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Network structures and parameters in multiscale 
modeling in ErbB signaling networks
Ai Shinobu1, Ayaka Nagasato-Ichikawa2 and Mariko Okada2,3

Signal transduction is a complex system governing cellular 
behavior across physiological and pathological contexts. Ad
vances in systems biology have positioned cell modeling as a 
powerful tool for reconstructing the dynamics and trajectories 
of disease processes. Nevertheless, despite progress in AI- 
assisted model generation, parameter estimation remains a 
challenge, especially under data constraints. In contrast, 
molecular dynamics simulations offer crucial, high-resolution 
insights by uncovering conformational activation mechanisms 
and by extracting kinetic parameters; however, they face 
scalability limitations. This review focuses on modeling of the 
ErbB signaling system, highlighting recent advances at both 
the cellular and molecular scales. Emerging trends, such as 
simulation data reuse, machine learning-guided network 
inference, and modeling within realistic environmental con
texts, are now driving a compelling integration of these mo
lecular and cellular modeling paradigms.
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Introduction
Signal transduction systems consist of intricately inter

connected biochemical reaction networks modulated by 

post-translational modifications, protein interactions, 

and enzymatic activities. These systems play a crucial 

role in maintaining physiological homeostasis by 

dictating cell fate. Consequently, disruptions in these 

networks are closely associated with the onset and 

progression of numerous human diseases. To gain 

quantitative insight into these complex processes, 

research has increasingly focused on characterizing their 

activation dynamics.

Activation dynamics are unique to individual cells or 

tissues, governed by multi-scale regulatory mecha

nisms. This often spans from small-scale changes, such 

as protein phosphorylation and dephosphorylation, 

to global-scale modifications including transcriptionally 

mediated positive and negative feedback regulations 

[1,2]. Despite the rise of machine learning (ML) 

and AI technologies, mechanistic modeling with 

ordinary differential equations (ODEs) remains 

essential for understanding the underlying mechanisms 

of complex biological systems, particularly for recon

structing disease trajectories and predicting cell 

fate decisions.

Mathematical models depend critically on prior knowl

edge of the regulatory network structure, molecular 

initial values (concentration), and precise kinetic pa

rameters, such as binding rate constants (kon, koff), 

interaction strengths (KD), and enzyme kinetics (Km, 

Vmax) to accurately capture dynamics in numerical 

simulations [3,4] (Figure 1). However, these parameters 

are challenging to acquire comprehensively through 

experiments. The common practice of defining a 

simplified network structure and then estimating pa

rameters via statistical methods or genetic algorithms 

requires extensive time-course data (e.g., phosphoryla

tion patterns), which are often scarce in public data

bases. Furthermore, the identification of network 

structure itself is difficult, as biological networks are 

highly cell- and tissue-dependent.

In contrast, structure-based computational approaches, 

primarily molecular dynamics (MD) simulations, can 

estimate critical kinetic and thermodynamic parame

ters needed by cell-based models, including binding 

free energies (ΔGb), binding and dissociation rate 

constants (kon, koff, respectively), and residence times 

(RT) [5]- based on high-resolution structural informa

tion of target proteins. However, MD applications face 

distinct challenges. Many signaling proteins lack com

plete structural data, such as those containing intrin

sically disordered regions (IDRs) [6], and their 

membrane association complicates interpretations of 
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cell- and tissue-dependent interactions. Current MD 

simulations also struggle to capture slow binding and 

activation processes observed experimentally.

These bottlenecks are, however, being gradually 

solved by implementing emerging computational tools. 

Structural prediction tools like AlphaFold [7] are a 

promising approach to modeling full-length 

proteins, while algorithmic advances are expanding 

the timescale and systems size accessible to MD. 

In parallel, natural language processing (NLP) and ML 

techniques are aiding the context-dependent recon

struction of biological networks for ODE and other 

models (Figure 2).

In this article, we focus on the ErbB receptor signaling 

system, which is implicated in numerous human dis

eases. We provide an overview of recent advances in 

both molecular- and cellular-level simulations, specif

ically addressing persistent challenges of parameter 

estimation and network identification. Ultimately, we 

explore how the integration of these multiscale 

Figure 1 

Conceptual framework connecting cellular- and molecular-scale approaches for multiscale analysis of signaling systems. At the cellular scale (top left), 
models based on ordinary differential equations (ODEs) provide mathematical representations of signaling networks, capturing kinetic relationships 
among molecular components. At the molecular scale (bottom left), simulations such as molecular dynamics (MD) generate localized models that 
describe individual protein interactions and conformational dynamics. The two modeling layers are connected through the exchange of kinetic and 
network information, while experimental data and structure-prediction methods provide external inputs supporting both levels. Together, they represent 
complementary approximations of biological complexity, and their integration provides a foundation for developing whole-cell models (right) that unify 
molecular and systems-level behavior.
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simulations offers crucial mechanistic insights into the 

signaling network and its role in human diseases.

