|

) <

The University of Osaka
Institutional Knowledge Archive

Title On the bialgebras of group schemes

Author(s) |Ishibashi, Yasunori

Osaka Journal of Mathematics. 1972, 9(2), p.

Citation 261-272

Version Type|VoR

URL https://doi.org/10.18910/10384

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/

The University of Osaka



Ishibashi, Y.
Osaka J. Math.
9 (1972), 261-272
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Let G be an algebraic group scheme over an algebraically closed field k.
We shall first show that the set (G) of left invariant high order derivations on
G will have a natural structure of bialgebra over k with only one grouplike
element. If « is a surjective homomorphism of a group variety G onto a group
variety G’, the kernel H of « in the category of algebraic k-group schemes is
well defined. Moreover we have a bialgebra homomorphism da of $(G) into
$(G"). H. Yanagihara showed surjectivity of da and investigated k-vector space
structure of the kernel of da in the category of bialgebras using the semi-deri-
vations in [13]. In this paper it will be proved that the kernel of da in the
category of bialgebras coincides with the bialgebra of H and we have an exact
sequence

0 $(H) 9(G) 9(G)— 0

in the category of bialgebras, while the bialgebra of H is not defined in
general using the semi-derivations. Thus the bialgebra $(G) may be a good
substitute of Lie algebras in the case of positive characteristic. The next problem
which we are interested is the characterization of sub-bialgebra of $(G) which
arises from a closed subgroup scheme. Unfortunately we have no general
solution, but a solution will be given when G is a commutative group variety
over k. Our results have close connection with the work of H. Yanagihara and
our bialgebra (G) coincides with the bialgebra used by H. Yanagihara in [12]
when G is a group variety.

The author wishes to express his thanks to Professor Y. Nakai for his sug-
gestion and encouragement.

1. Local high order derivations of a local ring

Let O be a noetherian local ring containing a field k2 such that O/m is
canonically isomorphic to k, where m is the unique maximal ideal of O. We
denote by x(0) the element of & representing the class of x in O modulo m. A
k-linear homomorphism D of O into % is called a local n-th order derivation of
O if we have



262 Y. IsHIBASHI
D(x,,+x,) = ;Zl(-l)s_f:;i_xﬁ (0):+ ;5 (0)D (g &7+ Ryg+ %)

for any sequence #,, ,,-*, &, of (n41)-elements in 0. We denote by D,(0)
the set of local n-th order derivations of O and set D(0) = k D ”6159,,(0), where

a(x) is defined by ax(o) for a € kand x € O. Then it is easily seen that D(O)
is a subspace of Hom,(O,k).

Proposition 1. Let the situation be as above. Then we have
(1) D,0) is canonically isomorphic to Hom,(m/m"**, k) as a k-vector space.

2) U D,(0) is the set of k-linear homomorphisms of O into k vanishing on some
n=1

power of m.
(3) D(O) has a cocommutative coalgebra structure over k.

Proof. (1) The mapping @ of D, (O) into Hom,, (m/m***, k) is defined as
follows. If D € D,(0), we set (D) (%)= D(x) for x € m, where ¥ is the class
of x in m modulo m***. Since D vanishes on m***, ®(D) is well defined. Clearly
@ is k-linear and injective. We shall prove that @ is surjective. Let f € Hom,
(m/m**, k). We put D(x) = f(x-2(0)) for x in O. It will suffice to show D &
D,(0). Then D is k-linear and [D, a+x]=[D, x] for ain k and x in m. (For
the definition of [D, x], see [8].) Hence we have [--[[D, a, + %], a, + x,], -,
a,+x,]=[---[[D, x], x,],--+, x,] for any a;,€k and any x;,em. Now
[--[[D, x,], x,], ***, x,] (a+x)=0 for any ack and any x, x,;Em since D is
k-linear and vanishes on m**'. Hence D is in D, (O).

(2) Obvious from (1).

