

Title	Some remarks on degenerate Cauchy problems in general spaces
Author(s)	Carroll, Robert
Citation	Osaka Journal of Mathematics. 1977, 14(3), p. 609-618
Version Type	VoR
URL	https://doi.org/10.18910/10389
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Carroll, R.
Osaka J. Math.
14 (1977), 609-618

SOME REMARKS ON DEGENERATE CAUCHY PROBLEMS IN GENERAL SPACES

ROBERT CARROLL

(Received November 15, 1976)

1. **Introduction.** We will consider problems of the form

$$(1.1) \quad u'' + s(t)u' + Ar(t)u - A^2a(t)u + b(t)u = f$$

$$(1.2) \quad u(0) = u'(0) = 0$$

where A is the generator of a locally equicontinuous group $T(t)$ in a complete separated locally convex space E (cf. [8; 14]), $u \in C^0(E)$, $f \in C^0(E)$, s , r , a , and b are continuous real valued functions, while $a(t) > 0$ for $t > 0$ with $a(0) = 0$. This is an extension of the Cauchy problem for Tricomi equations and various general versions of (1.1)-(1.2) have been considered for example in [1; 2; 7; 8; 10; 15; 16; 18; 22; 23; 24]; for an extensive bibliography see [8]. We will adapt a method of Hersh [13] as extended by the author in [4; 5; 6; 8], to solve (1.1)-(1.2) and prove some uniqueness theorems. The behavior of $\int_{\tau}^T (r^2/a)(\xi) d\xi$ as $\tau \rightarrow 0$ again turns out to play a critical role in uniqueness (as in [7; 8; 23; 24]) and is related to conditions of Krasnov [15] and Protter [18] in their specific contexts. Let us note that a typical case involves $A^2 = \Delta$ in a suitable space E (cf. [8]).

2. Following [4; 5; 6; 8; 13] we replace A by $-d/dx$ in (1.1) and consider

$$(2.1) \quad w'' + s(t)w' - r(t)w_x - a(t)w_{xx} + b(t)w = 0$$

where $w(t) \in \mathcal{G}_x'$ (detailed properties are indicated below). Let us Fourier transform (2.1) in the x variable, writing formally $\hat{w}(t) = \mathcal{F}w(t) = \int_{-\infty}^{\infty} w(t) \exp ixy dx$, to obtain

$$(2.2) \quad \hat{w}'' + s(t)\hat{w}' + iyr(t)\hat{w} + a(t)y^2\hat{w} + b(t)\hat{w} = 0$$

It will be convenient to eliminate the $b(t)$ term as follows. Let $\hat{w}(t) = \hat{v}(t) \exp \int_0^t \gamma(\xi) d\xi$ where $\gamma(t)$ satisfies the Riccati equation

$$(2.3) \quad \gamma' + s\gamma + \gamma^2 + b = 0; \quad \gamma(0) = 0$$

(see below for details). Then \hat{v} satisfies

$$(2.4) \quad \hat{v}'' + (2\gamma(t) + s(t))\hat{v}' + (a(t)y^2 + iyr(t))\hat{v} = 0$$

and it will be easier to deal with (2.4). In order to produce a suitable function $\gamma(t)$ we note that if one sets $\gamma = \alpha'/\alpha$ then α satisfies

$$(2.5) \quad \alpha'' + s(t)\alpha' + b(t)\alpha = 0$$

(cf. [12]) and we choose α to be the unique solution of (2.5) satisfying $\alpha(0) = 1$ with $\alpha'(0) = 0$. Then $\gamma(0) = 0$ and the continuous function γ will remain finite on some interval $0 \leq t \leq T < t_0 < \infty$ where t_0 is the first zero of $\alpha(t)$. It is sufficient for us to solve (1.1) on such an interval since for $t \geq T$ the equation (1.1) is not degenerate and can be handled by standard techniques (cf [3; 17]). Now following [11] we write (2.4) as a system

$$(2.6) \quad \begin{aligned} \hat{v}'(t) &= P(y, t)\hat{v}(t); \quad \hat{v}(t) = \begin{bmatrix} \hat{v}_1 \\ \hat{v}_2 \end{bmatrix}; \\ P(y, t) &= \begin{bmatrix} 0 & y \\ -ir - ay & -s - 2\gamma \end{bmatrix} \end{aligned}$$

where $\hat{v}_1 = y\hat{v}$ and $\hat{v}_2 = \hat{v}'$. We look for solutions \vec{Y} and \vec{Z} of (2.6) satisfying

