

Title	Some generalizations of quasi-Frobenius rings
Author(s)	Ikeda, Masatoshi
Citation	Osaka Mathematical Journal. 1951, 3(2), p. 227-239
Version Type	VoR
URL	https://doi.org/10.18910/10382
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Some Generalizations of Quasi-Frobenius Rings

By Masatoshi IKEDA

Let A be a ring satisfying the minimum condition for left and right ideals. (We shall understand by a ring always such one.) Let S be a set of elements of A . We shall denote the set $\{x|xS=0, x \in A\}$ by $l(S)$ and the set $\{y|Sy=0, y \in A\}$ by $r(S)$. Let N be the radical of A , $A/N = \bar{A} = \bar{A}_1 + \dots + \bar{A}_n$ be the direct decomposition of \bar{A} into simple two-sided ideals \bar{A}_κ and let $f(\kappa)$, $e_{\kappa, i}$, $e_\kappa = e_{\kappa, 1}$, $c_{\kappa, i, j}$, and $E_\kappa = \sum_{i=1}^{f(\kappa)} e_{\kappa, i}$ ($\kappa = 1, \dots, n$) have the same meaning as in Fr. I § 1 or S. I¹⁾. Namely $e_{\kappa, i}$ ($\kappa = 1, \dots, n$; $i = 1, \dots, f(\kappa)$) are mutually orthogonal primitive idempotents whose sum is a principal idempotent E of A , whence $A = \sum_{\kappa=1}^n \sum_{i=1}^{f(\kappa)} Ae_{\kappa, i} + l(E)$ ($= \sum_{\kappa=1}^n \sum_{i=1}^{f(\kappa)} e_{\kappa, i} A + r(E)$) is the direct decomposition of A into directly indecomposable left ideals $Ae_{\kappa, i}$ (right ideals $e_{\kappa, i}A$) and a left ideal $l(E)$ (right ideal $r(E)$), here $Ae_{\kappa, i}(e_{\kappa, i}A)$ and $Ae_{\lambda, j}(e_{\lambda, j}A)$ are operator isomorphic if and only if $\kappa = \lambda$. And $c_{\kappa, i, j}$ ($\kappa = 1, \dots, n$; $i = 1, \dots, f(\kappa)$, $j = 1, \dots, f(\kappa)$) are matric units, $c_{\kappa, i, j}c_{\lambda, h, k} = \delta_{\kappa, \lambda} \delta_{j, h} c_{\kappa, i, k}$ for any $\kappa, \lambda, i, j, h, k$ and $c_{\kappa, i, i} = e_{\kappa, i}$ for each κ, i . The residue class \bar{E}_κ of E_κ mod. N is the identity element of \bar{A}_κ for each κ . For the sake of brevity we shall call a ring A a D_i -ring (D_r -ring) if in A the duality relation $l(r(\mathfrak{l})) = \mathfrak{l}(r(l(\mathfrak{r})) = \mathfrak{r})$ holds for every left ideal \mathfrak{l} (right ideal \mathfrak{r}) of A . And if in A the duality relation $l(r(\mathfrak{l})) = \mathfrak{l}(r(l(\mathfrak{r})) = \mathfrak{r})$ holds for every nilpotent simple left ideal and zero (every nilpotent simple right ideal and zero), then we shall call A an $S. D_i$ -ring ($S. D_r$ -ring).

Recently T. Nakayama studied the structure of quasi-Frobenius rings²⁾ and, in the previous note S. II³⁾, T. Nakayama and the writer proved some properties of D_i -rings. In this note we shall consider the structure of $S. D_i$ -rings and refine Theorem 3 in Fr. I and Theorem 2 in S. II. Finally we shall consider some special D_i -rings, and give some results about them.

1) T. Nakayama: On Frobeniusean algebras I, II, Annals of Math. 42 (referred to Fr. I, II), T. Nakayama: Supplementary remarks on Frobenius algebras I, Proc. Japan Acad. (1949) (referred to S. I)

2) See Footnote 1).

3) T. Nakayama and M. Ikeda: Supplementary remarks on Frobenius algebras II, Osaka Math. Journ. 2 (1950) (referred to S. II)

1. *S. D_i-rings.*

Theorem 1. *Any S. D_i-ring has the properties;*

(I) *A has an identity element.*

(II) *There exists a permutation π of $(1, 2, \dots, n)$ such that for each κ , a) $A e_\kappa$ has a unique simple left subideal which is isomorphic to $A e_{\pi(\kappa)}/N e_{\pi(\kappa)}$, and b) the largest completely reducible right subideal of $e_{\pi(\kappa)} A$ is a direct sum of simple right subideals of the form ξ_m , where m is an arbitrary simple right subideal of $e_{\pi(\kappa)} A$ isomorphic to $e_\kappa A/e_\kappa N$ and ξ 's are suitable units⁴⁾ of $e_{\pi(\kappa)} A e_{\pi(\kappa)}$.*

(III) *$f(\kappa)=1$ if the largest completely reducible right subideal of $e_{\pi(\kappa)} A$ is not simple.*

Proof. We can prove (I) and (II) by a slight modification of the proof of Theorem 1 in S. II.

For the proof of (III), we shall use

Lemma 1. *Let A be an S. D_i-ring. Then eAe is also an S. D_i-ring, where $e = \sum_{\kappa=1}^n e_{\kappa, i(\kappa)}$ and $e_{\kappa, i(\kappa)}$ is one of $e_{\kappa, i}$ ($i = 1, \dots, f(\kappa)$) for each κ .*

Proof. We shall denote the right annihilator (in eAe) of a set $*$ by $r^o(*)$ and left one by $l^o(*)$. Let l^o be a left ideal of eAe , then $Al^o = l$ is a left ideal of A and $el = l^o$. l^o is contained in l so $l^o x = l^o ex = 0$ for any element x of $r(l)$. This shows $er(l) \cap eAe = er(l) e \subseteq r^o(l^o)$. Conversely, if x is an element of $r^o(l^o)$, then $lx = Al^o x = 0$. Therefore, x belongs to $r(l)$, and consequently $r^o(l^o) = er^o(l^o) e \subseteq er(l) e$. Thus we have $r^o(l^o) = er(l) e = er(Al^o) e$. A similar relation holds obviously for any right ideal r^o of eAe : $l^o(r^o) = el(r^o A) e$. Since $r^o(l^o) = er(l) e$, we have $r^o(l^o) A \subseteq er(l)$. Conversely if x is an element of $er(l)$, then $er(l)$ contains $x c_{\kappa, i, j(\kappa)}$ and $er(l) eA$ contains $x c_{\kappa, i, j(\kappa)} e c_{\kappa, j, i(\kappa)} = x \cdot e_{\kappa, i}$ for arbitrary κ and i . Since A has an identity element, $r^o(l^o) A = er(l) eA$ contains $x = \sum_{\kappa, i} x \cdot e_{\kappa, i}$. This shows $r^o(l^o) A = er(l)$.

