DL) techniques, is applied to omics data, including transcriptome and proteome data, to identify or prioritize key genes in the network. (b) Unstructured
data, such as literature information from PubMed, can be analyzed using text mining, NLP or large language models (LLMs) to extract gene—gene
interaction for network construction and model development. The resulting network structure can be further refined using LLMs or ML/DL to develop
executable, context-dependent models. (c) An example illustrates a ErbB signaling network includes MAPK and AKT pathways with network motifs.

simulations offers crucial mechanistic insights into the
signaling network and its role in human diseases.

Cellular modeling of ErbB receptor
signaling

Mathematical models based on ODEs have long been
used to recapitulate the complex regulation of signal
transduction systems. By encoding network structures,
initial conditions, and parameters, these models aim to
reconstruct system dynamics and uncover underlying
control principles. However, constructing such models
typically assumes a practically known network structure.
Conversely, there is growing demand for modeling ap-
proaches even when the network architecture is not
predefined or needs to be simplified without compro-
mising predictive accuracy. This is especially true in the
quantitative systems pharmacology (QSP) modeling [8].
To address this challenge, data-driven approaches for
network inference using omics data and literature infor-
mation (also called as bibliome [9]) have been actively
explored in recent years (Figure 2a and b).

Knowledge database and large language models
(LLMs) for network and model reconstruction

A new direction in modeling is the development of auto-
mated frameworks that extract molecular interactions to
systematically reconstruct context-dependent networks
and executable models. One such example is CORNETO
(Constrained Optimization for the Recovery of NETworks
from omics) [10], which generates unified biological
networks by integrating prior knowledge from databases
with various omics datasets. This method optimizes
network flow (e.g., favoring efficient paths) across the
unified network while simultaneously identifying sample-
specific subnetworks. CORNETO’s strength lies in its
ability to perform joint inference, making it particularly
effective for inferring the best propagation pathways even
when data is limited (e.g. only the receptor and a down-
stream transcription factor).

Another similar automated network inference method
using knowledge databases is the Python package Neko
[11]. Given a list of molecular entities of interest (e.g.,

www.sciencedirect.com
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differentially expressed genes (DEGs) or proteins) and
a predefined interaction source (e.g., public database),
NeKo allows users to select various strategies to connect
molecules and genes, automatically generating Boolean
equations for each entity in the network.

Similarly, Erdem et al. created SPARCED [12], a
Python-based framework capable of building large-scale
ODE models, which covers pathways from epidermal
growth factor (EGF) and interferon receptor signaling to
cell cycle and apoptosis, using minimal text input.
SPARCED integrates existing models from public da-
tabases and leverages gene expression data to predict
drug responses. These automated pipelines are partic-
ularly useful for experimental scientists who need to
further analyze their experimental data and gain the
mechanistic insights.

While knowledge bases like OmniPath [13] and
SIGNOR [14] are useful for extracting predefined gene
interactions for omics data mapping, they are ineffective
when interactions are not yet registered. In such cases,
extracting interactions from literature using NLP tech-
nologies becomes necessary. Tsutsui et al. developed a
framework using the BERT model (pretrained with
whole PubMed information) to extract context-
dependent gene regulatory networks (GRNs), weighted
by MeSH-defined disease, through network embedding
with DEGs [15]. These context-weighted GRNs
improved drug response prediction and facilitated model
development. The group’s associated tool, Text2Model
[16,17], further streamlines the process by automatically
converting textual gene interaction types in GRNs (or
KEGG networks) into executable ODE models of ErbB
receptor signaling (Figure 2c). A parallel development
involves using transformer models to predict gene—drug
interactions; for example, Yamagiwa et al. [18] leveraged
BioConceptVec [19] and custom embeddings for drug
target prediction in ErbB network. Crucially, a yearly
analysis showed this method successfully predicted
future drug targets in addition to known interactions,
underscoring its potential for integration with omics data
in drug repositioning.

Motifs and network refinement

When gene interactions are sourced from knowledge
bases or literature without constraints on architecture,
the resulting GRNs or mathematical models can be
large, sparse, and disconnected. However, biological
networks such as signaling and transcriptional networks
often include recurring network motifs that operate at
different temporal scales [20] (Figure 2¢). These motifs
are crucial for characterizing the dynamic behaviors of
the network itself.