$$(2.7) \quad \begin{aligned} \vec{Y}(\tau) &= \begin{bmatrix} y\hat{Y} \\ \hat{Y}_t \end{bmatrix}(\tau) = \begin{bmatrix} 0 \\ 1 \end{bmatrix}; \\ \vec{Z}(\tau) &= \begin{bmatrix} y\hat{Z} \\ \hat{Z}_t \end{bmatrix}(\tau) = \begin{bmatrix} y \\ 0 \end{bmatrix} \end{aligned}$$

where $0 \leq \tau \leq t \leq T$. The functions $\hat{Z}(t, \tau, y)$ and $\hat{Y}(t, \tau, y)$, together with their inverse Fourier transforms, will be called resolvents. It is easily shown following [7; 8; 19] that

$$(2.8) \quad \hat{Z}_\tau = (ay^2 + iyr)(\tau)\hat{Y}$$

$$(2.9) \quad \hat{Y}_\tau = -\hat{Z} + (s + 2\gamma)(\tau)\hat{Y}.$$

Now by well known theorems (cf [3; 9; 12] there exist solutions $\hat{Y}(t, \tau, y)$ and $\hat{Z}(t, \tau, y)$ of (2.4) (i.e. (2.6)), satisfying the prescribed initial conditions, which are continuous in (t, τ, y) and analytic in y for $0 \leq \tau \leq t \leq T < \infty$ and $y \in \mathbb{C}$. Moreover by a clever argument in [11] if one writes the solution of (2.6) in the form

$$(2.10) \quad \hat{v}(t, \tau, y) = Q(t, \tau, y)\hat{v}(\tau, \tau, y)$$

where $Q(\tau, \tau, y) = I$ then $\|Q(t, \tau, y)\| \leq |c \exp \hat{c}| y |(t-\tau)|$ where $\| \cdot \|$ denotes the matrix operator norm (so $|q_{ij}| \leq \|Q\|$ in particular when $Q = (q_{ij})$). Thus the entries in Q are entire analytic functions of y of exponential type $\leq \hat{c}(t-\tau) \leq \hat{c}T$. This proves

Lemma 2.1. *The functions $\hat{Y}(t, \tau, y)$ and $\hat{Z}(t, \tau, y)$ are continuous in (t, τ, y) for $0 \leq \tau \leq t \leq T$ and $y \in C$ while, for (t, τ) fixed, $y\hat{Y}$, $y\hat{Z}$, \hat{Y}_t , and \hat{Z}_t are entire analytic functions of exponential type $\leq \hat{c}T$.*

In order to invoke the Paley-Wiener-Schwartz theorem later (cf. [8; 11; 20]) we examine the growth of \hat{Y} , \hat{Z} , etc. for real y . Thus writing first $\hat{Y} = \varphi + i\psi$ we obtain from (2.4)

$$(2.11) \quad \begin{aligned} \varphi'' + (2\gamma + s)\varphi' + ay^2\varphi - yr\psi &= 0; \\ \psi'' + (2\gamma + s)\psi' + ay^2\psi + yr\varphi &= 0. \end{aligned}$$

Multiply the first equation in (2.11) by φ' and the second by ψ' and add, observing that $\hat{Y}\hat{Y}' = \varphi\varphi' + \psi\psi' + i(\psi\varphi' - \varphi\psi')$ for example so that in particular $d/dt|\hat{Y}|^2 = 2 \operatorname{Re} \hat{Y}\hat{Y}' = 2(\varphi\varphi' + \psi\psi')$ while $|yr(\psi\varphi' - \varphi\psi')| = |yr \operatorname{Im} \hat{Y}\hat{Y}'| \leq 1/2(y^2r^2|\hat{Y}|^2 + |\hat{Y}'|^2)$. This yields then

$$(2.12) \quad \begin{aligned} \frac{d}{dt}|\hat{Y}'|^2 + 2(2\gamma + s)|\hat{Y}'|^2 + ay^2 \frac{d}{dt}|\hat{Y}|^2 &\leq \\ (y^2r^2|\hat{Y}|^2 + |\hat{Y}'|^2) \end{aligned}$$

Integrating (2.12) now under the assumption that $a \in C^1$ we obtain for $0 < \tau \leq t \leq T$

$$(2.13) \quad \begin{aligned} |\hat{Y}'|^2 + 2 \int_{\tau}^t (2\gamma + s)|\hat{Y}'|^2 d\xi + a(t)y^2|\hat{Y}|^2 &\leq \\ 1 + \int_{\tau}^t [(a'y^2 + y^2r^2)|\hat{Y}|^2 + |\hat{Y}'|^2] d\xi \end{aligned}$$

where $\hat{Y} = \hat{Y}(\xi, \tau, y)$ etc. in the integrations. This type of inequality can be treated by use of Gronwall type lemmas as in [7; 8; 23]. Thus set $P = a'y^2 + y^2r^2$ and $\tilde{Q} = 1 - 2(2\gamma + s)$ so that $|\tilde{Q}| \leq \tilde{c}$ on $[0, T]$ by the continuity of γ and s . Then add $\tilde{c} \int_{\tau}^t a^2y^2|\hat{Y}|^2 d\xi$ to the right side of (2.13), without changing the inequality, and setting $\Xi = |\hat{Y}'|^2 + ay^2|\hat{Y}|^2$ we have

$$\Xi \leq 1 + \int_{\tau}^t P|\hat{Y}|^2 d\xi + \tilde{c} \int_{\tau}^t \Xi d\xi$$