(3) Let up : OR,0— O be the homomorphism induced by the multiplication
of O. Then we have the dual mapping p*: Hom,(O, k) - Hom (0OQ,0, k).
We shall prove p*(D(0))CD(0) ®,D(0) (cHom, (O®,0,k)). To this pur-
pose, we have only to show p*(D,(0))CcD(0)R,D(0). Since Ojm=k, O/m™**
is a finite dimensional k-vector space. We assume that the classes of u,=1, u,,
-+, %,, modulo m"** form a k-basis of O/m™*'. We denote by #; the class of
in O/m™*™* and @, @¥,-.-, #¥ its dual basis. Then #¥ow,- -, #ow form a k-basis
of D,(0), where o is the canonocal homomorphism of O onto O/m™**. If D €

D,(0), an easy computation shows p*(D);i‘, D(uu;) (afowQufow) + Zm} D(u;)

Tfow® afow + Ufow® Tfow)+ i cw @ Bfow. Thus p*(D,(0)CDO)R, D
(0). We set A=p*|D(0), the restriction of x* on D(0). Since O is commu-
tative, A is cocommutative. Augmentation & : D(0) — k is defined by & (D)=
D(1) for D in D(0). Then it is easily seen that(D(0), A,€) is a coalgebra over &,
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2. The bialgebras of group schemes

Let S be a prescheme and X be an S-prescheme. We denote by f the
structure morphism: X—S. An n-th order derivation D of X/S is, by definition,
an endomorphism of f7'(Os)-Module Oy satisfying the following identity:

D(p, @, ... ) = g(_l)s—,-l<§i?“m¢"s D(¢0"'¢i1"'¢is'"¢n)

for every open set U of X and every sequence @,, @,:*, @, of T'(U, Ox). DY
(X/S) denotes the set of n-th order derivations of X/S. We set D, (X/S) = U
n=1

D,(X/S) and D(X/S)=T(X, Ox) PD(X/S). We see easily that DE € D,
(X/S) and [D,p] = Dp-@D-D(p) is an (m-1)-th order derivation for D € D%
(X/S), E € DP(X/S) and ¢ € T'(X, Ox) (cf. [8]). From these we can see that
D(X/S) is a I'(X, Ox)-algebra. If u is a morphism of preschemes : X — Y, we
denote by # the homomorphism of Oy into u4(Ox).

Let G be an S-group scheme and let g: S—G be a section. The morphism
‘ gXle
g6: G S X G—— G x G5 Gistheleft translation by g of G, where 1, (resp.
8 S

m) is the identity morphism of G (resp. the multiplication of G). If D is a high
order derivation of G/.S, then we set Df=_g;"Y(gs)«(D)gc. DF is also a high order
derivation of G/S. A high order derivation D of G/S is called left invariant if
we have (Dr)*=D for any base change ¢: T—.S and any section g : T— T>s< G,

where D, is the high order derivation of T'X G/T induced by D. Let k be a
S

field and G be an algebraic k-group scheme. From now on we shall mean by a
k-group scheme an algebraic k-group scheme. In this case we say a high order
derivation of G/Spec(k) simply a high order derivation of G/k. We shall denote
by &(G) the set of left invariant high order derivations of G/k and set 9(G) = k
P &(G). Itis clear that $(G) is a k-algebra. Then $(G) coincides with the
algebra of left invariant differential operators on G defined in 2B of [3].

Hereafter we assume that k is an algebraically closed field of positive char-
acteristic p.

Proposition 2. Let G be a k-group scheme. Then DO ,) is a bialgebra
over k, where e is the origin of G.

Proof. We set O=0; , and denote by m the maximal ideal of O. If we
put n=0Q ,m+mQ,0(Cc OR,0), then we have the canonical isomorphism ¢ :
Ocxc, exe = (0®,0)n. Let DED,,(0) and EED,(0), then DRE: 0®,0—
k is an (m-+n)-th order derivation. D @ E is uniquely extended to an element
of D,,,s((0®40)n) ([8] Theorem 15). We denote it DQE again. The product
of D and E is given by ;
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(D * E) (x)=(DQE) (pm*(x))

for x in O, where m* is the homomorphism of O=0¢ , into Ogx¢ .x. associated
with the multiplication m of G. Clearly we have D * E€D,,,,(0). We define

a*D=Dsa=aD and a*B=Fxa=afB for a, B in k& and D in ,.G,SD"(O)‘

Then PD(0) is a k-algebra with respect to this multiplication * and ordinary
addition. Let (D(0), A, &) be the coalgebra defined in Proposition 1. Obviously
& is an algebra homomorphism. To complete our proof, it suffices to show that
A is an algebra homomorphism, i.e. to see the following diagram is commutative