Signaling pathways involving transcription factors, for
instance, often contain multiple regulatory motifs such as
positive and negative feedback, feedforward loops

(FFLs), or AND-gates [21] (Figure 2¢). These regulatory
motifs are the hallmarks of the growth signaling circuits
that specify cellular outcomes. Strikingly, the self-
sustained ErbB signaling pathway is commonly exploi-
ted as a mechanism for drug resistance and metastatic
cell survival [22]. The automated identification of such
motifs within data-driven network reconstructions allows
for predictions of dynamic features prior to simulation by
leveraging the functional characteristics associated with
specific motifs. For example, Kadelka et al. [23] sys-
tematically evaluated and compiled a database of
network motifs (like FFLs) from previously curated
Boolean network models, offering a foundation for omics
or literature-driven modeling approaches.

With the recent advances in cell-based modeling, which
build upon structural identification methods, accurate
network identification (structural identifiability) has
become a prerequisite for executable model develop-
ment, as it is strongly associated with parameter iden-
tifiability, the ability to determine model parameters
from experimental data [24,25]. Therefore, the
improvement of existing parameter estimation methods
and the development of new ones will become
increasingly critical for the automated modeling and
simulation of biological networks.

Parameter inference problem and solution in
context-dependent modeling

A serious problem in parameter estimation for signaling
pathway ODE models is that the number of available
time-series or dose—response data needed for parameter
fitting is typically far smaller than the number of pa-
rameters in the model. Consequently, extensive efforts
have focused on developing strategies for estimating
parameters from limited experimental data.

The group led by Hasenauer developed a large-scale
model of ErbB receptor signaling that includes over
4,100 parameters [26]. By integrating public drug
response datasets from more than 100 cancer cell lines
and applying their own methods, they achieved efficient
parameter estimation and successfully predicted
combinatorial drug responses. Furthermore, acknowl-
edging that different experimental techniques yield
data with varying quantitative accuracy, they proposed a
spline-based parameter estimation method tailored for
semi-quantitative datasets [27].

Another modeling approach focuses on extracting shared
parameters by fitting experimental data from distinct
cancer cell types. This method is founded on the
assumption that molecular interactions and enzyme
activities are invariant across various cell types and
human tissues, allowing the parameters to be used for
patient-specific modeling. For example, Imoto et al.
[16] applied a shared parameter set across multiple
cancer subtypes and patients, with patient-specific
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dynamics arising solely from differences in gene
expression values. The study confirmed the finding, first
proposed by an earlier study [28], that i si/ico signaling
dynamics are better prognostic biomarkers than the
original gene (or protein) expression values [29]. The
study further proposed the basis for developing multi-
scale modeling that explicitly links cellular to tissue
dynamics through molecular parameters.

Molecular modeling and simulation of ErbB
receptors

The previous section discussed automated construction
of cell-based models and the persistent challenges of
structural and parameter identifiability. Here, we focus
on molecular-scale  approaches.  Structure-based
modeling and simulation methods such as MD simula-
tions contribute to the study of signaling systems in two
complementary ways: by providing quantitative param-
eters for network models, and by elucidating molecular
mechanisms of the underlying signaling. These molec-
ular contributions are directly relevant to the cellular-
level identifiability challenges, as quantitative de-
scriptors of binding and dynamics are necessary for
constructing reliable cell-level models, and mechanistic
insights define which molecular states or interactions
should be represented in the first place (Figure 1).

Quantitative parameters from molecular models
Cellular-level models rely heavily on kinetic rate
constants (#on, #off), to accurately capture how
signaling interactions evolve over time. While direct
calculation of these rates from MD simulations re-
mains difficult due to the short timescales MD can
simulate, binding affinities (Kp, AGy) can be used as
proxies (Kp = kyy/ku, and AG, = RT InKp).
Physics-based methods for calculating free-energies
are now relatively well established [30], and newer
ML approaches are beginning to provide faster alter-
natives [31]. However, a complete network represen-
tation still requires explicit determination of both 4.,
and /4, Recent studies have demonstrated their
estimation in model systems [32], yet extending these
approaches to complex, multi-component interactions
under cellular conditions remains a major challenge.

