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Some Generalizations of Quasi-Frobenius Rings

By Masatoshi Ikgpa

Let A be a ring satisfying the minimum condition for left and right
ideals. (We shall understand by a ring always such one.) Let S be
a set of elements of A. We shall denote the set {x|aS=0 x€ A} by
1(S) and the set {y|Sy=0 ye A} by #(S). Let N be the radical of
A, AIN=A = A,+...+A, be the direct decomposition of 4 into simple

— Tk
two-sided ideals A, and let f(«), €, €c=¢€1 C,05 and B, = D e,
i=1
(¢«=1,...,n) have the same meaning as in Fr. I §1 or S.I”. Namely
e, (k=1,...,m; i=1,...,f(x)) are mutually orthogonal primitive
idempotents whose sum is a principal idempotent E of A, whence
n Jxk) n_ Sk .
A= 3SY e +1(B) (= 32 SV e, A+7(E)) is the direct decomposi-
K=) =1

K=| §=1

tion of A into directly indecomposable left ideals Ae,, (right ideals
e.;A) and a left ideal I(F) (right ideal #(%)), here Ae,;(e.;A) and
Ae,, ; (e, ;A) are operator isomorphic if and only if k= A. And ¢, ;(xr=1,
sty i=1,..., f(«), =1, ..., f(x)) are matric units, ¢,,;, 1€, 4 :=80 165 1C s, x
for any «, \, ¢, 7, A, k and ¢, ;=e,,; for each «, i. The residue class
E. of E, mod. N is the identity element of A, for each «. For the
sake of brevity we shall call a ring A a D,ring (D,ring) if in A the
duality relation I (7()) = (7(I(x))=1) holds for every left ideal I (right
ideal r) of A. And if in A the duality relation [(»(l))=1{(r(l(x))=1)
holds for every nilpotent simple left ideal and zero (every nilpotent
simple right ideal and zero), then we shall call A an S. D;-ring (S. D,-
ring).

Recently T. Nakayama studied the structure of quasi-Frobenius
rings® and, in the previous note S. II¥, T. Nakayama and the writer
proved some properties of D,rings. In this note we shall consider the
structure of S. D,-rings and refine Theorem 3 in Fr. I and Theorem 2
in S. II. Finally we shall consider some special D,-+ings, and give some
results about them.

1) T. Nakayama: On Frobeniusean algebras I, II, Annals ot Math. 42 (referred to Fr. I,
II,) T. Nakayama: Supplementary remarks on Frobenius algebras I, Proc. Japan Acad. (1949)
(referred to S. I) N

2) See Footnote 1). :

3) T. Nakayama and M. Ikeda: Supplementary remarks on Frobenius algebras II. Osaka
Math. Journ. 2 (1950) (referred to S. II)
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1. S. D;rings.

Theorem 1. Any S. D,ring has the properties;

(I) A has an identity element.

(IT) There exists a permutation = of (1, 2, ...,n) such that for each
x, @) Ae. has o unique simple left subideal which is isomorphic to
Aeyo/N ey, and b) the largest completely reducible right subideal of
e A is a direct sum of simple right subideals of the form &m, where
m is an arbitrary simple right subideal of e, A isomorphic to e, A/e, N
and £'s are suitable units® of e, A ey

(IIT) f(e)=1 if the largest completely reducible right subideal of
€0 A s not simple.

Proof. We can prove (I) and (II). by a slight modification of the
proof of Theorem 1 in S. IL

For the proof of (III), we shall use

Lemma 1. Let A be an S. D,-ring. Thew ede is also an S. D,-ring,

n
where e = 3 €., and e, is one of e,,(i=1, ..., f(x)) for each «.
k=1

Proof. We shall denote the right annihilator (in e Ae) of a set %
by 7°(x) and left one by i°(x). Let I° be a left ideal of eAe, then
Al° =1 is a left ideal of A and e[=1°. [° is contained in | so [Cx =
[°ex =0 for any element x of »(I). This shows er(l) N\ e A e=er(l) eZ
7°(1°). Conversely, if « is an element of 7°(1°), then [ = Al°x =0.
Therefore, 2 belongs to 7(1), and consequently 7°(1°) = er°(I°) eZer(l) e.
Thus we have r°(1°) ==er(l) e =er(Al°) e. A similar relation holds
obviously for any right ideal 1© of ede: [°(x°)=-el(z°A4) e. Since
7#0(1°) = er(l) e, we have r°(1°) ACer(l). Conversely if « is an element
of er(l), then er(l) contains wzc,, s, and er(l) edA contains xc,, s,
€cC,y0; =%-6,, for arbitrary « and i. Since A has an identity element,
7°(1°) A =er(l) eA contains & = g 2 -e,,;. This shows 7°([°) A = er(l).