D(0) @ D(0) —> D(O) —> D(0) @ D(O)
AR A 1QT®1 T v Qv
D(0) © D(0) ® D(0) ® D(0) —> D(0) @ D(O) ® V(O) ® D(O)

where v is the mapping induced by the multiplication * and T is a twisting
homomorphism: D @ E - E® D. Let A (D)= >1D; ® D; and A(E)=31E;
® E;. Then we have A(D*E) (xQy) = (DQXE) (pm*(xy)). On the other hand
we see (Qv) (1QTQ1) (AR A) (DYE) (xQy)=2 (D, Q) (pm* (x)) (Di®E))
(pm*(y)). Since pm*(xy)=g@m*(x)pm*(y) and a high order derivation is unique-
ly extended to a quotient ring, we have only to show the following identity:

(DQE) (xuQ@yv)= 2] (D;QFE;) (xQY) (Di®E)) (u®wv) for xQy, u@v € O
®40. Being A (D)=31D,;®D; and A(E)= > E ;QEj], we get D(xu)=>]D,(x)
Di(u) and E(yv)= >) E;(y)Ej (v). This proves our assertion.

REMARK 1. It is easily seen that D(Og ,) is a Hopf algebra, i.e. ©(Og ,) has
an antipode.

Proposition 3. Let the situation be the same as in Proposition 2. Then D
(Og,,) s canonically isomorphic to O(G) as a k-algebra.

Proof. Weset O=O0;,. If Disin &G), D induces a high order deriva-
tion of O into itself. We shall denote it D again. Then we define ®(D)=roD,
where 7 is the canonical homomorphism of O onto %, and ® (a) = a for a € k.
Thus we have defined a mapping ® : $(G) - D(0). @ is k-linear. To show
@ is an algebra homomorphism, we must prove ®(DE) = ®(D) * ®(E) for D, E
in &(G). Since D is left invariant, the diagram:

m*
OG,e R OGXG,eXe
lD ” lDG

OG,e > OGXG.eXc
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is commutative, where m* is the homomorphism associated with the multiplica-
tion m of G. (cf. [3] 2B, A) Lemma). Hence we have (1Q7) Dem* = (1Q7=) m*
D=D, i.e. (1Q®P(D))m* = D where 1 denotes the identity mapping of O, and 1
@7 and 1Q®(D) are given as follows. Let m be the maximal ideal of O and put
n1=0Qm+mQ,0(cO®,;0). Then we see easily that the mapping: O®,0
EfRQg—>frn(g)s0 (resp. 0Q,0 € f Q g — f D(D)(g)=0) can be extended
to the mapping: (O®,0), — O uniquely. We also denote by 1 @ z and 1 Q @
(D) these mappings composed with the canonical isomorphism: Ogxg ox. 5 (O
®40); respectively. We have (1Q ®(D))m* (1Q®(E))m* = DE. On the other
hand z(1Q ®(D))m* = ®(D). Thus we get ®(DE) = ®(D) x &(E). To prove
@ is an isomorphism, we exhibit the inverse mapping ¥. Let D, € D,(0) and
let & be the unit section: Spec(k) — G. Then D, induces a high order derivation

of Og into &4 (k) by adjointness with respect to & We denote it D, again. We

n mx(Dyc)
seth = 15 X € : GXk— G X G and define ¥ (D,) tobe Og — my(Ogxg) —> mx

h«(Ogxr) S Og. It is easily seen that @ and ¥ are inverse to each other.

ReMARK 2. This proof is a version of that of 2.4 of [3] 2B, A).
(*) A high order derivation: Og — Ex(k) is a k-linear homomorphism satisfying
the similar identity as a high order derivation of G/k.

We transform the bialgabra structure of D (Og ,) into 9 (G) by the isomor-
phism defined in Proposition 3. Thus (G) is a bialgebra over k.

Theorem 1. If G is a k-group scheme, then O(G) is a bialgebra with only
one grouplike element 1< k.

