

Title	On the bialgebras of group schemes
Author(s)	Ishibashi, Yasunori
Citation	Osaka Journal of Mathematics. 1972, 9(2), p. 261-272
Version Type	VoR
URL	https://doi.org/10.18910/10384
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

ON THE BIALGEBRAS OF GROUP SCHEMES

YASUNORI ISHIBASHI

(Received October 1, 1971)

Let G be an algebraic group scheme over an algebraically closed field k. We shall first show that the set $\mathfrak{F}(G)$ of left invariant high order derivations on G will have a natural structure of bialgebra over k with only one grouplike element. If α is a surjective homomorphism of a group variety G onto a group variety G', the kernel H of α in the category of algebraic k-group schemes is well defined. Moreover we have a bialgebra homomorphism $d\alpha$ of $\mathfrak{F}(G)$ into $\mathfrak{F}(G')$. H. Yanagihara showed surjectivity of $d\alpha$ and investigated k-vector space structure of the kernel of $d\alpha$ in the category of bialgebras using the semi-derivations in [13]. In this paper it will be proved that the kernel of $d\alpha$ in the category of bialgebras coincides with the bialgebra of H and we have an exact sequence

$$0 \longrightarrow \mathfrak{H}(H) \longrightarrow \mathfrak{H}(G) \longrightarrow \mathfrak{H}(G') \longrightarrow 0$$

in the category of bialgebras, while the bialgebra of H is not defined in general using the semi-derivations. Thus the bialgebra $\mathfrak{D}(G)$ may be a good substitute of Lie algebras in the case of positive characteristic. The next problem which we are interested is the characterization of sub-bialgebra of $\mathfrak{D}(G)$ which arises from a closed subgroup scheme. Unfortunately we have no general solution, but a solution will be given when G is a commutative group variety over k. Our results have close connection with the work of H. Yanagihara and our bialgebra $\mathfrak{D}(G)$ coincides with the bialgebra used by H. Yanagihara in [12] when G is a group variety.

The author wishes to express his thanks to Professor Y. Nakai for his suggestion and encouragement.

1. Local high order derivations of a local ring

Let O be a noetherian local ring containing a field k such that O/m is canonically isomorphic to k, where m is the unique maximal ideal of O. We denote by x(o) the element of k representing the class of k in k modulo k. A k-linear homomorphism k of k is called a local k-th order derivation of k if we have

$$D(x_0x_1\cdots x_n) = \sum_{s=1}^{n} (-1)^{s-1} \sum_{i_1 < \dots < i_s} x_{i_1}(o) \cdots x_{i_s}(o) D(x_0 \cdots \hat{x}_{i_1} \cdots \hat{x}_{i_s} \cdots x_n)$$

for any sequence x_0, x_1, \dots, x_n of (n+1)-elements in O. We denote by $\mathfrak{D}_n(O)$ the set of local n-th order derivations of O and set $\mathfrak{D}(O) = k \oplus \bigcup_{n=1}^{\infty} \mathfrak{D}_n(O)$, where a(x) is defined by ax(0) for $a \in k$ and $x \in O$. Then it is easily seen that $\mathfrak{D}(O)$ is a subspace of $\operatorname{Hom}_k(O,k)$.

Proposition 1. Let the situation be as above. Then we have

- (1) $\mathfrak{D}_n(O)$ is canonically isomorphic to $Hom_k(\mathfrak{m}/\mathfrak{m}^{n+1}, k)$ as a k-vector space.
- (2) $\bigcup_{n=1}^{\infty} \mathfrak{D}_n(O)$ is the set of k-linear homomorphisms of O into k vanishing on some power of m.
- (3) $\mathfrak{D}(O)$ has a cocommutative coalgebra structure over k.
- Proof. (1) The mapping Φ of $\mathfrak{D}_n(O)$ into $\operatorname{Hom}_k(\mathfrak{m}/\mathfrak{m}^{n+1}, k)$ is defined as follows. If $D \in \mathfrak{D}_n(O)$, we set $\Phi(D)$ (x) = D(x) for $x \in \mathfrak{m}$, where x is the class of x in \mathfrak{m} modulo \mathfrak{m}^{n+1} . Since D vanishes on \mathfrak{m}^{n+1} , $\Phi(D)$ is well defined. Clearly Φ is k-linear and injective. We shall prove that Φ is surjective. Let $f \in \operatorname{Hom}_k(\mathfrak{m}/\mathfrak{m}^{n+1}, k)$. We put $D(x) = f(\overline{x x(0)})$ for x in O. It will suffice to show $D \in \mathfrak{D}_n(O)$. Then D is k-linear and [D, a + x] = [D, x] for a in k and x in \mathfrak{m} . (For the definition of [D, x], see [8].) Hence we have $[\cdots[[D, a_1 + x_1], a_2 + x_2], \cdots, a_n + x,] = [\cdots[[D, x_1], x_2], \cdots, x_n]$ for any $a \in k$ and any $x, x \in \mathfrak{m}$. Now $[\cdots[[D, x_1], x_2], \cdots, x_n](a + x) = 0$ for any $a \in k$ and any $x, x \in \mathfrak{m}$ since D is k-linear and vanishes on \mathfrak{m}^{n+1} . Hence D is in $\mathfrak{D}_n(O)$.
- (2) Obvious from (1).
- (3) Let $\mu: O \otimes_k O \to O$ be the homomorphism induced by the multiplication of O. Then we have the dual mapping μ^* : $\operatorname{Hom}_k(O, k) \to \operatorname{Hom}(O \otimes_k O, k)$. We shall prove $\mu^*(\mathfrak{D}(O)) \subset \mathfrak{D}(O) \otimes_k \mathfrak{D}(O)$ ($\subset \operatorname{Hom}_k(O \otimes_k O, k)$). To this purpose, we have only to show $\mu^*(\mathfrak{D}_n(O)) \subset \mathfrak{D}(O) \otimes_k \mathfrak{D}(O)$. Since $O/\mathfrak{m} \cong k$, O/\mathfrak{m}^{n+1} is a finite dimensional k-vector space. We assume that the classes of $u_0 = 1$, u_1 , \cdots , u_m modulo \mathfrak{m}^{n+1} form a k-basis of O/\mathfrak{m}^{n+1} . We denote by \overline{u}_i the class of u_i in O/\mathfrak{m}^{n+1} and \overline{u}_0^* , \overline{u}_1^* , \cdots , \overline{u}_m^* its dual basis. Then $\overline{u}_1^* \circ \omega$, \cdots , $\overline{u}_m^* \circ \omega$ form a k-basis of $\mathfrak{D}_n(O)$, where ω is the canonocal homomorphism of O onto O/\mathfrak{m}^{n+1} . If $D \in \mathfrak{D}_n(O)$, an easy computation shows $\mu^*(D) = \sum_{i,j=1}^m D(u_i u_j)$ ($\overline{u}_i^* \circ \omega \otimes \overline{u}_j^* \circ \omega$) + $\sum_{i=1}^m D(u_i)$ $\overline{u}_i^* \circ \omega \otimes \overline{u}_0^* \circ \omega + \overline{u}_0^* \circ \omega \otimes \overline{u}_i^* \circ \omega$) + $\overline{u}_0^* \circ \omega \otimes \overline{u}_0^* \circ \omega$. Thus $\mu^*(\mathfrak{D}_n(O)) \subset \mathfrak{D}(O) \otimes_k \mathfrak{D}(O)$. We set $\Delta = \mu^* \mid \mathfrak{D}(O)$, the restriction of μ^* on $\mathfrak{D}(O)$. Since O is commutative, Δ is cocommutative. Augmentation $\varepsilon: \mathfrak{D}(O) \to k$ is defined by $\varepsilon(D) = D(1)$ for D in $\mathfrak{D}(O)$. Then it is easily seen that $(\mathfrak{D}(O), \Delta, \varepsilon)$ is a coalgebra over k.

