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Abstract
In this paper we construct a complete set of representativesof the irreducible

representations of the party algebra. which is the centralizer of the unitary reflec-
tion groupG(r;1; k) in the endomorphism ring of the tensor spaceV 
n under the
condition thatk � n and r > n.

1. Introduction

Let G be a group of linear transformations on ak-dimensional vector spaceV .
Suppose thatG diagonally acts on then-times tensor spaceV 
n. Then the question
how the tensor spaceV 
n decomposes into irreducible representations ofG is a ba-
sic problem of the classical invariant theory. One way of studying this problem is to
consider the centralizer algebra EndG�V 
n�. This approach was successfully done in
casesG = GLk(C) andOk(C). These classical groups produced the centralizersCSn
and Bn(k) (Brauer algebra [2, 13]) respectively, and the decompositions of the tensor
representations of the original groups were obtained as well as the decompositions of
their centralizers. In the 1980s, theq-deformation of these centralizers were discovered
and the various connections between the centralizers and other areas (such as knot the-
ory, conformal field theory, etc.) were clarified [10, 14].

In the early 1990s, Jones and Martin independently defined thepartition algebraPn(Q) as the generalization of the Temperley-Lieb algebra and the Potts model in sta-
tistical mechanics. This algebra corresponds to the caseG = Sk in the classical in-
variant theory above; if the parameterQ of Pn(Q) is specialized to a positive integerk, the partition algebraPn(k) surjectively mapped to the centralizer EndG�V 
n� whereG = Sk, and if further k is large enough, (2k � n is sufficient), this map becomes
injective [5]. In the paper [5, 9], they considered

Q
2n, the set of all the set parti-

tions of fd1; : : : ; dn; r1; : : : ; rng, as a basis ofPn(Q) and defined the product among
each element of

Q
2n. Further, they showed thatPn(Q) is generated by the symmetric
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groupSn—acting onV 
n by tensor factors permutation—and two special elementsA1

andA12.
Inspired by the work of Jones, Tanabe considered the caseG is a unitary reflec-

tion group of typeG(r; p; k) whereG(r; p; k) is an index-p subgroup ofG(r;1; k),
andG(r;1; k) is a group ofk � k monomial matrices whose non-zero entries arer-th
roots of unity [11]. In the paper [12], Tanabe showed that EndG(r;p;k)�V 
n� is gener-
ated by the symmetric groupSn together with three further special operators,E2; F r1
andHr;p;k. (Note that the unitary reflection groupsfG(r; p; k)g include the symmetric
group Sk = G(1;1; k). The operatorsE2 and F 1

1 becomeA12 andA1 respectively inPn(Q), and the operatorHr;p;k is not defined in casep = 1.)
In this paper, we study further about the caseG = G(r;1; k) (k � n, r > n):

we construct a complete set of irreducible representations, which corresponds to
“Hoefsmit-analogues” of Young’s seminormal representations of the symmetric
group [4].

This paper is organized as follows. First we define theparty algebraAn as an
abstract algebra generated by the symmetric groupSn and one of the above opera-
tors f = E2 = A12, which will turn out to be a subalgebra of the partition algebraPn(Q). In fact, a basis ofAn has one to one correspondence with a subset of

Q
2n

called the set ofseat-plans (see Section 1.1). We showed in the previous paper [6]
that any word ofAn is reduced to one of thestandard words of the generators un-
der the defining relations and each standard word corresponds to one of the seat-plans
(see Definition 1.1). Similarly to the partition algebra, there exists a surjective homo-
morphism fromAn to EndG(r;1;k)�V 
n�. Moreover, if k � n and r > n, this homo-
morphism becomes injective (Proposition 1.2 and 1.3). Next, we explicitly construct a
complete set of representatives of the irreducible representations of the party algebra
An drawing the Bratteli diagram of the towerA0 � A1 � � � � � An and defining
the tableaux on it. Finally we check that these representations are irreducible and non-
equivalent each other. Comparing the square sum of the degrees of the irreducible rep-
resentations with the number of the seat plans (standard words of the generators) we
find thatAn is semisimple.