Proof. We shall show the assertion for D(0), where O = O ,. Assume
that a+D(ack, De @ D, (0)) is grouplike. Since A(a+D) = (a+D) Q(a+

D), we have (a+ D) (xy) = (a+D) (x) (a+D) (y) for x, y in O. Hence D(xy)=D
(%) D(y) for x, y in m because a(x)=0 by the definition of operation of elements
in kon O. Let m’ be the least power of m on which D vanishes. We assume
i>1. Since D = 0 there is an element x in m satisfying D(x) = 0. For x,,---,
x;_,€m we have D(xx,-x;_,)=D(x)D(x,:--x;_,) = 0 and so D(x,-+-x;_,) = 0.
Now D vanishes on m‘™* contrary to the assumption on ¢ and hence D=0. We
obtain ¢=1 immediately.

Proposition 4. We assume that G and G’ are group varieties defined over
k, and a is a surjective k-homomorphism of G onto G’. We set O=0g , and O'=
Og’ ./, where e(resp.€’) is the neutral element of G(resp. G’). Then there exists a
regular system of parameters {t,,---, t,,} for O such that {£;", -+, t2"} is a regular
system of parameters for O', where we identity the rational function field of G’ with

a subfield of the rational function field of G by the cohomomorphism .

(1) The author knew that H, Yanagihara obtained this result in [13].
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Proof. We decompose a: G—G’ as follows:

¢ 25 GRera), - &,

where @ is the canonical epimorphism and v is the homomorphism induced by
a. Since S is separable and v is a purely inseparable isogeny, we get the asser-
tion using Theorem in [6].

Let H, K be bialgebras over k and let z: H — K be a homomorphism of
bialgebras. Then we define HKer (z) = {x€H|1Qx = (#Q1) Ay (x) in KQ,
H}. If H is cocommutative we see that HKer (z) is a sub-bialgebra of H ([11]
Lemma 16. 1. 1.).

We let a : G—G’ denote a homomorphism of k-group schemes. Since the
induced homomorphism a* : Oy +—Og , is local, it gives a homomorphism of k-
vector spaces da: D(Og ,)—>D(O¢’ /), where e(resp. €) is the origin of G(resp.
G’). -Then we have

Proposition 5. da is a homomorphism of bialgebras.
Proof. We shall first show that da is an algebra homomorphism. To this
purpose, we have only to prove da(D % E)=da(D) % da(E) for D, E in Q D,

(Og,e)- Let x € Oy . Then we have da(D * E) (x)= (DQE) (pm*a*(x)),
where ¢ is the canonical isomorphism: Ogxg oxe =5 (O ®:O)q used in the proof
of Proposition 2, and m* is the homomorphism: Og, ,—Ogxc,.x. associated with
the multiplication m of G. On the other hand we have (da(D) *d a(E)) (x) =
(DQE) (af ¢'m* (x)), where @': Og/xe’ /x5 (0’ @,0")y and m'*: Og’ s — O
&’xc’ ./ x¢ are defined similarly for G’ and a¥ is the homomorphism : (0'®Q,O0")y
—(0®,0), induced by a*: O’ —>0. We obtain pm*a* = a¥ ¢'m'*, since a is
a homomorphism of G into G’. Thence da is an algebra homomorphism. Next
we shall prove that da is a coalgebra homomorphism. Let A(D)=2>'D;®D;.

Then we get (da ® da) (A(D)) (*Qy)= 2 D;(a*(x)) Di(a*(y)) for x, yeO¢ ..
On the other hand A(da(D)) (x®y)=D(a*(x)a*(y)). Since A(D)=>1D,;®D;,
we see D(a*(x) a*(y))= 2] Dy(a*(x)) Di(a*(y)). 'This completes our proof.

Thus do induces a homomorphism of bialgebfas: H(G) — H(G’). We also
denote it da.

