
Title On non-rational numerical del Pezzo surfaces

Author(s) Fujisawa, Taro

Citation Osaka Journal of Mathematics. 1995, 32(3), p.
613-636

Version Type VoR

URL https://doi.org/10.18910/10387

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKAThe University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka



Fujisawa, T
Osaka J. Math.
32 (1995), 613-636

ON NON-RATIONAL NUMERICAL DEL PEZZO
SURFACES

TARO FUJISAWA

(Received Octover 22, 1993)

Introduction

In this paper we call a normal compact complex surface X a numerical Del
Pezzo surface if X is a Moishezon surface, the intersection number ( — Kχ) C is
positive for every curve C on X, and the self-intersection number ( — Kχ)2 is
positive (see Definition 1.1). If X is nonsingular, such a surface is called a Del
Pezzo surface and its properties are fairly well-known. Several results on such
surfaces are obtained by F. Hidaka and K.-i.Watanabe [9] when X is Gorenstein,
by F. Sakai [13] when X is rational Q-Gorenstein, and by L. Badescu [3] when
X is non-rational Q-Gorenstein.

The purpose of this paper is to study the structure of non-rational numerical
Del Pezzo surfaces. In the present paper the canonical divisor Kx is not necessarily
Q-Cariter. In section 1 we define the notion of a numerical Del Pezzo surface and
study its basic properties. In section 2 we describe the structure of a non-rational
numerical Del Pezzo surface (Theorem 2.1). Our results are similar to those in L.
Badescu [3], where the surface is assumed to be Q-Gorenstein. In section 3 we
define the notion of a minimal contraction of a ruled surface, and the notion of a
DPI-ruled surface, which is a ruled surface whose singular fibers are of special type
(see Definition 3.2 and 3.7). Then we obtain a criterion for the minimal contrac-
tion of a DPI-ruled surface to be a non-rational numerical Del Pezzo surface
(Theorem 3.11). This is one of the main results of this paper. In section 4 we define
the notion of indices of non-rational numerical Del Pezzo surfaces, and show that
they are the minimal contractions of DPI-ruled surfaces if the Picard numbers are
equal to 1 and their indices are prime numbers (Theorem 4.9). In appendix we
prepare several results on weighted graphs. As for terminologies on weighted
graphs, the reader may consult T. Fujita [7] and P. Orlik-P. Wagreich [12].

The author would like to express his gratitude to Professor S. Ishii and
Professor T. Fujita for their helpful advice and encouragement.
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Notations

A normal surface means an irreducible reduced normal compact complex

space of dimension 2.

By a ruled surface we mean a projective surface birational to a product of a

complete nonsingular curve and the projective line P1. A geometrically ruled

surface means a /^-bundle over a complete nonsingular curve. The minimal

section of a geometrically ruled surface measns the section of the surface whose

self-intersection number is minimal among all sections.

The intersection number of two Q-Weil divisors on a normal surface is defined

as in F. Sakai [14].

For a Q-Weil divisor Z) = Σ avV(av^Q) where Vs are prime divisors, we

define SuppD, the support of D, by SuppD = {Jav*oV. By [D] we denote the

integral part of a Q-divisor D, that is, [Z)] = Σ[#v] V where [•] means the Gauss

symbol. We define rD1= — [ — D] and call it a round up of D.

The set of the positive integers is denoted by Z>o. We use Z>o, Q>o etc. in the

similar meanings.

In this paper we use the following notations:

pa(Z)=γZ-(Z + K) + l

: virtual genus of an effective integral divisor Z on a nonsingular

surface.

(K is a canonical divisor of the surface.)

pg(x, X)=dimcR
1/*Ox for a resolution / : X >X

: geometric genus of a singular point x on X.

= : numerically equivalence of divisor.

f*D: push-forward of a Q-Weil divisor D by a morphism /.

1. Basic properties of numerical Del Pezzo surfaces

In this section we define the notion of a numerical Del Pezzo surface and study

its basic properties. Our resuults are similar to L. Badescu's (compare [3] Theorem

2 and Corollary 8), where the surface is assumed to be Q-Gorenstein.

DEFINITION 1.1. A normal surface X is called a numerical Del Pezzo

surface if X is a Moishezon surface and its anti-canonical divisor —Kx satisfies

the following two conditions :

(1.1.1) ( — Kχ)'C>0 for every irreducible curve C on X.

(1.1.2) (-Kχ)2>0.

Let X be a normal surface and / : X >X be the minimal resolution of X.
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We denote by {£\-}zej the exceptional curves of/ and put E = *ΣitΞiEi. We define

a Q-divisor Δ = 'ΣieiaiEi(ai^ Q) by the following equalities (F. Sakai [14],(4.1)):

(1.2) (Kχ + Λ) Ei = 0 for every /

It is well known that Δ is well-defined and that Δ>0. According to F. Sakai [14],

we define a Q-divisor f*Kχ as

(1.3) f*Kx=Kx + Δ.

Proposition 1.4. Let X be a numerical Del Pezzo surface and f : X >X

be the minimal resolution of X. Then we have the following equalities :

(1.4.1) H\X, 0*) = Ofor ί>0
(1.4.2) H'(X, Ox(mKx))=0 for i<2 and
(1.4.3) H°(X, Ox(mKχ)) = 0 for nKΞZ>0

Proof. The equalities (1.4.1) and (1.4.2) are the direct consequences of the

vanishing theorem due to F. Fakai (F. Sakaki [14], Theorem (5.1)). The last

equality follows from (1.4.2) using the projection formula (F. Sakai [14], Theorem

(2.1)) and by the fact that Δ is effictive. Q.E.D.

Corollary 1.5. The minimal resolution of a numerical Del Pezzo surface is

a ruled surface.