A straightforward application of the Gronwall lemma (cf. [3]) yields

$$(2.15) \quad \Xi \leq E(t, \tau) + \int_{\tau}^t P|\hat{Y}|^2 E(t, \xi) d\xi$$

where $E(t, \xi) = \exp \tilde{c}(t - \xi)$. Now forget the $|\dot{Y}'|^2$ term in Ξ and following a Gronwall type procedure written out in [8] we get immediately from (2.15) for $P \geq 0$

$$(2.16) \quad ay^2 |\dot{Y}|^2 \leq E(t, \tau) \exp \int_{\tau}^t \dot{P} d\xi$$

where $\dot{P} = a'/a + r^2/a$. Integrating the a'/a term and rearranging these results

Lemma 2.2. *Given $a \in C^1$, $b, r, s \in C^0$, $\dot{P} \geq 0$, and \dot{Y} the solution of (2.4) satisfying $\dot{Y}(\tau, \tau, y) = 0$ with $\dot{Y}_t(\tau, \tau, y) = 1$ it follows that*

$$(2.17) \quad a(\tau) y^2 |\dot{Y}(t, \tau, y)|^2 \leq E(t, \tau) \exp \int_{\tau}^t (r^2/a) d\xi$$

for y real and $0 < \tau \leq t \leq T$.

Let now $F(t, \tau) = \exp(-\int_{\tau}^t (r^2/a) d\xi)$ and $F(\tau) = F(T, \tau)$ so $F(\tau) \leq F(t, \tau)$. Then since $E(t, \tau) \leq \exp \tilde{c}T = k$ we have from (2.17) the inequality

$$(2.18) \quad a(\tau) F(\tau) y^2 |\dot{Y}(t, \tau, y)|^2 \leq k.$$

Note that $F(\tau)$ may tend to zero as $\tau \rightarrow 0$ while $a(\tau) \rightarrow 0$ by assumption, but for $\tau > 0$ both $F(\tau)$ and $a(\tau)$ are positive. Similarly, as in [2], we obtain from (2.14)–(2.16)

$$(2.19) \quad |\dot{Y}_t(t, \tau, y)|^2 a(\tau) F(\tau) \leq \tilde{k}$$

where $\tilde{k} = k \max a(t)$ on $[0, T]$, and going back to (2.4) we have for $Q(\tau) = (a(\tau) F(\tau))^{1/2}$

$$(2.20) \quad \begin{aligned} Q(\tau) |\dot{Y}_{tt}(t, \tau, y)| &\leq |2\gamma(t) + s(t)| Q(\tau) |\dot{Y}_t| \\ &+ (|yr(t)| + a(t)y^2) Q(\tau) |\dot{Y}| + k_1 + k_2 |y| \end{aligned}$$

(upon using (2.18)–(2.19) and the continuity of a, r, s , and γ). Next, setting $\hat{W}(t, \tau, y) = Q(\tau) \dot{Y}(t, \tau, y)$, from Lemma 2.1 and the estimate (2.18) arising from Lemma 2.2 we know that the functions $y \rightarrow y \hat{W}(t, \tau, y)$ are entire of exponential type $\leq \tilde{c}T$ and are bounded uniformly by a constant for y real and $0 \leq \tau \leq t \leq T$. Further we know that the $\hat{W}(t, \tau, \cdot)$ are analytic in the same region (note that the $Q(\tau)$ factor arising from (2.18) is only needed to produce a uniform bound for y real as $\tau \rightarrow 0$ —the function $\dot{Y}(t, \tau, y)$ is continuous in (t, τ, y) for $0 \leq \tau \leq t \leq T$ and $y \in \mathbf{C}$). Writing $\dot{Y}(t, \tau, y) = \sum_0^{\infty} a_n(t, \tau) y^n$ we have $y \dot{Y}(t, \tau, y) = \sum_0^{\infty} a_n(t, \tau) y^{n+1} = \sum_1^{\infty} a_{n-1} y^n$ and by definition one has then $1 = \limsup k \log k / -\log |a_{n-1}|$ as $k \rightarrow \infty$ (cf. [8; 20]). Consequently we can write $\limsup (n+1) \log(n+1) / -\log |a_n| = 1$ which implies $\limsup n \log n / -\log |a_n| = 1$ so $\dot{Y}(t, \tau, \cdot)$ is of exponential