We assume that G is a group variety defined over k and {¢,,---,2,} is a regular
system of parameters for O; ,. Letf & Og, and we express f=>a; ..., t1...
ti»mod. mY , with a; ---;, € k for sufficiently large N, where m¢ , is the maxi-
mal ideal of Og ,. Then the elements a are uniquely determined by f and a

i1°in

regular system of pareamters {¢,,---t,}. Weset I, ., . (f)=a; ..., If‘éij>
, o =1

€ D,(0¢,,) for

0, I, ., vanishes on 1 and on mnZ’;*'. Thence we see L
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some m by Proposition 1, (2). Since D(Og ,) is canonically isomorphic to H(G)
by Proposition 3, I, ..;, , corresponds to the unique left invariant high order der-
ivation /;,..,, of G. We say that the I, ..;, are the canonical left invariant high

order derlvatlons with respect to a regular system of parameters {z,,--,z,} for

@
O¢ 2.

Proposition 6. In the above situation the I, ..,, form a basis of the k(G)-
vector space of all high order derivations of k(G)/k, where k(G) is the rational func-
tion field of G over k.

Proof. Following [8] we denote by D¢Q(k(G)/k) the set of all ¢g-th order
derivations of k(G)/k. We have only to show that the I, .., (0< ﬁi ;<¢q) form

a k(G)-basis of DP(k(G)/k). From the proof of Proposition 18 in [9] we know
the dimension of DY (k(G)/k) over k(G). Thus it is sufficient to see that the I,
are independent over &k (G). Let Xa;,..;, I, .;, = 0 with q, .., € k(G).
There is a closed point g in G such that non- zero a;, ..., are unitin Og ,. We
have 3a; ..;, I if((Lo (81 o tidn)) = D00, . L1 I (21 - tin) = 0 where
L*_, is the automorphism of k(G) associated with the left translation by g~ of
G. By the deﬁmtlon of I,1 in We see that L, I, ., (¢{1---#]s) is unit in Og ,
for 7, =j,,--+, i, = j, and is non-unit in Og , otherwise. If a; ..;, & 0, we have
@iy L1 T (1 oo tdn )=~ 2 Tiyin L% I, . (t{1 -++tis). In this equality
:::1(11 5 ind

the left hand side is unit in Og , while the right hand side is non-unit in Og ,.
This is contradiction.

Let a: G— G’ be surjective homomorphism of group varieties defined over
k. By Proposition 4 we can choose a regular system of parameters {¢,,:-,t,} for
Og,, such that {#§%--, #7’»} is a regular system of parameters for Oy /. We
let {1, ..;,} denote the canonical left invariant high order derivations of G with
respect to {t,,--, t,} and {I/..,} be the canonical left invariant high order der-
ivations of G’ w1th respect to {t”el , %=}, Then we have

Theorem 2.%(1) da: 9(G) — O(G’) is surjective.

(2) 9(Ker(a))= HKer (da) and moreover as a k-vector space D(Ker (o)) has a
k-basis {1 ;.. ,n},,<p 1(1<I<m).

(3) Ker (da) is a k-vector space with a basis {I;,...; - 0} F(1<i<m)U {L,.5,}

i Xy,

at least one of j,,.1, e+ ,ju>0 and in fact Ker (da) isa left ideal of O(G) generated
by O(Ker(a))t={DeD(Ker (a))|E(D)=0}, where £ is the augmentation of bial-
gebra O(Ker (a)).

(2) These are the same as the canonical left invariant semiderivations of G with respect to
{t,,+, t,} defined in [11].
(3) The author knew that H, Yanagihara obtained (1) and the latter part of (2) in [13].
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~ Proof. (1) We see that {I’;,..,,} is a k-basis of H(G"), since the I’} ..., ./
form a k-basis of D(O¢ /). An easy calculation shows da(l; ye1..0,pomg0) = I's,
.1, and so da is surjective.
(2) Since Ker (a) is a closed subgroup scheme of G, it is clear that $ (Ker («))
is a sub-bialgebra of (G). We see Ker (a)= Gé’ Spec(k). Hence if m’ is the