So we have $l^o(r^o(l^o)) = el(r^o(l^o) A) e = el(er(l)) e$. It is easily seen that $l(er(l)) = A(1-e) + (Ae \cap l(r(l)))$. Hence $l^o(r^o(l^o)) = e(A(1-e) + (Ae \cap l(r(l)))) e = e(Ae \cap l(r(l)))$. Now let l^o be a simple left ideal of eAe , and assume that $l = Al^o$ is not simple and l' is its proper subideal. Then, since l^o is simple and $el' \subseteq el = l^o$, el' is either equal to l^o or zero. If $el' = l^o$, then $l' \supseteq Ael' = Al^o = l$ and this is a contradiction. If $el' = 0$, then $e_{\kappa, i(\kappa)} el' = e_{\kappa, i(\kappa)} l' = e_{\kappa, i(\kappa)} l' = 0$, and $0 = c_{\kappa, j, i(\kappa)} e_{\kappa, i(\kappa)} l' \supseteq c_{\kappa, j, i(\kappa)} e_{\kappa, i(\kappa)} c_{\kappa, i(\kappa), j} l' = e_{\kappa, j} l'$ for each κ, j . Since A has an identity element and $l' = \bigcup_{\kappa, j} e_{\kappa, j} l'$, l' must be zero. This is a contradic-

4) A unit is an element which has its inverse.

tion. Therefore $\mathfrak{l} = A\mathfrak{l}^\circ$ is a simple left ideal of A . By the assumption, $\mathfrak{l}(r(\mathfrak{l})) = \mathfrak{l}$ in A . Hence $\mathfrak{l}^\circ(r^\circ(\mathfrak{l}^\circ)) = e(Ae \cap \mathfrak{l}(r(\mathfrak{l}))) = e(Ae \cap \mathfrak{l})$. But since $\mathfrak{l} = A\mathfrak{l}^\circ$, $\mathfrak{l} = \mathfrak{l}e$ and $Ae \cap \mathfrak{l} = \mathfrak{l}$. So we have $\mathfrak{l}^\circ(r^\circ(\mathfrak{l}^\circ)) = e\mathfrak{l} = \mathfrak{l}^\circ$.

Now we shall prove (III). By the above lemma, eAe is also an $S. D_i$ -ring, where we take $\sum_{\kappa=1}^n e_\kappa$ as e . We shall denote eAe by A° , and the radical eNe of eAe by N° . Let $\bar{A}^\circ = A^\circ/N^\circ = \bar{A}_1^\circ + \dots + \bar{A}_n^\circ$ be the direct decomposition of \bar{A}° into two-sided ideals \bar{A}_κ° , then since each $e_\kappa = e_{\kappa,1}$ is a primitive idempotent, we have that \bar{A}_κ° is a quasi-field having \bar{e}_κ as its unit element for each κ . Since A° is an $S. D_i$ -ring, $r^\circ(N^\circ) = \mathfrak{l}^\circ(N^\circ) = M^\circ$ has the unique direct decomposition into simple two-sided ideals; $M^\circ = M^\circ e_1 + \dots + M^\circ e_n = e_{\pi(1)} M^\circ + \dots + e_{\pi(n)} M^\circ$, and here $M^\circ e_\kappa = e_{\pi(\kappa)} M^\circ$. Moreover $M^\circ e_\kappa$ is the unique simple left ideal of $A^\circ e_\kappa$, and is isomorphic to $A^\circ e_{\pi(\kappa)}/N^\circ e_{\pi(\kappa)}$, therefore $M^\circ e_\kappa = e_{\pi(\kappa)} A e_{\pi(\kappa)} m_\kappa$, where m_κ is an element of $M^\circ e_\kappa$. Now let $e_{\pi(s)} A$ be an indecomposable right ideal the largest completely reducible right subideal of which is not simple.

Since $e_{\pi(s)} M^\circ$ is not a simple right ideal of A° , $M^\circ e_s = e_{\pi(s)} M^\circ = e_{\pi(s)} A e_{\pi(s)} m_s \supsetneq m_s e_s A e_s$. Assume that $f(s) \geq 1$ for such an s .

It can easily be seen that $Me_s = Am_s$, and $Me_{s,2} = Am_s c_{s,1,2}$.⁵⁾ Now we shall take a left subideal $\mathfrak{l} = A(m_s + dm_s c_{s,1,2})$ of the completely reducible left ideal $Me_s + Me_{s,2}$, where d is an element of $e_{\pi(s)} A e_{\pi(s)}$ such that there exists no element d' in $e_s A e_s$ which satisfies $dm_s = m_s d'$. Since $e_{\pi(s)} A e_{\pi(s)} m_s \supsetneq m_s e_s A e_s$, we can take such an element. \mathfrak{l} is a simple left ideal, for $\mathfrak{l} = A e_{\pi(s)} (m_s + dm_s c_{s,1,2})$ is homomorphic to $A e_{\pi(s)}$ and $m_s + dm_s c_{s,1,2}$ is annihilated by $N e_{\pi(s)}$. Since A is an $S. D_i$ -ring it should be $r(\mathfrak{l}) \supsetneq r(Me_s + Me_{s,2}) = r(Me_s) \cap r(Me_{s,2}) = (1 - e_s - e_{s,2}) A + e_s N + e_{s,2} N$. The composition length of $A/r(Me_s + Me_{s,2})$ is 2, and $A/r(\mathfrak{l}) \cong (m_s + dm_s c_{s,1,2}) A$, hence the composition length of $(m_s + dm_s c_{s,1,2}) A$ should be 1.

On the other hand it can easily be seen that $(m_s + dm_s c_{s,1,2}) A = m_s A \cup dm_s c_{s,1,2} A$. $dm_s c_{s,1,2}$ does not belong to $m_s A$, for if $dm_s c_{s,1,2} \in m_s A$, then there exists an element d' such that $dm_s c_{s,1,2} = m_s d'$, and this leads $dm_s c_{s,1,2} c_{s,2,1} = dm_s = m_s d' c_{s,2,1}$, and $d' c_{s,2,1} \in e_s A e_s$, but this is impossible. Therefore the composition length of $(m_s + dm_s c_{s,1,2}) A$ is not 1, and thus the assumption that $f(s) \geq 1$ leads to a contradiction. This completes our proof. As a special case of this theorem, we have

Corollary 1. *Let A be a primary $S. D_i$ -ring and not a quasi-Frobenius ring. Then A is a completely primary $S. D_i$ -ring.*

Corollary 2. *Let A be a primary decomposable ring. Then A is an $S. D_i$ -ring if and only if every component of A is either a quasi-Frobenius*

5) $M = r(N) = I(N)$.

ring or a completely primary S . D_i -ring and not a quasi-Frobenius ring.

