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 A B S T R A C T

This study tackles the problem of many-objective sequence optimization for semi-automated robotic disas-
sembly operations. To this end, we employ a many-objective genetic algorithm (MaOGA) inspired by the 
non-dominated sorting genetic algorithm (NSGA)-III, along with robotic-disassembly-oriented constraints and 
objective functions derived from geometrical and robot simulations using three-dimensional (3D) geometrical 
information stored in a 3D computer-aided design (CAD) model of the target product. The MaOGA begins 
by generating a set of initial chromosomes based on a contact and connection graph (CCG), rather than 
random chromosomes, to avoid falling into a local minimum and yield repeatable convergence. The opti-
mization imposes constraints on feasibility and stability as well as objective functions regarding difficulty, 
efficiency, prioritization, and allocability to generate a sequence that satisfies many preferred conditions under 
mandatory requirements for semi-automated robotic disassembly. The NSGA-III-inspired MaOGA also utilizes 
non-dominated sorting and niching with reference lines to further encourage steady and stable exploration and 
uniformly lower the overall evaluation values. Our sequence generation experiments for a complex product 
(36 parts) demonstrated that the proposed method can consistently produce feasible and stable sequences 
with a 100% success rate, bringing the multiple preferred conditions closer to the optimal solution required 
for semi-automated robotic disassembly operations.
1. Introduction

With the aim of achieving a sustainable society, there has been 
greater emphasis on promoting recycling, reuse, and remanufactur-
ing. In particular, future manufacturing robots are expected to exhibit 
proficiency in efficient disassembly of many parts. In this context, 
autonomous robotic disassembly has garnered increased attention [1,
2]. The remanufacturing domain requires the deployment of robots 
capable of autonomously acquiring sequential disassembly operations 
in an efficient and streamlined manner to address a diverse array 
of needs. Furthermore, human–robot cooperation has been promis-
ing for carefully extracting valuable parts from disassembly target 
products [3].
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To achieve the sequential disassembly operations without much 
manual effort, the automatic generation of sequences is crucial. To au-
tomatically generate sequences for (dis)assembly, previous studies have 
employed a three-dimensional (3D) model of the product [4–7]. Deter-
mining the order of (dis)assembly parts can be categorized as a com-
binatorial optimization problem and a non-deterministic polynomial-
time (NP)-hard problem [8], which necessitates the use of heuristic 
search algorithms to obtain a sub-optimal solution within a practical 
timeframe.

To facilitate robotic disassembly for flexible remanufacturing ef-
fectively, it is crucial to consider various aspects when determining 
the required sequence. Several studies have explored disassembly se-
quence planning (DSP) in the context of semi-automated processes 
https://doi.org/10.1016/j.robot.2025.105301
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Fig. 1. Overview of robotic disassembly planning.

Fig. 2. NSGA-III-inspired sequence optimization.

or human–robot-collaboration (HRC) by considering different perspec-
tives [3,9–14]. To generate a disassembly sequence, they evaluated the 
disassembly cost, disassemblability, and safety from the long-horizon 
perspective of the sequence to optimize the overall order of parts and 
processes in real-time.

However, they did not address many-objective optimization prob-
lems (i.e., involving four or more objectives) under constraints and 
objective functions specific to semi-automated robotic disassembly with 
the planning of robot operations, as in our study. Therefore, this study 
addresses robotic DSP rather than merely optimizing the preferable 
parts order and desirable processes.

Fig.  1 shows the overview of our assumed robotic disassembly 
planning. Specifically, this study establishes constraints on disassembly 
order feasibility, robot motion feasibility, and object placement stabil-
ity. The designed objective functions pertain to order difficulty based 
on the contact state transition difficulty, task efficiency determined 
by the number of end-effector (EEF) changes and distance between 
adjacent pairs in the sequence, prioritization based on the user-defined 
priority of disassembling particular parts before others, and allocability 
based on the number of task-allocated agent changes between humans 
and robots.

To address the many-objective optimization problem with con-
flicting objectives, we employ a many-objective genetic algorithm 
(MaOGA) inspired by non-dominated sorting genetic algorithm III 
(NSGA-III) [15], a state-of-the-art evolutionary many-objective opti-
mization algorithm. Fig.  2 shows an overview of the proposed al-
gorithm. Generally, to avoid convergence to local optimal solutions, 
heuristic search algorithms need to effectively generate as many
constraint-satisfied initial solutions as possible. To generate chromo-
somes represented as a set of sequences, we propose to generate a 
contact and connection graph (CCG) representing the contact and 
connection relationships among disassembly parts and use the CCG to 
efficiently generate constraint-satisfied initial solutions. The generation 
of the disassembly order of parts can be achieved through simple 
2 
Fig. 3. CCG-based initialization.

step-by-step removal of the end nodes of the graph. Fig.  3 shows 
the overview of CCG-based initialization (CCGI). Fig.  3(a) shows an 
example of the CCG for the target product used for our experiments in 
this study.



T. Kiyokawa et al. Robotics and Autonomous Systems 197 (2026) 105301 
This study examines the effectiveness of the proposed stability-
based initial chromosome generation method depicted in Fig.  3(b) by 
verifying that it outperforms random chromosome initialization. The 
NSGA-III-inspired algorithm also utilizes non-dominated sorting and 
niching with reference lines to further encourage steady and stable 
exploration of the solutions and uniformly lower the overall evaluation 
values. Our simulation experiment verifies the applicability of the 
newly-constructed NSGA-III-inspired algorithm tailored for the robotic 
DSP problem.

In the evaluation, we show that chromosome initialization repeat-
edly generates the most interference-free and stable initial solutions 
by comparing with other initialization methods. Our ablation study 
further show that the NSGA-III-inspired algorithm can steadily and 
effectively reduce the evaluation values through many-objective opti-
mization based on non-dominated sorting and niching with reference 
lines. Finally, the proposed algorithm successfully generated disassem-
bly sequences and robotic disassembly operations for a complex belt 
drive unit composed of 36 parts while considering multiple neces-
sary constraints and desirable objectives from diverse perspectives, 
including semi-automated robotic operations.

In the rest of this paper, we discuss related work in Section 2, 
describe our proposed algorithm in Section 3, present the evaluation 
results in Section 4, discuss the remaining issues in Section 5, and 
conclude the paper in Section 6.

2. Related work

2.1. Determining order of parts

The optimization and determination of the order of parts in
(dis)assembly processes have been the focus of extensive research 
for several decades [5,11,14,16–25]. The growing demand for high-
mix, low-volume production and significant advancements in computer 
capabilities have recently revived interest in this topic in the field.

Kiyokawa et al. [21] proposed a multi-objective genetic algorithm 
specifically tailored for assembly sequence planning (ASP). The ex-
perimental outcome suggests that the proposed NSGA-II [26]-inspired 
multi-objective genetic algorithm can identify Pareto optimal solutions 
across a range of objective functions. NSGA-II generally employs non-
dominated sorting, which ranks solutions based on Pareto dominance 
to approximate the optimal front, and crowding distance to main-
tain diversity. However, since crowding distance is less effective in 
high-dimensional spaces, our study employs NSGA-III, which is an 
extension of this framework. NSGA-III replaces the crowding distance 
with niching based on reference lines, where individuals are associated 
with predefined reference points on a hyperplane to ensure a uniform 
distribution of solutions in many-objective optimization problems.