Cellular modeling of ErbB receptor 
signaling
Mathematical models based on ODEs have long been 

used to recapitulate the complex regulation of signal 

transduction systems. By encoding network structures, 

initial conditions, and parameters, these models aim to 

reconstruct system dynamics and uncover underlying 

control principles. However, constructing such models 

typically assumes a practically known network structure. 

Conversely, there is growing demand for modeling ap

proaches even when the network architecture is not 

predefined or needs to be simplified without compro

mising predictive accuracy. This is especially true in the 

quantitative systems pharmacology (QSP) modeling [8]. 

To address this challenge, data-driven approaches for 

network inference using omics data and literature infor

mation (also called as bibliome [9]) have been actively 

explored in recent years (Figure 2a and b).

Knowledge database and large language models 
(LLMs) for network and model reconstruction
A new direction in modeling is the development of auto

mated frameworks that extract molecular interactions to 

systematically reconstruct context-dependent networks 

and executable models. One such example is CORNETO 

(Constrained Optimization for the Recovery of NETworks 

from omics) [10], which generates unified biological 

networks by integrating prior knowledge from databases 

with various omics datasets. This method optimizes 

network flow (e.g., favoring efficient paths) across the 

unified network while simultaneously identifying sample- 

specific subnetworks. CORNETO’s strength lies in its 

ability to perform joint inference, making it particularly 

effective for inferring the best propagation pathways even 

when data is limited (e.g. only the receptor and a down

stream transcription factor).

Another similar automated network inference method 

using knowledge databases is the Python package Neko 

[11]. Given a list of molecular entities of interest (e.g., 

Figure 2 

Integrating knowledge database and NLP to model signaling networks. (a) Structured data from knowledge database, combined with ML and deep learning 
(DL) techniques, is applied to omics data, including transcriptome and proteome data, to identify or prioritize key genes in the network. (b) Unstructured 
data, such as literature information from PubMed, can be analyzed using text mining, NLP or large language models (LLMs) to extract gene – gene 
interaction for network construction and model development. The resulting network structure can be further refined using LLMs or ML/DL to develop 
executable, context-dependent models. (c) An example illustrates a ErbB signaling network includes MAPK and AKT pathways with network motifs.
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differentially expressed genes (DEGs) or proteins) and 

a predefined interaction source (e.g., public database), 

NeKo allows users to select various strategies to connect 

molecules and genes, automatically generating Boolean 

equations for each entity in the network.

Similarly, Erdem et al. created SPARCED [12], a 

Python-based framework capable of building large-scale 

ODE models, which covers pathways from epidermal 

growth factor (EGF) and interferon receptor signaling to 

cell cycle and apoptosis, using minimal text input. 

SPARCED integrates existing models from public da

tabases and leverages gene expression data to predict 

drug responses. These automated pipelines are partic

ularly useful for experimental scientists who need to 

further analyze their experimental data and gain the 

mechanistic insights.

While knowledge bases like OmniPath [13] and 

SIGNOR [14] are useful for extracting predefined gene 

interactions for omics data mapping, they are ineffective 

when interactions are not yet registered. In such cases, 

extracting interactions from literature using NLP tech

nologies becomes necessary. Tsutsui et al. developed a 

framework using the BERT model (pretrained with 

whole PubMed information) to extract context- 

dependent gene regulatory networks (GRNs), weighted 

by MeSH-defined disease, through network embedding 

with DEGs [15]. These context-weighted GRNs 

improved drug response prediction and facilitated model 

development. The group’s associated tool, Text2Model 

[16,17], further streamlines the process by automatically 

converting textual gene interaction types in GRNs (or 

KEGG networks) into executable ODE models of ErbB 

receptor signaling (Figure 2c). A parallel development 

involves using transformer models to predict gene—drug 

interactions; for example, Yamagiwa et al. [18] leveraged 

BioConceptVec [19] and custom embeddings for drug 

target prediction in ErbB network. Crucially, a yearly 

analysis showed this method successfully predicted 

future drug targets in addition to known interactions, 

underscoring its potential for integration with omics data 

in drug repositioning.