1.1. Definition of the party algebra. First, we define the party algebraAn.
DEFINITION 1.1. Let Z be the ring of rational integers. We putA0 = A1 =

Z. For an integern > 1, the party algebraAn is defined overZ by the following
generators:

f; s1; s2; : : : ; sn�1

and relations:

s2i = 1 (1� i � n� 1); (P1)

sisi+1si = si+1sisi+1 (1� i � n� 2); (P2)
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Fig. 1. Generators ofAn
sisj = sj si (ji � j j � 2; 1� i; j � n� 1); (P3)

f 2 = f; (P4)

f s1 = s1f = f; (P5)

f si = sif (3� i � n� 1); (P6)

f s2f s2 = s2f s2f; (P7)

f s2s1s3s2f s2s1s3s2 = s2s1s3s2f s2s1s3s2f . (P8)

Putting

f1 = f
fi = (si�1 � � � s2s1)(si � � � s3s2)f1(s2s3 � � � si)(s1s2 � � � si�1)

(i = 2;3; : : : ; n� 1),

we obtain another presentation ofAn by fis andsis.

s2i = 1 (1� i � n� 1); (P10)
sisi+1si = si+1sisi+1 (1� i � n� 2); (P20)
sisj = sj si (ji � j j � 2; 1� i; j � n� 1); (P30)
f 2i = fi (1� i � n� 1); (P40)
fisi = sifi = fi (1� i � n� 1); (P50)
fifj = fjfi (1� i; j � n� 1); (P60)
sifi+1si = si+1fisi+1 (1� i � n� 2); (P70)
fisj = sjfi (ji � j j � 2; 1� i; j � n� 1): (P80)

For the new generatorsfsi; fi j 1 � i � n � 1g, we give the diagrams figured
in Fig. 1. In the following, to each word of the generators ofAn, we give a diagram
explanation.
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Fig. 2. A seat-plan

Let D = fd1; d2; : : : ; dng andR = fr1; r2; : : : ; rng be two sets, each of which con-
sists ofn distinct elements. We further assume thatD \ R = ;. We decomposeD t R
into subsetsB1; B2; : : : ; Bn (some ofBjs might be empty) so that they satisfy

n[
j=1

Bj = D t R;
Bi \ Bj = ; if i 6= j;
jB1j � jB2j � � � � � jBnj;��Bj \D�� =

��Bj \ R�� for j = 1;2; : : : ; n:
We call such a partition into subsets aseat-plan of size n. Let P (n) be the set
of partitions of an integern. Then there exists a partition� 2 P (n) such that� =
(�1; �2; : : : ; �n) = (jB1j=2; jB2j=2; : : : ; jBnj=2). The number of seat-plans is

(1)
X
�2P (n)

� n!�1! �2! � � � �n!
�2 � 1�1! �2! � � ��n! ;

where�i = jf�k ; �k = igj.
A seat-plan of sizen is illustrated as in Fig. 2. Consider a rectangle withn

marked points on the bottom and the samen on the top. Then marked points on the
bottom are labeled byd1; d2; : : : dn from left to right. Similarly, then marked points
on the top is labeled byr1; r2; : : : ; rn from left to right. If D tR is divided into non-
emptym subsets, then putm shaded circles in the middle of the rectangle so that they
have no intersections. Each of the circles corresponds to one of the non-emptyBjs.
Then we join the 2n marked points and them circles with 2n shaded bands so that
the marked points labeled by the elements ofBj are connected to the corresponding
circle with

��Bj �� bands. We associate generatorsfsi; fi j 1 � i � n � 1g of An to the
following special seat-plans

fd1; r1g; : : : ; fdi�1; ri�1g; fdi; ri+1g; fdi+1; rig; fdi+2; ri+2g; : : : ; fdn; rng
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Fig. 3. The product of seat-plans

and

fd1; r1g; : : : ; fdi�1; ri�1g; fdi; di+1; ri; ri+1g; fdi+2; ri+2g; : : : ; fdn; rng
respectively, which are illustrated in Fig. 1.

Now we define the productw1w2 between two of rectanglesw1; w2 (each of
which corresponds to a seat-plan) by placingw1 on w2, gluing the corresponding
boundaries and shrinking half along the vertical axis as in Fig. 3. We then have a new
diagram possibly containing some closed loops. The productis the resulting diagram,
with the closed loops removed. It is easy to define this product in terms of seat-plans
(see for example Martin’s paper [9]). The set of the seat-plans satisfies the relation
(P10)–(P80). Moreover, in the paper [6], the author showed that there exist one to
one correspondences between the set of seat-plans of sizen and the set of standard
words ofAn and that using only the relations (P10)–(P80) any word of the generators
becomes a standard word. This means that the linear combination of seat-plans is a
surjective image ofAn and it makes a finite dimensional algebra whose dimension is
given by the expression (1).