While there has been progress in extracting parameters
from molecular simulations, most results remain limited
to isolated protein complexes and therefore lack cellular
context. A complementary bottom-up direction has
been to let effective parameters emerge from multiscale
simulations that embed molecules in realistic environ-
ments. Coarse-grained simulations have derived two-
dimensional binding rates for receptors anchored to
the cell membrane [33], and have also quantified
permeability across curved membranes [34]. The most
ambitious step is a whole-cell kinetic model of a minimal
bacterium, which integrated structural data, kinetic

Multiscale modeling in ErbB signaling Shinobu et al. 5

measurements, and realistic geometry to simulate a
complete cell cycle [35]. Although developed for a
minimal cell, the study demonstrates the feasibility of
linking structural detail and cellular physiology.

A central difficulty lies not only in bridging temporal and
spatial scales, but also in the need to integrate different
model representations. MD simulations require in-
teractions to be predefined for specific sites and partners,
whereas cellular experiments usually report ensemble-
averaged behaviors of molecules within complexes. For
example, a single experimental binding constant may
reflect contributions from multiple adaptor-binding sites,
while an MD simulation typically probes only one of
these at a time (Figure 3a). For the ErbB receptor family,
array-based analyses quantified SH2-domain binding to
phosphorylated peptides, although these measurements
were limited to partial protein structures [36]. LC/MS
analyses captured intracellular interactions between
ErbB receptors and adaptor proteins [37], which would
need to be complemented by other methods to quantify
interaction strength. While valuable, these datasets were
obtained under specific experimental conditions, pri-
marily describing one-to-one interactions. Thus, they
cannot address the one-to-many interaction dynamics or
capture temporal changes in interaction strength driven
by protein phosphorylation or dephosphorylation. A
deeper challenge is identifying which microscopic pro-
cesses contribute to the quantitative parameters of pro-
tein interactions observed at the cellular level.

A practical strategy is to reduce the overwhelming space
of possible interactions to a manageable subset, and then
perform precise parameter estimation on that reduced
set. 'This can be organized as a pipeline (Figure 3b):
structure prediction methods such as AlphaFold [7] can
serve as an initial screen, generating candidate
receptor—adaptor complexes and filtering them by model
confidence. Short MD simulations can then be used to
screen out unstable complexes. For the remaining can-
didates, advanced MD methods can be used to calculate
binding constants that can be incorporated into ODE
models. Alternatively, ML-based approaches can replace
this step by predicting candidate interactions directly
from sequence and structure data [38]. In practical
terms, AlphaFold predictions are fast on GPU machines
(less than 1 h per complex), the short MD simulations for
screening are moderate (~20 h per complex for 100-ns
simulations on 8 nodes of a national supercomputer),
whereas calculating parameters with advanced simula-
tions remains the most computationally intensive step,
often requiring several days per complex on hundreds of
nodes, depending on the method. This demonstrates
how structural predictions can be refined into a tractable
set of complexes for cellular modeling. Further progress,
however, will depend on improving the estimation of
kinetic parameters, and equally, on representing receptor
internal dynamics that shape partner choice.

www.sciencedirect.com
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A pipeline for comprehensive EGFR—protein binding prediction. (a) Schematic model of the full-length EGFR in the asymmetric dimer state (right) and
interactions of adaptor proteins at the C-terminal tail (left). Phosphorylated tyrosine sites (orange circles) indicate well-known positions involved in
downstream signaling. The diagram highlights several adaptor proteins (Shc1, Grb2, PLCy1, and PI3K) and their possible binding sites along the
receptor tail. (b) Pipeline combining structure prediction and molecular dynamics (MD) simulations for estimating interaction parameters for cellular
modeling. (¢) Structural models of EGFR. Left: Cryo-EM structure of the EGF-bound EGFR ECD dimer. Visualized from PDB ID: 8HGS; right: crystal
structure of the EGFR kinase domain in the asymmetric dimer configuration. Visualized from PDB ID: 2GS2. ECD: extracellular domain, TM:

transmembrane.