Theorem 1.6. If a normal surface X is a numerical Del Pezzo surface, then

X is a projectile surface.

Proof. Because X is a Moishezon surface with H2(X, 0 x) = 0 by (1.4.1), we

obtain the conclusion from Brenton's results (L. Brenton [4], 7. Proposition). Q.

E.D.

Lemma 1.7. We have the following isomorphisms :

= H\E, 0E)

where E = ΣteiEi is the exceptional divisor of the minimal resolution f:

X >X.

Proof. Using Leray's spectral sequence we conclude the first isomorphism

immediately by (1.4.1). We obtain the second isomorphism from Brenton's result

(L. Brenton [5] 10. Thorem), because H2(X,Ox) = 0 by (1.4.1). Q.E.D.

REMARK 1.8. A normal surface singularity is called a Du Boίs singularity, if

the second isomorphism holds (cf P. Du Bois [6], S. Ishίi [10] and J.H.M.

Steenbrίnk [15]).
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Corollary 1.9.

Σ ρg(x, X)=h\X, Ox)
^SingX

Especially, X is a rational surface if and only if all singular points of X are
rational singularities.

Lemma 1.10.

H\X, Ox(-[/l])) = 0for i>0

where [ ] means the integral part of a Q-divisor.

Proof. By Sakai's vanishing theorem we obtain the result. Q.E.D.

Theorem 1.11. Let X be a numerical Del Pezzo surface then singular points
of X which are not quotient singularities are at most one point.

Proof. We can write [Z/] = Σj=iA, where D/s are non zero effective divisors
whose supports, SuppD/s, are contained in inverse images of mutually distinct
singular points. To show the theorem, it is sufficient to prove that /<1 (Ki.
Watanabe [16], Proposition 3.5 and Theorem 3.9). So it is trivial when [z/] = 0.
We may assume Uί]>0. Then we have H(X,G x( — [Λ])) = 0. By the Riemann-
Roch theorem, Proposition 1.4 and Lemma 1.9

Pa([Δ\) = h\X, Ox)

where pa( ) is the virtual genus of an effective divisor. Because Zλ and Dj do not
intersect for distinct i, j ,

It is well known that 'Σj=ipa(Dj)<>'Σχ<ESingχpg(x, X). Considering Corollary 1.8
we have

h\X,0χ)=pa([Λ])< Σ pa(x, X)-l + l = hK
x<=SίngX

Σ

x<=SίngX

Then we conclude / < 1 . Q.E.D.

2. Structure of non-rational numerical Del Pezzo surfaces

Let X be a non-rational numerical Del Pezzo surface and / : X >X be the

minimal resolution of X. By Corollary 1.5 X is a ruled surface. We choose an
arbitrary relatively minimal model ϋ : X > Y of X, then Y is a geometrically
ruled surface. Let C be the base curve of Y, g be the genus of C, and ψ : Y • C
be the projection from Y to C. We put φ=ψ°σ: X >C. Since X is not a
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rational surface, X and Y are not rational surfaces and then g = hλ(Y, 0 γ) =
h\X, 0χ)>\.

For the sake of convenience we write D instead of ύ*D for a Q-divisor D on
X, where tf* means push-forward of a Q-Weil divisor.

The following theorem has been proved by L. Badescu under the assumption
that X is Q-Gorenstein (L. Badescu [3], Theorem 2). In the remainder of this
section we prove the same result without the Q-Gorenstein assumption.

Theorem 2.1. Under the above notations
(2.1.1) Among the exceptional curves {£Ί }ίe/ there is a curve which is a section

of φ: X >C. The others are irreducible components of singular
fibers of φ.
We denote the curve which is a section of φ by Eo and the otheres by
Ei, . . . , En.

(2.1.2) The geometrically ruled surface Y is decomposable and a(Eo) coincides
with the minimal section Co of Y. Moreover we have an inequality
-Co2>2<7-2.

(2.1.3) Let ao be the coefficient of Eo in Δ, then \<ao<2.
(2.1.4) {Ei}l=i = {E non-singular rational curve on X such that E2<—2}

Proof. If we assume that all ESs are irreducible components of singular fibers
of φ9 then E^'ΣiΈiEi are trees of nonsingular rational curves, and we have H1(E,
OE) = 0. This contradicts Lemma 1.7 and the fact that h\X,Oχ)>l. Therefore
among {Eΐ}iei there is a curve Ei whose image of φ : X >C is C. We denote
it by Eo, the otheres by Ei, . . . , En.

Let π : Eo >£o be the normalization of the curve Eo. Then g(Eo)<h1(Eo,
Θ Eo), and the equality holds if and only if Eo is nonsingular. Because C is the
image of Eo by φ, φ°π: Eo >C is surjective. Therefore g = g(C)<g(Eo) by
Hurwitz' formula.

On the other hand, we have a short exat sequence

0 >0E • ®U0El >3 >0.

Because SuppJ are finite points we have a surjection

H\E, OE) >®UH\Ei, 0κt)

from the above short exact sequence. Therefore we have following inequalities:

<hι(Eo, 0£o)<Σ h\Eu Θε,)<hι(X, Ox)=g.

So we have
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, 0Eo) = %h\Eίy 0Ei)

and then hι(Eί, 0E1)=:0 for i = l, . . . , n. Therefore Eo is a nonsingular curve of

genus g and Ei is a nonsingular rational curve which is an irreducible component

of a singular fiber for every z —1, . . . , n.

By the definition of ̂ ί = Σ?=otfίi?ι , we have

Then we can easily see that <%>1, using the fact that g>l and £o<0.

Let Co be the minimal section of a geometrically ruled surface Y. We put e

=-α
We will show that ΰ(Eo) coincides with Co.