type along with $y\hat{Y}(t, \tau, \cdot)$. Further, since the type of such a function $g(y)$ is defined by $\limsup \log|g(y)|/|y|$ as $|y| \rightarrow \infty$, we see from $\limsup \log|yg(y)|/|y| = \limsup(\log|y| + \log|g(y)|)/|y| = \limsup \log|g(y)|/|y|$ that the functions $\hat{Y}(t, \tau, \cdot)$ are also of exponential type $\leq \hat{c}T$ for $0 \leq \tau \leq t \leq T$. Now for y real with $|y| \leq R_0$ say $|\hat{W}(t, \tau, y)|$ is bounded by continuity in (t, τ, y) and by (2.18) $|\hat{W}(t, \tau, y)| \leq k^{1/2}/|y|$ is bounded for $|y| > R_0$. From the Paley-Wiener-Schwartz theorem it then follows that $W(t, \tau, \cdot) = \mathcal{F}^{-1}\hat{W}(t, \tau, y) \in \mathcal{E}'_x$ with $\text{supp } W$ contained in a fixed compact set for $0 \leq \tau \leq t \leq T$. Similar conclusions apply to W_t and W_{tt} from Lemma 2.1, (2.4), and the estimates (2.19)–(2.20). Reasoning as in [8] one can verify that W_t and W_{tt} indeed represent the derivatives of W in \mathcal{E}'_x and we can state

Theorem 2.3. *Let the hypotheses of Lemma 2.2 hold with $Q(\tau) = (a(\tau)F(\tau))^{1/2}$ where $F(\tau) = \exp(-\int_{\tau}^T (r^2/a)d\xi)$ and set $\hat{W}(t, \tau, y) = Q(\tau)\hat{Y}(t, \tau, y)$ where \hat{Y} is the unique solution of (2.4) satisfying $\hat{Y}(\tau, \tau, y) = 0$ and $\hat{Y}_t(\tau, \tau, y) = 1$. Then $W = \mathcal{F}^{-1}\hat{W}$, W_t , and W_{tt} belong to \mathcal{E}'_x and have supports contained in a fixed compact set for $0 \leq \tau \leq t \leq T$. Moreover $(t, \tau) \rightarrow W$, W_t , and W_{tt} are continuous with values in \mathcal{E}'_x for $0 \leq \tau \leq t \leq T$ with $t \rightarrow W(t, \tau) \in C^2(\mathcal{E}'_x)$.*

3. Going back to (1.1) and (2.1) we omit the $b(t)$ term in view of (2.3) and replace $s(t)$ by $s(t) + 2\gamma(t) = \tilde{s}(t)$. Let us write $h(t) = f(t)/Q(t)$ and assume $h(\cdot) \in C^0(E)$ with $f(t) \in D(A^2)$ for fixed t , while $Ah(\cdot)$ and $A^2h(\cdot) \in C^0(E)$ on $[0, T]$. We define a bracket $\langle W(t, \xi, \cdot), T(\cdot)h(\xi) \rangle$ as in [4; 5; 6; 8] for fixed (t, ξ) and observe that $(\xi, x) \rightarrow T(x)h(\xi) \in C^0(E)$ since $x \rightarrow T(x) \in C^0(L_s(E))$ and, for any continuous seminorm p on E , there is a continuous seminorm q such that $p(T(x)e) \leq q(e)$ for $|x| \leq x_1$ suitably large and $e \in E$ (cf. [14]). The operation $\langle \cdot, \cdot \rangle$ indicates a pairing between distributions $S \in \mathcal{E}'_x$ of order ≤ 2 with $\text{supp } S \subset K$ compact and functions $g \in C^2_x(E)$ on R (recall here that $T(x)$ is a group). Given this situation we can think of $K \subset \hat{K} = \{x; |x| \leq x_0\}$ and represent $C^2(E)$ on \hat{K} as $C^2 \otimes_s E$ (cf. [4; 5; 21]) for details in the present discussion). Then $S \in C^2(\hat{K})^2$ and the pairing $\langle S, g \rangle$ is well defined with $S \rightarrow \langle S, g \rangle$ continuous $C^2(\hat{K})' \rightarrow E$. The map $\Delta = \Delta \otimes 1 = d^2/dx^2 \otimes 1: C^2(E) \rightarrow C^0(E)$ is defined by extension from $C^2 \hat{\otimes} E \rightarrow C^0 \otimes E$ and is continuous; it can be transported around under $\langle \cdot, \cdot \rangle$ in a distribution sense for suitable S and g as above (i.e. $\langle \Delta S, g \rangle = \langle S, \Delta g \rangle$ for S of order zero, the bracket for $\langle S, \Delta g \rangle$ being defined in the same way). We remark that in fact $(S, g) \rightarrow \langle S, g \rangle: \mathcal{E}' \times C^2(E) \rightarrow E$ is easily seen to be separately continuous for S restricted as indicated and since \mathcal{E}' is barreled $(S, g) \rightarrow \langle S, g \rangle$ will be hypocontinuous on bounded sets in $C^2(E)$ (cf. [21]). Consider then for $\tau > 0$