2. The bialgebras of group schemes

Let S be a prescheme and X be an S-prescheme. We denote by f the structure morphism: $X \rightarrow S$. An n-th order derivation D of X/S is, by definition, an endomorphism of $f^{-1}(O_S)$ -Module O_X satisfying the following identity:

$$D(\varphi_0 \varphi_1 \dots \varphi_n) = \sum_{s=1}^n (-1)^{s-1} \sum_{i_1 < \dots < i_s} \varphi_{i_1} \dots \varphi_{i_s} D(\varphi_0 \dots \varphi_{i_1} \dots \varphi_{i_s} \dots \varphi_n)$$

for every open set U of X and every sequence φ_0 , $\varphi_1 \cdots$, φ_n of $\Gamma(U, O_X)$. $\mathfrak{D}_0^{(n)}(X/S)$ denotes the set of n-th order derivations of X/S. We set $\mathfrak{D}_0(X/S) = \bigcup_{n=1}^{\infty} \mathfrak{D}_n(X/S)$ and $\mathfrak{D}(X/S) = \Gamma(X, O_X) \oplus \mathfrak{D}_0(X/S)$. We see easily that $DE \in \mathfrak{D}_0(X/S)$ and $[D,\varphi] = D\varphi - \varphi D - D(\varphi)$ is an (m-1)-th order derivation for $D \in \mathfrak{D}_0^{(n)}(X/S)$, $E \in \mathfrak{D}_0^{(n)}(X/S)$ and $\varphi \in \Gamma(X, O_X)$ (cf. [8]). From these we can see that $\mathfrak{D}(X/S)$ is a $\Gamma(X, O_X)$ -algebra. If u is a morphism of preschemes : $X \to Y$, we denote by \tilde{u} the homomorphism of O_Y into $u_*(O_X)$.

Let G be an S-group scheme and let $g: S \rightarrow G$ be a section. The morphism $g_G: G \xrightarrow{S} S \underset{S}{\times} G \xrightarrow{\longrightarrow} G \underset{S}{\times} G \xrightarrow{m} G$ is the left translation by g of G, where 1_G (resp. m) is the identity morphism of G (resp. the multiplication of G). If D is a high order derivation of G/S, then we set $D^g = \tilde{g}_G^{-1}(g_G)_*(D)\tilde{g}_G$. D^g is also a high order derivation of G/S. A high order derivation D of G/S is called left invariant if we have $(D_T)^g = D_T$ for any base change $t: T \rightarrow S$ and any section $g: T \rightarrow T \underset{S}{\times} G$, where D_T is the high order derivation of $T \underset{S}{\times} G/T$ induced by D. Let K be a field and K be an algebraic K-group scheme. From now on we shall mean by a K-group scheme an algebraic K-group scheme. In this case we say a high order derivation of K0 the set of left invariant high order derivations of K1. We shall denote by K2. It is clear that K3 is a K4-algebra. Then K4 coincides with the algebra of left invariant differential operators on K3 defined in 2B of [3].

Hereafter we assume that k is an algebraically closed field of positive characteristic p.

Proposition 2. Let G be a k-group scheme. Then $\mathfrak{D}(O_{G,e})$ is a bialgebra over k, where e is the origin of G.

Proof. We set $O=O_{G,e}$ and denote by m the maximal ideal of O. If we put $n=O\otimes_k m+m\otimes_k O(\subset O\otimes_k O)$, then we have the canonical isomorphism $\varphi:O_{G\times G,\ e\times e} \cong (O\otimes_k O)_n$. Let $D\in \mathfrak{D}_m(O)$ and $E\in \mathfrak{D}_n(O)$, then $D\otimes E:O\otimes_k O\to k$ is an (m+n)-th order derivation. $D\otimes E$ is uniquely extended to an element of $\mathfrak{D}_{m+n}((O\otimes_k O)_n)$ ([8] Theorem 15). We denote it $D\otimes E$ again. The product of D and E is given by ;

264 Y. Ishibashi

$$(D*E)(x)=(D\otimes E)(\varphi m^*(x))$$

for x in O, where m^* is the homomorphism of $O=O_{G,e}$ into $O_{G\times G,e\times e}$ associated with the multiplication m of G. Clearly we have $D*E\in \mathfrak{D}_{m+n}(O)$. We define $\alpha*D=D*\alpha=\alpha D$ and $\alpha*\beta=\beta*\alpha=\alpha\beta$ for α , β in k and D in $\bigcup_{n=1}^{\infty}\mathfrak{D}_n(O)$. Then $\mathfrak{D}(O)$ is a k-algebra with respect to this multiplication * and ordinary addition. Let $(\mathfrak{D}(O), \Delta, \varepsilon)$ be the coalgebra defined in Proposition 1. Obviously ε is an algebra homomorphism. To complete our proof, it suffices to show that Δ is an algebra homomorphism, i.e. to see the following diagram is commutative

$$\mathfrak{D}(O) \otimes \mathfrak{D}(O) \xrightarrow{\nu} \mathfrak{D}(O) \xrightarrow{\Delta} \mathfrak{D}(O) \otimes \mathfrak{D}(O)$$

$$\downarrow^{\Delta} \otimes \Delta \qquad 1 \otimes T \otimes 1 \qquad \uparrow^{\nu} \otimes \nu$$

$$\mathfrak{D}(O) \otimes \mathfrak{D}(O) \otimes \mathfrak{D}(O) \otimes \mathfrak{D}(O) \otimes \mathfrak{D}(O) \otimes \mathfrak{D}(O) \otimes \mathfrak{D}(O)$$

where ν is the mapping induced by the multiplication * and T is a twisting homomorphism: $D \otimes E \to E \otimes D$. Let $\Delta(D) = \sum_i D_i \otimes D_i'$ and $\Delta(E) = \sum_j E_j \otimes E_j'$. Then we have $\Delta(D*E)(x\otimes y) = (D\otimes E)(\varphi m^*(xy))$. On the other hand we see $(\nu\otimes\nu)(1\otimes T\otimes 1)(\Delta\otimes\Delta)(D\otimes E)(x\otimes y) = \sum_{i,j} (D_i\otimes E_j)(\varphi m^*(x))(D_i'\otimes E_j')$ $(\varphi m^*(y))$. Since $\varphi m^*(xy) = \varphi m^*(x)\varphi m^*(y)$ and a high order derivation is uniquely extended to a quotient ring, we have only to show the following identity:

 $(D \otimes E) (xu \otimes yv) = \sum_{i,j} (D_i \otimes E_j) (x \otimes y) (D'_i \otimes E'_j) (u \otimes v) \text{ for } x \otimes y, \ u \otimes v \in O$ $\otimes_k O. \text{ Being } \Delta(D) = \sum_i D_i \otimes D'_i \text{ and } \Delta(E) = \sum_j E_j \otimes E'_j, \text{ we get } D(xu) = \sum_i D_i(x)$ $D'_i(u) \text{ and } E(yv) = \sum_i E_j(y) E'_j(v). \text{ This proves our assertion.}$

REMARK 1. It is easily seen that $\mathfrak{D}(O_{G,e})$ is a Hopf algebra, i.e. $\mathfrak{D}(O_{G,e})$ has an antipode.

Proposition 3. Let the situation be the same as in Proposition 2. Then $\mathfrak{D}(O_{G,e})$ is canonically isomorphic to $\mathfrak{D}(G)$ as a k-algebra.

Proof. We set $O = O_{G,e}$. If D is in $\mathfrak{G}(G)$, D induces a high order derivation of O into itself. We shall denote it D again. Then we define $\Phi(D) = \pi \circ D$, where π is the canonical homomorphism of O onto k, and $\Phi(a) = a$ for $a \in k$. Thus we have defined a mapping $\Phi: \mathfrak{F}(G) \to \mathfrak{D}(O)$. Φ is k-linear. To show Φ is an algebra homomorphism, we must prove $\Phi(DE) = \Phi(D) * \Phi(E)$ for D, E in $\mathfrak{G}(G)$. Since D is left invariant, the diagram:

$$\begin{array}{ccc}
O_{G,e} & \xrightarrow{m^*} & O_{G \times G, e \times e} \\
\downarrow D & & \downarrow D_G \\
O_{G,e} & \xrightarrow{m^*} & O_{G \times G, e \times e}
\end{array}$$

is commutative, where m^* is the homomorphism associated with the multiplication m of G. (cf. [3] 2B, A) Lemma). Hence we have $(1 \otimes \pi)$ $D_G m^* = (1 \otimes \pi)$ m^* D = D, i.e. $(1 \otimes \Phi(D))m^* = D$ where 1 denotes the identity mapping of O, and $1 \otimes \pi$ and $1 \otimes \Phi(D)$ are given as follows. Let m be the maximal ideal of O and put $m = O \otimes_k m + m \otimes_k O(\subset O \otimes_k O)$. Then we see easily that the mapping: $O \otimes_k O \in f \otimes g \to f \pi(g) \in O$ (resp. $O \otimes_k O \in f \otimes g \to f \Phi(D)(g) \in O$) can be extended to the mapping: $(O \otimes_k O)_n \to O$ uniquely. We also denote by $1 \otimes \pi$ and $1 \otimes \Phi(D)$ these mappings composed with the canonical isomorphism: $O_{G \times G, e \times e} \hookrightarrow (O \otimes_k O)_n$ respectively. We have $(1 \otimes \Phi(D))m^* (1 \otimes \Phi(E))m^* = DE$. On the other hand $\pi(1 \otimes \Phi(D))m^* = \Phi(D)$. Thus we get $\Phi(DE) = \Phi(D) * \Phi(E)$. To prove Φ is an isomorphism, we exhibit the inverse mapping Ψ . Let $D_0 \in \mathfrak{D}_n(O)$ and let ε be the unit section: $\operatorname{Spec}(k) \to G$. Then D_0 induces a high order derivation of O_G into $\varepsilon_*(k)$ by adjointness with respect to ε . We denote it D_0 again. We set $h = 1_G \times \varepsilon : G \times k \to G \times G$ and define $\Psi(D_0)$ to be $O_G \xrightarrow{\tilde{m}} m_*(O_{G \times G}) \xrightarrow{m} m_*(D_{0G})$ set $h = 1_G \times \varepsilon : G \times k \to G \times G$ and define $\Psi(D_0)$ to be $O_G \xrightarrow{\tilde{m}} m_*(O_{G \times G}) \xrightarrow{m} m_*(D_{0G})$

REMARK 2. This proof is a version of that of 2.4 of [3] 2B, A). (*) A high order derivation: $O_G \to \mathcal{E}_*(k)$ is a k-linear homomorphism satisfying the similar identity as a high order derivation of G/k.

We transform the bialgabra structure of $\mathfrak{D}(O_{G,e})$ into $\mathfrak{H}(G)$ by the isomorphism defined in Proposition 3. Thus $\mathfrak{H}(G)$ is a bialgebra over k.

Theorem 1. If G is a k-group scheme, then $\mathfrak{D}(G)$ is a bialgebra with only one grouplike element $1 \in k$.

Proof. We shall show the assertion for $\mathfrak{D}(O)$, where $O = O_{G,e}$. Assume that $a+D(a \in k, D \in \bigcup_{n=1}^{\infty} \mathfrak{D}_n(O))$ is grouplike. Since $\Delta(a+D) = (a+D) \otimes (a+D)$, we have (a+D)(xy) = (a+D)(x)(a+D)(y) for x, y in O. Hence O(xy) = O(x) O(y) for x, y in O be the least power of O operation of elements in O of O. Let O there is an element O in O is satisfying O(x) = O(x)

Proposition 4.(1) We assume that G and G' are group varieties defined over k, and α is a surjective k-homomorphism of G onto G'. We set $O=O_{G,e}$ and $O'=O_{G',e'}$, where e(resp.e') is the neutral element of G(resp.G'). Then there exists a regular system of parameters $\{t_1, \dots, t_n\}$ for O such that $\{t_1^{p^e_1}, \dots, t_m^{p^e_m}\}$ is a regular system of parameters for O', where we identity the rational function field of G' with a subfield of the rational function field of G by the cohomomorphism α^* .

⁽¹⁾ The author knew that H. Yanagihara obtained this result in [13].