It is well known that we can write

Eo=aCo + bF a, b^Z

on a ruled surface Y where F is the fiber of Y, and = means numerically

equivalent.

If we assume EoΦCo, then

(2.1.5) 0<Eo-Co=-ae + b.

On the other hand we can write

for some β^Q^o, and

Then

By the assumption EoΦCo, (7*Co contains an irreducible component which is not

contracted by / : X >X. Then we have

(2.1.6)

From <%>1, β>0 and (2.1.5) we conclude
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(2.1.7) 2g-2 + e<0..

On the other hand, the inequality e^ — g is well-known (M. Nagata [l l], Theorem
1). Therefore g=l by (2.1.7). Once again by (2.1.7) and e>—g we conclude that
e= — l. Then b + a>0 by (2.1.5). Combining the above fact, ao>l and (2.1.6) we
obtain that b + a = 0. Then

Eo=aCo — aF for some a^Z.

This contradicts that Eo is an irreducible curve (e.g. R. Hartshorne [8], Proposi-
tion V.2.21). As a consequence we obtain that a(Eo) = Eo=Co. So Eo turns out
to be a section of φ : X >C and (2.1.1) has been shown.

Furthermore the inequality

holds for the general fiber of φ. Therefore we have <%<2. Thus (2.1.3) has been
shown.

Next, we will show that e>2g — 2.
From the fact that Eo=Co

Δ = aoCo+βF

for some β^Q^o, and

If we assume that e= — Co<0, then Supp(σ*Co) contains an exceptional curve of
the first kind. So we have

and this contradicts to the fact that cto>l, e<0, g>\ and /?>0. Then we have e
>0. Then using the following inequalities :

we obtain e>2g — 2, and then Y turns out decomposable (e.g. R. Hartshorne [8]).
Thus we have proved (2.1.2).

Lastly we will show (2.1.4).
Let £ be a nonsingular rational curve which is different from E\, . . . , En.

Then

So we have shown (2.1.4). Q.E.D.



620 T. FUJISAWA

3. DPl-ruled surfaces and their minimal contractions

In the remainder of this paper we use terminologies concerning normal

crossing divisors on nonsingular projective surfaces and weighted graphs interchan-

geably. As for terminologies on weighted graphs, see T. Fujita [7], P. Orlik-P.

Wagreich [12] and Appendix.

NOTATION 3.1. Let X be a non-rational ruled surface, and Y be a relatively

minimal model of X.

The curve on X whose image in Y coincides with the minimal section of Y

is called the minimal section of X {with respect to Y) and denoted by Co.

The {total) singular fibers of X, considered as Weil divisors, are denoted by

Fi, . . . , Fr, and we set Fj=(Fj)red.

By S j we denote the set of curves which are irreducible components of a

singular fiber Fj and whose self-intersection numbers are not equal to — 1. And

by <Sfj we denote the set of curves which are irreducible components of a

singular fiber Fj with the self-intersection number — 1. Furthermore we set S =

j=ιSj and S =Uί=io j.

We use the above terminologies freely in the remainder of this paper.

DEFINITION 3.2. Under the above situation, the pair of a normal surface X

and a morphism f: X >X is said to be a minimal contaction of X {with

respect to Y) if the following conditions are satisfied :

(3.2.1) / is the minimal resolution of X.

(3.2.2) f-\SingX)red=Co+ Σ E

We sometimes say X is a minimal contraction of X {with respect to Y) for short.

By definition if there exists a minimal contraction of X, it is unique up to

isomorophism.

REMARK 3.3. If X is a non-rational numerical Del Pezzo surface and f:

X >X is the minimal resolution of X {with respect to an arbitrary minimal

model of X) because of Theorem 2.1.

REMARK 3.4. If the minimal section of X is independent of the choice of

relatively minimal models, we will not specify the minimal models.

Now we will define a certain kind of non-rational ruled surfaces. At first we

prepare several notations. We will use terminologies on weighted graphs in T.
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Fujita [7 ] and Appendix.

DEFINITION 3.5. Let A = [ai, ..., ar] be an admissible twig {see Definition A.

3), and A* = [bi, . . . , bs] the adjoint of A {see Definition A.6). Let n be a non

negative integer. We call a weighted graph Γ the simple tree of type (A, n), if

Γ is as follows :

the branchinq vertex of T
4

the end of Γ

figure (3.5.1)

If n = 0, then Γ is regarded as follows :

figure (3.5.2)

where the numbers in the circles are the weights of the vertices.

For a simple tree Γ of type (A, n) the vertex correspoding to a r is called tip

of Γ, and the vertex corresponding to b\ is called the end of Γ. When a simple

tree Γ is as in the figure (3.5.1), the vertex which is joined to A and A* is called

the branching vertex of Γ. Sometimes we say that a simple tree Γ has no

branching vertex if n = 0, that is, Γ is a simple tree of type {A, 0) {figure (3.5.

2)).

DEFINITION 3.6. Let Γ be a simple tree and Γf an arbitrary weighted graph.

By Γ+υ + Γ' we denote the following weighted graph :
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When Γ is a simple tree without branching vertex, Γ+v + Γ' denotes the

following :

Especially, by

"Γ
figure (3.6.2)

— \) we denote the following weighted graph

r

figure (3.6.3)
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If Γ has no branching vertex Γ + ( — 1) denotes the following :

figure (3.6.4)

DEFINITION 3.7. Let (pj, qά, «, )0' = l, ..., r) be sets of integers such that pjf

Qj are positive and coprime to each other and nj non-negative for every j.

Furthermore, let e, g be positive integers.