So we have [°(r°(I°))=el (#°(I°) A) e=cel(er(])) e. It is easily seen
that [(er(l)) = A(1—e)+(AeNl (r(1))). Hence °(r°(I°))=e(A(1—e)+
(AeNl((1)))) e=e(A eNl(r(1))). Now let I° be a simple left ideal of
e Ae, and assume that [ = A[° is not simple and I’ is its proper sub-
ideal. Then, since [° is simple and el’Tel =1°, el’ is either equal to
[° or zero. If el’=1°, then '2Ael’ = Al1°=1 and this is a contradic-
tion. If el’=0, then e, el'=¢€,;,'=¢€,;,,'=0, and 0=c,, ;0
€00 I 2C0 5000 €0 ic) Coricer 31 =€ ;1! for each «, j. Since A has an
identity element and [’ = U, e.;U', I" must be zero. This is a contradic-

4) A unit is an element which has its inverse.
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tion. Therefore [ = Al° is a simple left ideal of A. By the assumption,

I(r(I))=1 in A. Hence I°(r°(I°))=e(AeNl(r(1)))=e(deN\l). But

since [ = AI°, [=1e and de/\I=1. So we have [°(r°([°)) = el = [°.
Now we shall prove (III). By the above lemma, ede is also an

S. D,ring, where we take Z”] e. as e. We shall denote ede by A°, and
K=

the radical eNe of ede by N°. Let A° = A°/N° = A,°+..,+A,° be the
direct decomposition of A° into two-sided ideals A4,°, then since each
e.=—e,, is a primitive idempotent, we have that A4.° is a quasi-field
having ¢, as its unit element for each «. Since A° is an S. D,-ring,
7O(N©) = [°(N°)= M° has the unique ‘direct decomposition into simple
two-sided ideals; M° = MCe +...+MCe,= e, , M°+...+e,,, M°, and
here M°e,—=e, ,M°. Moreover MCe, is the unique simple left ideal of
ACe,, and is isomorphic to A°e,./NCe,.., therefore MCe, = e,., A€ ., My,
where m, is an element of MCe,. Now let e, , A be an indecomposable
right ideal the largest completely reducible right subideal of which is
not simple.

Since e, M° is not a simple right ideal of A°, M°¢,=e,, M° =
€0 A€ s m=—=m e, Ae,. Assume that f(s)==1 for such an s.

It can easily be seen that Me, = Am,, and Me,,, = Amc,, ,,,."> Now
we shall take a left subideal [ = A(m,+dm,c,,,.) of the completely
reducible left ideal Me,+ Me,,,, where d is an element of e, Ae,,, such
that there exists no element d’ in e,de, which satisfies dm, = m,d'.
Since e, Ae, ,m,==me,Ae, we can take such an element. [ is a simple
left ideal, for [ = Ae,, (m,+dmc, 1,,) is homomorphic to Ae,, and
my+dm,, ,, . is annihilated by Ne,,,. Since 4 is an S. D,-ring it should
be r()r(Me,+ Me,,,)=r(Me,)\r(Me,,,) = (1—e,—e,,) A+eN+e,,N.
The composition length of A/r(Me,+ Me,,) is 2, and A/r(l)=
(m,+dmge,, ., ,) A, hence the composition length of (m,+dm.c,,,,) 4
should be 1.

On the other hand it can easily be seen that (m,+dmc,,,,) 4=
m A\ dmye,,,,, A. dmge,, ,, does not belong to m,A, for if dme,,,,,€
m,A, then there exists an element d’ such that dmc,,,,,= md’, and
this leads dm,c,,,, ¢, 0,, =dm,=md'c,,,, and d'c,,,, €eAe, but this
is impossible. Therefore the composition length of (m,+dmgc,, ) A is
not 1, and thus the assumption that f(s)==1 leads to a contradiction.
This completes our proof. As a special case of this theorem, we have

Corollary 1. Let A be a primary S. D,-ring and not & quasi-Frobenius
ring. Then A is a completely primary S. D,-ring.

Corollary 2. Let A be a primary decomposable ring. Then A is an
S. Dyring if and only if every component of A is either a quasi-Frobenius

5) M=r(N)=I(N).
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ring or a completely primary S. D, ring and not a quasi-F'robenius ring.