Corollary 3. *Let A be a ring in which the duality relation $l(r(l))=l$ holds for nilpotent simple left ideals and zero, and the duality relation $r(l(r))=r$ holds for nilpotent simple right ideals. Then A is a quasi-Frobenius ring.⁶⁾*

As the converse of Theorem I, we have the following

Theorem 2. *Let A be a ring which has the properties (I), (II) and (III). Then in A the duality relation $l(r(l))=l$ holds for every completely reducible left ideal, every left ideal which contains the radical N of A , the radical N itself, and zero. Furthermore in A the duality relation $r(l(r))=r$ holds for every right ideal which contains N , and N itself. Therefore A is an S . D_i -ring.*

Proof.

(1) It can easily be seen that the duality relation holds for zero.

(2) Since the unique simple left subideal $r(N) e_{\kappa, i}$ of $Ae_{\kappa, i}$ is isomorphic to $Ae_{\pi(\kappa)}/Ne_{\pi(\kappa)}$, we have that $r(N) e_{\kappa, i} = E_{\pi(\kappa)} r(N) e_{\kappa, i}$ and consequently $r(N) E_{\kappa} = \sum_{i=1}^{f(\kappa)} r(N) e_{\kappa, i} = E_{\pi(\kappa)} r(N) E_{\kappa}$ for each κ . Since A has an identity element $E_{\pi(\kappa)} r(N) = \sum_{\lambda=1}^n E_{\pi(\kappa)} r(N) E_{\lambda} = r(N) E_{\kappa}$. This shows that $r(N) E_{\kappa} = E_{\pi(\kappa)} r(N)$ is a two-sided ideal for each κ .

(3) $r(N) E_{\kappa}$ is a simple two-sided ideal. For if $m \neq 0$ is an arbitrary element of $r(N) E_{\kappa}$, then $me_{\kappa, i} \neq 0$ for at least one i , and it can easily be seen that $r(N) e_{\kappa, j} = Am e_{\kappa, i, j}$, hence $AmA \supseteq Am e_{\kappa, i} A \supseteq \sum_{j=1}^{f(\kappa)} r(N) e_{\kappa, j} = r(N) E_{\kappa}$. This shows that $r(N) E_{\kappa}$ is a simple two-sided ideal. Therefore $r(N) E_{\kappa} \subset l(N)$, and consequently $r(N) E_{\kappa} \subseteq l(N)$.

(4) Since the largest completely reducible right subideal $e_{\pi(\kappa)} l(N)$ of $e_{\pi(\kappa)} A$ is a direct sum of simple subideals which are isomorphic to $e_{\kappa} A / e_{\kappa} N$, $e_{\pi(\kappa), i} l(N) = e_{\pi(\kappa), i, 1} e_{\pi(\kappa)} l(N)$ is a direct sum of simple subideals which are isomorphic to $e_{\pi} A / e_{\kappa} N$. Hence $e_{\pi(\kappa), i} l(N) = e_{\pi(\kappa), i} l(N) E_{\kappa}$. Therefore $E_{\pi(\kappa), i} l(N) = \sum_{i=1}^{f(\pi(\kappa))} e_{\pi(\kappa), i} l(N) = E_{\pi(\kappa)} l(N) E_{\kappa}$. Then by the same way as above, we have that $E_{\pi(\kappa)} l(N) = l(N) E_{\kappa}$ is a two-sided ideal for each κ .

(5) Let $m \neq 0$ be an arbitrary element of $E_{\pi(\kappa)} l(N)$. Then $e_{\pi(\kappa), i} m e_{\kappa, j} \neq 0$ for suitable i and j . It can easily be seen that $e_{\pi(\kappa), i} m e_{\kappa, j} A$ is a simple right subideal of $e_{\pi(\kappa), i} l(N)$. Since $e_{\pi(\kappa)} l(N)$ is a direct

6) Fr. II Theorem 6.

sum of simple right subideals of the form ξm for an arbitrary simple right subideal m , $e_{\pi(\kappa), i} l(N)$ is a direct sum of simple right subideals of the form $\xi'm'$ for an arbitrary simple right subideal m' and suitable units ξ' of $e_{\pi(\kappa), i} Ae_{\pi(\kappa), i}$, and we have that $e_{\pi(\kappa), i} l(N) \subseteq e_{\pi(\kappa), i} Ae_{\pi(\kappa), i} \cdot e_{\pi(\kappa), i} me_{\kappa, j} A$. Since $e_{\pi(\kappa), j} l(N) = e_{\pi(\kappa), j, i} e_{\pi(\kappa), i} l(N)$, we have that $e_{\pi(\kappa), j} \cdot l(N) \subseteq e_{\pi(\kappa), j, i} e_{\pi(\kappa), i} Ae_{\pi(\kappa), i} me_{\kappa, j} A$. Then $AmA \supseteq \sum_{j=1}^{\pi(\kappa)} e_{\pi(\kappa), j} l(N) = E_{\pi(\kappa)} l(N)$. This shows that $E_{\pi(\kappa)} l(N)$ is a simple two-sided ideal. Therefore $E_{\pi(\kappa)} l(N) \subseteq r(N)$, and consequently $l(N) = \sum_{\kappa=1}^n E_{\pi(\kappa)} l(N) \subseteq r(N)$. By (3) and this relation, we have that $l(N) = r(N)$. We shall denote this by M .

(6) Now let I be a simple left ideal which is isomorphic to $Ae_{\pi(\kappa)}/Ne_{\pi(\kappa)}$. Then $E_{\pi(\kappa)} I = I$. Since $I \subseteq M$, $I = E_{\pi(\kappa)} I \subseteq E_{\pi(\kappa)} M = ME_{\kappa}$. Now if κ is an index such that the largest completely reducible right subideal of $e_{\pi(\kappa)} A$ is not simple, then $f(\kappa) = 1$ and consequently $E_{\kappa} = e_{\kappa}$ is a primitive idempotent. Since Me_{κ} is a simple left ideal, $I = Me_{\kappa}$. In this case we can easily show that the duality relation holds for I . Now assume that κ is not such an index as above. Since I is isomorphic to $Ae_{\pi(\kappa)}/Ne_{\pi(\kappa)}$, $I = Ae_{\pi(\kappa)} m$ for a suitable element $m \neq 0$ of I . Since m is an element of M , $e_{\pi(\kappa)} mA$ is contained in $e_{\pi(\kappa)} M$. From the assumption of κ , $e_{\pi(\kappa)} mA$ is a simple right ideal. On the other hand $e_{\pi(\kappa)} mA \cong A/r(e_{\pi(\kappa)} m)$. Therefore $r(e_{\pi(\kappa)} m)$ must be a maximal right ideal of A and there exists a primitive idempotent e such that $r(e_{\pi(\kappa)} m) = N \cup (1-e) A$. Therefore $e_{\pi(\kappa)} m = e_{\pi(\kappa)} me + e_{\pi(\kappa)} m(1-e) = e_{\pi(\kappa)} me$ and $I = Ae_{\pi(\kappa)} me = Me$. Then we can show easily that the duality relation holds for I . Thus we have that the duality relation holds for every simple left ideal.