Let Aj be the admissible twig whose inductance (T. Fujita [7], (3.5)) is equal

to qj/pj, and Γj the simple tree of type (Aj, n/) for every j.

A nonsingular projective surface X is said to be a DPl-ruled surface of type

{e> 9, (PJ, Qjy ^i)J=i} if the surface satisfies the following conditons :

(3.7.0) X is a ruled surface.

(3.7.1) The genus of the base curve is equal to g {hence the base curve is

not a rational curve).

(3.7.2) X has the singular fibers Fι, ..., Fr and every Fj is of the form Γj

+ (-1).
(3.7.3) The minimal section Co of X is joined to Fj at the tip of Fj for

every j.

(3.7.4) a=-e-r.

(3.7.5) e>2g-2.

We call X a DPl-ruled surface if we need not mention the type.

REMARK 3.8. By the conditions (3.7.4) and (3.7.5) the minimal section of X

is independent of the choice of a minimal model of X.

REMARK 3.9. We can construct a DPl-ruled surface of type {e, g, (pj, #,,

Πj)j=i} form a geometrically ruled surface over a complete nonsingular curve of

genus g such that the self-intersection number of its minimal section is equal to

-e, and that the inequality e>2g-2 holds (T. Fujita [7], (4.7) Proposition).

REMARK 3.10. If X is a DPl-ruled surface of type {e, g, (pj, qj, n/)j=i} then

Co + Hε^sE is a DPl-graph of type {e, g, (pj, qj, nj)r

j=i} {see Appendix, Definition

A.13).

Theorem 3.11. Let X be a DPl-ruled surface, then the following two

conditions are equivalent:

(3.11.1) There exists a minimal contraction X of X such that X is a non-

rational numerical Del Pezzo surface.



624 T. FUJISAWA

(3.11.2) There exists an effective Q-divisor Δ = aCoΛ-*Σxε^sCtEE such that

(3.11.2.1)
(3.11.2.2) (Kχ + Δ) E = O for every element E of S
(3.11.2.3) 0<a<2.

Proof. It was shown in Theorem 2.1 that the condtion (3.11.2) follows from
(3.11.1). Then we assume (3.11.2).

By the conditions (3.11.2.1) and (3.11.2.2), it can be easily seen that Z/ Co<0,
ΔΈ<0 for every element E of S and Δ2<0. Then the intersection matrix of the
divisor CO + ̂ ΣE^SE is negative definite (M. Artin [2], Proposition 2). Therefore
there exists the minimal contraction / : X >X of X, and f*Kx = Kx + Δ by the
condition (3.11.2).

To show that the surface X is a non-rational numerical Del Pezzo surface, it
is seffucient to prove the following two inequalities:

(3.11.3) (Kχ + Δ) C<§ for every irreducible curve on X which is not con-
tracted to a point by /.

(3.11.4) (K

By the assumption (3.11.2.3) we can easily check that (3.11.3) is the case for the
general fiber F of X

Take an irreducible curve C and we can write C = aCo + ̂ ΣE^δCiEE + φ*D as
an element of PicX ® Q where a and aε are rational numbers, D is a divisor on
the base curve and φ is the projection of X to the base curve. Then a>0 because
a=C-F.

If we assume that degD, the degree of D, is not positive, then we can see that
afe#Z)=C Co = 0, a = C F=0, and CΈ = 0 for every element E of S which is
contained in the connected component of Co + Σsesi? containing Co by the similar
argument as in Ki. Watanabe [16] (Lemma 3.1 and 3.2). But it is impossible.

Then degD is positive, and it turns out that (Kχ + Δ) C<Q. Therefore (3.11.
3) has been proved.

Next we will show the inequality (3.11.4). We write Kχ + Δ=Δι + <p*Dr as an
element of PicX ® Q, where Δ\ is a Q-weil divisor whose support is contained in
CoUdJsesi?) and Df is a divisor on the base curve. Then we can easily see that
zJi^O and that (Kx + Δ)2=-Δf by the conditions (3.11.2.1) and (3.11.2.2).
Because the intersection matrix of the divisor Co + 'ΣiE&δE is negative definite we
obtain the inequality — Δί>0, and then (3.11.4) has been shown. Q.E.D.

The conditon (3.11.2) in the above theorem essentially depends only on the
DPl-graph Γ of type {e, g, (pj, qjy nj)j=i} and Q(Γ). Therefore we can use results
on weighted graphs in Appendix (Proposition A. 14) and obtain the following
theorem.
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Theorem 3.12. Let X be a DPl-ruled surface of type {e, g, (pj, qJf «, )J=i}.

Then the following two conditions are equivalent

(3.12.1) There exists the minimal contraction X of X and X is a non-rational

numerical Del Pezzo surface.

(3.12.2) The following inequality holds :

e-(2g-2)>± ̂ + ^ ~ 1 .
j=ι pj

4. A certain kind of non-rational numerical Del Pezzo surfaces

In this section we will characterize a certain kind of non-rational numerical

Del Pezzo surfaces.

Lemma 4.1. Let X be a non-rational ruled surface. We assume that there

exists the minimal contraction / : X >X of X (with respect to some minimal

model of X), such that all singular points of X are Du Bois singularities. Then

a Weil divisor D on X is a Cartier divisor if and only if the following two

conditions are satisfied :

(4.1.1) f*D is integral.

(4.1.2) 0 (f*D) (8)0 co = 0co.

Proof. It is clear that the conditions (4.1.1) and (4.1.2) are necessary. Con-

versely we assume the conditions (4.1.1) and (4.1.2).

Because Fi, ..., Fr are trees of rational curved and all singular points of X

are Du Bois, X has only one non-rational singular point, and we denote it by Xo.