Motifs and network refinement
When gene interactions are sourced from knowledge 

bases or literature without constraints on architecture, 

the resulting GRNs or mathematical models can be 

large, sparse, and disconnected. However, biological 

networks such as signaling and transcriptional networks 

often include recurring network motifs that operate at 

different temporal scales [20] (Figure 2c). These motifs 

are crucial for characterizing the dynamic behaviors of 

the network itself.

Signaling pathways involving transcription factors, for 

instance, often contain multiple regulatory motifs such as 

positive and negative feedback, feedforward loops 

(FFLs), or AND-gates [21] (Figure 2c). These regulatory 

motifs are the hallmarks of the growth signaling circuits 

that specify cellular outcomes. Strikingly, the self- 

sustained ErbB signaling pathway is commonly exploi

ted as a mechanism for drug resistance and metastatic 

cell survival [22]. The automated identification of such 

motifs within data-driven network reconstructions allows 

for predictions of dynamic features prior to simulation by 

leveraging the functional characteristics associated with 

specific motifs. For example, Kadelka et al. [23] sys

tematically evaluated and compiled a database of 

network motifs (like FFLs) from previously curated 

Boolean network models, offering a foundation for omics 

or literature-driven modeling approaches.

With the recent advances in cell-based modeling, which 

build upon structural identification methods, accurate 

network identification (structural identifiability) has 

become a prerequisite for executable model develop

ment, as it is strongly associated with parameter iden

tifiability, the ability to determine model parameters 

from experimental data [24,25]. Therefore, the 

improvement of existing parameter estimation methods 

and the development of new ones will become 

increasingly critical for the automated modeling and 

simulation of biological networks.

Parameter inference problem and solution in 
context-dependent modeling
A serious problem in parameter estimation for signaling 

pathway ODE models is that the number of available 

time-series or dose—response data needed for parameter 

fitting is typically far smaller than the number of pa

rameters in the model. Consequently, extensive efforts 

have focused on developing strategies for estimating 

parameters from limited experimental data.

The group led by Hasenauer developed a large-scale 

model of ErbB receptor signaling that includes over 

4,100 parameters [26]. By integrating public drug 

response datasets from more than 100 cancer cell lines 

and applying their own methods, they achieved efficient 

parameter estimation and successfully predicted 

combinatorial drug responses. Furthermore, acknowl

edging that different experimental techniques yield 

data with varying quantitative accuracy, they proposed a 

spline-based parameter estimation method tailored for 

semi-quantitative datasets [27].

Another modeling approach focuses on extracting shared 

parameters by fitting experimental data from distinct 

cancer cell types. This method is founded on the 

assumption that molecular interactions and enzyme 

activities are invariant across various cell types and 

human tissues, allowing the parameters to be used for 

patient-specific modeling. For example, Imoto et al. 

[16] applied a shared parameter set across multiple 

cancer subtypes and patients, with patient-specific 
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dynamics arising solely from differences in gene 

expression values. The study confirmed the finding, first 

proposed by an earlier study [28], that in silico signaling 

dynamics are better prognostic biomarkers than the 

original gene (or protein) expression values [29]. The 

study further proposed the basis for developing multi

scale modeling that explicitly links cellular to tissue 

dynamics through molecular parameters.

Molecular modeling and simulation of ErbB 
receptors
The previous section discussed automated construction 

of cell-based models and the persistent challenges of 

structural and parameter identifiability. Here, we focus 

on molecular-scale approaches. Structure-based 

modeling and simulation methods such as MD simula

tions contribute to the study of signaling systems in two 

complementary ways: by providing quantitative param

eters for network models, and by elucidating molecular 

mechanisms of the underlying signaling. These molec

ular contributions are directly relevant to the cellular- 

level identifiability challenges, as quantitative de

scriptors of binding and dynamics are necessary for 

constructing reliable cell-level models, and mechanistic 

insights define which molecular states or interactions 

should be represented in the first place (Figure 1).

Quantitative parameters from molecular models
Cellular-level models rely heavily on kinetic rate 

constants (kon, koff), to accurately capture how 

signaling interactions evolve over time. While direct 

calculation of these rates from MD simulations re

mains difficult due to the short timescales MD can 

simulate, binding affinities (KD, ΔGb) can be used as 

proxies (KD = koff=kon, and ΔGb = RT ln KD). 