The following proposition given by Tanabe [12] shows the relation between the
party algebras and the centralizer algebras of the unitary reflection groups.

Proposition 1.2 (Tanabe [12, Theorem 3.1]).Let G(r;1; k) be the group of all
the monomial matrices of sizen whose non-zero entries arer-th roots of unity. Let V
be theC-vector space of dimensionk with the basis elementse1; e2; : : : ; ek on whichG(r;1; k) acts naturally. Let � be the representation of the symmetric groupSn on
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Fig. 4. 04—The Bratteli diagram for the sequencefAi 
 Cg4i=0

V 
n obtained by permuting the tensor product factors, i.e., for v1; v2; : : : ; vn 2 V and
for w 2 Sn,

�(w)
�v1 
 v2 
 � � � 
 vn� := vw�1(1) 
 vw�1(2) 
 � � � 
 vw�1(n):

Define further�(f ) as follows:

�(f )
�ep1 
 ep2 
 � � � 
 epn� :=

(ep1 
 ep2 
 � � � 
 epn if p1 = p2;
0 otherwise:

If r > n, then EndG(r;1;k)�V 
n� is generated by�(Sn) and �(f ) and � defines a
homomorphism fromAn 
 C to EndG(r;1;k)�V 
n�.

Proposition 1.3. Let � be the map previously defined. If k � n, then �
is injective.

Proof. Using Schur-Weyl reciprocity and counting the dimension, the proposition
will be easily checked.

1.2. Bratteli diagram of the party algebras. In this subsection, first we make
a diagram0n, which will turn out to be the Bratteli diagram of the sequence fAi 

Cgni=0. Then we define the sets of thetableaux on the diagram. Fig. 4 will help the
reader to understand the recipe.

Fix a positive integern. Let

� = [�(1); : : : ; �(n)]

be ann-tuple of Young diagrams. Thej -th coordinate of the tuple is referred tothe
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j -th board. The height k�k of � is defined as the weight sum of the sizes of all thej�(j )js. Namely,k�k is defined by

k�k =
nX
j=1

j j�(j )j:
Let

Ln(i) = f� = [�(1); : : : ; �(n)] j k�k = ig
be a set ofn-tuples of heighti. For � 2 Ln(i), we set�(0) = n � i (the horizontal
Young diagram of depth 1 and of widthn � i) if necessary. Let� �

1
�̃ or �̃ �

1
�

denote that�̃ is obtained from� by removing one box from the Young diagram on
the j -th board and adding the box to the Young diagram on the (j + 1)-st board for
some j (0 � j � n � 1). The diagram0n is defined as the Hasse diagram0n ofFi=0;:::;nLn(i) with respect to the order generated by�

1
s.

Finally we define the sets of the tableaux on0n. For � 2 Ln(n), The setT(�) of
tableaux of shape� is defined by

T(�) =
nP =

��(0);�(1); : : : ;�(n)� ��� �(0) = [;; : : : ;;]; �(n) = �;
�(i) �

1
�(i+1) for 0� i � n� 1

o:
1.3. Construction of the irreducible representation. Now we have defined the

sets of tableaux on0n, we define linear transformations of the tableaux. LetQ be the
field of rational numbers andK0 = Q(

p
2;p3; : : : ;pn) its extension. In the following,

the linear transformations are defined overK0. They will turn out to be a complete
set of representatives of the irreducible representationsof An(K0) = An 
 K0. Similar
methods are used for example in the references [1, 3, 10, 13, 14].

Let V(�) = �P2T(�)K0vP be a vector space overK0 with the standard basisfvP jP 2 T(�)g.
For a generatorsi of An(K0), we define a linear map��(si) on V(�) giving the

matrix Mi with respect to the basisfvP j P 2 T(�)g. Namely, for a tableauxP =
(�(0);�(1); : : : ;�(n)) of T(�), define ��(si)(vP ) =

PQ2T(�)(Mi)QP vQ. Let Q = (�0(0);�0(1); : : : ;�0(n)). If there is ani0 2 f1;2; : : : ; n � 1g n fig such that�(i0) 6= �0(i0), then
we put

(Mi)QP = 0:
In the following, we consider the case that�(i0) = �0(i0) for i0 2 f1;2; : : : ; n� 1g n fig.