(7) Let L be a completely reducible left ideal and $L = \sum_{i=1}^s m_i$ be a direct decomposition of L into simple left ideals m_i . $r(m_i)$ is a maximal right ideal of A for each i . Therefore the composition length of $A/r(L)$ is at most s . Let $r \supset r_0$ are two right ideals and let r/r_0 be irreducible. Then $l(r_0)/l(r)$ is an irreducible left module or zero.⁷⁾ Therefore the composition length of $l(r(L))$ is at most s . Therefore we have that $l(r(L)) = L$. Thus the duality relation holds for every completely reducible left ideal.

7) Let r/r_0 be isomorphic to $\bar{e}_{\kappa} \bar{A}$, then $r = r_0 \cup b e_{\kappa} A$ for a suitable element b of r . We see readily that $l(r_0) b e_{\kappa}$ is contained in Me_{κ} . Since Me_{κ} is a simple left ideal, $l(r_0) b e_{\kappa} = Me_{\kappa}$ or zero. On the other hand $l(r_0) b e_{\kappa} \cong l(r_0)/l(r_0) \cap l(b e_{\kappa}) = l(r_0)/l(r_0 \cup A b e_{\kappa}) = l(r_0)/l(r)$. Therefore $l(r_0)/l(r)$ is irreducible or zero.

(8) Let \mathfrak{l} be a maximal left ideal. Now if $l(r(\mathfrak{l})) \supsetneq \mathfrak{l}$ then $l(r(\mathfrak{l}))$ must be equal to A , since \mathfrak{l} is a maximal left ideal. Therefore $r(l(r(\mathfrak{l}))) = r(\mathfrak{l}) = r(A) = 0$. But $\mathfrak{l} = N \cup A(1-e)$ for a suitable primitive idempotent e , and $r(\mathfrak{l}) = r(N \cup A(1-e)) = eM \neq 0$. This is a contradiction. Therefore the duality relation holds for every maximal ideal. It can easily be seen that if the duality relation holds for \mathfrak{l}_1 and \mathfrak{l}_2 then it holds for $\mathfrak{l}_1 \cap \mathfrak{l}_2$.⁸⁾ Now let L be a left ideal which is either equal to the radical N or contains the radical N . Then it is expressed as a cross-cut of a finite number of maximal ideals. Therefore, as mentioned above, the duality relation holds for L .

(9) By the same way as in (8), we have that the duality relation $r(l(r)) = r$ holds for every right ideal which contains N , and for N itself. This completes our proof.

In the case of algebras, we have, by Theorem I, the following

Theorem 3. *An algebra A , with a finite rank over a field F , is a quasi-Frobenius algebra if (and only if) the duality relation $l(r(\mathfrak{l})) = \mathfrak{l}$ holds for every nilpotent simple left ideal and zero. A is further a Frobenius algebra if (and only if) the rank relation $(A:F) = (\mathfrak{l}:F) + (r(\mathfrak{l}):F)$ holds for every nilpotent simple left ideal, besides the duality relation for nilpotent simple left ideals and zero.*

Proof. Assume that A is an $S. D_i$ -algebra and is not a quasi-Frobenius algebra. By Lemma 1. $eAe = A^\circ$ is also an $S. D_i$ -algebra and is not a Frobenius algebra,⁹⁾ where we take $\sum_{\kappa=1}^n e_\kappa$ as e . Therefore there exists at least one κ such that the largest completely reducible right subideal $e_{\pi(\kappa)} M^\circ$ of $e_{\pi(\kappa)} A^\circ$ is not simple. As in the proof of (III) of Theorem 1, $M^\circ e_\kappa = e_{\pi(\kappa)} A e_{\pi(\kappa)} m_\kappa \supsetneq m_\kappa e_\kappa A e_\kappa$. Since m_κ is an element of M° , αm_κ and $m_\kappa \beta$ ($\alpha \in e_{\pi(\kappa)} A e_{\pi(\kappa)}$, $\beta \in e_\kappa A e_\kappa$) are determined uniquely by the residue classes α and β (mod. N) to which α and β belongs respectively. Hence we may express $e_{\pi(\kappa)} A e_{\pi(\kappa)} m_\kappa$ by $\bar{e}_{\pi(\kappa)} \bar{A} \bar{e}_{\pi(\kappa)} m_\kappa$ and $m_\kappa e_\kappa A e_\kappa$ by $m_\kappa \bar{e}_\kappa \bar{A} \bar{e}_\kappa$. From $\bar{e}_{\pi(\kappa)} \bar{A} \bar{e}_{\pi(\kappa)} m_\kappa \supsetneq m_\kappa \bar{e}_\kappa \bar{A} \bar{e}_\kappa$, we have a "properly into" isomorphism θ of $\bar{e}_\kappa \bar{A} \bar{e}_\kappa$ into $\bar{e}_{\pi(\kappa)} \bar{A} \bar{e}_{\pi(\kappa)}$. Similarly we have an isomorphism θ' of $\bar{e}_{\pi(\kappa)} \bar{A} \bar{e}_{\pi(\kappa)}$ onto or into $\bar{e}_{\pi(\pi(\kappa))} \bar{A} \bar{e}_{\pi(\pi(\kappa))}$, and so on. Finally we have a "properly into" isomorphism $\Theta (= \theta \cdot \theta' \dots)$ of $\bar{e}_\kappa \bar{A} \bar{e}_\kappa$ into $\bar{e}_\kappa \bar{A} \bar{e}_\kappa$, since π is a permutation. But since $\bar{e}_\kappa \bar{A} \bar{e}_\kappa$ is a division algebra with a finite rank over a field F , this is impossible. Therefore

8) $r(\mathfrak{l}_1 \cap \mathfrak{l}_2) \supsetneq r(\mathfrak{l}_1) \cup r(\mathfrak{l}_2)$, hence $l(r(\mathfrak{l}_1) \cup r(\mathfrak{l}_2)) = l(r(\mathfrak{l}_1)) \cap l(r(\mathfrak{l}_2)) = \mathfrak{l}_1 \cap \mathfrak{l}_2 \supsetneq l(r(\mathfrak{l}_1 \cap \mathfrak{l}_2)) \supsetneq \mathfrak{l}_1 \cap \mathfrak{l}_2$. Therefore $l(r(\mathfrak{l}_1 \cap \mathfrak{l}_2)) = \mathfrak{l}_1 \cap \mathfrak{l}_2$.

