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This study tackles the problem of many-objective sequence optimization for semi-automated robotic disas-
sembly operations. To this end, we employ a many-objective genetic algorithm (MaOGA) inspired by the
non-dominated sorting genetic algorithm (NSGA)-III, along with robotic-disassembly-oriented constraints and
objective functions derived from geometrical and robot simulations using three-dimensional (3D) geometrical
information stored in a 3D computer-aided design (CAD) model of the target product. The MaOGA begins
by generating a set of initial chromosomes based on a contact and connection graph (CCG), rather than
random chromosomes, to avoid falling into a local minimum and yield repeatable convergence. The opti-
mization imposes constraints on feasibility and stability as well as objective functions regarding difficulty,
efficiency, prioritization, and allocability to generate a sequence that satisfies many preferred conditions under
mandatory requirements for semi-automated robotic disassembly. The NSGA-III-inspired MaOGA also utilizes
non-dominated sorting and niching with reference lines to further encourage steady and stable exploration and
uniformly lower the overall evaluation values. Our sequence generation experiments for a complex product
(36 parts) demonstrated that the proposed method can consistently produce feasible and stable sequences
with a 100% success rate, bringing the multiple preferred conditions closer to the optimal solution required
for semi-automated robotic disassembly operations.

1. Introduction To achieve the sequential disassembly operations without much

manual effort, the automatic generation of sequences is crucial. To au-

With the aim of achieving a sustainable society, there has been
greater emphasis on promoting recycling, reuse, and remanufactur-
ing. In particular, future manufacturing robots are expected to exhibit
proficiency in efficient disassembly of many parts. In this context,
autonomous robotic disassembly has garnered increased attention [1,
2]. The remanufacturing domain requires the deployment of robots
capable of autonomously acquiring sequential disassembly operations
in an efficient and streamlined manner to address a diverse array
of needs. Furthermore, human-robot cooperation has been promis-
ing for carefully extracting valuable parts from disassembly target
products [3].

tomatically generate sequences for (dis)assembly, previous studies have
employed a three-dimensional (3D) model of the product [4-7]. Deter-
mining the order of (dis)assembly parts can be categorized as a com-
binatorial optimization problem and a non-deterministic polynomial-
time (NP)-hard problem [8], which necessitates the use of heuristic
search algorithms to obtain a sub-optimal solution within a practical
timeframe.

To facilitate robotic disassembly for flexible remanufacturing ef-
fectively, it is crucial to consider various aspects when determining
the required sequence. Several studies have explored disassembly se-
quence planning (DSP) in the context of semi-automated processes
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Fig. 1. Overview of robotic disassembly planning.
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Fig. 2. NSGA-IIl-inspired sequence optimization.

or human-robot-collaboration (HRC) by considering different perspec-
tives [3,9-14]. To generate a disassembly sequence, they evaluated the
disassembly cost, disassemblability, and safety from the long-horizon
perspective of the sequence to optimize the overall order of parts and
processes in real-time.

However, they did not address many-objective optimization prob-
lems (i.e., involving four or more objectives) under constraints and
objective functions specific to semi-automated robotic disassembly with
the planning of robot operations, as in our study. Therefore, this study
addresses robotic DSP rather than merely optimizing the preferable
parts order and desirable processes.

Fig. 1 shows the overview of our assumed robotic disassembly
planning. Specifically, this study establishes constraints on disassembly
order feasibility, robot motion feasibility, and object placement stabil-
ity. The designed objective functions pertain to order difficulty based
on the contact state transition difficulty, task efficiency determined
by the number of end-effector (EEF) changes and distance between
adjacent pairs in the sequence, prioritization based on the user-defined
priority of disassembling particular parts before others, and allocability
based on the number of task-allocated agent changes between humans
and robots.

To address the many-objective optimization problem with con-
flicting objectives, we employ a many-objective genetic algorithm
(MaOGA) inspired by non-dominated sorting genetic algorithm III
(NSGA-III) [15], a state-of-the-art evolutionary many-objective opti-
mization algorithm. Fig. 2 shows an overview of the proposed al-
gorithm. Generally, to avoid convergence to local optimal solutions,
heuristic search algorithms need to effectively generate as many
constraint-satisfied initial solutions as possible. To generate chromo-
somes represented as a set of sequences, we propose to generate a
contact and connection graph (CCG) representing the contact and
connection relationships among disassembly parts and use the CCG to
efficiently generate constraint-satisfied initial solutions. The generation
of the disassembly order of parts can be achieved through simple
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Fig. 3. CCG-based initialization.

step-by-step removal of the end nodes of the graph. Fig. 3 shows
the overview of CCG-based initialization (CCGI). Fig. 3(a) shows an
example of the CCG for the target product used for our experiments in
this study.
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This study examines the effectiveness of the proposed stability-
based initial chromosome generation method depicted in Fig. 3(b) by
verifying that it outperforms random chromosome initialization. The
NSGA-III-inspired algorithm also utilizes non-dominated sorting and
niching with reference lines to further encourage steady and stable
exploration of the solutions and uniformly lower the overall evaluation
values. Our simulation experiment verifies the applicability of the
newly-constructed NSGA-III-inspired algorithm tailored for the robotic
DSP problem.

In the evaluation, we show that chromosome initialization repeat-
edly generates the most interference-free and stable initial solutions
by comparing with other initialization methods. Our ablation study
further show that the NSGA-Ill-inspired algorithm can steadily and
effectively reduce the evaluation values through many-objective opti-
mization based on non-dominated sorting and niching with reference
lines. Finally, the proposed algorithm successfully generated disassem-
bly sequences and robotic disassembly operations for a complex belt
drive unit composed of 36 parts while considering multiple neces-
sary constraints and desirable objectives from diverse perspectives,
including semi-automated robotic operations.

In the rest of this paper, we discuss related work in Section 2,
describe our proposed algorithm in Section 3, present the evaluation
results in Section 4, discuss the remaining issues in Section 5, and
conclude the paper in Section 6.

2. Related work
2.1. Determining order of parts

The optimization and determination of the order of parts in
(dis)assembly processes have been the focus of extensive research
for several decades [5,11,14,16-25]. The growing demand for high-
mix, low-volume production and significant advancements in computer
capabilities have recently revived interest in this topic in the field.