Ebinger et al. [27] introduced a flexible DSP framework which 
includes a subassembly identification method. The authors investigated 
the usefulness of subassemblies in search by examining the framework 
performance with and without subassemblies. Chervinskii et al. [6] 
introduced Auto-Assembly, a framework that encompasses design anal-
ysis, ASP, Bill-of-Process (BOP) generation, and control code execution 
for physical assembly. Dorn et al. [23] addressed the challenge of 
generating a Voronoi diagram for a complex automotive model, and de-
veloped an assembly priority graph. Wang et al. [24] focused on robotic 
parallel DSP for end-of-life products and proposed a multi-objective 
model to minimize the makespan and energy consumption.

Several studies have solved several cases of path-planning problems 
for ASP and DSP. Lee et al. [28] achieved minimization of the steps 
to goal component removal based on the concept of blocking topol-
ogy. Le et al. [19] extended a sampling-based path planner Rapidly-
exploring Random Tree (RRT) for ASP and DSP for LEGO bricks. 
Moreover, Tian et al. [25] proposed a physics-based assembly-by-
disassembly planner using a large-scale dataset, achieving state-of-the-
art performance.
3 
However, these studies [6,19,21,23–25,27,28] did not address the 
finer aspects of robot motions, such as EEF’s contacts and trajectories, 
which are critical for robotic disassembly operations.

Recent studies have employed graph neural networks to deduce a 
feasible sequence by analyzing the graph representation of the com-
plex (dis)assembly model structure. Cebulla et al. [29] introduced 
an assembly-by-disassembly approach that involves iteratively test-
ing parts for removal, with the testing order significantly impacting 
runtime. The authors optimized the order using a graph neural net-
work trained on part shapes and local connections. Ma et al. [30] 
introduced a heterogeneous graph-transformer framework for learning 
the latent rules of assembly planning. However, these studies [29,30] 
did not address robotic disassembly and limited the assembly targets 
to aluminum profiles or LEGO bricks consisting of a small number 
of parts compared to actual mechanical products. Recent studies on 
multi-objective optimization of disassembly orders [10,13,20,31] have 
focused on improving heuristic algorithms, rather than establishing an 
optimization framework that considers robotic disassembly operations.

2.2. Robotic assembly and disassembly

On the other hand, the process of planning (dis)assembly robot 
motions necessitates taking into account constraints in multiple dimen-
sions and perspectives. Thus far, several researchers have successfully 
generated and executed disassembly operations using robots, assuming 
that the (dis)assembly order is given or that the operations involve two 
separate parts [32–35].

Rodriguez et al. [36] proposed iteratively checking multilevel feasi-
bilities to plan assembly sequences with robot motions. Bachmann et al.
[37] investigated the impact of robotic workcell layout on task effi-
ciency and feasibility. Most recently, Atad et al. [38] used a graph 
neural network to infer feasible and optimal assembly sequences by 
learning an inference model based on a geometric structure graph rep-
resentation of a product. However, these studies [36–38] more focused 
on the aluminum profile assemblies consisting of a small number of 
parts compared to mechanical products.

Liu et al. [39] succeeded in optimizing the sequence and process 
of robotic disassembly through collaborative optimization; however, 
they did not take into account feasible motions (i.e., EEF’s contacts 
and trajectories). Koga et al. [7] proposed a computer-aided design 
(CAD)-based robotic assembly system; however, generating sequential 
and semi-automated disassembly operations optimized using multiple 
objective functions remains an open issue.

Laili et al. [22] addressed the issue of flexible sequencing in robotic 
disassembly with failed automation operations, proposing an online re-
covery method that utilizes pre-stored backup actions. Jiayi et al. [40] 
used a digital twin for dynamic planning of robotic disassembly un-
der uncertain real-world conditions. These studies [22,40] focused 
on different issues from our study. Learning-based assembly planning 
approaches [4,41–44] have demonstrated promising results in adapting 
to a broader range of products; however, their efficacy has primarily 
been validated with toy objects or furniture. Unlike these studies, 
this study does not involve the exploration of dynamic planning and 
learning-based generalization.

This study does not delve into other issues related to disassembly 
specific system components, including EEFs, controllers, and interfaces, 
as reported in [9,12,45–48]. Gorjup et al. [49] introduced an inte-
grated flexible manufacturing system that uses compliance control, 
CAD-based localization, and multimodal gripper for efficient assembly 
task programming. However, this system was limited to part-kitting 
tasks only.

In contrast, our study aims to explore the feasibility of generating ef-
fective disassembly sequences for a complex product by designing suit-
able constraints, objective functions, chromosome initialization rules, 
and genetic generation update rules in the proposed method.



T. Kiyokawa et al. Robotics and Autonomous Systems 197 (2026) 105301 
Algorithm 1 Robotic DSP
Input: 3D CAD models of parts and environment 𝑴
Output: An optimum order 𝑶̂, disassembly task label ̂, EEF contact 

̂, arm trajectory ̂ , and object pose ̂
1: , 𝑿𝑖𝑓 ,𝑿𝑐𝑠,𝑿𝑐𝑡,𝑿𝑐𝑓  = GeometricalSimulation(𝑴)
2: 𝑿𝑚𝑓 ,,  ,  = RobotSimulation(𝑴)
3: Set 𝑇 𝑖

max, 𝑇
𝑔
max,𝑷 𝑔𝑎 with user inputs

4: SetPlanner(,𝑿𝑖𝑓 ,𝑿𝑐𝑠,𝑿𝑐𝑡,𝑿𝑐𝑓 ,𝑿𝑚𝑓 ,,  , ,𝑷 𝑔𝑎)
5: Initialize the counters of 𝑡𝑖 and 𝑡𝑔 to 1
6: while 𝑡𝑖 < 𝑇 𝑖

max do
7:  𝑮1 = ChromosomeInitialization()
8:  while true do
9:  Initialize the elements of 𝑬𝐺𝑡𝑔  to 1
10:  𝑪𝐺𝑡𝑔  = ConstraintCheck(𝑮𝑡𝑔 )
11:  if All elements of 𝑪𝐺𝑡𝑔  are Available then
12:  𝑬𝐺𝑡𝑔  = FitnessCalculation(𝑮𝑡𝑔 )
13:  𝑮𝑏𝑒𝑠𝑡 = BestSolutionExtraction(𝑮𝑡𝑔 , 𝑬𝐺𝑡𝑔 )
14:  if 𝑇 𝑔

max < 𝑡𝑔 then
15:  break
16:  𝑮̃𝑡𝑔 , 𝑬𝐺̃𝑡𝑔  = NonDominatedSorting(𝑮𝑡𝑔 , 𝑬𝐺𝑡𝑔 )
17:  NichingWithReferenceLine(𝑮̃𝑡𝑔 , 𝑬𝐺̃𝑡𝑔 )
18:  𝑮𝑡𝑔+1 = NextGenerationCreation(𝑮̃𝑡𝑔 , 𝑬𝐺̃𝑡𝑔 )
19:  𝑮𝑡𝑔+1 = GeneticOperation(𝑮𝑡𝑔+1)
20:  𝑡𝑔 = 𝑡𝑔 + 1
21:  𝑡𝑖 = 𝑡𝑖 + 1
22: 𝑶̂ = 𝑮𝑏𝑒𝑠𝑡

23: ̂ = LabelExtraction(𝑶̂)
24: ̂, ̂ , ̂ = OperationParameterExtraction(𝑶̂)

3. Optimizing robotic disassembly sequence

3.1. Overview

Algorithm 1 outlines the flow of the robotic DSP algorithm. In our 
algorithm, the order is represented by 𝑂𝑘 (𝑘 = 1,… , 𝑁𝑝), where 𝑁𝑝

represents the number of parts. This sequence corresponds to a chro-
mosome in the proposed MaOGA, encoded as a permutation of integer 
numbers (i.e., part indices). The last part is denoted by 𝑂1, and the 
first part is denoted by 𝑂𝑁𝑝 . The order obtained through optimization 
is denoted by 𝑶̂. The algorithm takes 3D CAD models of the target parts 
and environment (e.g., a robot arm, EEF, and worktable), represented 
by 𝑴 , as inputs. The outputs of the algorithm include the optimized 
order 𝑶̂, along with the task labels ̂, EEF contacts ̂, arm trajectories 
̂ , and object placement poses ̂ .

