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Some Generalizations of Quasi-Frobenius Rings

By Masatoshi IKBDA

Let A be a ring satisfying the minimum condition for left and right
ideals. (We shall understand by a ring always such one.) Let S be
a set of elements of A. We shall denote the set {x\xS = 0 %e A\ by
l(S) and the set {y\Sy = 0 ye A] by r(S). Let N be the radical of
A, A/N = A = Aλ +... + An be the direct decomposition of A into simple

two-sided ideals Aκ and let /(*), e*,*, eκ = eκ, l9 cκίi,j, and £ r

κ = Σ eκti
i = l

(K = 1,...,%) have the same meaning as in Fr. I § 1 or S. Ix). Namely
eKft, (/c = 1,..., n i = 1,..., /(*)) are mutually orthogonal primitive
idempotents whose sum is a principal idempotent E of A, whence

A = Σ Σ] M.ί + U#) ( = Σ Σ^ eKfiA + r(E)) is the direct decomposi-
*=1 i=i * = i 2 = 1

tion of A into directly indecomposable left ideals A eκ, t (right ideals
eκ%iA) and a left ideal l(E) (right ideal r{E))f here Ae^i^e^iA) and
.̂̂ λ, J (̂ λ, J-4) a ^ e operator isomorphic if and only if K = λ. And cκ, it j ( « = l f

... ,n; ΐ = l,...,/(/c), ; = 1,..., /U)) are matric units, c ( C,< f Jc ; j Λ, f c=δM λδΛ Λc ( C f t,3 f c

for any /c, λ, i, j\ h, k and cκ, i9 i — eκyi for each K, L The residue class
Eκ of J5r

κ mod. ΛΓ is the identity element of Άκ for each K. For the
sake of brevity we shall call a ring A a D^ing (Dr-ring) if in A the
duality relation Z (r(I)) = I (r(Z (x)) = x) holds for every left ideal I (right
ideal x) of A. And if in A the duality relation I (r(I)) = I « Z (x)) = x)
holds for every nilpotent simple left ideal and zero (every nilpotent
simple right ideal and zero), then we shall call A an S. During (S. Dr-
ring).

Recently T. Nakayama studied the structure of quasi-Frobenius
rings2^ and, in the previous note S. IF\ T. Nakayama and the writer
proved some properties of Dr?*ίngs. In this note we shall consider the
structure of S. Barings and refine Theorem 3 in Fr. I and Theorem 2
in S. II. Finally we shall consider some special Darings, and give some
results about them.

1) T. Nakayama: On Frobeniusean algebras I, II, Annals ot Math. 42 (referred to Fr. I,
II,) T. Nakayama: Supplementary remarks on Frobenius algebras I, Proc. Japan Acad. (1949)
(referred to S. I)

2) See Footnote 1).
3) T. Nakayama and M. Ikeda: Supplementary remarks on Frobenius algebras II. Osaka

Math. Journ. 2 (1950) (referred to S. II)
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1. S. Darings.
Theorem 1. Any S. During has the properties \
(I) A has an identity element.
(II) There exists a permutation n of (1, 2,... , n) such that for each

K, a) Aeκ has a unique simple left subideal which is isomorphic to
A e^/N eΛ0O, and b) the largest completely reducible right subideal of
eΛ((C) A is a direct sum of simple right subideals of the form ξm, where
m is an arbitrary simple right subideal of e*cO A isomorphic to eκ A/eκ N
and ξ!s are suitable uήίts^ of ^ κ ) A ^ κ ) ,

(///) f(κ) = 1 if the largest completely reducible right subideal of
e<K)A is not simple.

Proof. We can prove (I) and (II) by a slight modification of the
proof of Theorem 1 in S. II.

For the proof of (III), we shall use
Lemma 1. Let A be an S. Drring. Then eAe is also an S. Drring,

n

where e= 2 e**oo an^ eκ>κ*j is o n e °f eκ, i (i = 1,... $ f(.κ)) for each K.

Proof. We shall denote the right annihilator (in eAe) of a set *
by r°(*) and left one by i°(*). Let 1° be a left ideal of eAe, then
ASP = I is a left ideal of A and el = 1°. 1° is contained in I so l°x =
\oex = o for any element x of r(I). This shows er{l) f\ e A e = er(\) eC
r°(I°). Conversely, if x is an element of r°(ϊ°), then lx = Al°x = 0.
Therefore, x belongs to r(I), and consequently r°(ϊ°) = er°(I°) eQer(l) e.
Thus we have r°(I°) = er(l) e — er(A\°) e. A similar relation holds
obviously for any right ideal r° of eAe: ί°(r°) = el(τ°A) e. Since
r°(l°) = er(l) e, we have r°(I°) ACer(I). Conversely if x is an element
of er(J)f then er{\) contains a?co l,jc o and er(l) eA contains %cK9i9j^
ec ,Jωt = x eκti for arbitrary κ and L Since A has an identity element,

r°(l°) A = er(l) eA contains x=J]x- eκ, t. This shows r°(I°) A = er(l).