9) From the definition of quasi-Frobenius rings, we see readily that A is a quasi-Frobenius ring if and only if eAe is a Frobenius ring, where $e = \sum_{\kappa=1}^n e_\kappa \cdot e_{\pi(\kappa)}$.

A must be a quasi-Frobenius algebra. The converse is trivial. The latter half is same as Theorem 6 in S. II.

2. Some special D_t -rings.

Now we shall consider D_t -rings. Of course a D_t -ring has the properties (I), (II) and (III).

Moreover we shall give a necessary condition for a ring to be a D_t -ring, other than (I), (II) and (III).

Theorem 4. *Let A be a D_t -ring. Then A satisfies the following condition.*

(*) *Every left ideal which has a unique simple left subideal, is contained in an indecomposable left ideal Ae which is generated by a suitable primitive idempotent e .*

Proof. Since A has an identity element, A satisfies the maximum condition also. Therefore A has a composition series. Now let I be a left ideal which has a unique simple left ideal. Then a maximal subideal I' of I satisfies the same assumption as I . Therefore we shall apply induction.

Let t be a simple left ideal. Then $r(t) = (1-e) A \cup N$ for a suitable primitive idempotent e , since $r(t)$ is a maximal right ideal. Therefore $l(r(t)) = t = Me$, by the duality relation.

Now assume that the condition holds for left ideals which have shorter composition lengths than that of I . Thus a maximal left subideal I' of I is contained in Ae' for a suitable primitive idempotent e' . If $I = Ae'$, then $I \subset Ae'$. This case is trivial. Therefore we assume that $I \neq Ae'$. Since I contains $I' = I'e'$, Ie' contains I' . If $Ie' = I'$, then $I \supset Ie' = I'$ and we can decompose I into Ie' and $I(1-e') = 0$. But this contradicts the fact that I has a unique simple left ideal. Thus $Ie' \neq I'$. Since $I(1-e') \cong I/I \cap l(1-e')$ and $I \cap l(1-e') \neq I'$, we have that $I(1-e')$ is either a simple left ideal or zero. If $I(1-e') = 0$, then we have $I = Ae'$. This contradicts the above assumption $I \neq Ae'$. Thus $I(1-e')$ is a simple left ideal. It can easily be seen that $r(I') = r(I'e') = (1-e') A + e'r(I')$. Therefore $r(I) \cong (1-e') A + e'r(I')$. Similarly $r(I(1-e')) = e'A + ((1-e') A \cap r(I))$. Moreover, since $I(1-e')$ is a simple left ideal, $r(I(1-e'))$ is a maximal right ideal. Therefore $r(I(1-e')) = (1-e) A + eN$, where e is a primitive idempotent and $ee' = e'e = 0$.¹⁰⁾ Therefore $(1-e')A$

10) Since $r(I(1-e'))$ is a maximal right ideal, $r(I(1-e'))$, the residue class of $r(I(1-e'))$ mod. N , is a maximal right ideal of the residue class ring \bar{A} of A mod. N . $r(I(1-e'))$ is generated by an idempotent \bar{E} . Since $r(I(1-e'))$ contains \bar{e}' (the residue class of e' mod. N), $\bar{E}\bar{e}' = \bar{e}'$. We shall denote $\bar{E} - \bar{e}'\bar{E}$ by \bar{E}' . Then \bar{E}' is an idempotent and $\bar{E}'\bar{e}' = \bar{e}'\bar{E}' = 0$ and $r(I(1-e')) = \bar{E}\bar{A} = \bar{e}'\bar{A} + \bar{E}'\bar{A}$. We shall decompose \bar{E}' into primitive idempotents \bar{e}_i ($i = 2, \dots, n-1$). Then $\bar{e}_1 = \bar{e}'$, $\bar{e}_2, \dots, \bar{e}_{n-1}$, $\bar{e}_n = 1 - \sum_{i=1}^{n-1} \bar{e}_i$ form a system of orthogonal idempotents. As is well known we can construct orthogonal primitive idempotents e_i ($i = 1, \dots, n$) such that $e_i \in \bar{e}_i$, where we can take e' as e_1 . We see readily that $r((1-e')) = e_1A + \dots + e_{n-1}A + e_nN = (1-e_n)A + e_nN$, where $e'e_n = e_ne' = 0$.

$\cap r(\mathfrak{l}) = (1 - e - e') A + eN$ and consequently $r(\mathfrak{l}) \supseteq (1 - e - e') A + eN$. From the above relations, we have $(1 - e') A + e'r(\mathfrak{l}') \supset r(\mathfrak{l}) \supseteq (1 - e - e') A + eN$. Here we may assume that $e'r(\mathfrak{l}')$ is a nilpotent ideal. For if $e'r(\mathfrak{l}')$ is not nilpotent, then $e'r(\mathfrak{l}')$ contains an idempotent and $r(\mathfrak{l}') = (1 - e') A + e'r(\mathfrak{l}')$ is equal to A , hence $\mathfrak{l}' = l(r(\mathfrak{l}')) = l(A) = 0$, but in this case \mathfrak{l} is a simple left ideal and the condition holds for \mathfrak{l} . Since $(1 - e') A + e'r(\mathfrak{l}') / (1 - e - e') A + eN + e'r(\mathfrak{l}')$ is an irreducible right module, we have that either $r(\mathfrak{l})$ is contained in $(1 - e - e') A + eN + e'r(\mathfrak{l}')$ or $r(\mathfrak{l}) \cup e'r(\mathfrak{l}') = (1 - e') A + e'r(\mathfrak{l}')$. If $r(\mathfrak{l}) \supseteq (1 - e - e') A + eN + e'r(\mathfrak{l}')$, then $\mathfrak{l} = l(r(\mathfrak{l})) \supseteq l((1 - e - e') A + eN + e'r(\mathfrak{l}')) = A(e + e') \cap (A(1 - e) + Me) \cap (A(1 - e') + (Ae' \setminus l(r(\mathfrak{l}')))) = Me + \mathfrak{l}'$. This contradicts the assumption that \mathfrak{l} has a unique simple left ideal. Therefore $r(\mathfrak{l}) \cup e'r(\mathfrak{l}') = (1 - e') A + e'r(\mathfrak{l}')$. Since $r(\mathfrak{l})$ contains $(1 - e - e') A$, we can decompose $r(\mathfrak{l})$ into $(1 - e - e') A$ and $(e + e') r(\mathfrak{l})$. Therefore $(e + e') r(\mathfrak{l}) \cup e'r(\mathfrak{l}') = eA + e'r(\mathfrak{l}')$. This shows that $(e + e') r(\mathfrak{l})$ is not nilpotent. Therefore $(e + e') r(\mathfrak{l})$ contains an idempotent e_1 . Since $(e + e') r(\mathfrak{l}) \ni e_1$, we have that $(e + e') e_1 = e_1$. If we denote $e_1(e + e')$ by e_2 , then e_2 is not zero. For if e_2 is zero, then $e_1 = e_1^2 = ((e + e') e_1)^2 = 0$, and this is a contradiction. It can easily be seen that e_2 is an idempotent and $(1 - e - e') e_2 = e_2(1 - e - e') = 0$. Now we set $e_3 = (e + e') - e_2$. Then e_3 is an idempotent and is not zero. Because, if e_3 is zero, then $(e + e') r(\mathfrak{l})$ contains $eA + e'A$ and consequently $\mathfrak{l} = l(r(\mathfrak{l})) = l((1 - e - e') A + eA + e'A) = l(A) = 0$. Moreover, since e_2 and e_3 are mutually orthogonal idempotent, e_3 is a primitive idempotent. Since $(e + e') r(\mathfrak{l}) \supset e_2 A$, we have a direct decomposition of $(e + e') r(\mathfrak{l})$ into $e_2 A$ and \mathfrak{r}_0 , where \mathfrak{r}_0 is a right ideal consisting of elements such that $e_2 x = 0$. From $e_2 \mathfrak{r}_0 = 0$ and $(e + e') \mathfrak{r}_0 = \mathfrak{r}_0$, we have that $e_3 \mathfrak{r}_0 = \mathfrak{r}_0$. Therefore $\mathfrak{l} = l(r(\mathfrak{l})) = l((1 - e_3) A + e_3 \mathfrak{r}_0) = Ae_3 \setminus l(\mathfrak{r}_0) \subseteq Ae_3$, and this shows that \mathfrak{l} is contained in an indecomposable ideal Ae_3 . This completes our proof.