Kiyokawa et al. [21] proposed a multi-objective genetic algorithm
specifically tailored for assembly sequence planning (ASP). The ex-
perimental outcome suggests that the proposed NSGA-II [26]-inspired
multi-objective genetic algorithm can identify Pareto optimal solutions
across a range of objective functions. NSGA-II generally employs non-
dominated sorting, which ranks solutions based on Pareto dominance
to approximate the optimal front, and crowding distance to main-
tain diversity. However, since crowding distance is less effective in
high-dimensional spaces, our study employs NSGA-III, which is an
extension of this framework. NSGA-III replaces the crowding distance
with niching based on reference lines, where individuals are associated
with predefined reference points on a hyperplane to ensure a uniform
distribution of solutions in many-objective optimization problems.

Ebinger et al. [27] introduced a flexible DSP framework which
includes a subassembly identification method. The authors investigated
the usefulness of subassemblies in search by examining the framework
performance with and without subassemblies. Chervinskii et al. [6]
introduced Auto-Assembly, a framework that encompasses design anal-
ysis, ASP, Bill-of-Process (BOP) generation, and control code execution
for physical assembly. Dorn et al. [23] addressed the challenge of
generating a Voronoi diagram for a complex automotive model, and de-
veloped an assembly priority graph. Wang et al. [24] focused on robotic
parallel DSP for end-of-life products and proposed a multi-objective
model to minimize the makespan and energy consumption.

Several studies have solved several cases of path-planning problems
for ASP and DSP. Lee et al. [28] achieved minimization of the steps
to goal component removal based on the concept of blocking topol-
ogy. Le et al. [19] extended a sampling-based path planner Rapidly-
exploring Random Tree (RRT) for ASP and DSP for LEGO bricks.
Moreover, Tian et al. [25] proposed a physics-based assembly-by-
disassembly planner using a large-scale dataset, achieving state-of-the-
art performance.
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However, these studies [6,19,21,23-25,27,28] did not address the
finer aspects of robot motions, such as EEF’s contacts and trajectories,
which are critical for robotic disassembly operations.

Recent studies have employed graph neural networks to deduce a
feasible sequence by analyzing the graph representation of the com-
plex (dis)assembly model structure. Cebulla et al. [29] introduced
an assembly-by-disassembly approach that involves iteratively test-
ing parts for removal, with the testing order significantly impacting
runtime. The authors optimized the order using a graph neural net-
work trained on part shapes and local connections. Ma et al. [30]
introduced a heterogeneous graph-transformer framework for learning
the latent rules of assembly planning. However, these studies [29,30]
did not address robotic disassembly and limited the assembly targets
to aluminum profiles or LEGO bricks consisting of a small number
of parts compared to actual mechanical products. Recent studies on
multi-objective optimization of disassembly orders [10,13,20,31] have
focused on improving heuristic algorithms, rather than establishing an
optimization framework that considers robotic disassembly operations.

2.2. Robotic assembly and disassembly

On the other hand, the process of planning (dis)assembly robot
motions necessitates taking into account constraints in multiple dimen-
sions and perspectives. Thus far, several researchers have successfully
generated and executed disassembly operations using robots, assuming
that the (dis)assembly order is given or that the operations involve two
separate parts [32-35].

Rodriguez et al. [36] proposed iteratively checking multilevel feasi-
bilities to plan assembly sequences with robot motions. Bachmann et al.
[37] investigated the impact of robotic workcell layout on task effi-
ciency and feasibility. Most recently, Atad et al. [38] used a graph
neural network to infer feasible and optimal assembly sequences by
learning an inference model based on a geometric structure graph rep-
resentation of a product. However, these studies [36—-38] more focused
on the aluminum profile assemblies consisting of a small number of
parts compared to mechanical products.

Liu et al. [39] succeeded in optimizing the sequence and process
of robotic disassembly through collaborative optimization; however,
they did not take into account feasible motions (i.e., EEF’s contacts
and trajectories). Koga et al. [7] proposed a computer-aided design
(CAD)-based robotic assembly system; however, generating sequential
and semi-automated disassembly operations optimized using multiple
objective functions remains an open issue.

Laili et al. [22] addressed the issue of flexible sequencing in robotic
disassembly with failed automation operations, proposing an online re-
covery method that utilizes pre-stored backup actions. Jiayi et al. [40]
used a digital twin for dynamic planning of robotic disassembly un-
der uncertain real-world conditions. These studies [22,40] focused
on different issues from our study. Learning-based assembly planning
approaches [4,41-44] have demonstrated promising results in adapting
to a broader range of products; however, their efficacy has primarily
been validated with toy objects or furniture. Unlike these studies,
this study does not involve the exploration of dynamic planning and
learning-based generalization.

This study does not delve into other issues related to disassembly
specific system components, including EEFs, controllers, and interfaces,
as reported in [9,12,45-48]. Gorjup et al. [49] introduced an inte-
grated flexible manufacturing system that uses compliance control,
CAD-based localization, and multimodal gripper for efficient assembly
task programming. However, this system was limited to part-kitting
tasks only.

In contrast, our study aims to explore the feasibility of generating ef-
fective disassembly sequences for a complex product by designing suit-
able constraints, objective functions, chromosome initialization rules,
and genetic generation update rules in the proposed method.
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Algorithm 1 Robotic DSP

Input: 3D CAD models of parts and environment M
Output: An optimum order 0, dlsassembly task label £, EEF contact
¢, arm trajectory T and object pose P

1: I, X’f,X“,X”’,X“f = GeometricalSimulation(M)
2: X"/ C,T,P = RobotSimulation(M)

3: Set T! . T%... P with user inputs

4: SetPlanner(Z, X'/, X5, X', X</, X"/ ,C,T, P, P%)
5: Initialize the counters of # and % to 1

6: while /' <T! do

7: G'! = Chromosomelnitialization()

8: while true do

9: Inltlahze the elements of EG to1l

10: co" = = ConstraintCheck(G")

11: if All elements of CG'g are Available then
12: ES" = FitnessCalculation(G"™)

13: G"*' = BestSolutionExtraction(G*, EGIg)
14: if T%,, < ¢ then

15: break

16: Gtg, EG* = NonDominatedSorting(G*, Eer)
17: NichingWithReferenceLine((;tg, EG_rg)

18: G*t! = NextGenerationCreation(Gtg, EG'g)
19: G**+! = GeneticOperation(G***")

20: =1 +1

21: f=¢f+1

22: 0 = G"

23: £ =ALabelExtraction(0A)
24: C, T, P = OperationParameterExtraction(O)

3. Optimizing robotic disassembly sequence
3.1. Overview

Algorithm 1 outlines the flow of the robotic DSP algorithm. In our
algorithm, the order is represented by O, (k = 1,..., N?), where N?
represents the number of parts. This sequence corresponds to a chro-
mosome in the proposed MaOGA, encoded as a permutation of integer
numbers (i.e., part indices). The last part is denoted by O,, and the
first part is denoted by O,. The order obtained through optimization
is denoted by O. The algorithm takes 3D CAD models of the target parts
and environment (e.g., a robot arm, EEF, and worktable), represented
by M, as inputs. The outputs of the algorithm include the optimized
order 0, along with the task labels £, EEF contacts C, arm trajectories
T, and object placement poses P.