266 Y. Ishibashi

Proof. We decompose $\alpha: G \rightarrow G'$ as follows:

$$G \xrightarrow{\beta} G/\operatorname{Ker}(\alpha)_{red} \xrightarrow{\gamma} G',$$

where β is the canonical epimorphism and γ is the homomorphism induced by α . Since β is separable and γ is a purely inseparable isogeny, we get the assertion using Theorem in [6].

Let H, K be bialgebras over k and let $\pi \colon H \to K$ be a homomorphism of bialgebras. Then we define HKer $(\pi) = \{x \in H | 1 \otimes x = (\pi \otimes 1) \Delta_H(x) \text{ in } K \otimes_k H\}$. If H is cocommutative we see that HKer (π) is a sub-bialgebra of H ([11] Lemma 16. 1. 1.).

We let $\alpha: G \rightarrow G'$ denote a homomorphism of k-group schemes. Since the induced homomorphism $\alpha^*: O_{G',e'} \rightarrow O_{G,e}$ is local, it gives a homomorphism of k-vector spaces $d\alpha: \mathfrak{D}(O_{G,e}) \rightarrow \mathfrak{D}(O_{G',e'})$, where e(resp. e') is the origin of G(resp. G'). Then we have

Proposition 5. $d\alpha$ is a homomorphism of bialgebras.

Proof. We shall first show that $d\alpha$ is an algebra homomorphism. To this purpose, we have only to prove $d\alpha(D*E)=d\alpha(D)*d\alpha(E)$ for D, E in $\bigcup_{n=1}^{\infty} \mathfrak{D}_n$ $(O_{G,e})$. Let $x\in O_{G',e'}$. Then we have $d\alpha(D*E)$ $(x)=(D\otimes E)$ $(\varphi m^*\alpha^*(x))$, where φ is the canonical isomorphism: $O_{G\times G,e\times e} \cong (O\otimes_k O)_n$ used in the proof of Proposition 2, and m^* is the homomorphism: $O_{G,e} \to O_{G\times G,e\times e}$ associated with the multiplication m of G. On the other hand we have $(d\alpha(D)*d\alpha(E))$ $(x)=(D\otimes E)$ $(\alpha_1^* \varphi'm^*(x))$, where $\varphi'\colon O_{G'\times G',e'\times e'}\cong (O'\otimes_k O')_{n'}$ and $m'^*\colon O_{G',e'}\to O$ $G'\times G',e'\times e'$ are defined similarly for G' and α_1^* is the homomorphism: $(O'\otimes_k O')_{n'}\to (O\otimes_k O)_n$ induced by $\alpha^*\colon O'\to O$. We obtain $\varphi m^*\alpha^*=\alpha_1^* \varphi'm'^*$, since α is a homomorphism of G into G'. Thence $d\alpha$ is an algebra homomorphism. Next we shall prove that $d\alpha$ is a coalgebra homomorphism. Let $\Delta(D)=\sum D_i\otimes D'_i$.

Then we get $(d\alpha \otimes d\alpha)$ $(\Delta(D))$ $(x \otimes y) = \sum_{i} D_{i}(\alpha^{*}(x)) D'_{i}(\alpha^{*}(y))$ for $x, y \in O_{G',e'}$. On the other hand $\Delta(d\alpha(D))$ $(x \otimes y) = D(\alpha^{*}(x)\alpha^{*}(y))$. Since $\Delta(D) = \sum_{i} D_{i} \otimes D_{i}$, we see $D(\alpha^{*}(x) \alpha^{*}(y)) = \sum_{i} D_{i}(\alpha^{*}(x)) D'_{i}(\alpha^{*}(y))$. This completes our proof.

Thus $d\alpha$ induces a homomorphism of bialgebras: $\mathfrak{D}(G) \to \mathfrak{D}(G')$. We also denote it $d\alpha$.

We assume that G is a group variety defined over k and $\{t_1, \dots, t_n\}$ is a regular system of parameters for $O_{G,e}$. Let $f \in O_{G,e}$ and we express $f \equiv \sum a_{i_1 \dots i_n} t_1^{i_1} \dots t_n^{i_n} \mod m_{G,e}^N$ with $a_{i_1 \dots i_n} \in k$ for sufficiently large N, where $\mathfrak{m}_{G,e}$ is the maximal ideal of $O_{G,e}$. Then the elements $a_{i_1 \dots i_n}$ are uniquely determined by f and a regular system of pareameters $\{t_1, \dots t_n\}$. We set $I_{i_1 \dots i_n,e}$ $(f) = a_{i_1 \dots i_n}$. If $\sum_{j=1}^n i_j > 0$, $I_{i_1 \dots i_n,e}$ vanishes on 1 and on $\mathfrak{m}_{G,e}^{\sum i_j + 1}$. Thence we see $I_{i_1 \dots i_n,e} \in \mathfrak{D}_m(O_{G,e})$ for

some m by Proposition 1, (2). Since $\mathfrak{D}(O_{G,e})$ is canonically isomorphic to $\mathfrak{F}(G)$ by Proposition 3, $I_{i_1\cdots i_n,e}$ corresponds to the unique left invariant high order derivation $I_{i_1\cdots i_n}$ of G. We say that the $I_{i_1\cdots i_n}$ are the *canonical* left invariant high order derivations with respect to a regular system of parameters $\{t_1,\cdots,t_n\}$ for $O_{G,e}^{(2)}$.

Proposition 6. In the above situation the $I_{i_1\cdots i_n}$ form a basis of the k(G)-vector space of all high order derivations of k(G)/k, where k(G) is the rational function field of G over k.

Proof. Following [8] we denote by $\mathfrak{D}_{0}^{(q)}(k(G)/k)$ the set of all q-th order derivations of k(G)/k. We have only to show that the $I_{i_1\cdots i_n}$ $(0<\sum_{j=1}^n i_j\leq q)$ form a k(G)-basis of $\mathfrak{D}_{0}^{(q)}(k(G)/k)$. From the proof of Proposition 18 in [9] we know the dimension of $\mathfrak{D}_{0}^{(q)}(k(G)/k)$ over k(G). Thus it is sufficient to see that the I_{i_1} \dots_{i_n} are independent over k(G). Let $\sum a_{i_1\cdots i_n}I_{i_1\cdots i_n}=0$ with $a_{i_1\cdots i_n}\in k(G)$. There is a closed point g in G such that non-zero $a_{i_1\cdots i_n}$ are unit in $O_{G,g}$. We have $\sum a_{i_1\cdots i_n}I_{i_1\cdots i_n}(L_{g^{-1}}^*(t_1^{j_1}\cdots t_n^{j_n}))=\sum a_{i_1\cdots i_n}L_{g^{-1}}^*I_{i_1\cdots i_n}(t_1^{j_1}\cdots t_n^{j_n})=0$ where $L_{g^{-1}}^*$ is the automorphism of k(G) associated with the left translation by g^{-1} of G. By the definition of $I_{i_1\cdots i_n}$ we see that $L_{g^{-1}}^*I_{i_1\cdots i_n}(t_1^{j_1}\cdots t_n^{j_n})$ is unit in $O_{G,g}$ for $i_1=j_1,\cdots,i_n=j_n$ and is non-unit in $O_{G,g}$ otherwise. If $a_{j_1\cdots j_n}\neq 0$, we have $a_{j_1\cdots j_n}L_{g^{-1}}^*I_{j_1\cdots j_n}(t_1^{j_1}\cdots t_n^{j_n})=-\sum_{(i_1,\cdots,i_n)}a_{i_1\cdots i_n}L_{g^{-1}}^*I_{i_1\cdots i_n}(t_1^{j_1}\cdots t_n^{j_n})$. In this equality $\pm (j_1,\cdots,j_n)$