Physics-based methods for calculating free-energies 

are now relatively well established [30], and newer 

ML approaches are beginning to provide faster alter

natives [31]. However, a complete network represen

tation still requires explicit determination of both kon 

and koff. Recent studies have demonstrated their 

estimation in model systems [32], yet extending these 

approaches to complex, multi-component interactions 

under cellular conditions remains a major challenge.

While there has been progress in extracting parameters 

from molecular simulations, most results remain limited 

to isolated protein complexes and therefore lack cellular 

context. A complementary bottom-up direction has 

been to let effective parameters emerge from multiscale 

simulations that embed molecules in realistic environ

ments. Coarse-grained simulations have derived two- 

dimensional binding rates for receptors anchored to 

the cell membrane [33], and have also quantified 

permeability across curved membranes [34]. The most 

ambitious step is a whole-cell kinetic model of a minimal 

bacterium, which integrated structural data, kinetic 

measurements, and realistic geometry to simulate a 

complete cell cycle [35]. Although developed for a 

minimal cell, the study demonstrates the feasibility of 

linking structural detail and cellular physiology.

A central difficulty lies not only in bridging temporal and 

spatial scales, but also in the need to integrate different 

model representations. MD simulations require in

teractions to be predefined for specific sites and partners, 

whereas cellular experiments usually report ensemble- 

averaged behaviors of molecules within complexes. For 

example, a single experimental binding constant may 

reflect contributions from multiple adaptor-binding sites, 

while an MD simulation typically probes only one of 

these at a time (Figure 3a). For the ErbB receptor family, 

array-based analyses quantified SH2-domain binding to 

phosphorylated peptides, although these measurements 

were limited to partial protein structures [36]. LC/MS 

analyses captured intracellular interactions between 

ErbB receptors and adaptor proteins [37], which would 

need to be complemented by other methods to quantify 

interaction strength. While valuable, these datasets were 

obtained under specific experimental conditions, pri

marily describing one-to-one interactions. Thus, they 

cannot address the one-to-many interaction dynamics or 

capture temporal changes in interaction strength driven 

by protein phosphorylation or dephosphorylation. A 

deeper challenge is identifying which microscopic pro

cesses contribute to the quantitative parameters of pro

tein interactions observed at the cellular level.

A practical strategy is to reduce the overwhelming space 

of possible interactions to a manageable subset, and then 

perform precise parameter estimation on that reduced 

set. This can be organized as a pipeline (Figure 3b): 

structure prediction methods such as AlphaFold [7] can 

serve as an initial screen, generating candidate 

receptor—adaptor complexes and filtering them by model 

confidence. Short MD simulations can then be used to 

screen out unstable complexes. For the remaining can

didates, advanced MD methods can be used to calculate 

binding constants that can be incorporated into ODE 

models. Alternatively, ML-based approaches can replace 

this step by predicting candidate interactions directly 

from sequence and structure data [38]. In practical 

terms, AlphaFold predictions are fast on GPU machines 

(less than 1 h per complex), the short MD simulations for 

screening are moderate (∼20 h per complex for 100-ns 

simulations on 8 nodes of a national supercomputer), 

whereas calculating parameters with advanced simula

tions remains the most computationally intensive step, 

often requiring several days per complex on hundreds of 

nodes, depending on the method. This demonstrates 

how structural predictions can be refined into a tractable 

set of complexes for cellular modeling. Further progress, 

however, will depend on improving the estimation of 

kinetic parameters, and equally, on representing receptor 

internal dynamics that shape partner choice.

Multiscale modeling in ErbB signaling Shinobu et al. 5
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Molecular mechanisms from structural modeling and 
simulation
Recent advances in MD simulations, cryo-EM, and 

super-resolution imaging now provide incredibly detailed 

views of ErbB receptor complexes and their dynamics 

(Figure 3c). Multiple noncanonical assemblies coexist 

beyond the ligand-bound dimer, including ligand-free 

oligomers that stabilize active dimers [39], mutation- 

dependent partner selection within the ErbB family 

[40], and asymmetric EGFR-HER2 heterodimers in 

which EGFR binds the ligand and HER2 stabilizes the 

interface [41]. Collectively, these findings indicate that 

ErbB signaling is controlled by a variety of receptor 

structures whose distribution and drug sensitivities are 

affected by mutations. The critical challenge for cellular 

modeling is to determine the functional significance of 

these assemblies: namely, which of them define distinct 

signaling routes, and how their drug sensitivities should 

be represented in models. Both issues remain unresolved, 

and systematic strategies will be needed to translate 

structural diversity into quantitative rules.