CASE 1. First, we assume that�(i�1) and �(i+1) of the tableauP coincide with
each other except on thej -th and the (j + 1)-st boards. In this case,�(i) is obtained
from �(i�1) by moving a box in the Young diagram on thej -th board to the Young
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diagram on the (j + 1)-st board and�(i+1) is obtained from�(i) by moving another
box in the Young diagram on thej -th board to the Young diagram on the (j + 1)-st
board. Denote the Young diagram on thej -th board of�(i�1) (resp. �(i), �(i+1)) by�(i�1) (resp.�(i), �(i+1)) and denote the Young diagram on the (j +1)-st board of�(i�1)

(resp.�(i), �(i+1)) by � (i�1) (resp. � (i), � (i+1)). Let � ⊳ � or � ⊲ � denote that� is
obtained from� by removing one box. Recall that if� ⊳ � ⊳ � then we can de-
fine theaxial distanced = d(�; �; �). Namely, if � differs from � in its r0-th row and
0-th column only, and if� differs from� in its r1-th row and
1-th column only, thend = d(�; �; �) is defined by

(2) d = d(�; �; �) = (
1 � r1)� (
0 � r0) =

(h�(r1; 
0)� 1 if r0 � r1;
1� h�(r0; 
1) if r0 < r1:

Here h�(i; j ) is the hook-lengthat (i; j ) in � and for � = (�1; �2; : : : ) the hook-lengthh�(i; j ) is defined by

h�(i; j ) = �i � j + jf�k ; �k � jgj � i + 1:
Since�(i�1) ⊲ �(i) ⊲ �(i+1), we can define the axial distanced1 = d(�(i+1); �(i); �(i�1)).
Similarly, since� (i�1) ⊳ � (i) ⊳ � (i+1), we can define the axial distanced2 = d(� (i�1);� (i); � (i+1)). If jd1j � 2 (resp.jd2j � 2), then there is a unique Young diagram�0 6= �(i)
(resp. � 0 6= � (i)) which satisfies�(i�1) ⊲ �0 ⊲ �(i+1) (resp. � (i�1) ⊳ � 0 ⊳ � (i+1)). LetQ1;Q2;Q3 be tableaux of shape� which are obtained fromP by replacing (�(i); � (i))
on thej -th and the (j + 1)-st board of�(i) with (�(i); � 0), (�0; � (i)), (�0; � 0) respectively.
For the basis elements given by the above tableaux, we define the linear map��(si)
by the following matrix:

��(si) : (vP ; vQ1; vQ2; vQ3) 7! (vP ; vQ1; vQ2; vQ3)Mi;
where

Mi =

0
BBBBBBBBBBBBBBBBB�

1d1d2

1d1

sd2
2 � 1d2

2

sd2
1 � 1d2

1

1d2

sd2
1 � 1d2

1

sd2
2 � 1d2

2

1d1

sd2
2 � 1d2

2

� 1d1d2

sd2
1 � 1d2

1

sd2
2 � 1d2

2

�
sd2

1 � 1d2
1

1d2sd2
1 � 1d2

1

1d2

sd2
1 � 1d2

1

sd2
2 � 1d2

2

� 1d1d2
� 1d1

sd2
2 � 1d2

2sd2
1 � 1d2

1

sd2
2 � 1d2

2

�
sd2

1 � 1d2
1

1d2
� 1d1

sd2
2 � 1d2

2

1d1d2

1
CCCCCCCCCCCCCCCCCA

:
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If we put

(3) ad =
1d and bd =

q
1� a2d ;

thenMi is written as follows:

(4) Mi =

� ad1 bd1bd1 �ad1

�
 � ad2 bd2bd2 �ad2

� :
Even if jd1j = 1 (resp. jd2j = 1), we still adopt the matrix (4) sincebd1 = 0
(resp.bd2 = 0).