So we have ϋ°(ro(I°)) = el (r°(I°) A) e = el (er(ί)) e. It is easily seen
that I (er(I)) = AQ ~-e) + (Aef\l (r(I))). Hence ί°(r°(I°)) = e(A(l -e) +
(Ae[\l(r(l)))) e = e(A ef\l (r(I))). Now let ϊ° be a simple left ideal of
eAe, and assume that I = Al° is not simple and I' is its proper sub-
ideal. Then, since 1° is simple and eVC_el = 1°, eV is either equal to
1° or zero. If eV = ϊ°, then IQAel' = Al° = I and this is a contradic-
tion. If el' = θ, then βc,,(O eV — β.,,Cκ) Γ = eκ,M V = 0, and 0 = cκ,Λ,Cκ)
βκ.icoI'2coΛicoe«<c.ocιe.<cκ>J I/ = β o j ϊ ' f o r e a ^ h Λ:, /. Since A has an

identity element and V = \J efc, j Γ, Γ must be zero. This is a contradic-

4) A unit is an element which has its inverse.
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t ;on. Therefore I = Al° is a simple left ideal of A. By the assumption,

U<I)) = I in A. Hence l°(ro(l°)) = e(Aef\l(r(l))) = e(Aef\l). But
since I = AI°, I = le and Aef\l = I. So we have l°(r°(I°)) = el = 1°.

Now we shall prove (III). By the above lemma, eAe is also an

S. During, where we take 2 eκ as β. We shall denote eAe by A°, and

the radical eiVe of eAe by 2V°. Let A° = A°/N° = A ^ + . . . + An° be the
direct decomposition of A° into two-sided ideals Aκ°, then since each
eκ = eκ,! is a primitive idempotent, we have that Aκ° is a quasi-field
having eκ as its unit element for each K. Since A° is an S. During,
r°(iVo) = l°(N°) = M° has the unique direct decomposition into simple
two-sided ideals M° = M°ex + . . . + M°en = e7C(υ ilf° + . . . -h eeCfl) M°, and
here M°eκ = e < κ ) M o . Moreover Λf°eκ is the unique simple left ideal of
A°eκ, and is isomorphic to AoeηcU,/NΌe1tu:, therefore M°eκ = e<κ^ Aex^ mκi

where mκ is an element of M°eκ. Now let e% SΛ be an indecomposable
right ideal the largest completely reducible right subideal of which is
not simple.

Since ex^ M° is not a simple right ideal of A°9 M°es = e^s, M° =
e< c t ) AeΛ(^ ms^msesAes. Assume that f(s)~^l for such an s.

It can easily be seen that Mes = Ams, and Mes, 2 = Amscs, lf 2.
5) Now

we shall take a left subideal l = A(ms + dmscs,h2) of the completely
reducible left ideal Mes + MeS) 2, where cZ is an element of e^Ae^ such
that there exists no element df in esAes which satisfies dms = msd

f.
Since β/rCj0AeτC^m5igmse,ίAes, we can take such an element. I is a simple
left ideal, for I = AeHt)(ms + dmscst l f 2) is homomorphic to A e ^ and
ms + dmscSfli2 is annihilated by NeM. Since A is an S. During it should
be r(I)5KMe s 4- Mes, 2) = r(Mes)f\r(Mes, 2). = (1 - e s -es, 2) Af esN + e,f 2iV.
The composition length of A/r{Mes + Mes,2) is 2, and A/V(I)^
(m,+dm βc β, l f 2) A, hence the composition length of {ms-\~dmscSili2) A
should be 1.

On the other hand it can easily be seen that (ms + dmscSyli2) A =
msA \J dmscs, lt 2 A. dmscs, lt 2 does not belong to msA, for if dmscs, lt 2 G
m5A, then there exists an element d' such that dmscs,li2 = msd

r, and
this leads dmscs,ι,2cs,2,1 = dms = msd

fcs,2,i, and d'c5,2, x G e^Aes, but this
is impossible. Therefore the composition length of (rns + dmscs, l f 2 ) A is
not 1, and thus the assumption that / ( s )$ l leads to a contradiction.
This completes our proof. As a special case of this theorem, we have

Corollary 1. Let Abe a primary S. Drrί?ιg and not a quasi-Frobenius
ring. Then A is a completely primary S. Drrίng.