Remark. Let A be a ring which satisfies (I), (II) and (*). Then $r(N) = l(N) = M$ and every simple left ideal is of the form Me for a suitable primitive idempotent e , by (*). Therefore the duality relation holds for every simple left ideal. Thus A is an $S. D_i$ -ring, and consequently A satisfies (III). Actually the conditions (I), (II) and (*) are stronger than (I), (II) and (III).

Example 1. Let $K(x)$ be the rational function field over a field K . Then

$$A = K(x) e_1 + K(x) e_2 + K(x) u_1 + K(x) u_2 + K(x) u_1 u_2 + K(x) u_2 u_1$$

$$e_1 x = x e_1 \quad e_2 x = x e_2 \quad u_1 x = x^2 u_1 \quad u_2 x = x^2 u_2$$

	e_1	e_2	u_1	u_2	u_1u_2	u_2u_1
e_1	e_1	0	0	u_2	0	u_2u_1
e_2	0	e_2	u_1	0	u_1u_2	0
u_1	u_1	0	0	u_1u_2	0	0
u_2	0	u_2	u_2u_1	0	0	0
u_1u_2	0	u_1u_2	0	0	0	0
u_2u_1	u_2u_1	0	0	0	0	0

is an $S. D_i$ -ring. But A does not satisfy (*).

For example, the left ideal $A(u_1+xu_1u_2)$ is homomorphic to Ae_2 which has a unique composition series, hence $A(u_1+xu_1u_2)$ has a unique simple left subideal. Now assume that $A(u_1+xu_1u_2)$ is contained in an indecomposable left ideal Ae . Then e is congruent to e_1 or e_2 mod. N . Therefore e is either $e_1+f_1(x)u_1+f_2(x)u_2+f_3(x)u_1u_2+f_4(x)u_2u_1$ or $e_2+g_1(x)u_1+g_2(x)u_2+g_3(x)u_1u_2+g_4(x)u_2u_1$. If $e=e_1+f_1(x)u_1+f_2(x)u_2+f_3(x)u_1u_2+f_4(x)u_2u_1$, then $(u_1+xu_1u_2)e=u_1+f_2(x^2)u_1u_2\neq u_1+xu_1u_2$. If $e=e_2+g_1(x)u_1+g_2(x)u_2+g_3(x)u_1u_2+g_4(x)u_2u_1$, then $(u_1+xu_1u_2)e=(g_2(x^2)+x)u_1u_2\neq u_1+xu_1u_2$. These are contradictions. Therefore A does not satisfy (*).

In general, the conditions (I), (II) and (*) are not sufficient for a ring to be a D_i -ring.

Example 2. Let $K(x)$ be the rational function field over a field K . Then $A=K(x)+K(x)u_1+K(x)u_2+K(x)u_1u_2$ ($u_1^2=u_2^2=0$ $u_1u_2=u_2u_1$ $u_1x=x^2u_1$ $u_2x=x^2u_2$) is a completely primary ring and satisfies (I), (II) and (*), but is not a D_i -ring.

Next we shall consider some special D_i -rings.

We shall call a ring A a *generalized left uni-serial ring*, if A has an identity element and every indecomposable left ideal Ae generated by a primitive idempotent e has a unique composition series. A left uniserial ring is a primary decomposable generalized left uni-serial ring.

Let A be a *generalized left uni-serial ring* which satisfies (II). Then, since an indecomposable left ideal Ae_κ has a unique composition series, $Ae_\kappa \supset Ne_\kappa \supset \dots N^{\sigma(\kappa)-2}e_\kappa \supset N^{\sigma(\kappa)-1}e_\kappa \supset 0$ is the unique composition series of Ae_κ and $N^{\sigma(\kappa)-1}e_\kappa \cong \bar{A}e_{\kappa(\kappa)}$.

Now we assume that $Ae_\kappa/Ne_\kappa \cong \bar{A}e_\kappa$, $Ne_\kappa/N^2e_\kappa \cong \bar{A}e_{\lambda_1} \dots N^i e_\kappa/N^{i+1}e_\kappa \cong \bar{A}e_{\lambda_i}, \dots, N^{\sigma(\kappa)-1}e_\kappa \cong \bar{A}e_{\kappa(\kappa)}$. If we take an element d of Ne_κ which is not in N^2e_κ , then we have $Ne_\kappa = Ae_{\lambda_1}de_\kappa$, hence Ne_κ is homomorphic to Ae_{λ_1} .

If $\kappa = \lambda_1$, then we can easily show that $N^i e_\kappa/N^{i+1}e_\kappa$ is isomorphic to $\bar{A}e_\kappa$ for every i .