CASE 2. Next, we consider the case that�(i+1) is obtained from�(i�1) by re-
moving one box from the Young diagram on thej -th board and adding the box to
the Young diagram on the (j + 2)-nd board. Let�; �; � be the Young diagrams on thej -th, the (j + 1)-st and the (j + 2)-nd boards of�(i�1) respectively and��; �; �+ the
Young diagrams on the corresponding three boards of�(i+1) respectively. Letf�+

(r) j r =
1;2; : : : ; b(�)g (resp.f��(r 0) j r 0 = 1;2; : : : ; b0(�)g) be the set of all the Young diagrams
which satisfy�+

(r) ⊲ � (resp. ��(r 0) ⊳ �) and let P1; P2; : : : ; Pb(�) (resp.Q1;Q2; : : : ;Qb0(�)) be all the tableaux which are obtained fromP by replacing the Young dia-
grams on thej -th, the (j + 1)-st and the (j + 2)-nd board of�(i) with ��; �+

(r); �
(resp.�; ��(r 0); �+). For the basis elements given by the above tableaux, we define the
linear map by the following matrix:

(5)

(Mi)Pr0 ;Pr =

vuut h(�)2

h ��+
(r 0)�h ��+

(r)� ;

(Mi)Pr ;Qr0 = (Mi)Qr0 ;Pr =

vuut h(�)2

h ���(r 0)�h ��+
(r)�

1

d ���(r 0); �; �+
(r)� ;

(Mi)Qr ;Qr0 = 0:

9>>>>>>>>>=
>>>>>>>>>;

Here h(�) is the product of all the hook-lengths in�:

h(�) =
Y

(i;j )2� h�(i; j ):

Putting

(6) H � ����
�

=

s h(�)h(�)h(�)h(�)
;
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and combining the expression (2) and (3), we can writeMi as follows:

(Mi)Pr0 ;Pr = H
 �2

�+
(r 0)�+

(r)
!
;

(Mi)Qr0 ;Pr = (Mi)Pr ;Qr0 = H
 �2

��(r 0)�+
(r)
!
ad���

(r0 );�;�+
(r)�;

(Mi)Qr ;Qr0 = 0:

9>>>>>>=
>>>>>>;

(50)

CASE 3. Finally, we consider the remaining cases. In these cases,if �(i) is ob-
tained from�(i�1) by moving one box to the next board and if�(i+1) is obtained from�(i) by moving another box to the next board in a tableauP , then exchanging thei-th
step and the (i + 1)-st step, we have another tableauQ. For the basis elements given
by the above tableaux, we define the linear map by the following matrix:

(7) (vP ; vQ) 7! (vP ; vQ)Mi = (vP ; vQ)

�
0 1
1 0

� :
1.4. Main theorem. Now we have completed the preparation, we state the fol-

lowing main result.

Theorem 1.4. Let � = [�(1); : : : ; �(n)] be an n-tuple of Young diagrams inLn(n). Let Q be the field of rational numbers andK0 = Q(
p

2;p3; : : : ;pn)
its extension.

1. Define�� as follows:

��(si)vP =
X
Q2T(�)

(Mi)QP vQ;
��(f )vP =

(vP if �(2) = [;; ;;; : : : ;;]

0 otherwise:
Then (��;V(�)) defines an absolutely irreducible representation ofAn(K0).
2. For �;�0 2 Ln(n), the irreducible representations�� and ��0 of An(K0) are equiv-
alent if and only if� = �0.
3. Conversely, for any irreducible representation� of An(K0), there exists an� 2Ln(n) such that� and �� are equivalent.

In other words, f�� j � 2 Ln(n)g make a complete set of the representatives of the
irreducible representations ofAn(K0).

Corollary 1.5. The party algebrasfAn(K0)g are absolutely semisimple, and the
Bratteli diagram of the sequencefAi(K0)gi=0;1;:::;n is given by the graph0n.
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Let �0 be anr-tuple of Young diagrams such that�0 �
1
� and

T(�0;�) =
���(0);�(1); : : : ;�(n�1)�(n)� 2 T(�)

�� �(n�1) = �0	 :
Let V(�0;�) be a subspace ofV(�) spanned byfvQ j Q 2 T(�0;�)g. SinceAn�1(K0)
is isomorphic to the subalgebraA0 = hf; s1; : : : ; sn�2i of An(K0), considering the def-
inition of �� we find that the subspaceV(�0;�) is stable under the action ofA0. Fur-
ther, applying the theorem above replacingn with n� 1, we find thatV(�0;�) affords
an irreducible representation ofAn�1(K0). In the proof of the theorem above, we will
further obtain the following restriction rule.