$$(3.1) \quad u(t) = \int_{\tau}^t \langle W(t, \xi, \cdot), T(\cdot)h(\xi) \rangle d\xi$$

We calculate formally in remarking that all the operations are legitimate. First

$$(3.2) \quad u'(t) = \int_{\tau}^t \langle W_t(t, \xi, \cdot), T(\cdot)h(\xi) \rangle d\xi$$

since $W(t, t, \cdot) = 0$ and since $W_t(t, t, \cdot) = Q(t)\delta$ there results

$$(3.3) \quad u''(t) = f(t) + \int_{\tau}^t \langle W_{tt}(t, \xi, \cdot), T(\cdot)h(\xi) \rangle d\xi$$

Now look at our new version of (1.1) and observe that for example

$$(3.4) \quad \begin{aligned} Au(t) &= \int_{\tau}^t \langle W(t, \xi, \cdot), AT(\cdot)h(\xi) \rangle d\xi \\ &= \int_{\tau}^t \langle W(t, \xi, \cdot), \frac{d}{dx} T(\cdot)h(\xi) \rangle d\xi \\ &= - \int_{\tau}^t \langle \frac{d}{dx} W(t, \xi, \cdot), T(\cdot)h(\xi) \rangle d\xi \end{aligned}$$

Similarly $A^2u(t) = \int_{\tau}^t \langle \Delta W(t, \xi, \cdot), T(\cdot)h(\xi) \rangle d\xi$ where $\Delta = d^2/dx^2$. Putting $u(t)$, defined by (3.1), in the modified equation (1.1) we obtain

$$(3.5) \quad \begin{aligned} u'' + \tilde{s}(t)u' + Ar(t)u - A^2a(t)u &= f(t) \\ &+ \int_{\tau}^t \langle W_{tt} + \tilde{s}(t)W_t - r(t)\frac{d}{dx}W - a(t)\Delta W, Th \rangle d\xi \end{aligned}$$

and the integral term vanishes because W , along with Y , satisfies the correspondingly modified equation (2.1). There is no trouble now in passing to the limit $\tau = 0$ under our hypotheses and, using γ to transform back to the original equation (1.1), we have proved

Theorem 3.1. *Let $a(t) > 0$ for $t > 0$ with $a(0) = 0$ and $a \in C^1$; let b, r , and s belong to C^0 , $\hat{P} \geq 0$ and choose T as in (2.3)–(2.4); let Q and F be defined as in Theorem 2.3 and assume $h(\cdot) = f(\cdot)/Q(\cdot) \in C^0(E)$ on $[0, T]$ with $Ah(\cdot)$ and $A^2h(\cdot) \in C^0(E)$ on $[0, T]$, where A generates a locally equicontinuous group $T(x)$ in E . Then, after modification by a factor $\exp \int_0^t \gamma(\xi) d\xi$, $u(t)$ given by (3.1) with $\tau = 0$ is a solution of (1.1)–(1.2) on $[0, T]$.*

4. We go now to questions of uniqueness and will have to determine some properties of the other resolvent $\hat{Z}(t, \tau, y)$. First we duplicate our procedure (2.11)–(2.12) in order to estimate $|\hat{Z}|$ and $|\hat{Z}_t|$ for y real. This yields

$$(4.1) \quad \begin{aligned} \frac{d}{dt} |\hat{Z}|^2 + 2\tilde{s}(t) |\hat{Z}'|^2 + a(t)y^2 \frac{d}{dt} |\hat{Z}|^2 \\ \leq y^2 r^2(t) |\hat{Z}|^2 + |\hat{Z}'|^2 \end{aligned}$$

$$(4.2) \quad |\hat{Z}'|^2 + 2 \int_{\tau}^t \tilde{s}(\xi) |\hat{Z}'|^2 d\xi + a(t)y^2 |\hat{Z}|^2$$