Corollary 2. Let A be a primary decomposable ring. Then A is an
S. Di-ring if and only if every component of A is either a quasi-Frobenius

5) M=r(N)=l(N).
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ring or a completely primary S. During and not a quasi-Frobenίus
Corollary 3. Let Abe a ring in which the duality relation I (r(I)) = I

holds for nilpotent simple left ideals and zero, and the duality relation
r(l(χ)) — χ holds for nilpotent simple right ideals. Then A is a quasί-
Frobenius ringP

As the converse of Theorem I, we have the following
Theorem 2. Let A be a ring which has the properties (/), (//) and

(III). Then in A the duarity relation 10(1)) = I holds for every com-
pletely reducible left ideal, every left ideal which contains the radical N
of A, the radical N itself, and zero. Furthermore in A the duality
relation r(7(x)) = r holds for every right ideal which contains N, and N
itself. Therefore A is an S. Drring.

Proof.
( 1 ) It can easily be seen that the duality relation holds for zero.
( 2 ) Since the unique simple left subideal r(ΛΓ) eκ, i of Aeκy t is iso-

morphic to Ae^/Ne^, we have that r(N) eκ, t = 2£<(l0 r(N) e<y t and

consequently r(N) Eκ = 2 r W eκ,t = E^r(N) Eκ for each K. Since
i 1

A has an identity element E«ωr(N) = Σ EΛωr(N) Eλ = r(N) Eκ.

This shows that r(iV) Eκ = E1L^r{N) is a two-sided ideal for each /c.
( 3 ) r(N) Eκ is a simple two-sided ideal. For if raφO is an arbi-

trary element of r{N) Eκ, then rae^ΦO for at least one i, and it can
easily be seen that r(ΛΓ) eKiJ = AmcΛ,ίyj, hence AmAZ^Am eκ, t A 2

2 r(N) eCi j = r(N) Eκ. This shows that r(N) Eκ is a simple two-sided

ideal. Therefore r(N) EκCl (N)9 and consequently r(N) = Σ <N) EKQ

( 4 ) Since the largest completely reducible right subideal e%(Jύ I (N)
of eΛωA is a direct sum of simple subideals which are isomorphic to
eκA/eκN, evfC(£> i I (N) = cΛ(ιe> it λ e< j O I (N) is a direct sum of simple subideals
which are isomorphic to e^A/e^N. Hence e<Oc>< l(N) = ex^,tl{N) Eκ.

Therefore EMI (N) = πff' e^κ> tl(N) = E^ I (N) Eκ. Then by the

same way as above, we have that E^ I (N) = I (N) Eκ is a two-sided
ideal for each K.

( 5 ) Let m-|-0 be an arbitrary element of E%(^ I (N). Then
e^κ> i meκ, j ΦO for suitable i and j . It can easily be seen that e.Λ^t t meκy όA
is a simple right subideal of e<Oc>iZ (iV). Since e^l{N) is a direct

6) Fr. II Theorem 6.
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sum of simple right subideals of the form ξm for an arbitrary simple
right subideal m, eί{<>ίl{N) is a direct sum of simple right subideals of
the form ξrmr for an arbitrary simple right subideal mr and suitable
units ξf of eΛκ>ίAe^,i9 and we have that β<Clc>< ί ( iV)Ce ί W , i Ae Λ i κ > i

e#ΛK> c m^, j A. Since eΛ(Of j Z (N) = c^), , e e ^ , 4 Z (iV), we have that enCκh j ••
ΛVCO.)

. e CJC> , AΛCO, t me ,j A. Then AmAZ^ Σ e

!tu\ J ZUV") =

This shows that E^ I (AT) is a simple two-sided ideal.

Therefore E^ I (N)Clr(N), and consequently l(N)= Σ JE7<CJC:) Z (N)Q

r(N). By (3) and this relation, we have that l(N) = r(N). We shall
denote this by M.

( 6 *) Now let I be a simple left ideal which is isomorphic to
Ae^JNe^y Then ί7<lβ) I = I. Since IQM, 1 = E^IQE^M = MEK.
Now if K is an index such that the largest completely reducible right
subideal of e<ιόA is not simple, then /(» = 1 and consequently Eκ = eκ

is a primitive idempotent. Since Meκ is a simple left ideal, ϊ = Meκ.
In this case we can easily show that the duality relation holds for I.
Now assume that K is not such an index as above. Since I is isomorphic
to Ae^/Ne^ύ, l = AeΛ:κ)m for a suitable element mΦO of ϊ. Since m
is an element of M, e< κ ) mA is contained in e< κ ) M. From the assump-
tion of tc, e^mA is a simple right ideal. On the other hand e^mA^
A/riβ^ ) m). Therefore r(e< K ) m) must be a maximal right ideal of A
and there exists a primitive idempotent e such that rie^ m) =
ΛΓV/(1—β) A. Therefore eA,κ) m = eA κ ) me + e,,^ m(l-e) = e< κ ) me and
ϊ = Ae*^ me = Me. Then we can show easily that the duality relation
holds for I. Thus we have that the duality relation holds for every
simple left ideal.