From the result of M. Artin (M. Artin [ l ] , Corollary (2.6)) D is a Cartier

divisor around all rational singular points.

Let V be a sufficiently small Stein neighborhood of Xo. We set M=f~\V)

and N=f~\xQ)red. Then PicM = PicN (S. Ishii [10], the proof of Proposition 4.

2). So it is sufficient to prove that O(f*D)(g)O N=0 N. Weput Ni=N-Co. Then

Ni can be contracted rational singularities, because Nι can be contractied to Du

Bois sungularities (S. Ishii [10], Theorem 2.2) and Ni is trees of rational curves.

Again from Artin's result 0 (f*D) ®QNI = GNI. The conclusion follows from this

isomorphism and the conditon (4.1.2) because N is a normal crossing divisor and

every connected component of M intersects Co at most one point. Q.E.D.

Corollary 4.2. Under the situation as in Lemma 4.1, an invertible sheaf £

on X is contained in f*(PicX) if and only if £ satisfies the following two

conditions :

(4.2.1) £ E = 0 for every element E of 8

(4.2.2)
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Proof. It is obvious that the conditions (4.2.1) and (4.2.2) are necessary. We
will prove the converse. We can take a Weil divisor D on X such that 0 (D) is
isomorphic to £. By the assumptions (4.2.1) and (4.2.2) SuppD is not contained
in COU(UE^SE). Then D'=f*D is a non-zero Weil divisor on X.

Because the support of a Q-Weil divisor D—f*D' contained in CoUiUε^sE)
and CO + *ΣE(ΞSE is contractible, it turns out that D=f*Dr from the equalities (4.
2.1) and (4.2.2).

Therefore Π satisfies the conditions (4.1.1) and (4.1.2), and then Dr is a Cartier
divisor on X. Thus we obtain the result. Q.E.D.

REMARK 4.3. Because X is a normal surface, the homomorohism f*:
PicX >PicX is injective by the projection formula.

Proposition 4.4. Let X be a non-rational ruled surface which has r
singular fibers. We assume that there exists the minimal contraciton f : X >X
(with respect to some minimal model of X). Then PicX is torsion free.
Furthermore if all singular points of X are Du Bois singularities, then

In particular, p(X) = l if and only if every singular fiber has only one excep-
tional curve of the first kind.

Proof. Let C be the base curve of the reled surface X, and φ the projection
of X to C. We can identify C and Co because Co is a section. By Remark 4.3 PicX
can be considered as subgroup of PicX Because PicX/φ*(PicC) is a free
Z-module, torsion elements of PicX are contained in φ*(PicC). Then PicX is
torsion free by the condition (4.2.2).

Next we assume that all singular points of X are Du Bois singularities.
By Corollary 4.2, we have known that f*(PicX <g) Q)/φ*(PicC ® Q) is a

linear subspace of (PicX® Q)/φ*(PicC ® Q) defined by the equalities (4.2.1).
We can easily check that the dimension of f*(PicX <g) Q)/φ*(PicC <g) Q) is equal
to # ό " + l —r because the intesection matrix of the divisor Co + Σsesi? is neg-
qative definite. The condition (4.2.2) determines the part contained in φ*(PicC ®
Q). Therefore we have the conclusion. Q.E.D.

Corollary 4.5. Let X be a non-rational numerical Del Pezzo surface with
p(X) = l, f: X >X be the minimal resolution of X, and Fj (/= 1, . . . , r) be
the singular fibers of the ruled surface X. Then Fj is of the form Γj + Ej + Γj
where Γj is some simple tree without branching vertex, Ej is an irreducible curve
and ΓJ is some weighted graph for every j .

Proof. It is obvious because every singular fiber has only one exceptional
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curve of the first kind by Proposition 4.4. Q.E.D.

D EFINETION 4.6. Let X be a non-rational numerical Del Pezzo surface with

p(X) = l, f : X >X the minimal resolution of X, and F the general fiber of X.

Let H be an ample Cartier divisor which is a generator of PicX. We call the

intersection number H f*F the index of X.

Lemma 4.7. Under the assumption in Corollary 4.5 Let X, X and so on be

as in Corollary 4.5. By Fj (/ = 1, . . . , r) we denote the {total) singular fibers of

X such that (Fj)red = Fj for every j. Then the coefficient of Ej in Fj divides the

index of X for every j.

Proof. Let Γj be as in Corollary 4.5, and its type (Aj, 0). Then the coefficients

of Ej in Fj coincide with d(Aj)(Ί. Fujita[7], (4.8) Proposition).

The set G>U(UJ=i67) is a basis of the vector space (PicX <g) Q)/φ*(PicC <g>

Q) where S" are the sets which consist of the elements of S j U <$j different from

the curves corresponding to the ends of Γj. We regard f*H as an element of

(PicX (8) Q) and write it in a lenear combination of CoU(UJ=i<?i) with rational

coefficients modulo φ*(PicC ® Q). Let a be the coefficient of Co in the linear

combination. Then H-f*F=f*H F=a. Because f*H satisfies the following

conditions:

(4.7.1) f*H-E = 0 for every element E of S

(4.7.2) f*H-Co = 0

we can describe the coefficients by Lemma A.7 and obtain the conclusion. Q.E.D.

Lemma 4.8. Let X be a non-rational numerical Del Pezzo surface, and Xo

its non-rational singular point. We assume that p(X) = l. Then there exits an

effective Cartier divisor H on X such that its support does not contain Xo and

PicX=ZH.

Proof. By Proposition 4.4 PicX is torsion free. Then we can take an ample

Cartier divisor H such that PicX=ZH.

By the definition of numerical Del Pezzo surface and by the fact that H is

ample, it can be easily seen that H — Kχ is nef and big. Therefore we have H°(X,

O(H))Φ0 by the Sakai's vanishing theorem and the Riemann-Roch theorem.