Corollary 3. Let A be a ring in which the duality relation I(r(D) =1
holds for wnilpotent simple left -ideals and zero, and the duality relation
(1 (v)) =1 holds for nilpotent simple right ideals. Then A is o quasi-
Frobenius ring.®

As the converse of Theorem I, we have the following

Theorem 2. Let A be a ring which has the properties (I), (II) and
(III). Then in A the duarity relation l(r(1))=1 holds for every com-
pletely reducible left ideal, every left ideal which contains the radical N
of A, the radical N itself, and zero. Furthermore in A the duality
relation r(l(v))=r1 holds for every right ideal which contains N, and N
-itself. Therefore A is an S. D,-ring.

Proof.

(1) It can easily be seen that the duality relation holds for zero.

(2) Since the unique simple left subideal 7(NV) e, of Ade,, is iso-
morphic to Ae,,,/Ne,., we have that 7(N) e,,= E .. 1(N) e,; and

Jix)
consequently »(N) E,= >} »(N) e,; = E,,,7(N) E, for each «. Since
i=1 n
A has an identity element X, .,r(N)= > E,r(N) E\,=7r(N) E,.
A=1

This shows that »(N) E,= E,,7(N) is a two-sided ideal for each «.
(3) 7(N) E, is a simple two-sided ideal. For if m=-0 is an arbi-

trary element of #(N) E,, then me, =0 for at least one i, and it can

easily be seen that »(N)e.,;=Ame,,;;, hence AmADAme, K AD

FACY)
12 ?(N) e,;=7(N) E,. This shows that #(N) E, is a simple two-sided
=1

ideal. Therefore »(N) E .l (N), and consequently #(N)= é »(N) B,
1(N). !

(4) Since the largest completely reducible right subideal e, (N)
of e, A is a direct sum of simple subideals which are isomorphic to
eA/eN, €. L (N)=C,u1 €0l (N) is a direct sum of simple subideals
which are isomorphic to e,A/eN. Hence e, , [(N)=¢e, l(N) E,.

T(r(x)
Therefore B ,I(N)= 33 € l(N)=E,1(N) E,. Then by the
i=1

same way as above, we have that £, ,l(N)=1(N) E, is a two-sided
ideal for each «.

(5) Let m:-0 be an arbitrary element of #,..1(N). Then
€1 Me,, 5 -0 for suitable 7 and j. It can easily be seen that e, , me,, ;A
is a simple right subideal of e, ,l(N). Since e, 1(N) is a direct

6) Fr. II Theorem 6.
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sum of simple right subideals of the form #&m for an arbitrary simple
right subideal m, e, ;! (N) is a direct sum of simple right subideals of
the form &'m’ for an arbitrary simple right subideal m’ and suitable
units &' of e, ; A€, ;, and we have that e, ;I (N)Ze,.,; A€o, ; -
€. me, s A, Since €., 11 (N) = €. 1,4 €acern s | (N), we have that e, ;-

Tm (D)
LN ) Cotesn 114 €t i Ancorn s ML 5 A Then AmAD jz: Cun s L(N) =
=1
E.ol(N). This shows that F,,Il(N) is a simple two-sided ideal.
Therefore E,.. .l (N)Z»(N), and consequently [(N)= 2 E. ol (NS
k=1

#(N). By (3) and this relation, we have that I (N)=7(N). We shall
denote this by M. ]

(6) Now let | be a simple left ideal which is isomorphic to
Ae,.,/Ne..,. Then E.,,[=1. Since ICM, |=F,,ICF,,M=ME,.
Now if « is an index such that the largest completely reducible right
subideal of e,., A is not simple, then f(«)=1 and consequently E,=e,
is a primitive idempotent. Since Me, is a simple left ideal, [ = Me,.
In this case we can easily show that the duality relation holds for I.
Now assume that « is not such an index as above. Since | is isomorphic
to Ae,.,/Ne,. ., | = Ae, . m for a suitable element m=-0 of . Since m
~ is an element of M, e,.,mA is contained in e,., M. From the assump-
tion of «, e,,, mA is a simple right ideal. On the other hand e, , mA=
A/7(€q,,m). Therefore r(e.,,m) must be a maximal right ideal of A
and there exists a primitive idempotent e such that (e, m)=
N\J(1—e) A. Therefore e,,m=e,,,me+e,,m(l—e)=e,,  me and
[ = Ae,., me = Me. Then we can show easily that the duality relation
holds for I. Thus we have that the duality relation holds for every
simple left ideal.