We will develop now a uniqueness procedure based on [6; 8] which uses the following formal calculations, valid for $\tau > 0$. Define first

$$(4.9) \quad \begin{aligned} R(t, \xi) &= \langle Z(t, \xi, \cdot), T(\cdot)u(\xi) \rangle; \\ S(t, \xi) &= \langle Y(t, \xi, \cdot), T(\cdot)u'(\xi) \rangle \end{aligned}$$

where u is *any* solution of our modified equation (1.1) (i.e. $s(t)$ is replaced by $\tilde{s}(t) = s(t) + 2\gamma(t)$ and $b(t) = 0$) with $f = 0$. For $\tau > 0$, Y , Z , Y_τ and Z_τ belong to \mathcal{E}_x' with supports contained in a fixed compact set so (4.9) makes sense, as do the following computations (cf. (2.8)–(2.9)), but we will mercifully omit detailed examination of each step. Thus

$$(4.10) \quad \begin{aligned} R_\xi &= \langle Z_\xi, Tu \rangle + \langle Z, Tu' \rangle = \langle Z, Tu' \rangle \\ &\quad - \langle a(\xi) \Delta Y, Tu \rangle - \langle r(\xi) \frac{d}{dx} Y, Tu \rangle = \langle Z, Tu' \rangle \\ &\quad + \langle Y, r(\xi) A Tu \rangle - \langle Y, a(\xi) A^2 Tu \rangle \end{aligned}$$

$$(4.11) \quad \begin{aligned} S_\xi &= \langle Y_\xi, Tu' \rangle + \langle Y, Tu'' \rangle = \langle Y, Tu'' \rangle \\ &\quad - \langle Z, Tu' \rangle + \langle \tilde{s}(\xi) Y, Tu' \rangle = \langle Y, Tu'' \rangle \\ &\quad + \langle Y, \tilde{s}(\xi) Tu' \rangle - \langle Z, Tu' \rangle. \end{aligned}$$

Letting $\varphi(t, \xi) = R(t, \xi) + S(t, \xi)$ we have from (4.10)–(4.11)

$$(4.12) \quad \varphi_\xi = \langle Y, T(u'' + \tilde{s}u' + rAu - aA^2u) \rangle = 0.$$

Consequently $\varphi(t, t) = \varphi(t, \tau)$ which implies that

$$(4.13) \quad \begin{aligned} u(t) &= \langle Z(t, \tau, \cdot), T(\cdot)u(\tau) \rangle \\ &\quad + \langle Y(t, \tau, \cdot), T(\cdot)u'(\tau) \rangle = \langle F^{1/2}(\tau)Z(t, \tau, \cdot), T(\cdot)F^{-1/2}(\tau)u(\tau) \rangle \\ &\quad + \langle Q(\tau)Y(t, \tau, \cdot), T(\cdot)Q^{-1}(\tau)u'(\tau) \rangle \end{aligned}$$

Now let $\tau \rightarrow 0$ and if $F^{-1/2}(\tau)u(\tau)$ and $Q^{-1}(\tau)u'(\tau) \rightarrow 0$ we have $u(t) \equiv 0$. Hence, referring back to the original equation (1.1) via γ as before we have proved

Theorem 4.3. *Let u satisfy (1.1) (modified) under the stipulations that $F^{-1/2}(\tau)u(\tau) \rightarrow 0$ and $Q^{-1}(\tau)u'(\tau) \rightarrow 0$ as $\tau \rightarrow 0$. Assume the hypotheses of Lemma 2.2. Then u is unique.*

REMARK 4.4. The condition $\hat{P} \geq 0$ has been discussed in [7; 8; 23; 24].

In general the requirements of Theorem 4.3 regarding the growth of $u(\tau)$ and $u'(\tau)$ as $\tau \rightarrow 0$ are too strong (cf. [7]) although the solution u of (1.1) given by (3.1) could be made to satisfy them by imposing further hypotheses on f . It is therefore of some interest to consider the case when $F(\tau) \rightarrow 0$ as $\tau \rightarrow 0$ and the relation of this to certain conditions of Krasnov [15] and Protter [18] has been

$$\leq a(\tau)y^2 + \int_{\tau}^t [(a'y^2 + y^2r^2)|\hat{Z}|^2 + |\hat{Z}'|^2]d\xi.$$

Setting $P = a'y^2 + y^2r^2$ as before and $\tilde{Q} = 1 - 2\tilde{s}$ with $|\tilde{Q}| \leq \tilde{c}$ on $[0, T]$, we write $\Xi = |\hat{Z}'|^2 + ay^2|\hat{Z}|^2$ and add $\tilde{c} \int_{\tau}^t ay^2|\hat{Z}|^2 d\xi$ to the right side of (4.2) to obtain

$$(4.3) \quad \tilde{\Xi} \leq a(\tau)y^2 + \int_{\tau}^t P|\hat{Z}|^2 d\xi + \tilde{c} \int_{\tau}^t \Xi d\xi$$