( 7) Let L be a completely reducible left ideal and L = 2 m* be

a direct decomposition of L into simple left ideals m .̂ KmJ is a maximal
right ideal of A for each L Therefore the composition length of A/τ{L)
is at most s. Let x^)t0

 a r e two right ideals and let r/r0 be irreducible.
Then Z (to)/Z (r) is an irreducible left module or zero.7) Therefore the
composition length of l{τ{L)) is at most s. Therefore we have that
Z (? (L)) = L Thus the duality relation holds for every completely reduci-
ble left ideal.

7) Let r/r0 be isomorphic to eκA. then r = ϊς\JbeκA for a suitable element b of r. We
see readily that /(I'o) beκ is contained in Meκ. Since Meκ is a simple left ideal, /(ι'o) &£* =
Mδ, or zsrc. On tha other hand /(r0) beκ^l(X0)/l^0)ΠKbeJ == ̂ (Γo)//(iΌU-4^/f) =
/(ro)/7(r) Therefore /(ro)/( r) i s irreducible or zero.
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( 8 ) Let I be a maximal left ideal. Now if I (<I))2I then I (r(I))
must be equal to A, since ϊ is a maximal left ideal. Therefore ril (r(ί))) =
r(l) = r(A) = 0. But ϊ = N\JAQ —e) for a suitable primitive idempotent
e, and r(I) = KMJA(l-e)) = eJlίΦθ. This is a contradiction. There-
fore the duality relation holds for every maximal ideal. It can easily
be seen that if the duality relation holds for lτ and I2 then it holds for
IiA^2-8) Now let L be a left ideal which is either equal to the radical
N or contains the radical N. Then it is expressed as a cross-cut of a
finite number of maximal ideals. Therefore, as mentioned above, the
duality relation holds for L.

( 9 ) By the same way as in (8), we have that the duality relation
r{l (x)) = x holds for every right ideal which contains N, and for N itself.

This completes our proof.
In the case of algebras, we have, by Theorem I, the following
Theorem 3. An algebra A, with a finite rank over a field F, is a

quasi-Frobenius algebra if (and only if) the duality relation I (r(J)) = I
holds for every nϊlpotent simple left ideal and zero, A is further a
Frobenhis algebra if (and only if) the rank relation (A:F) = (l: F) +
(r(ϊ): F) holds for every nίlpotent simple left ideal, besides the duality
relation for nilpoient simple left ideals and zero.

Proof. Assume that A is an S. Dralgebra and is not a quasi-
Frobenius algebra. By Lemma 1. eAe = A° is also an S. Dt-algebra

n

and is not a Frobenius algebra,9) where we take 2 eκ as e. Therefore

there exists at least one K such that the largest completely reducible
right subideal e,u )M° of eΛ^A° is not simple. As in the proof of (III)
of Theorem 1, M°eκ = exω Ae^^ mκ^mκeκAeκ. Since mκ is an element
of M°, amκ and mβ(a e e< κ ) Aβ<κ), βeeκAeκ) are determined uniquely
by the residue classes a and β (mod. N) to which a and β belongs
respectively. Hence we may express e< 0 0 Ae^ mκ by e < o l e ^ m , and
mκeκAeκ by mκeκΆeκ. From e<κ^ Άe^ mi^mκeκAeκi we have a "properly
into" isomorphism θ of eκAeκ into ^ C κ ) Ae^κy Similarly we have an
isomorphism θf of e A O I β ^ onto or into e< 7 r u )) Λβ< 7 f 0 0 ), and so on.
Finally we have a "properly into" isomorphism Θ ( = #•#'. . .) of eκAeκ

into eκAeκ, since π is a permutation. But since eκΆeκ is a division
algebra with a finite rank over a field F, this is impossible. Therefore

8) r(f 1 Πί2)2r(ίi)UKί2), hence /(X
ί 2 ))2ί iΠί2. Therefore /(Kf iΓto) = ίiΠί 2 .

9) From the definition of quasi-Frobenius rings, we see readily that A is a quasi-Frobenius

ring if and only if eAe is a Frobenius ring, where e = 2 <?κ, i u >
κ x
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A must be a quasi-Frobenius algebra. The converse is trivial. The
latter half is same as Theorem 6 in S. II.