Our DSP process commences with an in-depth analysis of the ge-
ometries derived from CAD models 𝑴 , subsequently generating parts-
relation matrices. The GeometricalSimulation(𝑴) function first extracts 
the labels associated with part names, as well as information pertain-
ing to the center of mass, pose, and shape of each part, represented 
by . Subsequently, it provides us with interference-free 𝑿𝑖𝑓 , con-
straint degree 𝑿𝑐𝑠, contact 𝑿𝑐𝑡, and constraint-free 𝑿𝑐𝑓  matrices, which 
encapsulate diverse types of relationships between each pair of parts.

The function RobotSimulation(𝑴) provides the motion-feasibility 
matrices 𝑿𝑚𝑓

𝑖 (𝑖 = 1,… , 𝑁𝑝), feasible contacts , trajectories  , and 
placement poses   for each part. After planning the contacts to initiate 
the manipulation of the target part 𝑃𝑖 and generating a multitude of 
collision-free contact samples, each sample is evaluated for collision-
free and Inverse Kinematics (IK)-solvable trajectories for all specified 
placement poses. Furthermore, we check if there exists a trajectory 
enabling the undisassembled target part to be moved from the place-
ment pose to other placement poses (possible next placement pose). The 
dataset used in this study consists of all possible combinations of place-
ment poses for all possible compositions of the undisassembled target 
4 
object, which has been previously examined. For both the disassembly 
trajectory and transportation trajectory between the two placement 
poses, if at least one trajectory set is generated, the corresponding 
binary element of 𝑿𝑚𝑓

𝑖  can be 1 (feasible). If multiple feasible trajectory 
sets exist for the same placement poses, the shortest trajectory is 
selected to guarantee minimal trajectory length. The feasibility is stored 
in the corresponding element of 𝑿𝑚𝑓

𝑖 . The elements of 𝑿𝑚𝑓
𝑖  indicate 

whether each feasible motion (including feasible contacts, trajectories, 
and object placement poses) generated for the target part 𝑃𝑂𝑖

 interferes 
with parts other than 𝑃𝑂𝑖

.
The user specifies the MaOGA parameters, including the maximum 

number of iterations 𝑇 𝑖
max, the maximum number of generation updates 

𝑇 𝑔
max, and a set of other MaOGA parameters 𝑷 𝑔𝑎. 𝑷 𝑔𝑎 includes the 
number of chromosomes, crossover rate, mutation rate, cut-and-paste 
rate, and break-and-join rate. The matrices and parameters are then set 
to the planner using the SetPlanner() function. Once the planner is set, 
the matrices and parameters can be accessed from any function in the 
algorithm.

Prior to initiating the optimization loop, the values of 𝑡𝑖 and 𝑡𝑔 are 
both set to 1. The optimization process commences with the initial-
ization of the first-generation chromosome 𝑮1 using ChromosomeIni-
tialization(). Subsequently, the optimization (generation update) loop 
commences, where genes are evaluated using ConstraintCheck(𝑮𝑡𝑔 ) and 
FitnessCalculation(𝑮𝑡𝑔 ). The best solution 𝑮𝑏𝑒𝑠𝑡 is extracted using with 
BestSolutionExtraction(𝑮𝑡𝑔 , 𝑬𝐺𝑡𝑔 ). Additionally, based on the evalua-
tion values 𝑬𝐺𝑡𝑔 , 𝑮𝑡𝑔  is sorted using NonDominatedSorting(𝑮𝑡𝑔 , 𝑬𝐺𝑡𝑔 ). 
The sorted solutions 𝑮̃𝑡𝑔  along with their evaluation values 𝑬𝐺̃𝑡𝑔  are 
associated with the reference lines using the NichingWithReferenceLine
(𝑮̃𝑡𝑔 , 𝑬𝐺̃𝑡𝑔 ). Reference lines are created from points at infinity to the 
optimal point. The assignment of solutions with reference lines guides 
the exploration direction of each solution. By repeatedly applying 
this process, NSGA-III steers the exploration. Consequently, when the 
algorithm converges, the reference lines facilitate the discovery of a 
superior representative non-dominated solution.

Following the selection of solutions (sequences) to which the genetic 
operations are applied based on the assignment with the reference 
line, the process advances to the creation of the next generation 𝑮𝑡𝑔+1

through the NextGenerationCreation(𝑮̃𝑡𝑔 , 𝑬𝐺̃𝑡𝑔 ) function. The genetic 
information of the selected genes is altered through the application of 
genetic operations with the GeneticOperation(𝑮𝑡𝑔+1) function. In this 
study, we used the four genetic operators proposed in [5], namely 
crossover, mutation, cut-and-paste, and break-and-join. The process is 
repeated until the values of 𝑡𝑖 and 𝑡𝑔 reach 𝑇 𝑖

max and 𝑇 𝑔
max, respectively.

Upon completion, the optimal solution 𝑮𝑏𝑒𝑠𝑡 is stored in 𝑶̂. The 
disassembly task labels ̂ are extracted from the datasets obtained from 
the input CAD model, using LabelExtraction(𝑶̂), at the commencement 
of the algorithm. The EEF contacts ̂, arm trajectories ̂ , and object 
placement poses ̂  are extracted from the datasets generated through 
the robot simulations conducted at the beginning of the algorithm, 
utilizing OperationParameterExtraction(𝑶̂).

In the evaluation process, the feasibility and stability of each so-
lution (sequence) 𝑮𝑡𝑔

𝑖 (𝑖 = 1,… , 𝑁𝑔𝑛) are determined using the afore-
mentioned matrices, resulting in constraint satisfiability 𝑪𝐺𝑡𝑔  consisting 
of binary elements that indicate whether each solution (sequence) is
feasible, stable, and available. The number of genes is denoted by 𝑁𝑔𝑛. 
A solution is considered available if it is both feasible and stable, i.e., 
available ∶= feasible ∧ stable. The available solutions (sequences) are 
further sorted based on multiple criteria such as difficulty, efficiency, 
prioritization, and allocability. The evaluation provides evaluation val-
ues 𝑬𝐺𝑡𝑔 . The proposed MaOGA method resolves the minimization 
problem by employing multiple objective functions that are normalized 
between 0 and 1, with 0 representing the optimal value.
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Table 1
Required labels for parts.
 Label Class  
 Task screw, bolt, nut, plate, graspable, manual 
 Priority value  
 Base base  
 Ignore ignore  

3.2. CAD-informed matrices generations

This section outlines the preprocessing steps before the optimization 
loop, including the definition of part labels and the structure analysis 
of 3D CAD models. Matrix generation is also discussed, with a focus on 
determining constraints and calculating evaluation values. Part labels 
are assigned to each component of the model, as listed in Table  1. These 
labels include task labels, which link the parts to the EEFs of the robot; 
a priority label, which designates parts that should be disassembled 
preferentially; a base label, which is assigned to the root part fixed 
at the end of the sequence; and an ignore label, which is applied to 
parts that can be disregarded in the DSP as they are automatically 
disassembled during the removal of other parts.