(7) Let L be a completely reducible left ideal and L = i m, be
i=1

a direct decomposition of L into simple left ideals m,. #(m,) is a maximal
right ideal of A for each i. Therefore the composition length of A/7(L)
is at most s. Let r >r, are two right ideals and let r/r, be irreducible.
Then 1(x,)/l(r) is an irreducible left module or zero.” Therefore the
composition length of I (#(L)) is at most s. Therefore we have that
[ (#(L))=L Thus the duality relation holds for every completely reduci-
ble left ideal.

7) Let t/to be isomorphic to &,4. then v =1¢(Jbe,A for a suitable element b of 1. We
see readily that I(ly) be, is contained in Me,. Since Me, is a simple left ideal, /(o) be, =
Me, or zzre. On the other hand [I(vo) be,=2I(¥o)/I(ro)MI(be.) == 1(to)/I(tol JAD2,) =
I1(vo)/1(x). Theretore I(rg)/(r) is irreducible or zero.
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(8) Let I be a maximal left ideal. Now if I(r(I))z2l then [(«(I))
must be equal to A, since [ is a maximal left ideal. Therefore (I (7(l))) =
7([)=7r(4)=0. But [ = N\JA(1—e¢) for a suitable primitive idempotent
e, and (1) =r(N\JA(1—e))=eM=-0. This is a contradiction. There-
fore the duality relation holds for every maximal ideal. It can easily
be seen that if the duality relation holds for I, and I, then it holds for
LN» Now let L be a left ideal which is either equal to the radical
N or contains the radical N. Then it is expressed as a cross-cut of a
finite number of maximal ideals. Therefore, as mentioned above, the
duality relation holds for L.

(9) By the same way as in (8), we have that the duality relation
(I (t)) =1 holds for every right ideal which contains N, and for N itself.

This completes our proof.

In the case of algebras, we have, by Theorem I, the following

Theorem 3. An algebra A, with o finite rank over a field F, is a
quasi-Frobenius algebra if (and only if) the duality relation I(r(1))=
holds for every nilpotent simple left ideal and zero. A 1is further a
Frobenius algebra if (and only if) the rank relation (A:F)=(l: F)+
(r(1): F) holds for every nilpotent simple left ideal, besides the duality
relation for nilpotent simple left ideals and -zero.

Proof. Assume that A is an S. D;-algebra and is not a quasi-
Frobenius algebra. By Lemma 1. edAe=A° is also an S. D,-algebra

n
and is not a Frobenius algebra,” where we take > e, as e. Therefore
K=1

there exists at least one « such that the largest completely reducible
right subideal e, ., M° of e,., A° is not simple. As in the proof of (III)
of Theorem 1, M°e, = e, Ae,, m=mede.. Since m, is an element
of M°, am, and m/3(«a € ey, Ae,.., B€ede) are determined uniquely
by the residue classes « and S (mod. N) to which @ and A3 belongs
respectively. Hence we may express €, Ae..o M, bY €. Alyom, and
m.ede, by meAe. From e, Ae,,m.=m:e.Aée, we have a “properly
into” isomorphism ¢ of e.Ae, into é,,, Ae,,. Similarly we have an
isomorphism ¢’ of e,,, Ae,. ., onto or into &, .5 A€y and so on.
Finally we have a “properly into” isomorphism ®(=24-4'..,) of ¢.Aée,
into e Ae,, since = is a permutation. But since e, Ae, is a division
algebra with a finite rank over a field F, this is impossible. Therefore

8) r(hNl)=2r(l)Ur(lz), hence I(r([)Ur([2)) = I(r(())NI(r([2)) = LHN2! (LN
(2))20;N12. Therefore I(r((1N{2)) = (1N 2.
9) From the definition of quasi-Frobenius rings, we see readily that A is a quasi-Frobenius

. . . . . . n
ring if and only if eAe is a Frobenius ring, where e == 3 ey, ;0.
K=1
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A must be a quasi-Frobenius algebra. The converse is trivial. The
latter half is same as Theorem 6 in S. II.

2. Some special D rings.

Now we shall consider D,rings. Of course a D,ring has the pro-
perties (I), (II) and (III).

Moreover we shall give a necessary condition for a ring to be a
D,ring, other than (I), (II) and (IIL).