maximal ideal of Og’ ./ we have Ok (g .= Og Ja*(m’)O¢ , where a* is the ho-
momorphism: Og’ /— Og,, induced by . Now it is immediate to see that )
(Ker ()} coincides with HKer (da) as sub-bialgebras of  (G). Next we prove
the second part. If I; ..;, € HKer (da), we have I, ..;, ,(a*(x)y) = a*(x’) (0)
I;,..;,.4y) for any ¥ €O¢  and any y € O,, , and coversely. We see easily I;,...
jn,e(a*(x’)y)zl :2 Iy, (a*(x)) I,y..;0.4(y). Hence we obtain I} ..;, € HKer
itVi=i;
(da) if and only ifl y EZ: >0I,l...,“,,,,(opk (%)) I1s.1,0,6(y)=0 for any ' €O¢’ / and
Y= L
anyy € Og,. Since I;,.., (t17+t")=1 for I;=1;(1<i<n) and 0 otherwise,
we see I; ..., (a*(x'))=0 for any ¥’ € Oy  and any integers /,,...,], satisfying 0
<I;<j(1<i<m)and 33[;>0. Thence we must have j,<<p°z for 1 <I/<m. Since

the I, ...;, form a k-basis of § (G), our assertion is now immediate.

(3) we have da(I; 1.0, p6my0) =TIy, and da(1;,...;,)=0if (j,,+++,7,) is not of
the form (/,p%,-+, ,,p°", 0,---,0). Now the first assertion is obvious. We have
om*(t;)=t; ® 1+ 1Q¢t; mod. m*( cf. chap. IX in [7]), where m* is the homomor-
phism : Og, — Ogyg .x, associated with the multiplication m of G and ¢ is the
canonical isomorphism : Ogxc exe =5 (O .. ®:O0¢ o)n and m denotes the maximal
ideal of (O; ,®:O¢ )n. Then an easy computation shows I;

17vin,e * Ifl"'jn,b' =

(’1;!:]1),.,(1»:?;]»:) I\ jigiin,e mod. DFEHI0™D(0 ). Hence we get I;

irin

I, = (’;H)<’j j,.) Ly s insin mod. D(G)NDEFEH0D (GJR). If we
1 ”

express ;= a;p%i+b; with 0<b,;<p°s for j=1,---, m, we hvae I, ..; ;... =1 per..

ampM00 Lby b oo MOd. D(G) N DG (G[k), since <a,.j‘>1i})—|;b,-) =1mod. p.

We see I,,...4,0.- € D(Ker (a))™ by (2) if some of &, is positive. Moreover we
have I; ..;, =1 ...jp00 Looimsyin mod.  D(G)NDF/ 17> (G[k). If at least one
Of fopisyeees Ju 18 poSitive, L., 7, E D(Ker(a))* by (2). Now the induction on
the order of high order derivations completes our proof.

If G is a k-group scheme and G’ is a closed subgroup scheme of G, it is
immediate that ©(G’) is a sub-bialgebra of $(G). We consider which sub-bial-
gebras of $(G) arise from closed subgroup schemes of G. We obtain a charac-
terization in the case G is a commutative group variety.

Let G be a group variety defined over k and let  be a sub-bialgebra of $
(G). Then we define k(G)? to be the set of elements x in k(G) such that D(x)=
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0 for every D in D satisfying & (D) = 0 where k(G) denotes the field of rational
functions on G over k. We see that k(G)? is a subfield of &(G).

Proposition 7. We asume that G and G’ are group varieties defined over k
and «a is a surjective homomorphism of G onto G’ defined over k. Then we have
k(G)EEerdDd=k(G"),, where we identify a*(k(G")) with k(G’) and k(G’), denotes the
separably algebraic closure of k(G’) in k(G).