One way to address the complexity of these states is to 

represent signaling through multiple routes. This 

approach has been demonstrated in the MAPK pathway, 

where mechanistic models separated parallel channels 

to explain adaptive drug resistance [42]. To accurately 

model the role of these ErbB assemblies, we need to 

gather their structural and dynamical information within 

environments that closely mimic a living cell. 

Figure 3 

A pipeline for comprehensive EGFR – protein binding prediction. (a) Schematic model of the full-length EGFR in the asymmetric dimer state (right) and 
interactions of adaptor proteins at the C-terminal tail (left). Phosphorylated tyrosine sites (orange circles) indicate well-known positions involved in 
downstream signaling. The diagram highlights several adaptor proteins (Shc1, Grb2, PLCγ1, and PI3K) and their possible binding sites along the 
receptor tail. (b) Pipeline combining structure prediction and molecular dynamics (MD) simulations for estimating interaction parameters for cellular 
modeling. (c) Structural models of EGFR. Left: Cryo-EM structure of the EGF-bound EGFR ECD dimer. Visualized from PDB ID: 8HGS; right: crystal 
structure of the EGFR kinase domain in the asymmetric dimer configuration. Visualized from PDB ID: 2GS2. ECD: extracellular domain, TM: 
transmembrane.
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Engineered systems such as receptors reconstitution in 

extracellular vesicles offer platforms where receptor or

ganization and dynamics can be probed under more 

native-like conditions [43].

Within the kinase domain, simulations have shown that 

activation is not a simple on/off switch but proceeds 

through intermediate states with transition probabilities 

and timescales that can now be explicitly defined [44]. 

A related example comes from RAF kinase dimers, 

where stabilization of different conformations was 

shown to drive distinct functional outcomes [45]. These 

results suggest that cellular models should move beyond 

a simple active-inactive distinction and incorporate in

termediate, mutation- and drug-dependent states.

A remaining challenge lies in interpreting the diversity of 

receptor assemblies and the many possible conforma

tional intermediates within the kinase domain. For as

semblies, particle-based simulators [46] can explore how 

different oligomer sizes form, especially when combined 

with experimental approaches reporting oligomer distri

butions. For conformational changes, enhanced sampling 

simulations can map the multitude of intermediates. 

However, translating them into a limited number of 

representative states for cellular modeling remains diffi

cult and may determine how effectively structural dy

namics informs our understanding of signaling.

Conclusion and outlook
This review has highlighted recent advances in cellular 

modeling and molecular modeling and simulation of ErbB 

signaling. Despite remarkable progress at both levels, 

current modeling frameworks still face fundamental 

challenges that limit their integration. Across both 

cellular and molecular scales, the key limitation is iden

tifiability, the ability to uniquely determine model 

structure and parameters from data. In cellular models, 

sparse time-series and perturbation data make it difficult 

to resolve network topology or kinetic parameters with 

confidence. In molecular modeling and simulations, 

incomplete structures and limited sampling hinder the 

unique definition of conformational and kinetic states, 

and translating simulation results into experimentally 

comparable parameters remains challenging. These 

issues together define the persistent gap between mo

lecular detail and system-level representation. Address

ing this gap requires community-wide efforts toward 

standardization of methods and tools, a concept already 

well established in DNA and RNA sequencing workflows. 

Several efforts have aimed to test drug response repro

ducibility or provide tools for navigating databases used 

for parameter estimation and simulation validation 

[47,48]. SBML was the earliest effort to standardize 

biological network models [49], supported by the Bio

Models Database [50] as a repository promoting stan

dardized practices. The shift toward data-driven research 

also extended to the field of MD modeling and simula

tions, driven by ML applications that require large, an

notated datasets. As the field is becoming increasingly 

interdisciplinary, the need for standardized, reproducible 

workflows has grown. A recent open letter [51] high

lighted the need for adopting Findable, Accessible, 

Interoperable, and Reusable (FAIR) principles in the 

MD community. Examples of FAIR tools include Jupyter- 

based workflows [52], searchable MD data repositories 

[53], and ML-guided force-field optimization frame

works [54].

While cellular- and molecular-scale approaches are often 

pursued separately as complementary strategies, both 

are in fact approximations toward a longer-term goal: 

whole-cell models [55], in which network structure and 

quantitative parameters emerge together without 

requiring translation across scales (Figure 1). This 

multiscale integration, demonstrated by early whole-cell 

kinetic models [35] and advances in bottom-up param

eter generation, is essential for achieving a compre

hensive, mechanistic understanding of ErbB signaling 

and its role in human disease.
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