The task labels are designated to specific parts, including screws, 
bolts, nuts, plates, graspable objects, and manually disassembled ob-
jects. The graspable label is assigned to parts other than screws, bolts, 
nuts, and plates, and can be manipulated by a two-finger gripper. 
The manual label is assigned to parts that are difficult to automate 
or necessitate special care when disassembling them. The priority and 
value labels are established for parts that merit prioritization during 
disassembly and are classified as valuable in terms of reuse, recycling, 
and remanufacturing.

To analyze the 3D CAD models (e.g., label extraction), our frame-
work utilizes pythonOCC,3 which is a Python wrapper for the OpenCAS-
CADE4 library. The pythonOCC converts the standard for the exchange 
of product (STEP) model data into a format that allows for the extrac-
tion of part names, 3D poses, and shapes of the target product. The label 
for each part is obtained by splitting the part name using an underscore 
as the delimiter.

To obtain a quantifiable representation of part relationships, we em-
ployed previously proposed matrix representations [5,21].
Tariki et al. [5] utilized pythonOCC to generate the interference-free 
matrices 𝑿𝑖𝑓

𝑗 (𝑗 = 1,… , 6) with elements indicating binary values 
of interference or interference-free between each set of two parts. 
Kiyokawa et al. [21] presented a method for generating a constraint 
degree matrix 𝑿𝑐𝑠 and contact matrix 𝑿𝑐𝑡, which indicates the degree 
of constraint from 0 to 12 and the binary values of contact between 
each set of two parts. In this study, we develop constraint-free matri-
ces 𝑿𝑐𝑓

𝑗 (𝑗 = 1,… , 12) and the motion feasibility matrices 𝑿𝑚𝑓
𝑖 (𝑖 =

1,… , 𝑁𝑝). As the total number of elements in the interference-free 
matrix, constraint degree matrix, contact matrix, constraint-free matrix, 
and motion feasibility matrix is 20×𝑁𝑝×𝑁𝑝+

∑𝑁𝑝

𝑖=1 𝑁
𝑚
𝑖 ×𝑁𝑝, where 𝑁𝑚

𝑖
represents the number of feasible motions for each part 𝑃𝑖, it becomes 
increasingly imperative to develop efficient matrix calculation methods 
as the number of parts increases and the calculation time becomes 
exponentially more significant.

According to the definitions of an interference-free matrix, the ma-
trix in each negative axis direction must be identical to the transposed 
matrix in each positive axis direction. The constraint degree matrix 
signifies the constraints existing between the different parts, and its 
order is immaterial. Hence, we can replicate the upper triangular 
components with its corresponding lower triangular components. Simi-
larly, the lower triangular components of contact matrix and constraint 

3 https://dev.opencascade.org/project/pythonocc
4 https://www.opencascade.com/
5 
degree matrix can be derived from the corresponding upper triangular 
components.

To calculate the interference-free matrix and constraint degree ma-
trix, we employ a simulation using a CAD model. Specifically, we place 
the two target parts in their assembled pose and check for interference 
when the target part is displaced in the axial direction relative to the 
object coordinate system. The target part is displaced by the length of 
the corresponding side of the bounding box that encompasses the two 
target parts unless interference is detected. Additionally, we conduct 
a displacement simulation to generate the constraint degree matrix by 
altering the pose of the target part according to the specified maximum 
clearance distance for the target product.

3.3. Constrained many-objective optimization

The figure depicted in Fig.  2 presents a proposed NSGA-III [15]-
inspired MaOGA that displays a high level of performance in many-
objective optimization problems with four or more objectives. The 
gene representation is initially arranged according to the user-defined 
number of genes (Step 1). To increase the number of effective initial 
solutions, the CCG is employed. The evaluation process for multiple 
objective functions is then carried out (Step 2). To incorporate the 
principles of NSGA-III, non-dominated sorting (Step 3) and reference-
line-based gene selection (Step 4) are applied. The algorithm proceeds 
to generate the next chromosome (Step 6) and apply genetic operations 
(Step 7) unless the termination condition is met (Step 5).

The genetic encoding of information onto chromosomes and the 
subsequent genetic operations rely on existing methods, the efficacy 
of which has been demonstrated in the enhancement of ASP optimiza-
tion [5]. These operations are subsequently applied, and the process 
returns to Step 2 and repeats until the specified termination condition 
is satisfied.

The four objective functions designed in this study are calculated 
from the information extracted from the 3D CAD model. This study 
considers a minimization problem that evaluates all objective functions 
equally, with 0 being the optimal evaluation value and 1 being the 
worst.

3.3.1. Constraints based on feasibility and stability
If the sequence is either infeasible or unstable, the disassembly 

operation cannot be executed by either human or robot. Conversely, 
if the sequence satisfies all constraints (available), then only those 
sequences that satisfy the constraints will be evaluated based on other 
objective functions.

The feasibility of the sequence is determined by checking both the 
order and motion feasibility. The order is considered order-feasible if 
it adheres to the specified conditions regarding the interference-free 
matrices 𝑿𝑖𝑓

𝑗 (𝑗 = 1,… , 6): 
𝑁𝑝
∑

𝑘=2

(𝑘−1
∏

𝑖=1

6
∑

𝑗=1
𝑋𝑖𝑓

𝑗 (𝑃𝑂𝑖
, 𝑃𝑂𝑘

) > 0 ? 1 ∶ 0

)

= 𝑁𝑝 − 1. (1)

The order is considered motion-feasible if one or more collision-free 
and IK-solvable contacts and trajectories are found for all disassemblies 
needed to complete the sequence. Hence, the target sequence is deter-
mined as motion-feasible when the following conditions regarding the 
motion-feasibility matrices 𝑿𝑚𝑓

𝑖 (𝑖 = 1,… , 𝑁𝑝) are fulfilled. 
𝑁𝑝
∑

𝑘=2

(𝑘−1
∏

𝑖=1

𝑁𝑚
𝑝𝑜𝑘
∑

𝑗=1
𝑋𝑚𝑓

𝑝𝑜𝑘(
𝑝𝑜𝑘
𝑗 , 𝑃𝑂𝑖

) > 0 ? 1 ∶ 0

)

= 𝑁𝑝. (2)

where 𝑋𝑚𝑓
𝑝𝑜𝑘(

𝑝𝑜𝑘
𝑗 , 𝑃𝑂𝑖

) represents the motion feasibility value between 
𝑖th part 𝑃𝑂𝑖

 and the 𝑗th set of feasible motion 𝑝𝑜𝑘
𝑗  for the target 

𝑘th part 𝑃𝑂𝑘
 when 𝑝𝑜𝑘 represents 𝑃𝑂𝑘

. A set of feasible motions 𝑖
𝑗

comprises feasible contact 𝑖
𝑗 , feasible trajectories 

𝑖
𝑗 , and feasible 

object placement  𝑖
𝑗 . The number of feasible motions generated for 

each part is represented by 𝑁𝑚 (𝑖 = 1,… , 𝑁𝑝).
𝑖

https://dev.opencascade.org/project/pythonocc
https://www.opencascade.com/
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The evaluation of stability involves the assessment of two distinct 
criteria. The first criterion pertains to whether the parts remaining 
after removal of the target part can maintain an upright posture in 
the workplace (upright condition). The second criterion involves de-
termining whether all parts are interconnected (connection condition). 
The upright condition (static stability) can be easily assessed using 
a method established in the fields of optimal 3D fabrication [50] 
and balance control of humanoid robots [51]. If flexible fixtures are 
available to hold various poses of the parts, the upright condition 
can be disregarded, as it will always be satisfied. In this study, we 
employ an array of multiple soft-jigs [52] as a solution to address this 
issue. The connection condition can be easily examined by analyzing 
the constituent elements. The sequence is considered stable when the 
following conditions are fulfilled: 
𝑁𝑝
∑

𝑘=2

(𝑘−1
∑

𝑖=1
𝑋𝑐𝑡(𝑃𝑂𝑖

, 𝑃𝑂𝑘
) ≠ 0 ? 1 ∶ 0

)

= 𝑁𝑝 − 1. (3)

The symbol 𝑿𝑐𝑡 denotes a contact matrix, where a value of one indi-
cates the presence of a nonzero value in the constraint degree matrix 
𝑿𝑐𝑠.