Theorem 4. Let A be a D,ring. Then A satisfies the following
condition.

(x) Every left ideal which has a unique simple left subideal, is con-
tained in an indecomposable left ideal Ae which is generated by a
suitable primitive idempotent e.

Proof. Since A has an identity element, A satisfies the maximum con-
dition also. Therefore A has a composition series. Now let [ be a left
ideal which has a unique simple left ideal. Then a maximal subideal
[’ of | satisfies the same assumption as [. Therefore we shall apply
induction.

Let t be a simple left ideal. Then 7(1)=(1—e¢) A\/N for a suitable
primitive idempotent e, since 7(t) is a maximal right ideal. Therefore
1(r(1))=1t= Me, by the duality relation.

Now assume that the condition holds for left ideals which have
shorter composition lengths than that of I. Thus a maximal left subideal
[" of | is contained in Ae’ for a suitable primitive idempotent e’. If
[=1e/, then | CAe’. This case in trivial. Therefore we assume that
[==le’. Since [ contains !’=1'¢/, le’ contains !’. If le/’=1', then
[ >le’=1" and we can decompose [ into le’ and [(1—e’)=-0. But this
contradicts the fact that [ has a unique simple left ideal. Thus le/=21".
Since [(1—e)=[/I N\1(1—¢€') and | N\ I(1—e")2l', we have that [(1—e’)
is either a simple left ideal or zero. If [(1--¢)=0, then we have
[=1le/’. This contradicts the above assumption [=-le’. Thus [(1—¢") is
a simple left ideal. It can easily be seen that »(I') =#»(l'e’)=(1—e’) A+
e'r(1"). Therefore »(()=(1—e') A+e/r(l"). Similarly (I (1—e'))=e'A+
((1—e) ANr(1)). Moreover, since [(1—e’) is a simple left ideal,
(1 (1—e")) is a maximal right ideal. Therefore ([ (1—e’))=(1—e) A+eN,
where e is a primitive idempotent and ee’ = ¢’e = 0.1 Therefore (1--¢")A

10) Since #([(1-e’)) is a maximal right id:al, »({(1—e’)), the residue class of »({(1—e’))
mcd. N, is a maximal right ideal of the residue class ring 4 of A mcd. N. r({(1—-e))

is generated by an idempotent F. Since 7({(1-e’)) contains &/ (the residue class of e’

mcd. N), _EE/=E’. We shall danotg _E—E’E b_y _E’. Then E7 is an idempotents and

FErg’ =g’E’=0 and r({((1-e¢/))=FEA=¢ A+E’A. We shall dzcompose E’/ into
n—1

primitive idempotents &;(i = 2.---,#—1). Then ¢ ==&/, &2, ,&y_1. &n=1- 3 &; form a
i=

system cf orthcgonal idempctents. As is well known we can constract orthegonal primitive idem-
potents e;(i=1,...,#) such that ;€ &; where we can take e/ as e;. We see readily that
r({(1-e")) =e;A+-te,_1A+e,N = (1-e,) A+e,N, where e’e, = eze’ = 0.
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Nr(l)=(1—e—e') A+eN and consequently (I)>2(1—e—e’) A+eN. From
the above relations, we have (1—e') A+er(I")Dr()2(1—e—e)A+eN.
Here we may assume that er(I’) is a nilpotent ideal. For if e'r(l’)
is not nilpotent, then e'»(I’) contains an idempotent and »(I')=(1—e¢")
A+er(l") is equal to A, hence I'=1(»(l"))=1(4)=0, but in this
case | is a simple left ideal and the condition holds for I. Since
(1--¢e") A+e'r(I")/(1—e—e') A+eN+e'r(I") is an irreducible right module,
we have that either »(I) is contained in (1—e—e') A+eN+e'r(l') or
r(O\Je'r(l")=(1—e) A+er(l"). If »()Z(1—e—e") A+eN+e'r(l’), then
[ =10)21(1—e—e) A+eN+e'r(l") = Ale+¢') N\ (A(1—e)+ Me) N
(A(1—e")+(Ae'N\L (r(1")))) = Me+1'. This contradicts the assumption that
[ has a unique simple left ideal. Therefore »(I)\/e'r(l") = (1—e") A+ e'r(I").
Since #(I) contains (1—e—e’) A, we can decompose 7([) into (1—e—e’) A
and (e+e’) 7([). Therefore (e+¢') r(I)\Je'r(I') = eA+e'r(I'). This shows
‘that (e+e’) 7(I) is not nilpotent. Therefore (e+e¢’) (1) contains an
idempotent e;,. Since (e+e) r([)>e,, we have that (e+¢') e,=¢,. If
we denote e,(e+e’) by e, then e, is not zero. For if e, is zero, then
e,=¢e = ((e+¢€') e,)>=0, and this is a contradiction. It can easily be
seen that e, is an idempotent and (1—e—e') e, = e,(1—e—e')=0. Now
we set e;—=(e+e')—e,. Then e, is an idempotent and is not zero.
Because, if e; is zero, then (e+e’) () contains eA +e'A and consequently
[=10()=1({(1—e—¢€) A+eAd+e’A)=1(A)=0. Moreover, since e,
and e; are mutually orthogonal idempotent, e; is a primitive idempotent.
Since (e+e’) (1) >e,A, we have a direct decomposition of (e+e’) (1)
into ¢,A and t,, where 1, is a right ideal consisting of elements such
that e, =0. From e,t,= 0 and (e+¢€') t, =1, we have that e;r, =r1,.
Therefore [=1(r(1))=1((1—e;) A+esr,) = Ae;N\l(x)=Ae;, and this
shows that [ is contained in an indecomposable ideal Ae;. This com-
pletes our proof. ‘