the left hand side is unit in $O_{G,g}$ while the right hand side is non-unit in $O_{G,g}$. This is contradiction.

Let $\alpha \colon G \to G'$ be surjective homomorphism of group varieties defined over k. By Proposition 4 we can choose a regular system of parameters $\{t_1, \dots, t_n\}$ for $O_{G,e}$ such that $\{t_1^{n_e}, \dots, t_m^{n_e}\}$ is a regular system of parameters for $O_{G',e'}$. We let $\{I_{j_1\cdots j_n}\}$ denote the *canonical* left invariant high order derivations of G with respect to $\{t_1, \dots, t_n\}$ and $\{I'_{i_1\cdots i_m}\}$ be the *canonical* left invariant high order derivations of G' with respect to $\{t_1^{n_e}, \dots, t_m^{n_e}\}$. Then we have

Theorem 2.(3)(1) $d\alpha: \mathfrak{H}(G) \to \mathfrak{H}(G')$ is surjective.

- (2) $\mathfrak{D}(Ker(\alpha)) = HKer(d\alpha)$ and moreover as a k-vector space $\mathfrak{D}(Ker(\alpha))$ has a k-basis $\{I_{j_1\cdots j_n}\}_{j_1< p}^{e_i} (1\leq l\leq m)$.
- (3) Ker $(d\alpha)$ is a k-vector space with a basis $\{I_{j_1\cdots j_{m^0}\cdots 0}\}$ $\exists_i (1 \leq i \leq m) \cup \{I_{j_1\cdots j_n}\}$ at least one of $j_{m+1},\cdots,j_n>0$ and in fact Ker $(d\alpha)$ is a left ideal of $\mathfrak{D}(G)$ generated by $\mathfrak{D}(Ker(\alpha))^+=\{D\in\mathfrak{D}(Ker(\alpha))|\varepsilon(D)=0\}$, where ε is the augmentation of bialgebra $\mathfrak{D}(Ker(\alpha))$.

⁽²⁾ These are the same as the canonical left invariant semiderivations of G with respect to {t₁,..., t_n} defined in [11].
(3) The author knew that H, Yanagihara obtained (1) and the latter part of (2) in [13].

268 Y. Ishibashi

Proof. (1) We see that $\{I'_{l_1\cdots l_m}\}$ is a k-basis of $\mathfrak{D}(G')$, since the $I'_{l_1\cdots l_m,e'}$ form a k-basis of $\mathfrak{D}(O_{G',e'})$. An easy calculation shows $d\alpha(I_{l_1p^{e_1}\cdots l_mp^{e_m}0\cdots 0})=I'_{l_1}\cdots l_{l_m}$ and so $d\alpha$ is surjective.

(2) Since Ker (α) is a closed subgroup scheme of G, it is clear that $\mathfrak{F}(\operatorname{Ker}(\alpha))$ is a sub-bialgebra of $\mathfrak{F}(G)$. We see Ker $(\alpha) = G \times \operatorname{Spec}(k)$. Hence if \mathfrak{m}' is the maximal ideal of $O_{G',e'}$ we have $O_{\operatorname{Ker}(\alpha),e} = O_{G,e}/\alpha^*(\mathfrak{m}')O_{G,e}$ where α^* is the homomorphism: $O_{G',e'} \to O_{G,e}$ induced by α . Now it is immediate to see that $\mathfrak{F}(\operatorname{Ker}(\alpha))$ coincides with HKer $(d\alpha)$ as sub-bialgebras of $\mathfrak{F}(G)$. Next we prove the second part. If $I_{j_1\cdots j_n} \in \operatorname{HKer}(d\alpha)$, we have $I_{j_1\cdots j_n,e}(\alpha^*(x')y) = \alpha^*(x')$ (o) $I_{j_1\cdots j_n,e}(y)$ for any $x' \in O_{G',e'}$ and any $y \in O_{G,e}$ and coversely. We see easily $I_{j_1\cdots j_n,e}(\alpha^*(x')y) = \sum_{l_i+l'_i=j_i} I_{l_1\cdots l_n,e}(\alpha^*(x')) \ I_{l_1'\cdots l_n',e}(y)$. Hence we obtain $I_{j_1\cdots j_n} \in \operatorname{HKer}(d\alpha)$ if and only if $\sum_{l_i+l_i'=j_i} I_{l_1\cdots l_n,e}(\alpha^*(x')) \ I_{l_1'\cdots l_n',e}(y) = 0$ for any $x' \in O_{G',e'}$ and

any $y \in O_{G,e}$. Since $I_{l_1 \cdots l_n,e}(t_1^{l_1'} \cdots t_n^{l_n'}) = 1$ for $l_i = l_i'(1 \le i \le n)$ and 0 otherwise, we see $I_{l_1 \cdots l_n,e}(\alpha^*(x')) = 0$ for any $x' \in O_{G',e'}$ and any integers l_1,\ldots,l_n satisfying $0 \le l_i \le j_i(1 \le i \le n)$ and $\sum_i l_i > 0$. Thence we must have $j_i < p^{e_i}$ for $1 \le l \le m$. Since the $I_{j_1 \cdots j_n}$ form a k-basis of $\mathfrak{F}(G)$, our assertion is now immediate.