If $\kappa \neq \lambda_1$, then the composition factor groups of Ae_{λ_1} are as follows; $Ae_{\lambda_1}/Ne_{\lambda_1} \cong \bar{A}e_{\lambda_1}$, $Ne_{\lambda_1}/N^2e_{\lambda_1} \cong \bar{A}e_{\lambda_2}$, ..., $N^{\sigma(\kappa)-2}e_{\lambda_1}/N^{\sigma(\kappa)-1}e_{\lambda_1} \cong \bar{A}e_{\pi(\kappa)}$, $N^{\sigma(\kappa)-1}e_{\lambda_1}/N^{\sigma(\kappa)}e_{\lambda_1}$, ..., $N^{\sigma(\lambda_1)-1}e_{\lambda_1} \cong \bar{A}e_{\pi(\lambda_1)}$, but since $\pi(\kappa) \neq \pi(\lambda_1)$ if $\kappa \neq \lambda_1$, we have $[Ae_{\lambda_1}]_i \geq [Ae_{\kappa}]_i$. (For the sake of brevity we shall denote the composition length of a left module \mathfrak{M} by $[\mathfrak{M}]_i$.) In this case $\lambda_1 \neq \lambda_2$, for if $\lambda_1 = \lambda_2$, then as above $N^i e_{\lambda_1}/N^{i+1}e_{\lambda_1} \cong \bar{A}e_{\lambda_1}$ for every i , hence $\bar{A}e_{\pi(\kappa)} \cong \bar{A}e_{\lambda_1}$ and $\bar{A}e_{\pi(\lambda_1)} \cong \bar{A}e_{\lambda_1}$, consequently $\pi(\kappa) = \lambda_1 = \pi(\lambda_1)$, but this is a contradiction. Thus we have $[Ae_{\lambda_2}]_i \geq [Ae_{\lambda_1}]_i \geq [Ae_{\kappa}]_i$, as above, and so on. Finally we have $[Ae_{\pi^i(\kappa)}]_i \geq [Ae_{\pi^{i-1}(\lambda_{\sigma(\kappa)-2})}]_i \geq \dots \geq [Ae_{\kappa}]_i$, where $\pi^i(\kappa)$ means $\pi(\pi(\dots \pi(\kappa)))\dots$. If we take such an r that $\pi^r(\kappa) = \kappa$, then the above inequalities lead that $[Ae_{\kappa}]_i = [Ae_{\pi^r(\kappa)}]_i \geq \dots \geq [Ae_{\kappa}]_i$, therefore we have that all $[Ae_{\pi^i(\lambda_j)}]_i$'s are the same, and moreover $Ae_{\pi^i(\lambda_j)}$ has only $\bar{A}e_{\pi^i(\lambda_k)}$'s as the composition factor groups of it. This shows that we can classify $(1, \dots, n)$ into classes C_{σ} as follows;

(α) If $\lambda \in C_{\sigma}$, then any composition factor group of Ae_{λ} is isomorphic to $\bar{A}e_{\mu}$ with some $\mu \in C_{\sigma}$.

(β) If $\lambda, \mu \in C_{\sigma}$, then $[Ae_{\lambda}]_i = [Ae_{\mu}]_i$.

(α) shows that we have a direct decomposition of A into two-sided ideals $A_{\sigma} = E_{\sigma}AE_{\sigma}$, where we denote $\sum_{\mu \in C_{\sigma}; i=1, \dots, f(\mu)} e_{\mu, i}$ by E_{σ} .¹¹⁾ Since A satisfies (II), every A_{σ} satisfies (II) also. From (β), if we denote the radical of A_{σ} by N_{σ} , then $A_{\sigma}e_{\kappa} (= Ae_{\kappa}) \supset N_{\sigma}e_{\kappa} \dots \supset N_{\sigma}^{(\sigma)-1}e_{\kappa} > 0$ is the unique composition series of Ae_{κ} , and since $r(N_{\sigma})e_{\kappa}$ is the largest completely reducible subideal of Ae_{κ} , we have $r(N_{\sigma})e_{\kappa} = N_{\sigma}^{p(\sigma)-1}e_{\kappa}$, and since $r(N_{\sigma}^2)e_{\kappa}/r(N_{\sigma})e_{\kappa}$ is the largest completely reducible left submodule of $Ae_{\kappa}/N_{\sigma}^{p(\sigma)-1}e_{\kappa}$, we have $r(N_{\sigma}^2)e_{\kappa} = N_{\sigma}^{p(\sigma)-2}e_{\kappa}$, finally we have $r(N_{\sigma}^t)e_{\kappa} = N_{\sigma}^{p(\sigma)-t}e_{\kappa}$ and $r(N_{\sigma}^t) = \sum_{\kappa \in C_{\sigma}; i=1, \dots, f(\kappa)} r(N_{\sigma}^t)e_{\kappa, i} = \sum_{\kappa \in C_{\sigma}; i=1, \dots, f(\kappa)} N_{\sigma}^{p(\sigma)-t}e_{\kappa, i} = N_{\sigma}^{p(\sigma)-t}$ for $t = 1, 2, \dots, p(\sigma)$. Moreover, as was shown in the proof of Theorem 2, $r(N_{\sigma}) = l(N_{\sigma})$ and consequently $r(N_{\sigma}^t) = l(N_{\sigma}^t) = N_{\sigma}^{p(\sigma)-t}$ for $t = 1, 2, \dots, p(\sigma)$.

Theorem 5. *Let A be a generalized left uni-serial ring, then A is a D_t -ring if and only if A satisfies (II) and (*).*

Proof. “if” part follow from Theorem 1 and Theorem 4 directly. Let \mathfrak{l} be a left ideal of a ring A which satisfies (II) and (*). We may assume that A is a generalized left uni-serial ring in which $r(N^t) = l(N^t) = N^{p-t}$, where $N^p = 0$ and $N^{p-1} \neq 0$. Let $\mathfrak{l} = \bigcup_{i=1}^n Ab_i$ and $A = \sum_{j=1}^m Ae_j$ be the direct decomposition of A into indecomposable left ideals, then

11) This decomposition is so called “Block decomposition”.

$$Ab_i = \bigcup_{j=1}^m Ae_i b_i \text{ and consequently } I = \bigcup_{i,j} Ae_i b_i.$$

Since every $Ae_i b_i$ is homomorphic to Ae_i and consequently it has a unique simple left subideal, $Ae_i b_i$ is contained in an indecomposable left ideal $Ae^{(j,i)}$ which is generated by a suitable primitive idempotent $e^{(j,i)}$, by (*). Therefore $Ae_i b_i = N^{r(j,i)} e^{(j,i)}$. Let $r(1,1)$ be the minimum of $r(j,i)$. Then $Ie^{(1,1)} = \bigcup_{j,i} N^{r(j,i)} e^{(j,i)} e^{(1,1)} = N^{r(1,1)} e^{(1,1)} \subseteq I$. Therefore we have the direct decomposition of I into $Ie^{(1,1)}$ and $I(1-e^{(1,1)})$; $I = Ie^{(1,1)} + I(1-e^{(1,1)})$.