Proof. We shall first show that 2(G’) is contained in k(G)*¥*@®, Let D
€ HKer (da). Then D vanishes on k(G’). Since an high order derivation can
be uniquely extended to an high order derivation of separably algebraic extension
field ([9] Theorem 17), D vanishes on k(G’),. Hence we have k(G’), C k(G)
Herda)  We assume k(G'), & k(G)™¥*"@®, Then there exists an element x in
k(G)H¥erda> satisfying x & k(G’),. We shall show that this will lead to contra-
diction. Since x & k(G’),, x is either transcendental over k(G’), or purely inse-
parable over k(G’);. In any case there exists an ordinary derivation D of k(G’);
(x) such that D vanishes on k(G’), and D(x) = 1. Then D can be extended to a
high order derivation D of k(G) ([9] Proposition 13, Theorem 17). Let {¢,,---,
t,} be a regular system of parameters for O , as in Proposition 4. We assume
that the I;, ..;, are the canonical left invariant high order derivations of G with
respect to {¢,+, t,}. The I; . ;, form a basis of the k(G)-vector space of all
high order derivations of k(G)/k by Proposition 6. Thence we have D=Xa;...;,
1;,.j,witha; .. ;, ink(G). We shall show a; se1..;,, pem,.., = 0. To the contrary
We assUme @ e1...1,,pm., + 0. 'There exists a closed point g in G such that
every non zero a;,..;, is a unit in Og ,. We have D(L}_,(t}12* -t m?*")) =
3y L oL e (53224 ™)), where L% -, is the automorphism of k(G) asso-
ciated with the left translation by g™ D vanishes on k(G’) by our construction
and Daj,...;, L¥ (L7, #12°1,im?"™)) is a unit in O , because I;,...;, (£
t.im?°") is a unit for j, = [,p*(1 <i<m), j,,,,=+-*=j,= 0 and a non unit otherwise.
This is contradiction. Hence we have a; se1..;,, ,m...,=0. Since D(x)=1, there
is a set of integers {j,,:-, j,} satisfying I, .; (x) #= 0. The above argument
means that either some j; of j,,++, 4, is not divisible by p° or at least one ofj,, .,
-+, ju is positive. Consequently we have I; ..;, € Ker (da) by Theorem 2, (3)
and so there exists D’ in HKer (da)* such that D’(x) = 0, because Ker (da) is a
left ideal generated by HKer (da)* (Theorem 2, (3)). This contradicts to x € k

(G)HKer(dﬂ’).

Lemma 1 ([14] Lemma 2). Let K be a field of positive characteristic and
{D,=1,D,, D,,--*} be a higher derivation of K in the sense of [4]. If we set K.
= {x€K|D;(x) = 0 for any i > 1}, then K is a separable extension of K...

For the results of bialgebras with one grouplike element we refer to [10].
Let H be a cocommutative bialgebra over a perfect field &k of positive character-
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istic p. We assume that H has only one grouplike element and set " = Hom,
(H,k). Then H’is a commutative algebra with respect to convolution (Cf. [11]).
We define F(a') = a’? for @’ € H’. The transposed mapping F’ : H” — H" is
given by <a’, F'(b")> = {F(a'), ¥">/? for &’ € H’ and b” = H”. Identifying
H with subspace of H” we have F/(H)C H. Let V denote the restriction of F’

on H and let V" be V-V (n times). We put V=(H) = N V*(H). It is shown
=]

that V= (H) is a sub-bialgebra of H. We denote by L (H) the set of primitive
elements'in H, i. e. x € H satisfying A(x) = x®1+1 ® x, where A is the co-
multiplication of H. Moreover we set L,(H)= L(H)N Vi(H) for i=0, 1, -++,00.

RemArk 3. If G is a k-group scheme, then we have V> (9(G)) = 9 (Gea)s
and G is reduced if and only if § (G) = V= (9(G)). This follows immediately
from 6.4 of [2] I1I §3.

Lemma 2. Let G be a group variety defined over k of dimension n. Then
we see that L(D(G)) = L(D(G)) and this is n-dimensional as a k-vector space.

Proof. We note that L (9 (G)) is the set of left invariant (ordinary) deriva-
tions of G and is of dimension n over & as a k-vector space. 'Thus we have orly
to prove L(9(G)) C L.(D(G)). Let {I;, .} be the canonical left invariant high
order derivations of G with respect to a regular system of parameters for O ,.

it is easi i . R infini
Then it is easily seen that {1, I oo Loosoo s Lyooloo } is an infinite

higher derivation in the sense of [4]. Thence we have I ¢ & L (9(G)) by

0...010.--0

Theorem 2 of [10]. On the other hand the I_ £  form a k-basis of L(9D(G))

0...010-.-0
and so our proof is complete.