3.3.2. Initialization of chromosomes
To increase the number of high-quality initial solutions generated, 

we employ stability-based chromosome initialization utilizing the CCG 
depicted in Fig.  3(a). The graph is automatically generated using the 
following procedure:

(1) The parts are classified as either bolts or screws (fixing parts, 
represented by box-shaped nodes) or other parts (non-fixing 
parts, represented by circle-shaped nodes) based on the task 
labels extracted through model structure analysis.

(2) Edges are generated between each node by analyzing the contact 
matrix, connecting nodes that are in contact with each other.

(3) The edges connecting to the fixing part nodes are categorized 
and assigned as connection edges (red-colored edges) and other 
edges (black-colored edges).

The numbers in the nodes correspond to the part index of the disassem-
bly target product.

The following procedure is performed based on the generated CCGs:

(1) The base-labeled part or the largest part is designated as the root 
node.

(2) The distance (minimum number of edges) from the root node to 
each node is calculated.

(3) A node is randomly selected from the set of nodes at the maxi-
mum distance.

(4) If the selected part is a fixing part, it is placed at the beginning 
of the sequence. If it is a non-fixing part, a neighboring part 
connecting the selected part to another part is randomly selected 
and placed at the beginning of the sequence. If there are no fix-
ing parts, the selected non-fixing part is placed at the beginning 
of the sequence.

(5) Steps 2 to 4 are repeated until only the root node remains. The 
part displaying the root node is then placed at the end of the 
disassembly sequence, resulting in the end of the generation 
process.

Fig.  3(b) shows snapshots of an example of the disassembly procedure. 
The absence of isolated nodes not connected to any edge indicates that 
every disassembly can be regarded as stable.

The essential prerequisite for attaining an interference-free se-
quence when dealing with a fully constrained part restricted from 
moving in all 12 directions is the prioritized removal of the fixing 
part. Therefore, utilizing CCGI is more advantageous for generating 
interference-free initial solutions than relying on random initialization. 
6 
In other words, the use of CCGI is more likely to result in the generation 
of an available sequence.

Subsequently, the optimization process commences with the initial 
solutions. Throughout the optimization procedure, feasible and stable 
solutions also improve the evaluation of the objective functions. To 
ensure uniformly evaluated multiple objectives, the objective values 
must be normalized, enabling meaningful distance metric computations 
in the objective space. Experimental results from a previous study by 
Blank et al. [53] indicated that normalization affects the performance of 
evolutionary multi-objective optimization algorithms. Thus, this study 
normalizes the four objectives to values ranging from zero to one, as 
described in the following sections.

3.3.3. Difficulty
Among the various difficulty definitions [54], we propose a specific 

definition for the objective function that corresponds to the constraint 
state transition difficulty [55], which is a type of order difficulty. This 
can be expressed as follows: 

𝑓𝑑 ∶=
{

𝐻∕12(𝑁𝑝 − 1) if 𝑶 is available
1 otherwise . (4)

where 𝐻 denotes the maximum level of constraint state transition 
difficulty associated with the disassembly of each individual part. 

𝐻 ∶= max
𝑘∈{2,3,…,𝑁𝑝}

𝑘−1
∑

𝑖=1
𝑋𝑐𝑠(𝑃𝑂𝑖

, 𝑃𝑂𝑘
) < 12(𝑁𝑝 − 1). (5)

∑𝑘−1
𝑖=1 𝑋𝑐𝑠(𝑃𝑂𝑖

, 𝑃𝑂𝑘
) represents the total constraint degree imposed on 

the 𝑘th part 𝑃𝑂𝑘
 and its undisassembled parts 𝑃𝑂1

, 𝑃𝑂2
,… , 𝑃𝑂𝑘−1

. In 
accordance with the established definition, the maximum constraint 
degree between the two parts is 12, consequently, each element of the 
constraint degree matrix 𝑿𝑐𝑠 is calculated as 

𝑋𝑐𝑠(𝑃𝑖, 𝑃𝑘) = 12 −
12
∑

𝑗=1
𝑋𝑐𝑓

𝑗 (𝑃𝑖, 𝑃𝑘) ∈ {0,… , 11}. (6)

The matrix 𝑿𝑐𝑓
𝑗 (𝑗 = 1,… , 12) represents the constraint-free matrix.

3.3.4. Efficiency
The task labels are utilized to maximize the efficiency of the se-

quence of tasks by minimizing the number of task changes and the 
distance between the center of mass of the target parts. 

𝑓𝑒 ∶=

⎧

⎪

⎨

⎪

⎩

[𝑁 𝑡𝑐∕(𝑁𝑝 − 1)
+𝐷∕(𝑁𝑝 ×𝐷max)]∕2 if 𝑶 is available

1 otherwise
. (7)

The number of task changes 𝑁 𝑡𝑐 can be determined by analyzing the 
task labels 𝑇𝑂𝑖

 of each part 𝑖 = 1,… , 𝑁𝑝. 

𝑁 𝑡𝑐 =
𝑁𝑝
∑

𝑘=2

[

(𝑇𝑂𝑘
= 𝑇𝑂𝑘−1

) ? 1 ∶ 0
]

. (8)

The total moving distance 𝐷 can be determined by measuring the 
distance 𝑑𝑃𝑖 ,𝑃𝑗  between each part. 

𝐷 =
𝑁𝑝
∑

𝑘=2
𝑑𝑃𝑂𝑘 ,𝑃𝑂𝑘−1 . (9)

The maximum distance between any two parts is denoted by 𝐷max.

3.3.5. Prioritization
The objective function for prioritization is defined as follows: 

𝑓𝑝 ∶=
{

1 − 𝑅∕
∏𝑁𝑝

𝑙=𝑁𝑝−𝑁𝑝𝑝 𝑙 if 𝑶 is available
1 otherwise

. (10)

𝑁𝑝𝑝 denotes the number of prioritized parts. The degree of prioritiza-
tion 𝑅 is determined by the positions of priority parts. 

𝑅 =
𝑁𝑝𝑝
∑

𝑂𝑝
𝑚. (11)
𝑚=1
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Fig. 4. Robotic disassembly setup for simulation experiments.

Fig. 5. Model appearance and assigned parts labels.

𝑂𝑝
𝑚 represents the ordinal position of the 𝑚th priority part.

3.3.6. Allocability
Allocability is based on the sequential position of the manually 

labeled parts to be disassembled. 

𝑓𝑎 ∶=
{

|𝑂𝑚
𝑟 − 𝑂𝑚

𝑙 |∕(𝑁
𝑝 − 1) if 𝑶 is available

1 otherwise . (12)

𝑂𝑚
𝑙  and 𝑂𝑚

𝑟  indicate the latest and earliest ordinal positions of manually 
disassembled parts, respectively.

4. Experiments of robotic DSP

4.1. Overview

Our experiments verified the efficacy of the proposed method in 
terms of structure analysis, matrix generation, and DSP using the 
robotic disassembly setup illustrated in Fig.  4. The objective of our 
experiments was to evaluate the performance of the proposed method 
on a belt drive unit used in an assembly challenge [56]. Fig.  5 depicts 
the appearance of the CAD model and shows the labels assigned for our 
experiments.