(3) we have $d\alpha(I_{l_1p^{e_1}\cdots l_mp^{e_m}0\cdots 0})=I'_{l_1\cdots l_m}$ and $d\alpha(I_{j_1\cdots j_n})=0$ if (j_1,\cdots,j_n) is not of the form $(l_1p^{e_1},\cdots,l_mp^{e_m},0,\cdots,0)$. Now the first assertion is obvious. We have $\varphi m^*(t_i)\equiv t_i\otimes 1+1\otimes t_i$ mod. $\mathfrak{m}^2($ cf. chap. IX in [7]), where m^* is the homomorphism : $O_{G,e}\to O_{G\times G,e\times e}$ associated with the multiplication m of G and φ is the canonical isomorphism : $O_{G\times G,e\times e} \cong (O_{G,e}\otimes_k O_{G,e})_{\mathfrak{n}}$ and \mathfrak{m} denotes the maximal ideal of $(O_{G,e}\otimes_k O_{G,e})_{\mathfrak{n}}$. Then an easy computation shows $I_{i_1\cdots i_n,e}*I_{j_1\cdots j_n,e}\equiv \binom{i_1+j_1}{i_1}\cdots\binom{i_n+j_n}{i_n}I_{i_1+j_1\cdots i_n+j_n,e}$ mod. $\mathfrak{D}^{(\sum_l(i_l+j_l)-1)}(O_{G,e})$. Hence we get $I_{i_1\cdots i_n}I_{j_1\cdots j_n}\equiv \binom{i_1+j_1}{i_1}\cdots\binom{i_n+j_n}{i_n}I_{i_1+j_1\cdots i_n+j_n}$ mod. $\mathfrak{D}(G)\cap \mathfrak{D}^{(\sum_l(i_l+j_l)-1)}_0(G/k)$. If we express $i_j=a_jp^{e_j}+b_j$ with $0\leq b_j< p^{e_j}$ for $j=1,\cdots,m$, we have $I_{i_1\cdots i_m0\cdots 0}\equiv I_{a_1p^{e_1}\cdots a_mp^{e_m}0\cdots 0}I_{b_1\cdots b_m0\cdots 0}$ mod. $\mathfrak{D}(G)\cap \mathfrak{D}^{(\sum_l(i_l+j_l)-1)}_0(G/k)$, since $\binom{a_ip^{e_i}+b_i}{a_ip^{e_i}}\equiv 1$ mod. p. We see $I_{b_1\cdots b_m0\cdots 0}\in\mathfrak{D}(\mathrm{Ker}(\alpha))^+$ by (2) if some of b_j is positive. Moreover we

We see $I_{b_1\cdots b_{m_0}\cdots 0} \in \mathfrak{D}(\operatorname{Ker}(\alpha))^+$ by (2) if some of b_j is positive. Moreover we have $I_{j_1\cdots j_m}\equiv I_{j_1\cdots j_{m_0}\cdots 0}\ I_{0\cdots 0j_{m+1}\cdots j_n}$ mod. $\mathfrak{D}(G)\cap \mathfrak{D}_0^{(\sum j_i i^{-1})}(G/k)$. If at least one of j_{m+1},\ldots,j_n is positive, $I_{0\cdots 0j_{m+1}\cdots j_n}\in \mathfrak{D}(\operatorname{Ker}(\alpha))^+$ by (2). Now the induction on the order of high order derivations completes our proof.

If G is a k-group scheme and G' is a closed subgroup scheme of G, it is immediate that $\mathfrak{D}(G')$ is a sub-bialgebra of $\mathfrak{D}(G)$. We consider which sub-bialgebras of $\mathfrak{D}(G)$ arise from closed subgroup schemes of G. We obtain a characterization in the case G is a commutative group variety.

Let G be a group variety defined over k and let \mathfrak{F} be a sub-bialgebra of \mathfrak{F} (G). Then we define $k(G)\mathfrak{F}$ to be the set of elements x in k(G) such that D(x)=

0 for every D in \mathfrak{D} satisfying $\mathcal{E}(D) = 0$ where k(G) denotes the field of rational functions on G over k. We see that $k(G)\mathfrak{D}$ is a subfield of k(G).

Proposition 7. We assume that G and G' are group varieties defined over k and α is a surjective homomorphism of G onto G' defined over k. Then we have $k(G)^{HKer(d_{\alpha})} = k(G')_s$, where we identify $\alpha^*(k(G'))$ with k(G') and $k(G')_s$ denotes the separably algebraic closure of k(G') in k(G).

Proof. We shall first show that k(G') is contained in $k(G)^{HKer(d_{\mathcal{O}})}$. Let D \in HKer $(d\alpha)$. Then D vanishes on k(G'). Since an high order derivation can be uniquely extended to an high order derivation of separably algebraic extension field ([9] Theorem 17), D vanishes on $k(G')_s$. Hence we have $k(G')_s \subset k(G)$ ^{HKer(da)}. We assume $k(G')_s \subseteq k(G)^{HKer(da)}$. Then there exists an element x in $k(G)^{HKer(d_{\emptyset})}$ satisfying $x \notin k(G')_s$. We shall show that this will lead to contradiction. Since $x \notin k(G')_s$, x is either transcendental over $k(G')_s$ or purely inseparable over $k(G')_s$. In any case there exists an ordinary derivation D of $k(G')_s$ (x) such that D vanishes on $k(G')_s$ and D(x) = 1. Then D can be extended to a high order derivation \tilde{D} of k(G) ([9] Proposition 13, Theorem 17). Let $\{t_1, \dots, t_n\}$ t_n } be a regular system of parameters for $O_{G,e}$ as in Proposition 4. We assume that the $I_{j_1 \dots j_n}$ are the canonical left invariant high order derivations of G with respect to $\{t_1, \dots, t_n\}$. The $I_{j_1 \dots j_n}$ form a basis of the k(G)-vector space of all high order derivations of k(G)/k by Proposition 6. Thence we have $\tilde{D} = \sum a_{j_1 \dots j_n}$ $I_{j_1\cdots j_n}$ with $a_{j_1\cdots j_n}$ in k(G). We shall show $a_{l_1p^{e_1}\cdots l_mp^{e_m}0\cdots 0}=0$. To the contrary we assume $a_{l_1p^{e_1}\cdots l_mp^{e_m}\cdots o} \neq 0$. There exists a closed point g in G such that every non zero $a_{j_1\cdots j_n}$ is a unit in $O_{G,g}$. We have $\tilde{D}(L_{q-1}^*(t_1^{l_1}p^{e_1}\cdots t_m^{l_m}p^{e_m}))=$ $\sum a_{j_1\cdots j_n} L_{g-1}^*(I_{j_1\cdots j_n}(I_{j_1^{l_1}p^{e_1}\cdots I_m^{l_m}p^{e_m}}))$, where L_{g-1}^* is the automorphism of k(G) associated with the left translation by g^{-1} . \tilde{D} vanishes on k(G') by our construction and $\sum a_{j_1 \dots j_n} L_{g-1}^* (I_{j_1 \dots j_n} (t_1^{l_1 p^{e_1}} \dots t_m^{l_m p^{e_m}}))$ is a unit in $O_{G,g}$ because $I_{j_1 \dots j_n} (t_1^{l_1 p^{e_1}} \dots t_m^{l_m p^{e_m}})$ $t_m^{l_m p^{e_m}}$) is a unit for $j_i = l_i p^{e_i} (1 \le i \le m)$, $j_{m+1} = \cdots = j_n = 0$ and a non unit otherwise. This is contradiction. Hence we have $a_{l_1}p^{e_1...l_m}p^{e_m}=0$. Since D(x)=1, there is a set of integers $\{j_1,\dots,j_n\}$ satisfying $I_{j_1\dots j_n}(x) \neq 0$. The above argument means that either some j_i of j_1, \dots, j_m is not divisible by p^{e_i} or at least one of j_{m+1} , ..., j_n is positive. Consequently we have $I_{j_1 \dots j_n} \in \text{Ker } (d\alpha)$ by Theorem 2, (3) and so there exists D' in HKer $(d\alpha)^+$ such that $D'(x) \neq 0$, because Ker $(d\alpha)$ is a left ideal generated by HKer $(d\alpha)^+$ (Theorem 2, (3)). This contradicts to $x \in k$ $(G)^{\operatorname{HKer}(d^{\otimes})}$.