Thus we may assume that H is effictive.

Next we will show that Xo&B8\H\.

Let / : X >X be the minimal resolution of X. A Q-divisor Δ is defined

as in (1.2). A divisor D = [Δ\ — Co, where \_A\ means a integral part of Δ, is an

effective integral divisor on X by Theorem 2.1. We denote the ideal sheaf of {xo}
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by $. Then $ and f*Oχ(—Co) are ideal sheaves of Ox and $ is contained in

/*0χ(— Co). Because JXo is the maximal ideal of Gx, *0, ̂  coincides with /*0χ

("Co).

On the other hand we have a short exact sequence

(4.8.1) 0 >0x(-[Δ]) >Ox(-Co) >OD(-CO) >0

and from it we have

(4.8.2) 0 >/* 0 χ( - [Δ]) >S >/* 0D{~ CO).

By Lemma 1.9 we have H\X, 0 χ ( - [ J ] ) ) = O. Then we have H°(D, OD(-CO))

= 0 by the long exact sequence obtained from (4.8.1). Because Suppf*OD{— CO)

=xo and (J*QD(-CO))XO = H°(D, OD(-CO)) = 0 we have J=f*Gx(-[d]), and

then f*Ox(J*H — [A\) = J 0x(H) by the projection formula. Then we have an

injective homomorphism

H\X, J-Oχ(H)) >H\X, Gx{f*H-[A\))

by Laray's spectral sequence for Gχ(f*H — [Λ]). It can be easily seen that f*H

-Kχ-Δ is nef and big. Then we obtain H\X, Gχ-(J*H-[Λ])) = 0 by Sakai's

vanishing theorem and then Hι(Xy $ G(H)) = 0 by the above injection. So we

obtain the following exact sequence:

0 >H°(X, J O(H) >H°(X, J-Ox(H)) >C >0

from the short exact sequence

0 >J 0 χ(H) > 0 x(H) > C >0.

Therefore we have

H°(X, f Gx(H))ΦH°(X, Ox(H))

and we obtain the conclusion Xo&Bs\H\. Q.E.D.

The following theorem is the main result of this paper.

Theorem 4.9. If a normal surface X is a non-rational numerical Del Pezzo

surface whose Picard number is equal to 1 and whose index is a prime number

p, then the minimal resolution X of X is a DPl-ruled surface of type {e, g, (pj,

Qjy nj)j=i} satisfying the following conditions :

(4.9.1) Pj=Pfor ; = 1, . . . , r

(4.9.2) e-{2g

Furthermore X is the minimal contraciton of X.

Conversely if X is a DPl-ruled surface of type {e, g, {pj, qj, nj)j=i}
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satisfying the conditions (4.9.1) and (4.9.2), then there exists the minimal contrac-
tion X of X and X is a non-rational numerical Del Pezzo surface whose Picard
number is equal to 1 and whose index is equal to p.

Proof. Let X be a non-rational numerical Del Pezzo surface whose Picard
number is equal to 1 and whose index is a prime number p. Let / : X >X be
the minimal resolution of X. Then X is a non-rational ruled surface and / :
X >X is the minimal contraction of X by Theorem 2.1. We denote the
projection from X to the base curve C by φ. By Corollary 5.7 the singular fibers
Fj of X is of the form Γj + Ej + Γj foχ every /, where Γj is a simple tree without
branching vertex, Ej is a irreducible curve and ΓJ is some weighted graph. Then
there is a birational morphism r : X >Z from X to a non-rational ruled surface
Z, such that the singular fibers of Z are of the form Γj + Ej O' = l, . . . , r). On the
other hand the coefficients of Ej in Fj divide the given prime number p by Lemma
4.7, and it is not equal to 1 for every j . Then it is equal to p for every j .

Take a generator H of PicX as in the conclusion of Lemma 4.8, that is, H is
effective and SuppH dose not contain the non-rational singular point Xo of X. By
H/=nΣi=iatHi we denote the proper transform of H by / : X >X where Λί's are
positive integers, and by D the connected components of Co + 'ΣεeδE containing
Co. Then every Hί does not intersect D, and every HI is not contained in a fiber
of φ because every singular fiber has only one irreducible component with self-
intersection number -1. Then τ*H{Φ0 for every i. Furthermore H'mF=f*H F
= H f*F=p, where F is the general fiber. For Supp(f*H — H') dose not contain
Co because H' does not intersect D, and then (f*H-H')-F=ΰ.

We chose an arbitrary singular fiber, say, Fi. Then there are two cases.
If there exists some Hi such that r*7ϊ>r*£Ί>l . Then we have inequalities

τ*Hr τ*Fι>p=H'-F= τ*Hf- r*F> τ*Hrτ*Fi

and then τ*Hi τ*Ei = l, #ί = l and aj = 0 for every j different from i, that is, H'
is irreducible and reduced and τ*H' r*Z?i = l. Because X is obtained from Z by
blowing-ups and H' dose not intersect D, the singular fiber Fi turns out to be a
simple tree.

If there are no Hi such that τ*Hi-τ*EiΦ0, then by the fact that Hr dose not
intersect D we can easily see that F\ is a simple tree without branching vertex.

Thus Fi is a simple tree for both two cases. Similarly the other singular fibers
are simple trees. Then we have known that X is a DPI-ruled surface.

Let the type of X be {e, g, (pj, Qj, Wj )J=i}. As in the proof of Lemma 4.7, pj
coincides with the coefficient of Ej in the total fiver Fj. Then we have already
shown in the above argument that pj is equal to p. Furthermore the minimal
contraction X of X is a non-rational numerical Del Pezzo surface, then the
inequality (4.9.2) holds by Theorem 3.12.