Our DSP process commences with an in-depth analysis of the ge-
ometries derived from CAD models M, subsequently generating parts-
relation matrices. The GeometricalSimulation(M) function first extracts
the labels associated with part names, as well as information pertain-
ing to the center of mass, pose, and shape of each part, represented
by I. Subsequently, it provides us with interference-free X'/, con-
straint degree X“*, contact X', and constraint-free X ¢/ matrices, which
encapsulate diverse types of relationships between each pair of parts.

The function RobotSimulation(M) provides the motion-feasibility
matrices X :_nf (i = 1,...,NP), feasible contacts C, trajectories 7, and
placement poses P for each part. After planning the contacts to initiate
the manipulation of the target part P, and generating a multitude of
collision-free contact samples, each sample is evaluated for collision-
free and Inverse Kinematics (IK)-solvable trajectories for all specified
placement poses. Furthermore, we check if there exists a trajectory
enabling the undisassembled target part to be moved from the place-
ment pose to other placement poses (possible next placement pose). The
dataset used in this study consists of all possible combinations of place-
ment poses for all possible compositions of the undisassembled target
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object, which has been previously examined. For both the disassembly
trajectory and transportation trajectory between the two placement
poses, if at least one trajectory set is generated, the corresponding
binary element of X ;"f can be 1 (feasible). If multiple feasible trajectory
sets exist for the same placement poses, the shortest trajectory is
selected to guarantee minimal trajectory length. The feasibility is stored
in the corresponding element of X"/. The elements of X ;"f indicate
whether each feasible motion (including feasible contacts, trajectories,
and object placement poses) generated for the target part Py, interferes
with parts other than Py, .

The user specifies the MaOGA parameters, including the maximum
number of iterations 7/, the maximum number of generation updates
T, and a set of other MaOGA parameters P%°. P#“ includes the
number of chromosomes, crossover rate, mutation rate, cut-and-paste
rate, and break-and-join rate. The matrices and parameters are then set
to the planner using the SetPlanner() function. Once the planner is set,
the matrices and parameters can be accessed from any function in the
algorithm.

Prior to initiating the optimization loop, the values of ¢ and ¢ are
both set to 1. The optimization process commences with the initial-
ization of the first-generation chromosome G' using Chromosomelni-
tialization(). Subsequently, the optimization (generation update) loop
commences, where genes are evaluated using ConstraintCheck(G”) and
FitnessCalculation(G™). The best solution G***' is extracted using with
BestSolutionExtractlon(G'g EG'g) Additionally, based on the evalua-
tion values EG G” is sorted using NonDomlnatedSortmg(G’g EG' ).
The sorted solutlons G" along with their evaluation values ES" are
associated with the reference lines using the NichingWithReferenceLine
(G'g, ES" ). Reference lines are created from points at infinity to the
optimal point. The assignment of solutions with reference lines guides
the exploration direction of each solution. By repeatedly applying
this process, NSGA-III steers the exploration. Consequently, when the
algorithm converges, the reference lines facilitate the discovery of a
superior representative non-dominated solution.

Following the selection of solutions (sequences) to which the genetic
operations are applied based on the assignment with the reference
line, the process advances to the creation of the next generation G'**!
through the NextGenerationCreation(G[g, EGrg) function. The genetic
information of the selected genes is altered through the application of
genetic operations with the GeneticOperation(G***!) function. In this
study, we used the four genetic operators proposed in [5], namely
crossover, mutation, cut-and-paste, and break-and-join. The process is
repeated until the values of # and 18 reach T! _ and T3,,, respectively.

Upon completion, the optimal solution G%¢*' is stored in O. The
disassembly task labels £ are extracted from the datasets obtained from
the input CAD model, using LabelExtraction(0), at the commencement
of the algorithm. The EEF contacts C, arm trajectories 7, and object
placement poses P are extracted from the datasets generated through
the robot simulations conducted at the beginning of the algorithm,
utilizing OperationParameterExtraction(0).

In the evaluation process, the feasibility and stability of each so-
lution (sequence) Gfg (i =1,...,N&") are determined using the afore-
mentioned matrices, resulting in constraint satisfiability co* consisting
of binary elements that indicate whether each solution (sequence) is
feasible, stable, and available. The number of genes is denoted by N3$".
A solution is considered available if it is both feasible and stable, i.e.,
available := feasible A stable. The available solutions (sequences) are
further sorted based on multiple criteria such as difficulty, efficiency,
prioritization, and allocability. The evaluation provides evaluation val-
ues EC". The proposed MaOGA method resolves the minimization
problem by employing multiple objective functions that are normalized
between 0 and 1, with O representing the optimal value.



T. Kiyokawa et al.

Table 1
Required labels for parts.
Label Class
Task screw, bolt, nut, plate, graspable, manual
Priority value
Base base
Ignore ignore

3.2. CAD-informed matrices generations

This section outlines the preprocessing steps before the optimization
loop, including the definition of part labels and the structure analysis
of 3D CAD models. Matrix generation is also discussed, with a focus on
determining constraints and calculating evaluation values. Part labels
are assigned to each component of the model, as listed in Table 1. These
labels include task labels, which link the parts to the EEFs of the robot;
a priority label, which designates parts that should be disassembled
preferentially; a base label, which is assigned to the root part fixed
at the end of the sequence; and an ignore label, which is applied to
parts that can be disregarded in the DSP as they are automatically
disassembled during the removal of other parts.

The task labels are designated to specific parts, including screws,
bolts, nuts, plates, graspable objects, and manually disassembled ob-
jects. The graspable label is assigned to parts other than screws, bolts,
nuts, and plates, and can be manipulated by a two-finger gripper.
The manual label is assigned to parts that are difficult to automate
or necessitate special care when disassembling them. The priority and
value labels are established for parts that merit prioritization during
disassembly and are classified as valuable in terms of reuse, recycling,
and remanufacturing.

To analyze the 3D CAD models (e.g., label extraction), our frame-
work utilizes pythonOCC,® which is a Python wrapper for the OpenCAS-
CADE* library. The pythonOCC converts the standard for the exchange
of product (STEP) model data into a format that allows for the extrac-
tion of part names, 3D poses, and shapes of the target product. The label
for each part is obtained by splitting the part name using an underscore
as the delimiter.