Corollary 1.6. For � 2 Ln(n), the branching rule of the restriction of irreducible
representation ofAn(K0) to the subalgebraA0 = An(K0) is given as follows:

V(�) =
M
�0p�1�

V(�0p;�) as An�1(K0)-modules:

2. Preliminary results for the axial distances and the hook-lengths

To prove the main theorem, our main task is to show the well-definedness of the
representationsf��g. Since��(si) is defined by the matrixMi in the theorem and the
entries ofMi are written in terms ofad ; bd and H (��=(��)), the task will be done
by showing the various relations among them. In this section, we show miscellaneous
relations amongad ; bd ; H (��=(��)) defined by the expressions (2), (3) and (6).

First we note that by the definition ofad and bd we immediately havea2d +b2d = 1.
Using this we obtain the following relations amongfadg and fbdg by direct calculation:

Lemma 2.1. Let d0; d1; d2 be non-zero integers such thatd0 = d1 + d2. Then we
have the following.
1. �ad1ad2 + ad0ad1 + ad2ad0 = 0,
2. ad1a2d2

+ ad0b2d2
= ad2a2d1

+ ad0b2d1
.

Let f�+
(r)gr=1;:::;b(�) (resp. f��(r 0)gr 0=1;:::;b0(�)) be the set of all the Young diagrams

which satisfy�+
(r) ⊲ � (resp. ��(r 0) ⊳ �). If � and � are a pair of Young diagrams

such that� ⊲ �, then we havef�+
(r)g 3 � and f��(r 0)g 3 �.

In the following, we assume that�+
(1) = � and ��(1) = �.

For s = 2; : : : ; b(�), we put�(s) = �+
(1)[�+

(s) = �[�+
(s). Further, let�(r) = �+

(r)n(�n�).
If �(r) is a Young diagram, then there exists an indexs such that�(r) = �+

(s). More
precisely, we have the following:
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Lemma 2.2. Let ferg be axial distances defined byer = d��; �; �+
(r)�. Then

we have

���+
(r); �(r)� �� ber 6= 0; r = 1; : : : ; b(�)

	
=
���(s); �+

(s)� �� s = 2; : : : ; b(�)
	:

In other words, there exists a bijection� from the setfs j s = 2; : : : ; b(�)g to the set�r �� r = 1; : : : ; b(�); ber 6= 0
	

such that
��+

(� (s)); �(� (s))� =
��(s); �+

(s)�.
Similarly, for r 0 = 2; : : : ; b0(�), we put �(r 0) = ��(1) \ ��(r 0) = � \ ��(r 0) and �(s 0) =��(s 0) [ (� n �). Then we have the following:

Lemma 2.3. Let fds 0g be axial distances defined byds 0 = d���(s 0); �; ��. Then
we haven���(s 0); �(s 0)� ��� bds0 6= 0; s 0 = 1; : : : ; b0(�)

o
=
n��(r 0); ��(r 0)� ��� r 0 = 2; : : : ; b0(�)

o :
In other words, there exists a bijection� from the setfr 0 j r 0 = 2; : : : ; b0(�)g to the setfs 0 j s 0 = 1; : : : ; b0(�); bds0 6= 0g such that

���(� (r 0)); �(� (r 0))� =
��(r 0); ��(r 0)�.

We have also the following relations amongfbdg and fH g:
Lemma 2.4. Let �; �; � be Young diagrams such that� ⊳ � ⊳ � and d =d(�; �; �) their axial distance. If d 6= �1, then there exists a Young diagram�0 such

that � ⊳ �0 ⊳ � which differs from�. Further in this case, we have the following:

bd = H � ����0
� :

Let 3 be the set of all the Young diagrams of any size. Consider the vector spaceK03 whose natural basis is indexed by the setf[�] j � 2 3g. Combining the result of
the previous three lemmas, we have the following:�ber ��+

(r)� = H ���+
(r)��(r)
� ��+

(r)�
���� ber 6= 0; r = 1; : : : ; b(�)

�

=

(
be� (s) ��(s)� = H

 ��(s)��+
(s)
! ��(s)�

����� s = 2; : : : ; b(�)

)
;(8)

(
bds0 h��(s 0)i = H

 ��(s 0)���(s 0)
!h��(s 0)i

����� bds0 6= 0; s 0 = 1; : : : ; b0(�)

)

=

(
bd� (r0 ) ��(r 0)� = H

 �(r 0)����(r 0)
! ��(r 0)�

����� r 0 = 2; : : : ; b0(�)

)
:

(9)
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Similarly, let K0(3 � 3) be the vector space whose natural basis is indexed by
the set �� ��

�
= (�;�)

���� �;� 2 3
� :