2. Some special Dt-rings.
Now we shall consider ZVrings. Of course a A-ring has the pro-

perties (I), (II) and (III).
Moreover we shall give a necessary condition for a ring to be a

Drrίng, other than (I), (II) and (III).
Theorem 4. Let A be a Drrίng. Then A satisfies the following

condition.
(*) Every left ideal which has a unique simple left subideal, is con-

tained in an indecomposable left ideal Ae which is generated by a
suitable primitive idempotent e.

Proof. Since A has an identity element, A satisfies the maximum con-
dition also. Therefore A has a composition series. Now let I be a left
ideal which has a unique simple left ideal. Then a maximal subideal
V of I satisfies the same assumption as I. Therefore we shall apply
induction.

Let t be a simple left ideal. Then r(t) = (l—e) A\JN for a suitable
primitive idempotent e, since r(t) is a maximal right ideal. Therefore
I (r(t)) = t = Me, by the duality relation.

Now assume that the condition holds for left ideals which have
shorter composition lengths than that of I. Thus a maximal left subideal
V of ϊ is contained in Aef for a suitable primitive idempotent e\ If
I — \ef, then I C^Ae'. This case in trivial. Therefore we assume that
IΦle'. Since I contains V = Vef, \er contains P. If Ie' = I'f then
I^Ie ' = F and we can decompose I into le! and 1(1 — e')Φθ. But this
contradicts the fact that I has a unique simple left ideal. Thus \ef^V.
Since \{l-ef)^l/l f\l{l-ef) and I / V ( 1 - < Q I ' , we have that I ( l - e ' )
is either a simple left ideal or zero. If 1(1—e') = 0, then we have
I = Iβr. This contradicts the above assumption IΦle'. Thus ί(l—er) is
a simple left ideal. It can easily be seen that r(V) = r(I'e') = (1—ef) A +
e'r{V). Therefore r(I)5=(l-e') Λ + e'r(I'). Similarly r(I (l-β r)) = e'A-f
((1-e') Af\f(I)). Moreover, since 1(1 — e!) is a simple left ideal,
r(\ (l-er)) is a maximal right ideal. Therefore r(I (1 — e')) = ( l-e) A + eN,
where e is a primitive idempotent and eef = e'e = 0.10) Therefore (1 -~er)A

10) Since r ( ί ( l - e ' ) ) i s a maximal right'idial, r(l(l-e')), the residue class of r ( ί ( l - e / ) )
mcd. A7", is a maximal right ideal cf the residue class ring A of A mcd. N. r{\(Y^er))
is generated by an idempotent E. Since r ( [ ( l - e / ) ) contains er (the residue class of er

mcd. ΛV), Ee/==e/. We shall dsnoteJϊ-e'E by ^ Then /Γ' is an idempotents and
E / ^ / = β'/Γ' = 0 and r ( ί ( ϊ - e θ ) = EA = e'Ά+E'Ά. We shall decompose £ ' into

n—I
primitive idempotents ^ ( ί = 2, •••, « - l ) . Then ίJi — e', 62, •••» £w-i- ŵ = 1 ~ Σ ^c form a

system cf orthogonal idempctents. As is well known we can constract orthogonal primitive idem-
potents et(/=],...,«) such that ei^eu where we can take er as eι. We see readily that

V, where β'βn - ene
r - 0.
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f\r(l) — (1—e—e') A + eN and consequently r(l)Z2(l—e—ef) A + eN. From
the above relations, we have (1—e') A + efr(Vy^r(l)Z2(l—e--e!)A + eN.
Here we may assume that e'r(ί') is a nilpotent ideal. For if e'r(Z')
is not nilpotent, then e'r(I') contains an idempotent and r( l ' )=(l —e')
A + efr{V) is equal to A, hence V = I (r(ί')) = I (A) = 0, but in this
case I is a simple left ideal and the condition holds for I. Since
(1—e') A + e'r(I')/(l —e—e') A + eN + e'r(l') is an irreducible right module,
we have that either r(ί) is contained in (1 — e — e') A + eN + e!r(V) or
i<X)\Je'i{V) = Q.-e') A + e'r(V). If τ(I)C:(l-e-e') A + eiV + e'r(I'), then

Z((l-e~eO A + eN + e'r{V)) = Ά(e + e') f\(A{χ-e) + Me) f\
ef[\l (r(I')))) = Me + V. This contradicts the assumption that