To obtain a quantifiable representation of part relationships, we em-
ployed previously proposed matrix representations [5,21].
Tariki et al. [5] utilized pythonOCC to generate the interference-free
matrices Xj.f (j = 1,...,6) with elements indicating binary values
of interference or interference-free between each set of two parts.
Kiyokawa et al. [21] presented a method for generating a constraint
degree matrix X* and contact matrix X, which indicates the degree
of constraint from O to 12 and the binary values of contact between
each set of two parts. In this study, we develop constraint-free matri-
ces X;f (j = 1,...,12) and the motion feasibility matrices X:"f (i =
1,...,NP). As the total number of elements in the interference-free
matrix, constraint degree matrix, contact matrix, constraint-free matrix,
and motion feasibility matrix is 20X N? X N? + Zfi '; N"X NP, where N"
represents the number of feasible motions for each part P, it becomes
increasingly imperative to develop efficient matrix calculation methods
as the number of parts increases and the calculation time becomes
exponentially more significant.

According to the definitions of an interference-free matrix, the ma-
trix in each negative axis direction must be identical to the transposed
matrix in each positive axis direction. The constraint degree matrix
signifies the constraints existing between the different parts, and its
order is immaterial. Hence, we can replicate the upper triangular
components with its corresponding lower triangular components. Simi-
larly, the lower triangular components of contact matrix and constraint

3 https://dev.opencascade.org/project/pythonocc
4 https://www.opencascade.com/
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degree matrix can be derived from the corresponding upper triangular
components.

To calculate the interference-free matrix and constraint degree ma-
trix, we employ a simulation using a CAD model. Specifically, we place
the two target parts in their assembled pose and check for interference
when the target part is displaced in the axial direction relative to the
object coordinate system. The target part is displaced by the length of
the corresponding side of the bounding box that encompasses the two
target parts unless interference is detected. Additionally, we conduct
a displacement simulation to generate the constraint degree matrix by
altering the pose of the target part according to the specified maximum
clearance distance for the target product.

3.3. Constrained many-objective optimization

The figure depicted in Fig. 2 presents a proposed NSGA-III [15]-
inspired MaOGA that displays a high level of performance in many-
objective optimization problems with four or more objectives. The
gene representation is initially arranged according to the user-defined
number of genes (Step 1). To increase the number of effective initial
solutions, the CCG is employed. The evaluation process for multiple
objective functions is then carried out (Step 2). To incorporate the
principles of NSGA-III, non-dominated sorting (Step 3) and reference-
line-based gene selection (Step 4) are applied. The algorithm proceeds
to generate the next chromosome (Step 6) and apply genetic operations
(Step 7) unless the termination condition is met (Step 5).

The genetic encoding of information onto chromosomes and the
subsequent genetic operations rely on existing methods, the efficacy
of which has been demonstrated in the enhancement of ASP optimiza-
tion [5]. These operations are subsequently applied, and the process
returns to Step 2 and repeats until the specified termination condition
is satisfied.

The four objective functions designed in this study are calculated
from the information extracted from the 3D CAD model. This study
considers a minimization problem that evaluates all objective functions
equally, with O being the optimal evaluation value and 1 being the
worst.

3.3.1. Constraints based on feasibility and stability

If the sequence is either infeasible or unstable, the disassembly
operation cannot be executed by either human or robot. Conversely,
if the sequence satisfies all constraints (available), then only those
sequences that satisfy the constraints will be evaluated based on other
objective functions.

The feasibility of the sequence is determined by checking both the
order and motion feasibility. The order is considered order-feasible if
it adheres to the specified conditions regarding the interference-free
matrices X;f G=1,...,6)

NP /k=1 6
if .
Z(HZ){; (Po, Pp)>071 : 0>=N”—1. )
k=2 \i=1 j=1

The order is considered motion-feasible if one or more collision-free
and IK-solvable contacts and trajectories are found for all disassemblies
needed to complete the sequence. Hence, the target sequence is deter-
mined as motion-feasible when the following conditions regarding the

motion-feasibility matrices X ;"f (i=1,...,NP) are fulfilled.

NP k=1 Npok
Z( D XM Po)> 071 o) = N’. @
k=2 \i=l j=1

where X::}i(Mfok, Py,) represents the motion feasibility value between
ith part P, and the jth set of feasible motion MJ’T"" for the target
kth part P, when pok represents Py, . A set of feasible motions M;
comprises feasible contact C;, feasible trajectories 7 ;, and feasible
object placement P The number of feasible motions generated for
each part is represented by N" (i =1,..., NP).
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The evaluation of stability involves the assessment of two distinct
criteria. The first criterion pertains to whether the parts remaining
after removal of the target part can maintain an upright posture in
the workplace (upright condition). The second criterion involves de-
termining whether all parts are interconnected (connection condition).
The upright condition (static stability) can be easily assessed using
a method established in the fields of optimal 3D fabrication [50]
and balance control of humanoid robots [51]. If flexible fixtures are
available to hold various poses of the parts, the upright condition
can be disregarded, as it will always be satisfied. In this study, we
employ an array of multiple soft-jigs [52] as a solution to address this
issue. The connection condition can be easily examined by analyzing
the constituent elements. The sequence is considered stable when the
following conditions are fulfilled:

NP /k—1
Z(Z XU(Py. Pp)#0?1

k=2 \i=1

: 0) = NP -1. 3)
The symbol X' denotes a contact matrix, where a value of one indi-

cates the presence of a nonzero value in the constraint degree matrix
X,

3.3.2. Initialization of chromosomes

To increase the number of high-quality initial solutions generated,
we employ stability-based chromosome initialization utilizing the CCG
depicted in Fig. 3(a). The graph is automatically generated using the
following procedure:

(1) The parts are classified as either bolts or screws (fixing parts,
represented by box-shaped nodes) or other parts (non-fixing
parts, represented by circle-shaped nodes) based on the task
labels extracted through model structure analysis.

(2) Edges are generated between each node by analyzing the contact
matrix, connecting nodes that are in contact with each other.

(3) The edges connecting to the fixing part nodes are categorized
and assigned as connection edges (red-colored edges) and other
edges (black-colored edges).

The numbers in the nodes correspond to the part index of the disassem-
bly target product.
The following procedure is performed based on the generated CCGs:

(1) The base-labeled part or the largest part is designated as the root
node.

(2) The distance (minimum number of edges) from the root node to
each node is calculated.

(3) A node is randomly selected from the set of nodes at the maxi-
mum distance.