Let I_0 be a simple left ideal then I_0 is contained in an indecomposable left ideal Ae_0 and consequently $I_0 = N^{p-1} e_0$ by (*). Then it can easily be seen that $l(r(I_0)) = I_0$.

Now we shall apply induction. Assume that the duality relation holds for left ideals which have shorter composition lengths than that of I .

If $I = Ie^{(1,1)}$, then $I = N^{r(1,1)} e^{(1,1)}$, hence $r(I) = (1-e^{(1,1)})A + e^{(1,1)}N^{p-r(1,1)}$ and $l(r(I)) = N^{r(1,1)} e^{(1,1)} = I$. Thus in this case the duality relation holds for I . If $I = I(1-e^{(1,1)})$ then $Ie^{(1,1)} = 0$, but this is a contradiction.

Therefore we can assume that $Ie^{(1,1)}$ and $I(1-e^{(1,1)})$ have shorter composition lengths than that of I . Then, by the induction assumption, the duality relation holds for $Ie^{(1,1)}$ and $I(1-e^{(1,1)})$.

We see readily $r(Ie^{(1,1)}) = (1-e^{(1,1)})A + (e^{(1,1)}A \cap r(I))$ and $r(I(1-e^{(1,1)})) = e^{(1,1)}A + ((1-e^{(1,1)})A \cap r(I))$. We shall denote $l(r(I))$ by \bar{I} . Of course $r(I) = r(\bar{I})$.

On the other hand we have $r(\bar{I}e^{(1,1)}) = (1-e^{(1,1)})A + (e^{(1,1)}A \cap r(\bar{I})) = r(Ie^{(1,1)})$, hence $l(r(\bar{I}e^{(1,1)})) = l(r(Ie^{(1,1)})) = Ie^{(1,1)}$, but since $\bar{I}e^{(1,1)} \subseteq Ie^{(1,1)}$, we have $\bar{I}e^{(1,1)} = Ie^{(1,1)}$. Similarly we have $\bar{I}(1-e^{(1,1)}) = I(1-e^{(1,1)})$. Since $\bar{I} \subseteq \bar{I}e^{(1,1)} + \bar{I}(1-e^{(1,1)})$, we have $\bar{I} \subseteq Ie^{(1,1)} + I(1-e^{(1,1)}) = I$. This shows $\bar{I} = I$.

For a generalized left uni-serial ring A , we can take the following condition (*'), in place of (*);

(*'): Every left ideal which is homomorphic to an indecomposable left ideal Ae which is generated by a primitive idempotent e , is contained in an indecomposable left ideal Ae' for a suitable primitive idempotent e' .

By Theorem 5 and Corollary 2 of Theorem 1 we have

Theorem 6. Let A be a left uni-serial ring then the following four conditions are equivalent.

- (1) A is an $S. D_i$ -ring.
- (2) A is a D_i -ring.
- (3) A satisfies (*).

(4) A is a direct sum of a uni-serial ring and completely primary left uni-serial rings.

Proof. (1) \rightarrow (4) can easily be seen by Corollary 1 of Theorem 1 and by the fact that a left uni-serial ring is a quasi-Frobenius ring if it is a uni-serial ring.

(4) \rightarrow (2) from the fact that a completely primary left uni-serial ring is a D_i -ring.

(2) \rightarrow (3) is trivial.

(3) \rightarrow (1) it is sufficient to show that (II) is satisfied.

But this can easily be seen from the fact that $r(N) = l(N) = N^{p-1}$ is the unique minimal two-sided ideal of a primary left uni-serial ring A , where $N^p = 0$ and $N^{p-1} \neq 0$.

3. Rings whose residue class rings are all $S. D_i$ -rings.

It is well known that A is a uni-serial ring if and only if every residue class ring of A is a Frobenius ring.¹²⁾

We shall generalize this theorem as follows.

Theorem 7. *If every residue class ring of a ring A is an $S. D_i$ -ring, then A is a left uni-serial $S. D_i$ -ring, that is, it is the direct sum of a uni-serial ring and completely primary left uni-serial rings. The converse is also true.*

Proof. Let A be a ring such that every residue class ring of it is an $S. D_i$ -ring. Now we shall decompose A into a bound ring A_1 and a semi-simple ring A_2 .¹³⁾ Then, of course, A_2 is a uni-serial ring. Therefore it is sufficient to prove that A_1 is a left uni-serial $S. D_i$ -ring. Since A_1 is an $S. D_i$ -ring, it has an identity element, hence satisfies the maximum condition (not only the minimum condition). Therefore A_1 has a composition series. Now let us assume that our assertion is true for rings with smaller composition lengths. Since A_1 is a bound ring, we see readily that $\tilde{A}_1\bar{e}_\lambda$ is an indecomposable left ideal of $\tilde{A}_1 = A_1/E_{\pi(\kappa)}ME_\kappa$ for each λ (\sim denotes residue classes mod. $E_{\pi(\kappa)}ME_\kappa$). By our assumption, A_1 is a left uni-serial ring. Hence $\tilde{A}_1\bar{e}_\lambda = A_1e_\lambda \cup E_{\pi(\kappa)}ME_\kappa/E_{\pi(\kappa)}ME_\kappa$ has a unique composition series and the composition factor groups of it are isomorphic to $\bar{A}_1\bar{e}_\lambda$. Since $A_1e_\lambda \cup E_{\pi(\kappa)}ME_\kappa/E_{\pi(\kappa)}ME_\kappa \cong A_1e_\lambda$ for $\lambda \neq \kappa$, we have that A_1e_λ has a unique composition series composition factor groups are isomorphic to $\bar{A}_1\bar{e}_\lambda$. Since κ is arbitrary, it follows that A_1e_κ has a unique composition series and the composition factor

12) T. Nakayama: Note on uni-serial rings and generalized uni-serial rings, Proc. Imp. Acad. 16 (1940).

13) A ring A is called as a bound ring, if $r(N) \cap l(N) \subseteq N$. M. Hall: The position of the radical in an algebra, Trans. Amer. Math. Soc. 48.

groups of it are isomorphic to $\bar{A}\bar{e}_\kappa$ for all κ . This shows that A_1 is a left uni-serial $S. D_\gamma$ -ring. Therefore, by Theorem 6, we have our Theorem. The converse is trivial.

As a corollary of this theorem, we have

Corollary. *If every residue class ring of a ring A is quasi-Frobenius ring, then A is a uni-serial ring, and conversely.*

(Received July 7, 1951)