Lemma 1 ([14] Lemma 2). Let K be a field of positive characteristic and $\{D_0 = 1, D_1, D_2, \cdots\}$ be a higher derivation of K in the sense of [4]. If we set $K_{\infty} = \{x \in K | D_i(x) = 0 \text{ for any } i \geq 1\}$, then K is a separable extension of K_{∞} .

For the results of bialgebras with one grouplike element we refer to [10]. Let H be a cocommutative bialgebra over a perfect field k of positive character-

270 Y. Ishibasht

istic p. We assume that H has only one grouplike element and set $H' = \operatorname{Hom}_k(H,k)$. Then H' is a commutative algebra with respect to convolution (Cf. [11]). We define $F(a') = a'^p$ for $a' \in H'$. The transposed mapping $F' : H'' \to H''$ is given by $\langle a', F'(b'') \rangle = \langle F(a'), b'' \rangle^{1/p}$ for $a' \in H'$ and $b'' \in H''$. Identifying H with subspace of H'' we have $F'(H) \subset H$. Let V denote the restriction of F' on H and let V^n be $V \cdots V$ (n times). We put $V^{\infty}(H) = \bigcap_{n=1}^{\infty} V^n(H)$. It is shown that $V^{\infty}(H)$ is a sub-bialgebra of H. We denote by L(H) the set of primitive elements in H, i. e. $x \in H$ satisfying $\Delta(x) = x \otimes 1 + 1 \otimes x$, where Δ is the comultiplication of H. Moreover we set $L_i(H) = L(H) \cap V^i(H)$ for $i = 0, 1, \dots, \infty$.

REMARK 3. If G is a k-group scheme, then we have $V^{\infty}(\mathfrak{S}(G)) = \mathfrak{F}(G_{\text{red}})$, and G is reduced if and only if $\mathfrak{F}(G) = V^{\infty}(\mathfrak{F}(G))$. This follows immediately from 6.4 of [2] III §3.

Lemma 2. Let G be a group variety defined over k of dimension n. Then we see that $L(\mathfrak{D}(G)) = L_{\infty}(\mathfrak{D}(G))$ and this is n-dimensional as a k-vector space.

Proof. We note that $L\left(\mathfrak{F}\left(G\right)\right)$ is the set of left invariant (ordinary) derivations of G and is of dimension n over k as a k-vector space. Thus we have only to prove $L(\mathfrak{F}(G)) \subset L_{\infty}(\mathfrak{F}(G))$. Let $\{I_{j_1\cdots j_n}\}$ be the canonical left invariant high order derivations of G with respect to a regular system of parameters for $O_{G,e}$. Then it is easily seen that $\{1,\ I_{0\cdots 010\cdots 0},\ I_{0\cdots 020\cdots 0},\cdots,\ I_{0\cdots 020\cdots 0},\cdots,\ I_{0\cdots 020\cdots 0},\cdots\}$ is an infinite higher derivation in the sense of [4]. Thence we have $I_{0\cdots 010\cdots 0} \in L_{\infty}(\mathfrak{F}(G))$ by Theorem 2 of [10]. On the other hand the $I_{0\cdots 010\cdots 0}$ form a k-basis of $L(\mathfrak{F}(G))$ and so our proof is complete.

Theorem 3. Let G be a commutative group variety defined over an algebraically closed field k of positive characteristic and $\mathfrak P$ be a sub-bialgebra of $\mathfrak P(G)$. Then $\mathfrak P$ is the bialgebra of a closed subgroup scheme of G if and only if we have tr. $\deg_k k(G) = \dim G - \dim_k L_{\infty}(\mathfrak P)$, where tr. $\deg_k k(G) = \dim G - \dim_k L_{\infty}(\mathfrak P)$, where tr. $\deg_k k(G) = \dim G - \dim_k L_{\infty}(\mathfrak P)$ over k.

Proof. We assume $\mathfrak{F}=\mathfrak{F}(G')$ for some closed subgroup scheme G' of G. We consider the canonical epimorphism $\alpha\colon G\to G/G'$ of group varieties. Then we have $\mathrm{HKer}(d\alpha)=\mathfrak{F}(G')$ by Theorem 2, (2). Hence $k(G)\mathfrak{F}=k(G/G')_s$ by Proposition 7 and so $\mathrm{tr.deg}_k k(G)\mathfrak{F}=\dim G$ - $\dim G$. On the other hand $L_\infty(\mathfrak{F}(G)G')=L_\infty(\mathfrak{F}(G)G')=L_\infty(\mathfrak{F}(G)G')$ by Theorem 2 of [10], since $G_{G',e'}=G_{G',e'}\otimes_k H$ for some finite bialgebra G0 over G1 over G2 of [10], since G3 over G4 over G4 over G5 over G5 over G6 over G6 over G7 over G8 over G9 over