(4) If the selected part is a fixing part, it is placed at the beginning
of the sequence. If it is a non-fixing part, a neighboring part
connecting the selected part to another part is randomly selected
and placed at the beginning of the sequence. If there are no fix-
ing parts, the selected non-fixing part is placed at the beginning
of the sequence.

(5) Steps 2 to 4 are repeated until only the root node remains. The
part displaying the root node is then placed at the end of the
disassembly sequence, resulting in the end of the generation
process.

Fig. 3(b) shows snapshots of an example of the disassembly procedure.
The absence of isolated nodes not connected to any edge indicates that
every disassembly can be regarded as stable.

The essential prerequisite for attaining an interference-free se-
quence when dealing with a fully constrained part restricted from
moving in all 12 directions is the prioritized removal of the fixing
part. Therefore, utilizing CCGI is more advantageous for generating
interference-free initial solutions than relying on random initialization.
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In other words, the use of CCGI is more likely to result in the generation
of an available sequence.

Subsequently, the optimization process commences with the initial
solutions. Throughout the optimization procedure, feasible and stable
solutions also improve the evaluation of the objective functions. To
ensure uniformly evaluated multiple objectives, the objective values
must be normalized, enabling meaningful distance metric computations
in the objective space. Experimental results from a previous study by
Blank et al. [53] indicated that normalization affects the performance of
evolutionary multi-objective optimization algorithms. Thus, this study
normalizes the four objectives to values ranging from zero to one, as
described in the following sections.

3.3.3. Difficulty

Among the various difficulty definitions [54], we propose a specific
definition for the objective function that corresponds to the constraint
state transition difficulty [55], which is a type of order difficulty. This
can be expressed as follows:

7 = H/12(N? —1) if O is available
R | otherwise

4

where H denotes the maximum level of constraint state transition
difficulty associated with the disassembly of each individual part.

k-1

N XS(Py,. Pp,) < 12(N” = 1). 5)

i=

H := max

ke(2.3,....NP)
Zf.:ll X (Py,, Po,) represents the total constraint degree imposed on
the kth part P, and its undisassembled parts Py, Pp,, ..., Py, ,- In
accordance with the established definition, the maximum constraint
degree between the two parts is 12, consequently, each element of the
constraint degree matrix X is calculated as

12
XS(P, P =12— Y X/(P,P) €10,...,11). (6)
Jj=1

The matrix X ;f (j =1,...,12) represents the constraint-free matrix.

3.3.4. Efficiency

The task labels are utilized to maximize the efficiency of the se-
quence of tasks by minimizing the number of task changes and the
distance between the center of mass of the target parts.

[N /(NP —1)
+D/(N? x D, )1/2 if O is available . 7)
1 otherwise

fei=

The number of task changes N’ can be determined by analyzing the
task labels T, of each part i =1,..., N”.

NP
Ne=Y [(Tok =Tp, )71 : 0] : ®)
k=2
The total moving distance D can be determined by measuring the
distance dp, P, between each part.

NP
D= kZ;dPok’PoH' 9

The maximum distance between any two parts is denoted by D,,,,-

3.3.5. Prioritization
The objective function for prioritization is defined as follows:

NP e .
£ 1=R/TI,no_nw! if O is available . 10)
? 1 otherwise
NPP denotes the number of prioritized parts. The degree of prioritiza-
tion R is determined by the positions of priority parts.
NPP

R=) 0. an
m=1



T. Kiyokawa et al.
E1,mE2.E3
VR

gE4 a %E6

End effectors

Sampled poses

Soft-jig array

Fig. 4. Robotic disassembly setup for simulation experiments.

P1 _plate_base P19 _screw
P2 _graspable P20 _screw
P3 _graspable P21 _screw
P4 _manual_value P22 _screw

P5 P33

P5 _graspable = P23 _screw

< P6 _manual P24 _screw

P21 P7 _graspable P25 _screw

P8 _graspable P26 _screw

P9 _ignore P27 _screw

P10 _ignore P28 _screw

P11 _graspable P29 _screw

P12 _ignore P30 _screw

Motor P13 _ignore P31 _screw

(Valuable part) P14 _bolt P32 _screw

A P9 . P15 _nut P33 _manual

Rubber band o S ; P16 _ignore P34 _screw

(Deformable part) \‘PZG Y, P17 _ignore P35 _screw
P18 _screw P36 _graspable

Fig. 5. Model appearance and assigned parts labels.

O}, represents the ordinal position of the mth priority part.

3.3.6. Allocability
Allocability is based on the sequential position of the manually
labeled parts to be disassembled.

_ ) 1o -
fa '_{ 1

O}" and O} indicate the latest and earliest ordinal positions of manually
disassembled parts, respectively.

if O is available
otherwise

opl/(N? = 1) a2

4. Experiments of robotic DSP
4.1. Overview

Our experiments verified the efficacy of the proposed method in
terms of structure analysis, matrix generation, and DSP using the
robotic disassembly setup illustrated in Fig. 4. The objective of our
experiments was to evaluate the performance of the proposed method
on a belt drive unit used in an assembly challenge [56]. Fig. 5 depicts
the appearance of the CAD model and shows the labels assigned for our
experiments.

The product disassembly system incorporated a seven-degree-of-
freedom (DoF) arm and various EEFs. Three different types of two-
finger parallel grippers were utilized: the Robotiq 2F-85 (E1), the
Robotiq HandE (E2), and the Robotiq HandE with longer fingers (E3).
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In order to enable the robot arm to screw bolts and screws using a two-
finger parallel gripper, Hu et al. [57] developed a mechanical screwing
tool. The system utilized three configurations of the screwing tool with
different tool tip parts: M3 hex wrench (E4), M4 hex wrench (E5),
and M6 socket wrench (E6). The suction gripper employed was the
CONVUM SGB30 (E7), also known as the balloon hand. It is well suited
for a wide range of workpiece shapes and sizes, capable of handling
even uneven or heavy workpieces.

The process of structural analysis involves identifying the labels
assigned to various parts. The belt drive unit comprises the labels of
screw, bolt, nut, plate, graspable, manual, value, base, and ignore. The
P4 motor was regarded as a valuable part, hence it possesses a value
label in addition to its manual label, owing to its delicate disassembly
process. The rubber belt P6 and hexagon socket set screw P35 were
also assigned a manual label because of their difficulty in robotic
disassembly. The spacers P9, P10, and P12, pulley P13, and washers
P16 and P17 were assigned the ignore label, as they will naturally come
off during the disassembly process of other parts.