The product disassembly system incorporated a seven-degree-of-
freedom (DoF) arm and various EEFs. Three different types of two-
finger parallel grippers were utilized: the Robotiq 2F-85 (E1), the 
Robotiq HandE (E2), and the Robotiq HandE with longer fingers (E3). 
7 
In order to enable the robot arm to screw bolts and screws using a two-
finger parallel gripper, Hu et al. [57] developed a mechanical screwing 
tool. The system utilized three configurations of the screwing tool with 
different tool tip parts: M3 hex wrench (E4), M4 hex wrench (E5), 
and M6 socket wrench (E6). The suction gripper employed was the 
CONVUM SGB30 (E7), also known as the balloon hand. It is well suited 
for a wide range of workpiece shapes and sizes, capable of handling 
even uneven or heavy workpieces.

The process of structural analysis involves identifying the labels 
assigned to various parts. The belt drive unit comprises the labels of 
screw, bolt, nut, plate, graspable, manual, value, base, and ignore. The 
P4 motor was regarded as a valuable part, hence it possesses a value 
label in addition to its manual label, owing to its delicate disassembly 
process. The rubber belt P6 and hexagon socket set screw P35 were 
also assigned a manual label because of their difficulty in robotic 
disassembly. The spacers P9, P10, and P12, pulley P13, and washers 
P16 and P17 were assigned the ignore label, as they will naturally come 
off during the disassembly process of other parts.

The allocation of the seven types of EEFs was determined according 
to the task label and shape features for 27 of the 36 parts. These 27 
parts, namely P1, P2, P3, P5, P7, P8, P11, P14, P15, P18, P19, P20, 
P21, P22, P23, P24, P25, P26, P27, P28, P29, P30, P31, P32, P34, P35, 
and P36 did not have a manual or ignore label. Therefore, for these 
parts, we have assigned E7, E2, E2, E2, E2, E1, E2, E5, E6, E5, E5, E5, 
E5, E5, E5, E5, E4, E4, E4, E4, E4, E4, E5, E5, and E3.

The generation of sequences requires several parameters 𝑷 𝑔𝑎, in-
cluding the number of chromosomes, crossover rate, mutation rate, 
cut-and-paste rate, and break-and-join rate, which are identical to those 
utilized in [21]. In our methodology, we set the number of generation 
updates to 500, and the number of iterations to 10. To create robot 
motions, we utilize a contact planning software5 that uses an object-
geometry-based approach to potential contact generation, as described 
in [58]. The robot arm trajectory planner relies on the RRT-connect 
algorithm [59], which was implemented in MoveIt! motion planning 
framework6 of robot operating system (ROS), as well as IKFast [60] for 
solving the kinematics. In a work environment equipped with four soft-
jigs arranged on the workspace, as depicted in the upper right corner 
of Fig.  4, during the processing of RobotSimulation(𝑴) in Algorithm 
1, the target assembled parts were positioned and oriented in the soft-
jig array. Thereafter, a trajectory was explored to identify potential 
collision-free contact points and efficiently executable trajectories for 
the target product at these specific positions and orientations.

4.2. Results of CAD-informed matrices generations

In order to generate multiple matrices for determining the con-
straints and calculating the evaluation values in the optimization, we 
initially conducted a thorough analysis of the 3D CAD models. Our 
analysis successfully extracted all part labels with a high degree of ac-
curacy. The center of mass and pose parameters obtained from the STEP 
model were accurately extracted with 100% accuracy, as illustrated 
in Fig.  6(a). The interference check between parts for matrix generation 
is shown in Fig.  6(b), where the red highlighted area indicates the 
interfered volume between the base plate part P1 and L-shaped plate 
part P2.

We assessed the performance of the automatic matrix extraction 
based on accuracies. The constraint degree matrix contains positive 
integers, and the calculation was regarded as successful when a positive 
integer was correctly determined to match the manually annotated 
value.

The generation accuracies of the interference-free and contact ma-
trices were 98.9% and 96.8%, respectively. The success rates of the 

5 https://github.com/UOsaka-Harada-Laboratory/wros
6 https://moveit.ros.org/

https://github.com/UOsaka-Harada-Laboratory/wros
https://moveit.ros.org/
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Fig. 6. Results of structure analysis and interference check for the belt drive 
unit. (a) Center of mass and pose. (b) Example of interference.

Fig. 7. Success rates of finding constraint-satisfied sequences in 1000-trial 
initialization [%]. RI, FR, SR, and SFR are comparative methods that 
show random initialization, feasibility-based rearrangement, stability-based 
rearrangement, and stability-and-feasibility-based rearrangement methods, re-
spectively.

constraint degree and constraint-free matrices were 90.2% and 92.9%, 
respectively, which were not low. The interference checks based on the 
displacement simulation can sometimes fail due to the limitations of 
the Boolean operation performance. The Boolean operations between 
curved surfaces can be challenging and may result in errors. In the 
future, it may be necessary to consider a method for directly estimating 
the degree of constraint based on the shape.

4.3. Optimizing sequences

4.3.1. Performance of Chromosome initialization
We undertook a comparative analysis of chromosome initializa-

tion methods. To this end, we devised three methods for initializing 
chromosomes: random initialization (RI), repeated sequence changes 
to minimize interference (FR) [5], and repeated sequence changes to 
maximize stability (SFR). Fig.  7 shows the result comparisons. The bars 
depict the mean values of the feasible, stable, and available (feasible 
and stable) rates [%] for the 1000-trial initialization. Although the 
rates of feasible solutions with FR and SFR were 27.1% and 39.6%, 
respectively, the rates of stable solutions were 0.2% and 3.6% for 
FR and SFR, which resulted in available rates of 0.1% and 3.3%, 
respectively.

Nevertheless, the feasibility, stability, and availability rates for the 
proposed method were 47.3%, 100%, and 47.3%, respectively. The 
results indicate that the proposed method can generate a feasible and 
stable sequence when compared to other methods.

4.3.2. Performance of optimization
The generated order 𝑶̂ composed of elements 1, 3, 19, 18, 14, 15, 

7, 8, 24, 22, 23, 25, 11, 36, 34, 35, 26, 2, 20, 21, 4, 29, 28, 27, 
31, 32, 30, 5, 33, 6 attained the lowest evaluation value among all 
evaluated sequences. This sequence includes parts with manual labels, 
but excludes those with the ignore label. This sequence is a feasible and 
stable (available) solution that adheres to all imposed constraints.

Fig.  8 shows the generated sequence. As can be observed in the 
figure, the unconstrained parts P6 and P33 with manual labels, are 
situated at the commencement of the sequence. In addition, motor 
8 
part P4 with manual and value labels, is disassembled at the earliest 
possible timing following the elimination of all constraining parts, 
namely P5, P30, P32, P31, P27, P28, and P29. It is worth noting 
that other arrangements also fulfill order feasibility, motion feasibility, 
and stability, while simultaneously exhibiting low difficulty and high 
efficiency, and adhering to label-defined prioritization.

Fig.  9(a) presents the performance comparison results. We con-
ducted ten iterations of 500 generation updates for the optimization 
loop. Fig.  9(a) shows the mean values of the available, feasible, and 
stable rates. Fig.  9(b) shows the mean and standard deviation of the 
evaluation values for each objective function. The bars represent the 
mean values and error bars indicate the standard deviations. The ’w/o 
CCGI’ method does not utilize CCGI but instead uses an initialization 
method that considers only feasibility, as previously described in [5]. 
The ’w/o NSGA-III’ result is based on the NSGA-II-inspired algorithm 
proposed in [21]. The ’w/o 𝑓𝑑 ’, ’w/o 𝑓𝑒’, ’w/o 𝑓𝑝’, and ’w/o 𝑓𝑎’ denote 
the optimization results excluding each of the objective functions of 
Eqs. (4), (7), (10), and (12).