Consequently as in (2.15) there results

$$(4.4) \quad \tilde{\Xi} \leq a(\tau)y^2 E(t, \tau) + \int_{\tau}^t P|\hat{Z}|^2 E(t, \xi) d\xi$$

and as in (2.16) we obtain

$$(4.5) \quad a(t)y^2|\hat{Z}|^2 \leq a(\tau)y^2 E(t, \tau) \exp \int_{\tau}^t \hat{P} d\xi$$

which yields

Lemma 4.1. *Given the hypothesis of Lemma 2.2 on a, b, r, s, \hat{P} , with $\hat{Z}(t, \tau, y)$ the unique solution of (2.4) satisfying $\hat{Z}(\tau, \tau, y) = 1$ and $\hat{Z}_t(\tau, \tau, y) = 0$ it follows that for y real and $0 \leq \tau \leq t \leq T$*

$$(4.6) \quad |\hat{Z}(t, \tau, y)|^2 \leq E(t, \tau) \exp \int_{\tau}^t (r^2/a) d\xi$$

which can be written as $F(\tau)|\hat{Z}(t, \tau, y)|^2 \leq E(t, \tau)$.

Similarly, as in (2.19)–(2.20), we could estimate $|\hat{Z}_t|$ and $|\hat{Z}_{tt}|$ but this will not be needed here. Instead we want estimates on \hat{Y}_t and \hat{Z}_τ which will follow from (2.8)–(2.9). Thus, from (2.8) one obtains, using (2.18),

$$(4.7) \quad |Q(\tau)\hat{Z}_\tau| \leq \hat{k} + \hat{k}_1|y|$$

while, using (2.18) and (4.6), we get from (2.9)

$$(4.8) \quad |yQ(\tau)\hat{Y}_\tau| \leq \hat{k}_2 + \hat{k}_3|y|.$$

From their expressions (2.8)–(2.9) (and reasoning about \hat{Z} from Lemma 2.1 as was done for \hat{Y} before Theorem 2.3) we know that \hat{Y}_τ and \hat{Z}_τ are entire functions in y of exponential type $\leq \hat{c}T$. The estimates (4.7)–(4.8) and an argument as in Theorem 2.3 then proves (cf. Lemma 4.1)

Theorem 4.2. *Under the hypothesis of Theorem 2.3, $F^{1/2}(\tau)Z = F^{1/2}(\tau)\mathcal{F}^{-1}\hat{Z}$, $Q(\tau)Z$ (and $Q(\tau)Y$), and $Q(\tau)Y_\tau$ belong to \mathcal{E}_x' with supports contained in a fixed compact set for $0 \leq \tau \leq t \leq T$. The derivatives in τ can be taken in \mathcal{E}_x' for $\tau > 0$ and $(t, \tau) \rightarrow F^{1/2}Z$ or QZ , QZ_τ , and $Q(\tau)Y_\tau$ are continuous with values in \mathcal{E}_x' .*

discussed in [7; 8]. In this event the requirements of Theorem 4.3 on u are only that $u(0)=0$ and $a^{-1/2}(\tau)u'(\tau)\rightarrow 0$ as $\tau\rightarrow 0$. To examine the feasibility of this let u satisfy the modified equation (1.1) with $f=0$, $u(0)=0$, and $u'(0)=0$. Multiply this equation by $\exp \int_0^t \tilde{s}(\xi) d\xi$ and integrate to obtain (cf. [7; 8])

$$(4.14) \quad u'(t) = - \int_0^t [Ar(\xi)u - A^2a(\xi)u] e^{-\int_\xi^t \tilde{s}(\eta) d\eta} d\xi.$$

Let p be any continuous seminorm in E so that, since $\exp(-\int_\xi^t \tilde{s}(\eta) d\eta) \leq M$ on $[0, T]$,

$$(4.15) \quad p(u'(t)) \leq \int_0^t [r(\xi)p(Au) + a(\xi)p(A^2u)] M d\xi$$

Now $\int_0^t r(\xi) d\xi = \int_0^t a^{1/2}(r/a^{1/2}) d\xi \leq (\int_0^t a(\xi) d\xi)^{1/2} (\int_0^t (r^2/a) d\xi)^{1/2}$ whereas $\int_0^t a(\xi) d\xi = ((\int_0^t a(\xi) d\xi)^{1/2})^2$. Since $p(Au)$ and $p(A^2u)$ will be bounded for a solution $u \in C^2(E)$ on $[0, T]$ we have for $\int_0^t (r^2/a) d\xi$ bounded

$$(4.16) \quad \begin{aligned} p(a^{-1/2}(t)u'(t)) &\leq a^{-1/2}(t)p(u'(t)) \\ &\leq M_1 a^{-1/2}(t) (\int_0^t ad\xi)^{1/2} + M_2 a^{-1/2}(t) \int_0^t ad\xi \\ &\leq M_3 a^{-1/2}(t) (\int_0^t ad\xi)^{1/2} \end{aligned}$$