Conversely let J? be a DPl-ruled surface of type {e, g, (pj, Qj, w, )J=i} satisfying
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the conditions (4.9.1) and (4.9.2). By Theorem 3.10 there exists the minimal

contraction X of X and X is a non-rational numerical Del Pezzo surface such that

p(X) = l. Therefore we only have to show that the index of X is equal to p.

Take an ample Cartier divisor H on X which generates PicX. We take a

basis of {PicX ® Q)/φ*{PicC) as in the proof of Lemma 4.7. Then it can be seen

by Lemma A.7 that f*H = aH modulo φ*{PicC) for some positive integer a and

for some integral divisor H, and that H f*F=f*H'F=zap by the conditions (4.

7.1) and (4.7.2).

Because aHΈ=f*HΈ = Q for every element of S, D = H-φ*{H\Co)

satisfies the conditions (4.2.1) and (4.2.2), where we identify the base curve C of X

and Co. Hence D is contained in f*(PicX) by Lemma 4.2, and then D = bf*H for

some integer b. Then f*H F=aH F=aD*F=abf*H F. Therefore a = b = l

because a is positive. And then H'f*F=ap=p. Q.E.D.

Appendix. Weighted graphs

In this appendix we will prepare several facts on weighted graphs. As for the

terminologies on weighted graphs, the reader may consult T. Fujita [7] and P.

Orlik-P. Wagreich [12].

DEFINITION A.I. We will call a 1-dimensional {not necessarily connected)

simplicial complex with finite vertices a graph. A weighted graph means a graph

to each vertex of which is assigned an integer called the weight.

For the sake of convenience we recall several definitions in T. Fujita [7].

DEFINITION A.2. (T. FUJITA [7] (3.3)) Let Γ be a graph. By Q{Γ) we

denote the Q-vector space of formal linear conbinations of vertices of Γ with

coefficients being rational numbers. If in addition Γ is a weighted graph then we

define a pairing I on Q{Γ) as follows. Let v and w be distinct vertices, I{v, w)

is equal to the number of the segments joining v and w by difinition. For a

vertex v, I{v, v) is equal to the weight of v by definition. We denote I(v, w){resp.

I{v, υ)) by v w {resp. v2) for stort. d{Γ) denotes the determinant of the matrix

with entries —I(v, w).

DEFINITION A.3. (LOC. CIT., (3.2)) A twig is a connected linear graph

together with a total ordenίng Vi>~->vr among its vertices such that Vj and Vj-i

are connected by a segment for each j . Such a twig is denoted by [ — Wi, ...,

— wr], where Wj is the weight of Vj. A twig is said to be admissible if —Wj>

2 for every j .

DEFINITION A.4. (LOC. CIT., (3.5)) Let A be a twig [ah . . . , a r \ The twig
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[ar, ..., cii] is called the trasposal of A and denoted by *A We define also A
= [a2, . . . , flr] and A = t{tA) = [ah . . . , ar-i]. e(A) = d(A)/d(A) is called the
inductance of A.

Proposition A.5. (LOC. CIT., (3.8) Corollary) e defines a one-to-one corre-
spondence from the set of all the admissible twigs to the set of rational numbers
in the interval (0,1).

DEFINITION A.6. (LOC. CIT., (3.9)) Let A be an admissible twig. The unique
admissible twig whose inductance is equal to l — e^A) is called the adjoint of A
and denoted by A*. So e(tA) + e(A*) = l.

Lemma A.7. Let A — [aι, . . . , ar] be an admissible twig, and (xj)j=o and
(yj)jio be two sequences of real numbers satisfying the following conditions :

(A.7.1) *o=0, *i = l
(A.7.2) Xj+i —ajXj-\-Xj-i = 0 for \<j<r.

(A.7.3) yj+ι-aj

Then all x/s are integers and we have the fallowings :

(A.7.4) Xj>0 for /
(A.7.5) Xj+i>xj for 0<i<r
(A.7.6) Xr = d(A), xr+ι = d(A)
(A.7.7) Xj+ιyj—xjyj+ι=yo far 0<j<r
(A.7.8) d(A)yr - d(A)yr+ι=yo.

Furthermore if yo = 0, then we have yj=Xjyi.

Proof. The proof is easy by induction.

Corollary A.8. Let A=[ai, . . . , ar] be an admissible twig, and (yj)jio be a
sequence of real numbers satisfying the equation (A.7.3). Then the following
equality holds :

d(A)yi - d(Ά)yo=yr+i.

Proof. Applying (A.7.8) to *A and (yj)j=r+i, we obtain the conclusion
because d(A) = d(Ά) and d(A) = d('A).

Lemma A.9. Let A = [aι, . . . , ar] be an admissible twig, and (XJ)J=O and
(zj)j±o be two sequences of real numbers such that {xj)rj=o satifies the conditions
(A.7.1) and (A.7.2) and that (zj)jio satisfies the following condition :

j-i=2-aj for
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Then we have

(A.9.2) Xj+iZj — XjZj+i = Zo — l + Xj+i — X

(A.9.3) d(A)zr-d(A)zr+i=zo-l + d(A)-

Moreover if Zo>0 and £ r+i^0 (resp. >0), then we have Zj>0 (resp. >0) for 1<

Proof. Putting yj=Zj — l, (XJ)J=O and (yj)jio satisfy the assumption of
Lemma A.7. Then we obtain (A.9.2) and (A.9.3) from (A.7.7) and (A.7.8). Now
that we have (A.9.2), then

Xj+iZj—XjZj+i>0 for 0<j<r

because x/s are positive integers and Xj+i >Xj for j — 1, . . . , r. Then we can show
the result inductively. Q.E.D.