Theorem 3. Let G be a commutative group variety defined over an algebrai-
cally closed field k of positive characteristic and O be a sub-bialgebra of 9(G). Then
9 is the bialgebra of a closed subgroup scheme of G if and only if we have tr. deg, k
(G)® = dim G-dimy, L..(D), where tr. deg, k(G)® denotes the transcendence degree
of k(G)® over k. '

Proof. We assume = 9(G’) for some closed subgroup scheme G’ of G.
We consider the canonical epimorphism a: G— GG’ of group varieties. Then
we have HKer(da) = $(G’) by Theorem 2, (2). Hence k(G)? = k(G/G’), by
Proposition 7 and so tr.degyk(G)? = dim G-dim G.” On the other hand L..(®(0O
¢".¢")) = Lo D(Og/req,/)) by Theorem 2 of [10], since O/ = Ogl oq /R 1H for
some finite bialgebra H over & ([2]III 3, 6.4) and so D (04’ /) = D(O¢/ea./) P
Hom,(H, k). Being G’,,4 smooth over k, we have dim,L..(D(0¢,.q.,/)) = dim,
L.(9(G’q)) = dim G’ .y = dim G’ by Lemma 2. Hence we have tr.deg,k(G)®
=dim G -dim,L..(9). Conversely we assume tr.deg;k(G)? = dim G-dim,L..(D).
Since 9(G) has only one grouplike element 1, © is so. Thus we can apply The-
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orem 3 of [10] to see the coalgebra structure of . Since G is commutative,
(G) is commutative. An element of O therefore induces a high order derivation
of k(G)V"® into itself. We assert that 4(G)V"® is a finite modular purely in-
separable extension of k(G)9, for the latter is the constant field of higher deriva-
tions of finite rank in the sense of [4] by the coalgebra structure of $ ([10]
Theorem 3). We see that k(G)V"D (resp.k(G)9) is the function field of some
group variety G(resp. G,) defined over k& by Proposition 8 of [1], because  —
(G) and G is commutative. We also have epimorphisms 8: G — G, and v : G,
— G,. Clearly v is purely inseparable isogeny. Since V*(9) is commutative and is
generated by the components of infinite higher derivations by Theorem 3 in [10],
@ is separable by Lemma 1. We set a=vyoB3. We shall prove = HKer(de).
To this purpose it suffices to show L;(9) = L;(HKer(da)) (i = 0, 1, 2,--+, o) by
Theorem 3 of [10]. By our assumption dim,L..(9) = dim G-tr.degk(G)?=dim
G-dim G,. Since B is separable and v is purely inseparable, there exists a regu-
lar system of parameters {t,,-:+, t,} for O¢ , such that {¢,,--, #,} (resp. {#£",--,
t2°7}) is a regular system of parameters for the local ring of G, at the origin
(resp. the local ring of G, at the origin). Then dim G-dim G,=n-m and on the
other hand dim,L..(HKer(da)) = n-m by Theorem 2,(2). Being © c HKer(da)
we get L..(9) = L.(HKer(da)). We see dim, L, (HKer(da)) = (n-m) + (the
number of / satisfying i+ 1 <e,(1 <I<m)) from Theorem 2 in [10] and Theorem
2,(2). Thus we have dim,L; (HKer (dv)) = dim,L; (HKer(da))-dim,L.. (HKer
(da)) fori=0,1,2,---. We also see that HKer (dy) = {D| k"9’ for some
D in $} by Jacobson-Bourbaki Theorem (cf. [5]), where D| x5," @ denotes the
restriction of D on k(G)V"®. Since L..(9) = L..(HKer(da)) we have dim,L,(D)
-dim,L..(9) < dim,L;(HKer(da))-dim,L..(HKer (da)) = dim,L;(HKer (dv)).
We set H= {D| 4c,""® for some D in $}. By Theorem 3 of [10] we see dim,
HKer(d'y) — Pzi;dim,,L,'(HKer(d'v)) and dlm,,H < P§(dimk1‘i(@)"dimk1‘w(@))_ Since HKer
(dv) = H we get dim,L;(9)-dim,L..(9) = dim,L;(HKer(dv)) fori = 0, 1, 2,--.
Hence we have dim,L; (9) = dim,L; (HKer (da)). Since § < HKer (da) we
obtain L,(9) = L,(HKer(da)) fori=0,1,2,---. Thus we have = HKer(da),
i.e. © = 9(Ker(a)) and we are done.
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