I has a unique simple left ideal. Therefore r(X)\Jefr{V) — (1—e!) A + efr(lf).
Since r(l) contains (1—e — e!) A, we can decompose r(ί) into il — e — e') A
and (e + e') r(l). Therefore (e + ef) r(ϊ)\Je'rίV) = eA + e'rQ'). This shows
that (e + e') r(I) is not nilpotent. Therefore (e + e') r(I) contains an
idempotent eλ. Since (e + er) r(J)3elf we have that (e + er) e1 = e1. If
we denote ex(e + er) by e2, then e2 is not zero. For if e2 is zero, then
ti = 01 = ((e + e') β i^^O, and this is a contradiction. It can easily be
seen that e2 is an idempotent and (1—e — e') e2 = e2(l — e—e') = 0. Now
we set e3 = (e + e') —e2. Then e3 is an idempotent and is not zero.
Because, if e3 is zero, then (e + e') r(l) contains eA + e'A and consequently
I = i (r(I)) = Z ((1 - e — e!) A + eA + e'A) = l(A) = 0. Moreover, since e2

and e3 are mutually orthogonal idempotent, e3 is a primitive idempotent.
Since (e + e') riXj^e2A, we have a direct decomposition of (e + e') r(I)
into e2A and x0, where r0 is a right ideal consisting of elements such
that e2α; —0. From e2r0 = 0 and (e + e') xo = xo»

 w e ha^e that e3x0 = x0.
Therefore ϊ = I (r(I)) =• I ((1 -e 3 ) A + e3x0) = Ae3f\l (xo)SAe3, and this
shows that ϊ is contained in an indecomposable ideal Ae3. This com-
pletes our proof.

Remark. Let A be a ring which satisfies (I), (II) and (#). Then
r(N) = l(N) — M and every simple left ideal is of the form Me for a
suitable primitive idempotent e, by (*).• Therefore the duality relation
holds for every simple left ideal. Thus A is an S. During, and conse-
quently A satisfies (III). Actually the conditions (I), (II) and (#) are
stronger than (I), (II) and (III).

Example 1. Let K(x) be the rational function field over a field K.
Then

A = K(x)
e
λ
x = xe

λ
 e

z
x = xe

2
 u

x
x = x

2
u
x
 u

2
x = x

2
u
2
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0
0
h
0
0
ί.

0
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Ό
u2uτ

0
0

0
uxu2

0
0
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UιU2

0
0
0
0

0
0
0
0
0

is an S. D^ing. But A does not satisfy (*).
For example, the left ideal Afa + xu^^) is homomorphic to Ae2 which

has a unique composition series, hence A(u1 + xu1u2) has a unique simple
left subideal. Now assume that Afa + xu&i) is contained in an inde-
composable left ideal Ae. Then e is congruent to ex or e2 mod.. N.
Therefore e is either eι+f1(x) ux+f2{x) u2 + f3(x) u^ + f^x) u2uλ or
e2-+-#iO) u1 + g2(x) u2 + gz(x) u^ + g^x) u2uλ. If β = β1 + /1(α;) wx +
/2(a?) u2 + fz(x) u&i + f&x) u2ulf then (Mx + a^x^) e = -wx + /2(Λ?2) W ^ Φ

. If β = β2H-^!(a;) Wi+^2(a?) w.8+flfs(^) w ^ + f f ^ ) W2wi» t h e n

a) e = (5f2(a;2)-fα;) Wx^φ^-f α tέ^s These are contradictions.

Therefore A does not satisfy (*).
In general, the conditions (I), (II) and (*) are not sufficient for a

ring to be a Drring.
Example 2. Let K(x) be the rational function field over a field K.

Then A = K(x)+K(x) uλ+K(x) u2+K(x) uxu2 (u* = i4 = 0 u1u2 = u2u1

U1X = X2M1 u2x = x2u2) is a completely primary ring and satisfies (I),
(II) and (*), but is not a D^ing.

Next we shall consider some special Darings.
We shall call a ring A a generalized left uni-serial ring, if A has an

identity element and every indecomposable left ideal Ae generated by a
primitive idempotent e has a unique composition series. A left uniserial
ring is a primary decomposable generalized left uni-serial ring.

Let A be a generalized left uni-serial ring which satisfies (II). Then,
since an indecomposable left ideal Aeκ has a unique composition series,
Aeκ^Neκ^ ... Nσ^~2 eκ'^>N<r:κ:>-1eκ^)0 is the unique composition series
of Aeκ and N'^1 e^Άe^.

Now we assume that Aeκ/Neκ^Άeκt Neκ/N2eκ^Άeχλ... Nιeκ/Ni+1 eκ^
Aefa,... ,N<τ^-ιeκ^Ae^κy If we take an element d of Neκ which is
not in N2eκ, then we have Neκ = Ae^1deκ, hence Neκ is homomorphic
to Aeχλ.