Remark. Let A be a ring which satisfies (I), (II) and (x). Then
P N)Y=1(N)= M and every simple left ideal is of the form Me for a
suitable primitive idempotent e, by (x). Therefore the duality relation
holds for every simple left ideal. Thus A is an S. D,ring, and conse-
quently A satisfies (III). Actually the conditions (I), (II) and (x) are
stronger than (I), (II) and (IID).

Example 1. Let K(«) be the rational function field over a field K.
Then

A=K@) e,+K(x) e,+K(x) u;+K(®) u,+K(x) uyu,+ K@) uu,

e = xe, €% = XTe, Uk = X2y UX = XU, '



Some Generalizations of Quasi-Frobenius Rings 235

2 e e, u, U,y A Uy

e | e 0 0 Uy 0 UyU,
e | 0 e, U 0 wu, 0
U, ‘ u, 0 0 U Uy 0 0
Uy } 0 Uy UyUy 0 0 0
UyUy | 0 U Uy 0 0 0 0
Uty UsUy 0 0 0 0 0

is an S. D;ring. But A does not satisfy (x).

For example, the left ideal A(u, +xu,u,) is homomorphic to Ae, which
has a unique composition series, hence A(«, +xu,u,) has a unique simple
left subideal. Now assume that A(w, +u,u,) is contained in an inde-
composable left ideal Ae. Then e is congruent to e, or e, mod.. N.
Therefore e is either e, +f,(x) u,+ (&) uy+ f3(2) wyu,+ fy(x) u,u; or
e+ g,(2) uy+ o) Uy+gs(2) wpuy+ gy() uu,. If e=e+fi(o) uy,+
fo(®) uy+ f3(®) wyuy+Fu(x) usuy, then (u+axuuy) e=u,+f,(2%) wuy=
U +axxu,.  If e=e,+9,(&) uy+9,(2) uy+9gs5(x) wyu,+9g4.x) uyu,, then
(uy +xu,w,) e = (g,(22)+2) uyu,=Fu, +u,u,. These are contradictions.
Therefore A does not satisfy (x).

In general, the conditions (I), (II) and (x) are not sufficient for a
ring to be a D,wing.

Example 2. Let K(x) be the rational function field over a field K.
Then A= K()+K(®) u,+K(x) u,+K(@) wyu, (ui =uj=0 wuu, = uu,
u,x = 2%, u,x = x%,) is a completely primary ring and satisfies (I),
(IT) and (x), but is not a D ring.

Next we shall consider some special D,-rings.

We shall call a ring A a generalized lefi uni-serial ring, if A has an
identity element and every indecomposable left ideal Ae generated by a
primitive idempotent e has a unique composition series. A left uniserial
ring is a primary decomposable generalized left uni-serial ring.

Let A be a generalized left uni-serial ring which satisfies (II). Then,
since an indecomposable left ideal Ae, has a unique composition series,
Ae, ONe, > ...N°™-2¢ >DN°™-1¢ >0 is the unique composition series
of Ae, and N°™-1¢ ~Ae,.,.