The allocation of the seven types of EEFs was determined according
to the task label and shape features for 27 of the 36 parts. These 27
parts, namely P1, P2, P3, P5, P7, P8, P11, P14, P15, P18, P19, P20,
P21, P22, P23, P24, P25, P26, P27, P28, P29, P30, P31, P32, P34, P35,
and P36 did not have a manual or ignore label. Therefore, for these
parts, we have assigned E7, E2, E2, E2, E2, E1, E2, E5, E6, E5, E5, E5,
E5, E5, E5, E5, E4, E4, E4, E4, E4, E4, E5, E5, and E3.

The generation of sequences requires several parameters P%%, in-
cluding the number of chromosomes, crossover rate, mutation rate,
cut-and-paste rate, and break-and-join rate, which are identical to those
utilized in [21]. In our methodology, we set the number of generation
updates to 500, and the number of iterations to 10. To create robot
motions, we utilize a contact planning software® that uses an object-
geometry-based approach to potential contact generation, as described
in [58]. The robot arm trajectory planner relies on the RRT-connect
algorithm [59], which was implemented in Movelt! motion planning
framework® of robot operating system (ROS), as well as IKFast [60] for
solving the kinematics. In a work environment equipped with four soft-
jigs arranged on the workspace, as depicted in the upper right corner
of Fig. 4, during the processing of RobotSimulation(M) in Algorithm
1, the target assembled parts were positioned and oriented in the soft-
jig array. Thereafter, a trajectory was explored to identify potential
collision-free contact points and efficiently executable trajectories for
the target product at these specific positions and orientations.

4.2. Results of CAD-informed matrices generations

In order to generate multiple matrices for determining the con-
straints and calculating the evaluation values in the optimization, we
initially conducted a thorough analysis of the 3D CAD models. Our
analysis successfully extracted all part labels with a high degree of ac-
curacy. The center of mass and pose parameters obtained from the STEP
model were accurately extracted with 100% accuracy, as illustrated
in Fig. 6(a). The interference check between parts for matrix generation
is shown in Fig. 6(b), where the red highlighted area indicates the
interfered volume between the base plate part P1 and L-shaped plate
part P2.

We assessed the performance of the automatic matrix extraction
based on accuracies. The constraint degree matrix contains positive
integers, and the calculation was regarded as successful when a positive
integer was correctly determined to match the manually annotated
value.

The generation accuracies of the interference-free and contact ma-
trices were 98.9% and 96.8%, respectively. The success rates of the

5 https://github.com/UOsaka-Harada-Laboratory/wros
6 https://moveit.ros.org/
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(a) (®)

Fig. 6. Results of structure analysis and interference check for the belt drive
unit. (a) Center of mass and pose. (b) Example of interference.
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Fig. 7. Success rates of finding constraint-satisfied sequences in 1000-trial
initialization [%]. RI, FR, SR, and SFR are comparative methods that
show random initialization, feasibility-based rearrangement, stability-based
rearrangement, and stability-and-feasibility-based rearrangement methods, re-
spectively.

constraint degree and constraint-free matrices were 90.2% and 92.9%,
respectively, which were not low. The interference checks based on the
displacement simulation can sometimes fail due to the limitations of
the Boolean operation performance. The Boolean operations between
curved surfaces can be challenging and may result in errors. In the
future, it may be necessary to consider a method for directly estimating
the degree of constraint based on the shape.

4.3. Optimizing sequences

4.3.1. Performance of Chromosome initialization

We undertook a comparative analysis of chromosome initializa-
tion methods. To this end, we devised three methods for initializing
chromosomes: random initialization (RI), repeated sequence changes
to minimize interference (FR) [5], and repeated sequence changes to
maximize stability (SFR). Fig. 7 shows the result comparisons. The bars
depict the mean values of the feasible, stable, and available (feasible
and stable) rates [%] for the 1000-trial initialization. Although the
rates of feasible solutions with FR and SFR were 27.1% and 39.6%,
respectively, the rates of stable solutions were 0.2% and 3.6% for
FR and SFR, which resulted in available rates of 0.1% and 3.3%,
respectively.

Nevertheless, the feasibility, stability, and availability rates for the
proposed method were 47.3%, 100%, and 47.3%, respectively. The
results indicate that the proposed method can generate a feasible and
stable sequence when compared to other methods.

4.3.2. Performance of optimization

The generated order o composed of elements 1, 3, 19, 18, 14, 15,
7, 8, 24, 22, 23, 25, 11, 36, 34, 35, 26, 2, 20, 21, 4, 29, 28, 27,
31, 32, 30, 5, 33, 6 attained the lowest evaluation value among all
evaluated sequences. This sequence includes parts with manual labels,
but excludes those with the ignore label. This sequence is a feasible and
stable (available) solution that adheres to all imposed constraints.

Fig. 8 shows the generated sequence. As can be observed in the
figure, the unconstrained parts P6 and P33 with manual labels, are
situated at the commencement of the sequence. In addition, motor
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part P4 with manual and value labels, is disassembled at the earliest
possible timing following the elimination of all constraining parts,
namely P5, P30, P32, P31, P27, P28, and P29. It is worth noting
that other arrangements also fulfill order feasibility, motion feasibility,
and stability, while simultaneously exhibiting low difficulty and high
efficiency, and adhering to label-defined prioritization.

Fig. 9(a) presents the performance comparison results. We con-
ducted ten iterations of 500 generation updates for the optimization
loop. Fig. 9(a) shows the mean values of the available, feasible, and
stable rates. Fig. 9(b) shows the mean and standard deviation of the
evaluation values for each objective function. The bars represent the
mean values and error bars indicate the standard deviations. The 'w/o
CCGI’ method does not utilize CCGI but instead uses an initialization
method that considers only feasibility, as previously described in [5].
The 'w/0 NSGA-II’ result is based on the NSGA-II-inspired algorithm
proposed in [21]. The 'w/o f,’, 'w/0 f,’, 'w/0 f,’, and 'w/0 f,’ denote
the optimization results excluding each of the objective functions of
Egs. (4), (7), (10), and (12).

The effectiveness of the proposed initialization method in consis-
tently producing available solutions was demonstrated by the lack of
solution generation when the CCGI method was not employed, resulting
in a 0% rate of available solution generation. Comparing the proposed
method with the 'w/0 NSGA-III’ method, both achieved 100% success
rates in generating available solutions. When evaluating the perfor-
mance of each method based on the four objective functions, Difficulty,
Efficiency, Prioritization, and Allocability, the mean evaluation values
of both of them are almost the same.