If Λ: = λlf then we can easily show that N%/Nt+% is isomorphiς
to Aeκ for every i,
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If ΛΓΦλj,, then the composition factor groups of Aeχλ are as follows;

), but since T Γ ^ Φ ^ λ O if /cφλ lf

we have {Ae^^^Ae^ (For the sake of brevity we shall denote the
composition length of a left module Wl by [5Dΐ]r) In this case λχφλ 2, for
if λx = λ2, then as above N^^/N^'e^^Ae^ for every ί, hence Aexu^
Aefa and AeπQi)^Aeλlf consequently π(κ) — X1 = πiλj), but this is a
contradiction. Thus we have [ A ^ 2 ] ^ [ A ^ 1 ] ^ [ Λ β κ ] ί , as above, and
so on. Finally we have [_Aetf(tc)~]ι> [Aeπ*-iyσ C ( c )_2)]^ ... ^ [ A e j j , where
7r€(/c) means π(π(π(... TΓ(ΛΓ))))...). If we take such an r that π\κ)=κ9

/-times

then the above inequalities lead that [Aeκ]ι = [Aen

r(ιc)^\ι>;...>:[_Aeκ]ι,
therefore we have that all [A-eπ<yj)]/s are the same, and moreover
Ae^iQj) has only Άe^tλ^'s as the composition factor groups of it. This
shows that we can classify ( 1 , . . . ,n) into classes Cσ as follows;

(a) If λ £ C σ , then any composition factor group of Aeλ is isomor-
phic to Aeμ with some μ£Cσ.

•(/S) If λ, μeC,, then [Ae x], = [Aβμ]..
(α) shows that we have a direct decomposition of A into two-sided

ideals Aσ = EσAEσt where we denote Σ eμ,, by Eσ.
ιΏ Since

μ € C σ ; / = l , . . . . / ( μ )

A satisfies (II), every A& satisfies (II) also. From (/3), if we denote the
radical of Aσ by Nσ, then Aσeκ(= Aeκ)^ Nσeκ... ^ AΓo^ 3"^^ 0 is the
unique composition series of Aeκ, and since KiV^) eκ is the largest com-
pletely reducible subideal of Aeκ, we have KiVJ βκ = N^"1 eκ, and since
r(iV?) eκ/r{Nσ) eκ is the largest completely reducible left submodule of
Aeκ/Np

σ^-Ίeκ, we have r(iV?) ^κ = i V ^ - 2 e κ ; finally we have r(ΛPσ) βκ =
and r(Nί) = Σ r(iV') ^, * = Σ

/) /1-ϊ for -̂ = 1̂  2,... ,/o(σ). Moreover, as was shown in the proof of
Theorem 2, r(iVσ) = Z(ΛΓσ) and consequently r ( ^ ) = Z(M) = AΓ^σ)-f for

Theorem 5. Lβί A δ e α generalized left uni-serίal ring, then A is a

During if and only if A satisfies (//) and (*).

Proof, " i f part follow from Theorem 1 and Theorem 4 directly.

Let I be a left ideal of a ring A which satisfies (II) and (*). We may

assume that A is a generalized left uni-serial ring in which r(iV*) =

I {N') = ΛT-*, where iVp = 0 and iVp - 1Φ0. Let 1 = 0 Λbt and A = Σ ^eJ
1=1 J=l

be the direct decomposition of A into indecomposable left ideals, then

11) This decomposition is so calle4 "Block decomposition".
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Abt = \J Aefi, and consequently I = \J Ae5bt.
.7 = 1 i,J

Since every Aejbi is homomorphic to Aej and consequently it has a
unique simple left subideal, Ae3bi is contained in an indecomposable left
ideal Aea> ° which is generated by a suitable primitive idempotent eu> °,
by O). Therefore AeJbί = Nra>^ efJ^\ Let r(l, 1) be the minimum of
r(j, i). Then leι>Ώ = \J Nra> ° eΛ>j) eα>15 = ΛΓC1> υ eΛ> ΌQ I. Therefore

we have the direct decomposition of I into leri>Ώ and l(l-ea>Ό); 1 =
)

Let Io be a simple left ideal then Io is contained in an indecompo-
sable left ideal Ae0 and consequently ίo = Np~1eo by (*). Then it can
easily be seen that I (r(ϊ0)) = ϊ0.

Now we shall apply induction. Assume that the duality relation
holds for left ideals which have shorter composition lengths than that of I.

If I:-ϊβα> *>, then I=Λr c l . ̂  eα>1}, hence r(I)=(l-e α > ĵA + β^1.1}iVp-rα.r

and I (r(I)) = Nr°>Ό eα-Ό = I. Thus in this case the duality relation holds
for I. If l = l(l-eΛ*Ό) then tecl>1} = 0, but this is a contradiction.