Now we assume that Ae,/Ne,~A¢,, Ne,/N%e,~A¢e;,... N'e,/N** e, ~
Aep,, ..., N*-lg ~Ae,, . If we take an element d of Ne, which is
not in NZ%e, then we have Ne,= Aej,de,, hence Ne, is homomorphic
to Ae;,.

If «=12,, then we can easily show that N'e,/N‘*le, is isomorphic
to Ae, for every i,
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If «==)\,, then the composition factor groups of Ae;, are as follows;
Aej/Nej~ Aey, Nej /N2y =Aep,, .., N % /N""ley~Ae,.,
N7 9716y, [N"e;,, ..., No(A1) ~lej == Aen(2,), but since z(x)=+7(A;) if w==)y,
we have [Ae;,],=>[ Ae. ], (For the sake of brevity we shall denote the
composition length of a left module I by [M],.) In this case A, ==),, for
if X, =2X,, then as above N'e;,/Ni+'e;,~Ae,;, for every i, hence Aé,.,~
Ae;, and Aexy)=~Ae,,, consequently =(x)= A, = =()\,;), but this is a
contradiction. Thus we have [Aes,|,>[Aes,],==[Ae.], as above, and
so on. Finally we have [Aexi(x)],=[Aexi-1,0-2) 1= ... =[4e,],, where
ﬂ(x) means 7[(71(7[( . 72(15)))) ) If we take such an » that nr(/c)zlc,

i-times

then the above inequalities lead that [Ae.], = [4éxrx)],=...=[4e.],
therefore we have that all [Aeni(z;)]’s are the same, and moreover
Aexi(i;) has only Ae.n(;,)’s as the composition factor groups of it. This
shows that we can classify (1, ...,#) into classes C, as follows;

(a) If M€C,, then any composition factor group of Ae, is isomor-
phic to Ae, with some u€C,. :

(B) If A, pcC,, then [de,],=[4e.].
, (a) shows that we have a direct decomposition of A into two-sided
ideals A, = F AFE,, where we denote 2 , by E .Y Since

,—_—

A satisfies (II), every A, satisfies (II) also Froﬁ (>,6') if we denote the
radical of A, by N,, then A.e(= Ae)> N.e.... DN "¢, >0 is the
unique composition series of Ae,, and since 7(N,) e, is the largest com-
pletely reducible subideal of Ae,, we have #(N,) e, = N%>-1¢,, and since
r(N%) e/r(N,) e, is the largest completely reducible left submodule of
Ae /N5-le,, we have 7(N3) e, = N§-%e,, ﬁnally we have 7(N}) e.=
Ni2-"e, and r(N’)= Z 7(N%) e, 2 N§o-te,, =
KE€gs;i=1 ..., f(K) rceg,,,z— JAG))

N for t =1, 2, ..., p(o). Moreover, as was shown in the proof of
Theorem 2, #(N,)=1I(N,) and consequently »(N%)=I(N%)= Nx=-¢ for
t=1, 2, ..., p(c).

Theorem 5. Let A be a generalized left uni-serial ring, then A is @
D,ring if and only if A satisfies (II) and (x).

Proof. «if” part follow from Theorem 1 and Theorem 4 directly.
Let [ be a left ideal of a ring A which satisfies (IT) and (x). We may
assume that A is a generalized left wuni-serial ring in which N =

[(N*)= N°~*, where N* =0 and N°*~=-0. Let [=\/ Ab, and A ='j§ Ae,
=1 =1

be the direct decomposition of A into indecomposable left ideals, then

11) This decomposition is so called “Block decomposition’’.
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Ab, = \/ Aeb, and consequently [ = \J Aesd,.

Slnce every Aesb, is homomorphlc to Ae; and consequently it has a
unique simple left subideal, Ae;b, is contained in an indecomposable left
ideal Ae’® which is generated by a suitable primitive idempotent e, ®,
by (¥). Therefore Aeb,= N"%? e, Let r(1,1) be the minimum of
7(j,i). Then le%HY = j\ji N™, 0 ¢l 9 g0, 0 = N7, D gL, DC_ [, Therefore

we have the direct decofnposition of [ into len? and [(1—enLP); [=
leh D41 (1—eh D).

Let I, be a simple left ideal then [, is contained in an indecompo-
sable left ideal Ae, and consequently [, = N*"'e, by (x). Then it can
easily be seen that [ (r(1y))=1,.

Now we shall apply induction. Assume that the duality relation
holds for left ideals which have shorter composition lengths than that of I.