The visualizations in Fig. 10 display the mean evaluation values of
the final solutions after each optimization iteration. For the petal chart,
smaller petals indicate better evaluation values. In the case of the radar
chart, a smaller square area signifies a better evaluation value. The
graphs (original) show the values calculated using fy, f,, f,, and f,.
The graphs for the relative evaluation values i £ ;’ and f} were
min-max normalized to scale the maximum value of each objective
function in all methods except 'w/o CCGI’ to 1.0. Fig. 11 depicts the
transitions of constraint satisfaction rates for the 'w/o NSGA-III’ and
proposed methods. Fig. 12 depicts the learning curves for the four
objective functions evaluated in the cases of using their two methods.

As depicted in the charts presented in Fig. 10(a) and (c), the perfor-
mance of the proposed method and other comparative methods may not
exhibit significant disparities. In fact, the sum of our evaluation values
(original) for 'w/o CCGI’, 'w/o Difficulty’, 'w/o Efficiency’, 'w/o Pri-
oritization’, 'w/o Availability’, and Proposed amounted to 4.0, 0.918,
0.934, 1.22, 1.07, and 1.01, respectively. On the other hand, the stan-
dard deviations of the normalized evaluation values were 0.073, 0.180,
0.253, 0.158, 0.129, and 0.042, respectively. Notably, the proposed
method exhibited the lowest standard deviation. This result indicates
that the proposed method was effective in optimizing the system while
simultaneously evaluating four objective functions.

As evidenced in Fig. 11, although both methods achieved a con-
straint satisfaction rate of 100% by the 5-th generation, the proposed
method demonstrated a more rapid improvement in these rates up to
that point. Additionally, as depicted in Fig. 12, the proposed method
achieves a smoother and more consistent learning curve compared
to the 'w/o NSGA-III’ method, suggesting that the proposed method
consistently and stably reduced the evaluation values of the four objec-
tive functions throughout the learning process. These findings suggest
that the NSGA-IIl-inspired algorithm is beneficial for facilitating con-
vergence in the learning process. In forthcoming studies, we intend
to further explore the effectiveness of this feature by applying the
proposed method to a variety of other target objects.

Fig. 13 shows a comparison of performance using methods that
employ a single objective function. The bars above the titles of 'w/
Difficulty’, 'w/ Efficiency’, 'w/ Prioritization’, and 'w/ Allocability’ rep-
resent the mean values of the four objective functions when optimizing
the solutions under constraints and a single objective function of f,,
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Fig. 8. A sequence determined after the optimization. The disassemblies shown in the snapshots are order-feasible (interference-free) and stable.
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Fig. 9. The many-objective optimization results of 500-generation and 10-
iteration optimization. (a) Percentages of constraint-satisfied solutions [%]. (b)
Mean =+ standard deviation of the evaluation values.

fes f> and f,, respectively. The error bars indicate standard deviations.
The evaluation value using f, for *w/ Difficulty’ method is 0.075, which
is the lowest values compared to those of other methods. The difficulty
evaluation values of 'w/ Efficiency’, *w/ Prioritization’, and 'w/ Allo-
cability’ methods are 0.112, 0.147, and 0.142, respectively. As shown
in Fig. 13, the other three evaluation values exhibited the same trend.
The results shown in Fig. 13 demonstrate that the proposed algorithm
can effectively perform single-objective optimization, allowing users to
choose the objective function that they wish to prioritize.

4.4. Feasibility of robotic disassembly
Fig. 14 illustrates the feasible contacts by the task-tailored EEFs. The

EEFs colored in green indicate successful contacts, while those colored
in red represent failed contacts resulting from collisions. We chose the

approachable contact from the robot’s EEF pose among the feasible
contacts C.

Fig. 15 illustrates the generated feasible (collision-free and IK-
solvable) motions for the optimal sequence for robotic disassembly. Fig.
15 includes snapshots of the generated EEF contact C, arm trajectory
7, and object placement pose P fixed on the soft-jig array. For each
disassembly, the three pictures show the arm in a pose at the post-
contact position, the zoom of the post-contact pose, and the placement
pose. It is crucial to place the robot in such a position that the target
part falls within the arm’s movable range. In some cases, moving the
target part to the arm side using a turntable or a flexible fixture placed
beneath the object can be effective even for large objects. Our solution
was to use a soft-jig, which was previously developed in [52,61,62].
The specific approach may vary based on the configuration of the
robot arm, target part, and workspace, utilizing a soft-jig array such
as ours (Fig. 4), which can fix the target parts in various positions and
orientations, enabling the generation of a greater number of trajectory
candidates that facilitate the arm approach to the target part.

Although this study did not specifically focus on robot motion
planning for real-world tasks, the findings nonetheless revealed the
capability to devise feasible contact for all parts using their correspond-
ing EEFs, as well as the corresponding trajectory for all pick-and-place
tasks, spanning the entire sequence.

5. Discussions
5.1. Efficient and robust matrix generation

The time required for each module in this study was 12.7 s, 16400 s
(4.57 h), and 1050 s (17.5 min) for model structure analysis, matrix
generation, and sequence exploring, respectively. The computational
time depends on the size of the STEP file (13.8 [MB]) and the number
of parts (36 parts). Specifically, when multiple fine curved surfaces,
such as fillets, are represented precisely, the cost of calculation becomes
excessive when conducting Boolean operations to assess interferences
among them.

The reliability of matrix generation depends heavily on the ro-
bustness of these Boolean operations. In future work, to mitigate the
computational burden and potential failures, we aim to develop a
method that simplifies the shape and reduces computational costs.
Utilizing the latest semantic shape representations [63,64] or coarse
collision proxies for initial pruning can drastically reduce the frequency
of exact Boolean checks.

Similarly, the lack of an automatic labeling pipeline limits out-of-
the-box applicability. Currently, we utilize manual input for explicit
labels to ensure accuracy. However, to minimize the burden on the
model designer, it is desirable to develop a method for automatically
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Fig. 10. Visualization of the mean evaluation values over the generation updates for all iterations. (a) Petal chart (original). (b) Petal chart (relative evaluation).
(c) Radar chart (original). (d) Radar chart (relative evaluation). For the petal chart, the smaller each petal, the better is the evaluation value. Regarding the radar
chart, the smaller the square area, the better the evaluation value. The graphs for the relative evaluation were min-max normalized so that the maximum value

of each objective function in all methods except 'w/o CCGI’ was scaled to 1.0.

extracting labels from geometric information. The PointNet series [65—
67] has demonstrated the potential to classify 3D shape data. Integrat-
ing such learned classifiers to directly infer task and base labels from
geometric characteristics represents a viable solution to enhance the
framework’s adaptability.

5.2. Optimization algorithm

To further improve convergence speed and optimize solution qual-
ity, the static parameters used in the current MaOGA (e.g., crossover
and mutation rates) could be dynamically adjusted. The incorporation
of adaptive parameter tuning, which regulates exploration and exploita-
tion balance based on the generation progress, is a promising strategy
to accelerate the search process.