orem 3 of [10] to see the coalgebra structure of \mathfrak{D} . Since G is commutative, \mathfrak{D} (G) is commutative. An element of \mathfrak{D} therefore induces a high order derivation of $k(G)^{V^{\infty}(\mathfrak{H})}$ into itself. We assert that $k(G)^{V^{\infty}(\mathfrak{H})}$ is a finite modular purely inseparable extension of k(G), for the latter is the constant field of higher derivations of finite rank in the sense of [4] by the coalgebra structure of \$([10]) Theorem 3). We see that $k(G)^{V^{\infty}(\mathfrak{H})}$ (resp. $k(G)\mathfrak{H}$) is the function field of some group variety $G_0(\text{resp. }G_1)$ defined over k by Proposition 8 of [1], because $\mathfrak{H} \subset \mathfrak{H}$ (G) and G is commutative. We also have epimorphisms $\beta: G \to G_0$ and $\gamma: G_0$ $\rightarrow G_1$. Clearly γ is purely inseparable isogeny. Since $V^{\infty}(\mathfrak{H})$ is commutative and is generated by the components of infinite higher derivations by Theorem 3 in [10], β is separable by Lemma 1. We set $\alpha = \gamma \circ \beta$. We shall prove $\mathfrak{P} = HKer(d\alpha)$. To this purpose it suffices to show $L_i(\mathfrak{H}) = L_i(\mathsf{HKer}(d\alpha))$ (i = 0, 1, 2, ..., ∞) by Theorem 3 of [10]. By our assumption $\dim_{\mathbf{k}} L_{\infty}(\mathfrak{H}) = \dim G$ -tr. $\deg_{\mathbf{k}} k(G)\mathfrak{H} = \dim$ G-dim G_1 . Since β is separable and γ is purely inseparable, there exists a regular system of parameters $\{t_1, \dots, t_n\}$ for $O_{G,e}$ such that $\{t_1, \dots, t_m\}$ (resp. $\{t_1^{p^e_1}, \dots, t_n\}$) $t_m^{p^e}$) is a regular system of parameters for the local ring of G_0 at the origin (resp. the local ring of G_1 at the origin). Then dim G-dim G_1 =n-m and on the other hand $\dim_{\mathbf{k}} L_{\infty}(\operatorname{HKer}(d\alpha)) = \operatorname{n-m}$ by Theorem 2,(2). Being $\mathfrak{D} \subset \operatorname{HKer}(d\alpha)$ we get $L_{\infty}(\mathfrak{H}) = L_{\infty}(\mathsf{HKer}(d\alpha))$. We see $\dim_{\mathbf{k}} L_{1}(\mathsf{HKer}(d\alpha)) = (n-m) + (\mathsf{the})$ number of l satisfying $i+1 \le e_l (1 \le l \le m)$ from Theorem 2 in [10] and Theorem 2,(2). Thus we have $\dim_{\mathbf{k}} L_i$ (HKer $(d\gamma)$) = $\dim_{\mathbf{k}} L_i$ (HKer $(d\alpha)$) - $\dim_{\mathbf{k}} L_{\infty}$ (HKer $(d\alpha)$) for $i = 0, 1, 2, \cdots$. We also see that $HKer(d\gamma) = \{D|_{K(G)}^{V^{\infty}(\mathfrak{H})}\}$ for some D in \mathfrak{F} } by Jacobson-Bourbaki Theorem (cf. [5]), where $D|_{K(G)}^{V^{\infty}(\mathfrak{F})}$ denotes the restriction of D on $k(G)^{V^{\infty}(\mathfrak{Y})}$. Since $L_{\infty}(\mathfrak{Y}) = L_{\infty}(HKer(d\alpha))$ we have $\dim_{\mathbf{k}} L_{i}(\mathfrak{Y})$ $-\dim_{\mathbf{k}} L_{\infty}(\mathfrak{H}) \leq \dim_{\mathbf{k}} L_{i}(\mathrm{HKer}(d\alpha)) - \dim_{\mathbf{k}} L_{\infty}(\mathrm{HKer}(d\alpha)) = \dim_{\mathbf{k}} L_{i}(\mathrm{HKer}(d\gamma)).$ We set $H = \{D |_{k(G)}^{V^{\infty}(\mathfrak{H})} \text{ for some } D \text{ in } \mathfrak{H}\}$. By Theorem 3 of [10] we see \dim_k $\mathrm{HKer}(d\gamma) = p_i^{\Sigma \dim_k L_i(\mathrm{HKer}(d\gamma))}$ and $\dim_k H \leq p_i^{\Sigma (\dim_k L_i(\mathfrak{H}) - \dim_k L_{\infty}(\mathfrak{H}))}$. Since HKer $(d\gamma) = H \text{ we get } \dim_{\mathbf{k}} L_{i}(\mathfrak{H}) - \dim_{\mathbf{k}} L_{\infty}(\mathfrak{H}) = \dim_{\mathbf{k}} L_{i}(H \operatorname{Ker}(d\gamma)) \text{ for } i = 0, 1, 2, \dots$ Hence we have $\dim_k L_i(\mathfrak{H}) = \dim_k L_i(\operatorname{HKer}(d\alpha))$. Since $\mathfrak{H} \subset \operatorname{HKer}(d\alpha)$ we obtain $L_i(\mathfrak{H}) = L_i(HKer(d\alpha))$ for $i = 0, 1, 2, \cdots$. Thus we have $\mathfrak{H} = HKer(d\alpha)$, i. e. $\mathfrak{H} = \mathfrak{H}(\mathrm{Ker}(\alpha))$ and we are done.

OSAKA UNIVERSITY

Bibliography

- [1] P. Cartier: Isogenies des variétés de groupes, Bull. Soc. Math. France 87 (1959), 191-220.
- [2] M. Demazure and P. Gabriel: Groupes Algébriques. Tome I, North-Holland, Amsterdam, 1970.
- [3] M. Demazure and A. Grothendieck: Schémas en Groupes I (SGA 3), Lecture notes in Math. 151, Springer-Verlag, 1970.
- [4] H. Hasse and F.K. Schmidt: Noch eine Begründung der Theorie der höheren Differentialquotienten in einem algebraischen Funktionenkörper einer Unbestimmten, J.

Y. Ishibasht

- Reine Angew. Math. 177 (1937), 215-237.
- [5] N. Jacobson: Lectures in Abstract Algebra III, Van Nostrand, Princeton, New Jersy, 1964.
- [6] K. Kosaki and H. Yanagihara: On purely inseparable extensions of algebraic function fields, J. Sci. Hiroshima Univ. Ser. A-I Math. 34 (1970), 69-72.
- [7] S. Lang: Introduction to Algebraic Geometry, Interscience, New York, 1958.
- [8] Y. Nakai: High order derivations I, Osaka J. Math. 7 (1970), 1-27.
- [9] Y. Nakai, K. Kosaki and Y. Ishibashi: High order derivations II, J. Sci. Hiroshima Univ. Ser. A-I Math. 34 (1970), 17-27.
- [10] M. Sweedler: Hopf algebras with one grouplike element, Trans. Amer. Math. Soc. 127 (1967), 515-526.
- [11] M. Sweedler: Hopf Algebras, Benjamin, New York, 1969.
- [12] H. Yanagihara: On the structure of bialgebras attached to group varieties, J. Sci. Hiroshima Univ. Ser. A-I Math. 34 (1970), 29-58.
- [13] H. Yanagihara: On the functorial properties of bialgebras attached to group varieties (in Japanese), Akagiyama Daisukikagaku Symposium, 1970.
- [14] F. Zerla: Iterative higher derivations in fields of prime characteristic, Michigan Math. J. 15 (1968), 407-415.