Hence $a^{-1/2}(t)u'(t) \rightarrow 0$ if $a^{-1/2}(t)(\int_0^t ad\xi)^{1/2} \rightarrow 0$. This condition is examined in [7; 8; 23; 24] and since oscillations in $a(t)$ are permitted by the stipulation $\hat{P} \geq 0$ (or $a' \geq -r^2$) it is not automatically satisfied. However if a is monotone increasing near $t=0$ it is obviously valid since then $(\int_0^t ad\xi)^{1/2} \leq a(t)^{1/2}t^{1/2}$. Thus it makes sense to state the result (after modification) as

Theorem 4.5. *Assume the hypothesis of Lemma 2.2 and suppose $F(\tau) > 0$ on $[0, T]$ with $a^{-1/2}(t)(\int_0^t a(\xi) d\xi)^{1/2} \rightarrow 0$ as $t \rightarrow 0$. Then $a^{-1/2}(\tau)u'(\tau) \rightarrow 0$ as $\tau \rightarrow 0$ and if u satisfies (1.1)–(1.2) with $f=0$ it follows that $u(t) \equiv 0$ on $[0, T]$.*

References

- [1] L. Bers: Mathematical aspects of subsonic and transonic gas dynamics, Wiley, N.Y., 1958.
- [2] R. Carroll: *Some degenerate Cauchy problems with operator coefficients*, Pacific J. Math. **13** (1963), 471–485.
- [3] R. Carroll: Abstract methods in partial differential equations, Harper-Row, N.Y., 1969.
- [4] R. Carroll: *On some hyperbolic equations with operator coefficients*, Proc. Japan Acad. **49** (1973), 233–238.
- [5] R. Carroll: *On a class of canonical singular Cauchy problems*, Anal. fonct. appl., Act. Sci. Ind. 1367, Hermann, Paris, 1975, pp. 71–90.
- [6] R. Carroll: *A uniqueness theorem for EPD type equations in general space*, Applicable Anal. to appear.
- [7] R. Carroll and C. Wang: *On the degenerate Cauchy problem*, Canad. J. Math. **17** (1965), 245–256.
- [8] R. Carroll and R. Showalter: Singular and degenerate Cauchy problems, Academic Press, N.Y., 1976.
- [9] E. Coddington and N. Levinson: Theory of ordinary differential equations, McGraw-Hill, N.Y., 1955.
- [10] G. Ganeux: These 3^{me} cycle, Paris, to appear.
- [11] I. Gelfand and G. Šilov: Some questions of the theory of differential equations, Generalized functions, Vol. 3, Moscow, 1958.
- [12] P. Hartman: Ordinary differential equations, Wiley, N.Y., 1964.
- [13] R. Hersh: *Explicit solution of a class of higher order abstract Cauchy problems*, J. Differential Equations **8** (1970), 570–579.
- [14] T. Komura: *Semigroups of operators in locally convex spaces*, J. Functional Analysis **2** (1968), 258–296.
- [15] M. Krasnov: *Mixed boundary value problems for degenerate linear hyperbolic differential equations of second order*, Mat. Sbornik **91** (1959), 29–84.
- [16] C. Lacomblez: *Une équation d'évolution du second order en t à coefficients dégénérés ou singuliers*, Pub. Math. Univ. Bordeaux **4** (1974), 33–64.
- [17] J. Lions: Equations différentielles-opérationnelles, Springer, Berlin, 1961.
- [18] M. Protter: *The Cauchy problem for a hyperbolic second order equation with data on the parabolic line*, Canad. J. Math. **6** (1954), 542–553.
- [19] L. Schwartz: *Les équations d'évolution liées au produit de composition*, Ann. Inst. Fourier **2** (1950), 19–49.
- [20] L. Schwartz: Théorie des distributions, Edition “Papillon”, Hermann, Paris, 1966.
- [21] F. Treves: Topological vector spaces, distributions, and kernels, Academic Press, N.Y., 1967.
- [22] W. Walker: A nonsymmetric singular Cauchy problem, Report 99, Math. Dept. Univ. Auckland, 1976.
- [23] C. Wang: *On the degenerate Cauchy problem for linear hyperbolic equations of the second order*, Thesis, Rutgers Univ., 1964.
- [24] C. Wang: *A uniqueness theorem on the degenerate Cauchy problem*, Canad. Math. Bull. **18** (1975), 417–421.