The effectiveness of the proposed initialization method in consis-
tently producing available solutions was demonstrated by the lack of 
solution generation when the CCGI method was not employed, resulting 
in a 0% rate of available solution generation. Comparing the proposed 
method with the ’w/o NSGA-III’ method, both achieved 100% success 
rates in generating available solutions. When evaluating the perfor-
mance of each method based on the four objective functions, Difficulty, 
Efficiency, Prioritization, and Allocability, the mean evaluation values 
of both of them are almost the same.

The visualizations in Fig.  10 display the mean evaluation values of 
the final solutions after each optimization iteration. For the petal chart, 
smaller petals indicate better evaluation values. In the case of the radar 
chart, a smaller square area signifies a better evaluation value. The 
graphs (original) show the values calculated using 𝑓𝑑 , 𝑓𝑒, 𝑓𝑝, and 𝑓𝑎. 
The graphs for the relative evaluation values 𝑓 ∗

𝑑 , 𝑓 ∗
𝑒 , 𝑓 ∗

𝑝 , and 𝑓 ∗
𝑎  were 

min–max normalized to scale the maximum value of each objective 
function in all methods except ’w/o CCGI’ to 1.0. Fig.  11 depicts the 
transitions of constraint satisfaction rates for the ’w/o NSGA-III’ and 
proposed methods. Fig.  12 depicts the learning curves for the four 
objective functions evaluated in the cases of using their two methods.

As depicted in the charts presented in Fig.  10(a) and (c), the perfor-
mance of the proposed method and other comparative methods may not 
exhibit significant disparities. In fact, the sum of our evaluation values 
(original) for ’w/o CCGI’, ’w/o Difficulty’, ’w/o Efficiency’, ’w/o Pri-
oritization’, ’w/o Availability’, and Proposed amounted to 4.0, 0.918, 
0.934, 1.22, 1.07, and 1.01, respectively. On the other hand, the stan-
dard deviations of the normalized evaluation values were 0.073, 0.180, 
0.253, 0.158, 0.129, and 0.042, respectively. Notably, the proposed 
method exhibited the lowest standard deviation. This result indicates 
that the proposed method was effective in optimizing the system while 
simultaneously evaluating four objective functions.

As evidenced in Fig.  11, although both methods achieved a con-
straint satisfaction rate of 100% by the 5-th generation, the proposed 
method demonstrated a more rapid improvement in these rates up to 
that point. Additionally, as depicted in Fig.  12, the proposed method 
achieves a smoother and more consistent learning curve compared 
to the ’w/o NSGA-III’ method, suggesting that the proposed method 
consistently and stably reduced the evaluation values of the four objec-
tive functions throughout the learning process. These findings suggest 
that the NSGA-III-inspired algorithm is beneficial for facilitating con-
vergence in the learning process. In forthcoming studies, we intend 
to further explore the effectiveness of this feature by applying the 
proposed method to a variety of other target objects.

Fig.  13 shows a comparison of performance using methods that 
employ a single objective function. The bars above the titles of ’w/ 
Difficulty’, ’w/ Efficiency’, ’w/ Prioritization’, and ’w/ Allocability’ rep-
resent the mean values of the four objective functions when optimizing 
the solutions under constraints and a single objective function of 𝑓 , 
𝑑
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Fig. 8. A sequence determined after the optimization. The disassemblies shown in the snapshots are order-feasible (interference-free) and stable.
Fig. 9. The many-objective optimization results of 500-generation and 10-
iteration optimization. (a) Percentages of constraint-satisfied solutions [%]. (b) 
Mean ± standard deviation of the evaluation values.

𝑓𝑒, 𝑓𝑝, and 𝑓𝑎, respectively. The error bars indicate standard deviations. 
The evaluation value using 𝑓𝑑 for ’w/ Difficulty’ method is 0.075, which 
is the lowest values compared to those of other methods. The difficulty 
evaluation values of ’w/ Efficiency’, ’w/ Prioritization’, and ’w/ Allo-
cability’ methods are 0.112, 0.147, and 0.142, respectively. As shown 
in Fig.  13, the other three evaluation values exhibited the same trend. 
The results shown in Fig.  13 demonstrate that the proposed algorithm 
can effectively perform single-objective optimization, allowing users to 
choose the objective function that they wish to prioritize.

4.4. Feasibility of robotic disassembly

Fig.  14 illustrates the feasible contacts by the task-tailored EEFs. The 
EEFs colored in green indicate successful contacts, while those colored 
in red represent failed contacts resulting from collisions. We chose the 
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approachable contact from the robot’s EEF pose among the feasible 
contacts .

Fig.  15 illustrates the generated feasible (collision-free and IK-
solvable) motions for the optimal sequence for robotic disassembly. Fig. 
15 includes snapshots of the generated EEF contact ̂, arm trajectory 
̂ , and object placement pose ̂  fixed on the soft-jig array. For each 
disassembly, the three pictures show the arm in a pose at the post-
contact position, the zoom of the post-contact pose, and the placement 
pose. It is crucial to place the robot in such a position that the target 
part falls within the arm’s movable range. In some cases, moving the 
target part to the arm side using a turntable or a flexible fixture placed 
beneath the object can be effective even for large objects. Our solution 
was to use a soft-jig, which was previously developed in [52,61,62]. 
The specific approach may vary based on the configuration of the 
robot arm, target part, and workspace, utilizing a soft-jig array such 
as ours (Fig.  4), which can fix the target parts in various positions and 
orientations, enabling the generation of a greater number of trajectory 
candidates that facilitate the arm approach to the target part.

Although this study did not specifically focus on robot motion 
planning for real-world tasks, the findings nonetheless revealed the 
capability to devise feasible contact for all parts using their correspond-
ing EEFs, as well as the corresponding trajectory for all pick-and-place 
tasks, spanning the entire sequence.

5. Discussions

5.1. Efficient and robust matrix generation

The time required for each module in this study was 12.7 s, 16400 s 
(4.57 h), and 1050 s (17.5 min) for model structure analysis, matrix 
generation, and sequence exploring, respectively. The computational 
time depends on the size of the STEP file (13.8 [MB]) and the number 
of parts (36 parts). Specifically, when multiple fine curved surfaces, 
such as fillets, are represented precisely, the cost of calculation becomes 
excessive when conducting Boolean operations to assess interferences 
among them.

The reliability of matrix generation depends heavily on the ro-
bustness of these Boolean operations. In future work, to mitigate the 
computational burden and potential failures, we aim to develop a 
method that simplifies the shape and reduces computational costs. 
Utilizing the latest semantic shape representations [63,64] or coarse 
collision proxies for initial pruning can drastically reduce the frequency 
of exact Boolean checks.

Similarly, the lack of an automatic labeling pipeline limits out-of-
the-box applicability. Currently, we utilize manual input for explicit 
labels to ensure accuracy. However, to minimize the burden on the 
model designer, it is desirable to develop a method for automatically 
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Fig. 10. Visualization of the mean evaluation values over the generation updates for all iterations. (a) Petal chart (original). (b) Petal chart (relative evaluation). 
(c) Radar chart (original). (d) Radar chart (relative evaluation). For the petal chart, the smaller each petal, the better is the evaluation value. Regarding the radar 
chart, the smaller the square area, the better the evaluation value. The graphs for the relative evaluation were min–max normalized so that the maximum value 
of each objective function in all methods except ’w/o CCGI’ was scaled to 1.0.
extracting labels from geometric information. The PointNet series [65–
67] has demonstrated the potential to classify 3D shape data. Integrat-
ing such learned classifiers to directly infer task and base labels from 
geometric characteristics represents a viable solution to enhance the 
framework’s adaptability.