If [==Ie% Y, then [=N"L 1 ¢4 D, hence r({)=(1—eL )4 + €L VN LT
and I (7(1)) = N0,V LV =1, Thus in this case the duality relation holds
for I. If I=1(1—e€™%"?) then eV =0, but this is a contradiction.

Therefore we can assume that le? and 1(1—e% ) have shorter
composition lengths than that of [. Then, by the induction assumption,
the duality relation holds for leh? and [ (1—e ).

We see readily r(leh?)=(1—e%Y) A+(eHVAN()) and
rI(1—eh V) =¢el P A+((1—e™P) ANr()). We shall denote I(r(I)) by
. Of course #(I)= (D).

On the other hand we have r(leh )= (1—e®% 1) A+ (e ”A[\fr(I))—
7(le, ), hence I(r(le, P N =1(r(lesH V) =1eX Y, but since leh P Dle L,
we have [¢LV=1¢™?, Similarly we have [(1—e%)=1[(1—¢% U)
Since | CleL Y41 (1—e V), we have [ leLP+[(1—eLP)=]. This
shows [=1.

For a generalized left uni-serial ring A, we can take the fol]owmg
condition (x), in place of (x);

- (%) : Every left ideal which is homorphic to an zmlecomposable left
tdeal Ae which is generated by a primitive idempotent e, is
contained in an indecomposable left ideal Ae' for a suitable
primitive idempotent e'.

By Theorem 5 and Corollary 2 of Theorem 1 we have

Theorem 6. Let A be a left uni-serial ring then the following four
conditions are equivalent.

(1) A is an S. Dyring.

(2) A is a D;ring.

(3) A satisfies ().
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(4) A is a direct sum of a uni-serial ring and completely primary
left uni-serial rings.

Proof. (1)-(4) can easily be seen by Corollary 1 of Theorem 1
and by the fact that a left uni-serial ring is a quasi-Frobenius ring if
it is a uni-serial ring.

(4)—(2) from the fact that a completely primary left uni-serial ring
is a D, ring.

(2)—(3) is trivial.

(3)—(1) it is sufficient to show that (II) is satisfied.

But this can easily be seen from the fact that »(N)=I(N)=N*"!is
the unique minimal two-sided ideal of a primary left uni serial ring A,
where N* =0 and N°~15:0.

3. Rings whose residue class rings are all S. D, rings.

It is well known that A is a uniserial ring if and only if every
residue class ring of A is a Frobenius ring.'®

We shall generalize this theorem as follows.

Theorem 7. If every residue class ring of a ring A is an S. D, -ring,
then A is o left uni-serial S. D, ring, that is, it is the direct sum of a
uni-serial ring and completely primary left uni-serial rings. The converse
is also true.

Proof. Let A be a ring such that every residue class ring of it is
an S. D,ring. Now we shall decompose 4 into a bound ring 4, and a
semi-simple ring 4,.'* Then, of course, 4, is a uni-serial ring. There-
fore it is sufficient to prove that A, is a left uni-serial S. D,-ring. Since
A, is an S. D,-ring, it has an identity element, hence satisfies the maximum
condition (not only the minimum condition). Therefore A4, has a com-
position series. Now let us assume that our assertion is true for rings
with smaller composition lengths. Since A; is a bound ring, we see
readily that A4,%, is an indecomposable left ideal of Zl =A,/F ., ,ME,
for each ) (~denotes residue classes mod. K., ME,). By our assump-
tion, A, is a left uni-serial ring. Hence 4,6, = A4,6,\/E ., ME . /E . ME,
has a unique composition series and the composition factor groups of
it are isomorphic to A,e,. Since A,e,\/E ., ME /E . ,ME ~Ae, for
A==r, we have that A,e, has a unique composition series composition
factor groups are isomorphic to 4,2,. Since « is arbitrary, it follows
that A,e, has a unique composition series and the composition factor

12) T. Nakayama: Note on uni-serial rings and generalized uni.serial rings, Proc. Imp. Acad.
16 (1940).

13) A ring A is called as a bound ring, if 7(N)N/(N)SN. M. Hall: The position of the
radical in an algebra, Trans. Amer. Math. Soc. 48.
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groups of it are isomorphic to A, for all «. This shows that 4, is a

left uni-serial S. D,-ring. Therefore, by Theorem 6, we have our
Theorem. The converse is trivial.

As a corollary of this theorem, we have
Corollary. If every residue class ring of a ring A is quasi-F'robenius
ring, then A is o uni-serial ring, and conversely.
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