Additionally, computational efficiency can be enhanced by focusing
on user-preferred regions of the Pareto front. Several extended NSGA-
III algorithms have been proposed, such as U-NSGA-III [68], which
incorporates tournament pressure to achieve unified and improved per-
formance. Furthermore, R-NSGA-III [69] extends the procedure by in-
troducing reference points according to user-supplied aspiration points.

Our experimental results indicate that there may be varying levels
of heterogeneity in the balance of each objective function depending
on the target product. Therefore, it may be beneficial to first use a
general NSGA-III search to identify these heterogeneities and then use
a combination of U-NSGA-III and R-NSGA-III to efficiently optimize
them in a narrower search space. This focused approach allows the
algorithm to converge more rapidly to high-quality solutions, avoiding
the computational cost of approximating the entire Pareto-optimal
front.

10

5.3. Scalability

The matrix generation process currently imposes a computational
burden. However, in the context of offline process planning for re-
manufacturing, this duration serves as a one-time setup cost [24].
This characteristic mitigates the impact of the initial calculation time,
clarifying its validity for high-volume scenarios where the optimized
sequence is repeatedly executed for identical products.

To further ensure scalability for larger assemblies or more complex
products, we can employ strategies beyond the shape simplification.
First, the interference checks, which dominate the computation, can
be accelerated through parallel computing since they are computa-
tionally independent for each part pair. Second, adopting a hierar-
chical approach by decomposing a large assembly into subassemblies
can effectively manage the combinatorial complexity of the sequence
optimization [27]. Additionally, integrating learning-based methods
to infer removability or approximate collision checks [29,30] offers
a promising direction to significantly reduce the frequency of exact
Boolean operations required during the initial planning phase.

5.4. Real-world disassembly

The proposed approach relies on geometric reasoning within a simu-
lated environment, assuming rigid bodies and perfect perception. How-
ever, shifting to real-world scenarios introduces physical uncertainties,
such as sensor noise, friction, and part deformation. Therefore, the
validity of the generated sequence lies in its role as a high-level nominal
plan. To bridge the gap between simulation and reality (Sim2Real),
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Fig. 11. Changes in the mean values (over 10 iterations) of the constraint
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500 generation updates in the first iteration. (a) 'w/o NSGA-IIT’. (b) Proposed.
The translucent bands around the lines illustrate the standard deviations (over
10 iterations).

the geometric plan must be coupled with robust low-level execution
strategies.

In contrast to the process of assembly, which requires precise and
meticulous operations, disassembly can sometimes tolerate minor dam-
age to target products, with the exception of high-value parts that
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Fig. 13. Final evaluation values of single-objective optimization. The mean +
standard deviation of the evaluation values ranged from 0 to 1 in the 500-
generation and 10-iteration optimizations [%)].

must be carefully disassembled. The generation of robotic disassembly
operations in simulations, such as cutting or crushing flexible objects or
removing parts without disassembling fasteners, presents a significant
challenge. A promising new approach to self-supervised learning in
a real-world environment holds potential for acquiring disassembly
tasks that involve breaking and damage. Future studies will consider
constructing such an approach.

On the other hand, there are situations in which every part must
be carefully disassembled without compromising the quality of the
materials or breaking them. The precise disassembly operations can
be achieved by following the reverse sequence of the assembly opera-
tions. In recent years, reinforcement learning approaches have garnered
attention for enabling robots to perform contact-rich manipulation
tasks in real-world environments, thereby bridging the gap between
simulation and reality [70]. It may be possible to address the learning
problem of the disassembly action policy inference model in a similar
manner, by following the analogy between assembly and disassembly.

5.5. HRC-oriented DSP

The proposed method for DSP is not limited to the domain of robot
motion generation but may also prove effective in teaching sequences
to human workers. By selecting the desired product model using a
tablet computer, the results of the automatic DSP can be presented as
a guide to efficiently determine the order of the disassembly parts.

This study represents an initial effort to simplify sequencing the
semi-automated disassembly operations. While other criteria for eval-
uating sequences exist, such as those organized in [71], this study
focused solely on four perspectives: difficulty, efficiency, prioritization,
and allocability. As not all objective functions created based on the
provider’s motivation can be validated, this study sought a solution for
one example design using an evolutionary many-objective optimization
algorithm. Kiyokawa et al. [54] provide further definitions of the
difficulty and complexity.

Previous studies have explored the application of graph representa-
tion to determine the necessary operations, tasks, motions, arms, and
tools for cooking and furniture assembly sequences using robots [72-
75]. The use of graph-based methods for determining arm and tool
availability, calculating efficiency, and determining difficulty levels at
different stages represents a promising direction for developing a more
general disassembly sequence planner. If we could design the method
to encode the graph into the genes and genetic operations based on the
encoded representation, it could potentially be accomplished.
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e
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Fig. 14. The generated feasible contacts C for each target part by the EEFs. The green EEFs show collision-free contacts that do not interfere with the target
object. The red circles show the possible failed contacts owing to collisions. (For interpretation of the references to colour in this figure legend, the reader is

referred to the web version of this article.)

Fig. 15. The generated feasible (collision-free and IK-solvable) motions include C, 7, and P. The three pictures for each disassembly show the arm in a pose at

the post-contact position, the zoom of the post-contact pose, and the placement pose.
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6. Conclusion

This study focused on disassembly sequence planning (DSP) that
incorporates semi-automated robotic operations. The proposed robotic
DSP method uses an evolutionary many-objective optimization algo-
rithm, namely NSGA-III-inspired MaOGA that iteratively updates gen-
erations and evaluates them with multiple objective functions and
constraints.

The results of the disassembly sequence planning for a mechanical
product with 36 parts showed that the proposed method can find a
Pareto optimal solution oriented towards semi-automated robotic oper-
ations. The algorithm successfully generated a sequence that satisfied
the feasibility, stability, and improved conditions in terms of difficulty,
efficiency, prioritization, and allocability functions.

Specifically, the use of contact and connection graph (CCG)-based
initialization allows for the repeatable generation of a large num-
ber of available initial solutions, whereas the algorithm utilized non-
dominated sorting and niching with reference lines to encourage steady
and stable exploration of the solutions and uniformly lower overall
evaluation values. The final solution featured interference-free, stable,
efficient, easy-to-handle, correctly prioritized, and non-redundantly
task-assigned order that enables robots collision-free, IK-solvable, and
efficient motions in the context of semi-automated robotic disassembly
operations.
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