Corollary A.10. Let A = [ai, . . . , ar] be an admissible twig. We assume
that a sequence of real numbers (̂ ;)J=o satisfies the condition (A.9.1). Then

Proof. It is as same as Corollary A.8. Q.E.D.

We have already defined simple trees in section 3.

Lemma A. 11. Let A = [ai, ..., ar] be an admissible twig, n a non negative
integer, and Γ a simple tree of type (A, n). Then for any rational number a,
there is a unique element Δr,a of Q(Γ) which satisfies the following two condi-
tions :

(A. 11.1) Λr,a'V = 2 + v2 for every vertex v of Γ different from the tip
(A. 11.2) Δr,a-v + a=2 + v2 for the tip v of Γ.

Moreover if a>0, then ΔrΛa is effective.

Proof. We put A* = [bi, ..., b8]. Then

(A. 11.3)

by Fujita [7], (3.9) and Corollary (3,7).
Let U\y . . . , ur and Vι, ..., vs be the vertices corresponding to #1, . . . , ar and

bi, ..., bs respectively. And let Wi, ..., wn be the other vertices with the ordering
wn<Wn-i<"'<Wi such that Wn is the branching vertex of Γ.

We define three sequences (θj )J=o, (A)J=oand (/j)J=o as follows:
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7J=JYI for ; = 2, . . . ,

aj+i = ajOj—aj-i+2 — aj for / = 1, . . . , r

βo=O

a 1 1

βj+\ — bjβj — βj-\-\-2 — bj for .7 = 1, . . . , r.

Then it can be easily seen that all cnj, Aand γ/s are rational numbers. Moreover
we have

CHr + l — Cί

by using Lemma A.9, Corollary A.10 and (A.I 1.3) to (tf,)J=o and
Putting

we can easily show the equalities (A.I 1.1) and (A. 11.2).
If a is non negative, then γι is also non negative because d{A)>2. Therefore

χ, >0 for y = 2, . . . , n and ao = as+ = Yn'^0. By Lemma A.9 we have aj>0 for / =
1, . . . , r and A ^O for ; = 1, . . . , 5.

From the above argument there is an element ΔΓ,a of Q(Γ) satisfying the
conditions (A.I 1.1) and (A.I 1.2) where a is replaced by 1. We can easily check the
following two inequalities :

Ar,ι'V<§ for every vertex v of Γ
( Λ M ) 2 < 0

and then Γ turns out to be contractible, that is, the bilinear form associated to Γ
is negative definite (M. Artin [l]). The uniqueness of Δr,a for every rational
number follows from the fact that Γ is contractible. Q.E.D.

From the above proof we have shown the following :

Corollary A.12. Under the situation as in Lemma A. 11 and its proof, we
have
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m
Proof. Applying Lemma A.7 to A and (^)J=o we have the conclusion by the

fact that ar+i = a. Q.E.D.

DEFINITION A.13. Let (pJf qjf nj)(j = l, . . . , r) be sets of three integers such
that pj and Qj are positive integers coprime to each other and nj is non negative for
every /. Let AJ = Γ(QJ/PJ) be the admissible twigs whose indectance is equal to
Qj/pj, and Γj simple trees of type(Λ;, Wj).

A weighted graph Γ is called a DPl-graph of type {e> gy {pj, Qj, Wj)J=i} when
Γ consists of one distinguished vertex u, called the center of Γ, and of the Γ/s,
where u is joined only to the tip of /} for every j and the weight of u is equal to
£ + r, that is,u2=-e-r (figure A. 13).

u
figure (A. 13)

Proposition A.14. Let Γ be a DPl-graph of type {e, g, (pj, Qj, »i)J=i}, and
g be a positive integer. Then the following two conditions are equivalent:
(A. 14.1) There is an effective element Δr of Q(Γ) satisfying the following three

conditions :

(1)
(2)
(3) Δr u = -e-r-(2g-2).

(A. 14.2) The following inequality holds :

The coefficient a of u in ΔΓ satisfies
Δr v = 2 + v2 for every vertices of Γ different from u.

Proof. At first we will show that (A. 14.2) follows from (A. 14.1). By the
definition of ΔΓ it can be easily seen that Δr\rj9 the image of ΔΓ by the projection
to the direct summand Q(Γj) of Q(Γ), satisfies the conditions (A. 11.1) and (A. 11.
2) for every j . Then we have
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where aOhs are coefficients of the tips of Γj in ΔΓ. By this equality and the
condition (3) in (A. 14.1) we have the following equality:

(A.14.3) {s + ' - S ^ * + i ^

PJ.

Because pj^2, pj>Qj from (A. 10.4) and nj>0, the right hand side of the equality

(A. 14.3) turns out to be positive. Then we have eJrr — ^Σij=ι-—(qj-\—rHX)
pj \ PJ I

because a>0. Therefore by the condition (1) in (A. 14.1) we obtain the following
inequality:

And then we obtain the inequality (A. 14.2) from the above inequality.
Conversely we will assume the condition (A. 14.2).

1 / n • \

By the assumption we can easily check e~\- r — ΣJ=i ~τ~( Qj~\—~r~) > 0 therefore
pj \ PJ I

we can define a rational number a by the equality (A.14.3). Then we have 0<a
< 2 by similar calculations as before.

By Lemma A.I 1 there is unique element ΔΓj,a of Q(Γj) satisfying the conditions
(A.I 1.1) and (A. 11.2) for every /. We define ΔΓ by ΛΓ = au + 'Σj=i ΔΓj,a. Using
Corollary A. 12, by similar calculations as before, we can show that ΔΓ satisfies the
conditions in (A. 14.1). Q.E.D.
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