Therefore we can assume that Iβα»15 and I(l—eα»r>) have shorter
composition lengths than that of ϊ. Then, by the induction assumption,
the duality relation holds for ϊeα>1} and ϊ ( l - e α , υ ) .

We see readily r(ϊeα>v) = (1 -eα>1 }) A4-(e:i>Ό Af\r(l)) and
?<I(l-^cl.1^)) = β 1 l 5A + ((l-β c l . 1 ) ) Af\τil)). We shall denote ί(r(I)) by
I. Of course r(ϊ) = r(ί).

On the other hand we have <teα>υ) = ( l-e α > υ ) Λ-f(eα,1} Af\r(ΐ)) =
rile'1,1'), hence ZCKΪβ 1.Ό)) = 1W*1*υ)) = I*1.x ), _but since ίV1, ^ ϊ e ^ 1 } ,
we have J e c i . υ = \e\ ι\ Similarly we have I (1 -ea>υ) = ϊ (1 -e α , 1 } ) .
Since Ϊ C ί Λ ^ + I d - e ^ ^ ) , we have Ϊ S ϊ β c l 15 + I( l-β c l . 1 5 ) = I. This
shows I = ϊ.

For a generalized left uni-serial ring A, we can take the following
condition (V), in place of (*)

(V): Every left ideal which is homorphίc to an indecomposable left
ideal Ae which is generated by a primitive idempotent e, is
contained in an indecomposable left ideal Aef for a suitable
primitive idempotent e\

By Theorem 5 and Corollary 2 of Theorem 1 we have
Theorem 6. Let A be a left uni-serial ring then the following four

conditions are equivalent.
( 1 ) A is an S. Drring.
( 2 ) A is a During.
( 3 ) A satisfies (*).
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( 4 ) A is a direct sum of a uni-serial ring and completely primary
left uni-serial rings.

Proof. (1)-X4) can easily be seen by Corollary 1 of Theorem 1
and by the fact that a left uni-serial ring is a quasi-Frobenius ring if
it is a uni-serial ring.

(4)_>(2) from the fact that a completely primary left uni-serial ring
is a During.

(2)-^(3) is trivial.
(3)—>(1) it is sufficient to show that (II) is satisfied.

But this can easily be seen from the fact that r(N) = l(N) — N9"1 is
the unique minimal two-sided ideal of a primary left uni serial ring A,
where Np = 0 and ΛP

3. Rings whose residue class rings are all S. Darings.
It is well known that A is a uni-serial ring if and only if every

residue class ring of A is a Frobenius ring.12)

We shall generalize this theorem as follows.
Theorem 7. // every residue class ring of a ring A is an S. Drring,

then A is a left uni-serial S. During, that is, it is the direct sum of a
uni-serial ring and completely primary left uni-serial rings. The converse
is also true.

Proof. Let A be a ring such that every residue class ring of it is
an S. During. Now we shall decompose A into a bound ring Aλ and a
semi-simple ring 4 2. l 3 ) Then, of course, A2 is a uni-serial ring. There-
fore it is sufficient to prove that Aλ is a left uni-serial S. During. Since
Aλ is an S. During, it has an identity element, hence satisfies the maximum
condition (not only the minimum condition). Therefore AΎ has a com-
position series. Now let us assume that our assertion is true for rings
with smaller composition lengths. Since A1 is a bound ring, we see
readily that A^χ is an indecomposable left ideal of Aλ = A1/EΊt:κ^ MEK

for each λ (~denotes residue classes niod. E^^ME^). By our assump-
tion, AΎ is. a left uni-serial ring. Hence Aλex = A^e^SjE^ MEK/E^JMEK

has a unique composition series and the composition factor groups of
it are isomorphic to AΎeκ. Since A1e\jEΛil0MEκ/E^κ^MEκ^A1eλ for
λφ/c, we have that Aλex has a unique composition series composition
factor groups are isomorphic to A^^. Since K is arbitrary, it follows
that Aλeκ has a unique composition series and the composition factor

12) T. Nakayama : Note on uni-serial rings and generalized uni.serial rings, Proc. Imp. Acad.
16 (1940).

13) A ring A is called as a bound ring, if r(N)Γ)l(N)QN. M. Hjall: The position of the
radical in an algebra, Trans. Amer. Math. Soc. 48.
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groups of it are isomorphic to Άeκ for all κ. This shows that Aλ is a
left uni-serial S. During. Therefore, by Theorem 6, we have our
Theorem. The converse is trivial.

As a corollary of this theorem, we have
Corollary. // every residue class ring of a ring A is quasi-Frobenius

ring, then A is a uni-serial ri?ιg, and conversely.

(Received July 7, 1951)