5.2. Optimization algorithm

To further improve convergence speed and optimize solution qual-
ity, the static parameters used in the current MaOGA (e.g., crossover 
and mutation rates) could be dynamically adjusted. The incorporation 
of adaptive parameter tuning, which regulates exploration and exploita-
tion balance based on the generation progress, is a promising strategy 
to accelerate the search process.

Additionally, computational efficiency can be enhanced by focusing 
on user-preferred regions of the Pareto front. Several extended NSGA-
III algorithms have been proposed, such as U-NSGA-III [68], which 
incorporates tournament pressure to achieve unified and improved per-
formance. Furthermore, R-NSGA-III [69] extends the procedure by in-
troducing reference points according to user-supplied aspiration points.

Our experimental results indicate that there may be varying levels 
of heterogeneity in the balance of each objective function depending 
on the target product. Therefore, it may be beneficial to first use a 
general NSGA-III search to identify these heterogeneities and then use 
a combination of U-NSGA-III and R-NSGA-III to efficiently optimize 
them in a narrower search space. This focused approach allows the 
algorithm to converge more rapidly to high-quality solutions, avoiding 
the computational cost of approximating the entire Pareto-optimal 
front.
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5.3. Scalability

The matrix generation process currently imposes a computational 
burden. However, in the context of offline process planning for re-
manufacturing, this duration serves as a one-time setup cost [24]. 
This characteristic mitigates the impact of the initial calculation time, 
clarifying its validity for high-volume scenarios where the optimized 
sequence is repeatedly executed for identical products.

To further ensure scalability for larger assemblies or more complex 
products, we can employ strategies beyond the shape simplification. 
First, the interference checks, which dominate the computation, can 
be accelerated through parallel computing since they are computa-
tionally independent for each part pair. Second, adopting a hierar-
chical approach by decomposing a large assembly into subassemblies 
can effectively manage the combinatorial complexity of the sequence 
optimization [27]. Additionally, integrating learning-based methods 
to infer removability or approximate collision checks [29,30] offers 
a promising direction to significantly reduce the frequency of exact 
Boolean operations required during the initial planning phase.

5.4. Real-world disassembly

The proposed approach relies on geometric reasoning within a simu-
lated environment, assuming rigid bodies and perfect perception. How-
ever, shifting to real-world scenarios introduces physical uncertainties, 
such as sensor noise, friction, and part deformation. Therefore, the 
validity of the generated sequence lies in its role as a high-level nominal 
plan. To bridge the gap between simulation and reality (Sim2Real), 
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Fig. 11. Changes in the mean values (over 10 iterations) of the constraint 
satisfaction rates [%] during 500 generation updates in the first iteration. 
(a) ’w/o NSGA-III’. (b) Proposed. After the fifth generation, all constraint 
satisfaction rates were 100%. The translucent bands around the lines illustrate 
the standard deviations (over 10 iterations).

Fig. 12. Changes in the mean evaluation values (over 10 iterations) during 
500 generation updates in the first iteration. (a) ’w/o NSGA-III’. (b) Proposed. 
The translucent bands around the lines illustrate the standard deviations (over 
10 iterations).

the geometric plan must be coupled with robust low-level execution 
strategies.

In contrast to the process of assembly, which requires precise and 
meticulous operations, disassembly can sometimes tolerate minor dam-
age to target products, with the exception of high-value parts that 
11 
Fig. 13. Final evaluation values of single-objective optimization. The mean ±
standard deviation of the evaluation values ranged from 0 to 1 in the 500-
generation and 10-iteration optimizations [%].

must be carefully disassembled. The generation of robotic disassembly 
operations in simulations, such as cutting or crushing flexible objects or 
removing parts without disassembling fasteners, presents a significant 
challenge. A promising new approach to self-supervised learning in 
a real-world environment holds potential for acquiring disassembly 
tasks that involve breaking and damage. Future studies will consider 
constructing such an approach.

On the other hand, there are situations in which every part must 
be carefully disassembled without compromising the quality of the 
materials or breaking them. The precise disassembly operations can 
be achieved by following the reverse sequence of the assembly opera-
tions. In recent years, reinforcement learning approaches have garnered 
attention for enabling robots to perform contact-rich manipulation 
tasks in real-world environments, thereby bridging the gap between 
simulation and reality [70]. It may be possible to address the learning 
problem of the disassembly action policy inference model in a similar 
manner, by following the analogy between assembly and disassembly.

5.5. HRC-oriented DSP

The proposed method for DSP is not limited to the domain of robot 
motion generation but may also prove effective in teaching sequences 
to human workers. By selecting the desired product model using a 
tablet computer, the results of the automatic DSP can be presented as 
a guide to efficiently determine the order of the disassembly parts.

This study represents an initial effort to simplify sequencing the 
semi-automated disassembly operations. While other criteria for eval-
uating sequences exist, such as those organized in [71], this study 
focused solely on four perspectives: difficulty, efficiency, prioritization, 
and allocability. As not all objective functions created based on the 
provider’s motivation can be validated, this study sought a solution for 
one example design using an evolutionary many-objective optimization 
algorithm. Kiyokawa et al. [54] provide further definitions of the 
difficulty and complexity.

Previous studies have explored the application of graph representa-
tion to determine the necessary operations, tasks, motions, arms, and 
tools for cooking and furniture assembly sequences using robots [72–
75]. The use of graph-based methods for determining arm and tool 
availability, calculating efficiency, and determining difficulty levels at 
different stages represents a promising direction for developing a more 
general disassembly sequence planner. If we could design the method 
to encode the graph into the genes and genetic operations based on the 
encoded representation, it could potentially be accomplished.
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Fig. 14. The generated feasible contacts  for each target part by the EEFs. The green EEFs show collision-free contacts that do not interfere with the target 
object. The red circles show the possible failed contacts owing to collisions. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.)

Fig. 15. The generated feasible (collision-free and IK-solvable) motions include ̂, ̂ , and ̂ . The three pictures for each disassembly show the arm in a pose at 
the post-contact position, the zoom of the post-contact pose, and the placement pose.
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6. Conclusion

This study focused on disassembly sequence planning (DSP) that 
incorporates semi-automated robotic operations. The proposed robotic 
DSP method uses an evolutionary many-objective optimization algo-
rithm, namely NSGA-III-inspired MaOGA that iteratively updates gen-
erations and evaluates them with multiple objective functions and 
constraints.

The results of the disassembly sequence planning for a mechanical 
product with 36 parts showed that the proposed method can find a 
Pareto optimal solution oriented towards semi-automated robotic oper-
ations. The algorithm successfully generated a sequence that satisfied 
the feasibility, stability, and improved conditions in terms of difficulty, 
efficiency, prioritization, and allocability functions.

Specifically, the use of contact and connection graph (CCG)-based 
initialization allows for the repeatable generation of a large num-
ber of available initial solutions, whereas the algorithm utilized non-
dominated sorting and niching with reference lines to encourage steady 
and stable exploration of the solutions and uniformly lower overall 
evaluation values. The final solution featured interference-free, stable, 
efficient, easy-to-handle, correctly prioritized, and non-redundantly 
task-assigned order that enables robots collision-free, IK-solvable, and 
efficient motions in the context of semi-automated robotic disassembly 
operations.
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