Molecular mechanisms from structural modeling and
simulation

Recent advances in MD simulations, cryo-EM, and
super-resolution imaging now provide incredibly detailed
views of ErbB receptor complexes and their dynamics
(Figure 3c). Multiple noncanonical assemblies coexist
beyond the ligand-bound dimer, including ligand-free
oligomers that stabilize active dimers [39], mutation-
dependent partner selection within the ErbB family
[40], and asymmetric EGFR-HER2 heterodimers in
which EGFR binds the ligand and HER?Z stabilizes the
interface [41]. Collectively, these findings indicate that
ErbB signaling is controlled by a variety of receptor
structures whose distribution and drug sensitivities are
affected by mutations. The critical challenge for cellular

modeling is to determine the functional significance of
these assemblies: namely, which of them define distinct
signaling routes, and how their drug sensitivities should
be represented in models. Both issues remain unresolved,
and systematic strategies will be needed to translate
structural diversity into quantitative rules.

One way to address the complexity of these states is to
represent signaling through multple routes. This
approach has been demonstrated in the MAPK pathway;,
where mechanistic models separated parallel channels
to explain adaptive drug resistance [42]. To accurately
model the role of these ErbB assemblies, we need to
gather their structural and dynamical information within
environments that closely mimic a living cell.

Current Opinion in Cell Biology xxxx, 98:xxx
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Engineered systems such as receptors reconstitution in
extracellular vesicles offer platforms where receptor or-
ganization and dynamics can be probed under more
native-like conditions [43].

Within the kinase domain, simulations have shown that
activation is not a simple on/off switch but proceeds
through intermediate states with transition probabilities
and timescales that can now be explicitly defined [44].
A related example comes from RAF kinase dimers,
where stabilization of different conformations was
shown to drive distinct functional outcomes [45]. These
results suggest that cellular models should move beyond
a simple active-inactive distinction and incorporate in-
termediate, mutation- and drug-dependent states.

A remaining challenge lies in interpreting the diversity of
receptor assemblies and the many possible conforma-
tional intermediates within the kinase domain. For as-
semblies, particle-based simulators [46] can explore how
different oligomer sizes form, especially when combined
with experimental approaches reporting oligomer distri-
butions. For conformational changes, enhanced sampling
simulations can map the multitude of intermediates.
However, translating them into a limited number of
representative states for cellular modeling remains diffi-
cult and may determine how effectively structural dy-
namics informs our understanding of signaling.

Conclusion and outlook

This review has highlighted recent advances in cellular
modeling and molecular modeling and simulation of ErbB
signaling. Despite remarkable progress at both levels,
current modeling frameworks still face fundamental
challenges that limit their integration. Across both
cellular and molecular scales, the key limitation is iden-
tifiability, the ability to uniquely determine model
structure and parameters from data. In cellular models,
sparse time-series and perturbation data make it difficult
to resolve network topology or kinetic parameters with
confidence. In molecular modeling and simulations,
incomplete structures and limited sampling hinder the
unique definition of conformational and kinetic states,
and translating simulation results into experimentally
comparable parameters remains challenging. These
issues together define the persistent gap between mo-
lecular detail and system-level representation. Address-
ing this gap requires community-wide efforts toward
standardization of methods and tools, a concept already
well established in DNA and RNA sequencing workflows.
Several efforts have aimed to test drug response repro-
ducibility or provide tools for navigating databases used
for parameter estimation and simulation validation
[47,48]. SBML was the earliest effort to standardize

Multiscale modeling in ErbB signaling Shinobu et al. 7

biological network models [49], supported by the Bio-
Models Database [50] as a repository promoting stan-
dardized practices. The shift toward data-driven research
also extended to the field of MD modeling and simula-
tions, driven by ML applications that require large, an-
notated datasets. As the field is becoming increasingly
interdisciplinary, the need for standardized, reproducible
workflows has grown. A recent open letter [51] high-
lighted the need for adopting Findable, Accessible,
Interoperable, and Reusable (FAIR) principles in the
MD community. Examples of FAIR tools include Jupyter-
based workflows [52], searchable MD data repositories
[53], and ML-guided force-field optimization frame-
works [54].

While cellular- and molecular-scale approaches are often
pursued separately as complementary strategies, both
are in fact approximations toward a longer-term goal:
whole-cell models [55], in which network structure and
quantitative parameters emerge together without
requiring translation across scales (Figure 1). This
multiscale integration, demonstrated by early whole-cell
kinetic models [35] and advances in bottom-up param-
cter generation, is essential for achieving a compre-
hensive, mechanistic understanding of ErbB signaling
and its role in human disease.
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