Then we have the following:�ber
� �+

(r)�(r)
�

= H ���+
(r)��(r)
�� �+

(r)�(r)
� ���� ber 6= 0; r = 1; : : : ; b(�)

�

=

(
be� (s)

� �(s)�+
(s)
�

= H
 ��(s)��+

(s)
!� �(s)�+

(s)
� ����� s = 2; : : : ; b(�)

)
;

(10)

(
bds0

� �(s 0)��(s 0)
�

= H
 ��(s 0)���(s 0)

!� �(s 0)��(s 0)
� ����� bds0 6= 0; s 0 = 1; : : : ; b0(�)

)

=

(
bd� (r0)

� ��(r 0)�(r 0)
�

= H
 �(r 0)����(r 0)

!� ��(r 0)�(r 0)
� ����� r 0 = 2; : : : ; b0(�)

)
:

(11)

Under the notation in Lemma 2.2, 2.3, in case�(r) is a Young diagram, we have

er = d ��; �; �+
(r)� = �d ��; �(r); �+

(r)� :
By Lemma 2.2, ifer 6= �1, this is also equal to the following:

(12) er = e� (s) = d ��; �; �(s)� = �d ��;�+
(s); �(s)� (s � 2):

Similarly, in case�(s 0) is a Young diagram, we have

ds 0 = d ���(s 0); �; �� = �d ���(s 0); �(s 0); �� :
By Lemma 2.3, ifds 0 6= �1, this is also equal to the following:

(13) ds 0 = d� (r 0) = d��(r 0); �; �� = �d ��(r 0); ��(r 0); �� (r 0 � 2):
On the other hand, in case�(1) is a Young diagram, put

(14) �(1) = �0 and e0r = d ��0; �; �+
(r)� :

If �(r) is a Young diagram, then we have

e0r = d ��0; �; �+
(r)� = d ���(1); �; �(r)� :

Further if e0r 6= �1, then we have

(15) e0r = e0� (s) = d ��0; �; �(s)� = d ���(1); �; �+
(s)� (s � 2):
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In cases = 1, we have

(16) e0� (1) = d1 = d ���(1); �; �� :
Similarly, in case�(1) is a Young diagram, put

(17) �(1) = �0 and d 0s 0 = d ���(s 0); �; �0� :
If �(s 0) is a Young diagram, then we have

d 0s 0 = d ���(s 0); �; �0� = d ��(s 0); �; �+
(1)

�
and

d 0s 0 = d 0� (r 0) = d ��(r 0); �; �0� = d ���(r 0); �; �+
(1)

�
(r 0 � 2);(18)

d 0� (1) = e1 = d ��; �; �+
(1)

� :(19)

Finally, we put

ds 0;s = d ���(s 0); �; �+
(s)� ;(20)

er 0;r = d ���(r 0); �; �+
(r)� :(21)

Using the notation above we finally obtain the following relations amongfadg
and fh(�)g:

Lemma 2.5. 1.
Pb(�)r=1 h(�)

Æ h��+
(r)� = 1,

2.
Pb(�)r=1

�h(�)
Æ h��+

(r)��aer = 0,

3.
Pb(�)r=1

�h(�)
Æ h��+

(r)��aeraer0 ;r =

(h(�)=h(�) (r 0 = 1);
0 (r 0 6= 1);

4.
Pb(�)s 0=1

�h(�)
Æ h���(s 0)��ads0 ads0 ;s =

(h(�)=h(�)� 1 (s 0 = 1);
�1 (s 0 6= 1);

5. h(�)3Pb0(�)s 0=1 a3ds0 Æ h���(s 0)� = h(�)3Pb(�)r=1 a3er Æ h��+
(r)�.

Proof. The above relations are proved by specializing the parameterq to 1 in the
equations of Theorem 0.1–0.2 in the paper [7].

3. Well-definedness of the representations

In this section, we show thatf��g in the main theorem preserve the defining rela-
tions of the party algebra. First in Section 3.1 we check thatf��g preserve the braid
relation (P2) in Definition 1.1. Actually, this is the main part of the paper. Next in
Section 3.2, we check that they also preserve the other relations.
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3.1. Preservation of the braid relation. Let P = (�(0); : : : ;�(n)) be a tableau
of shape�. As we defined in Section 1.3 and Section 1.4, the linear map��(si) is
defined by the matrixMi and it is defined by the way how�(i+1) is obtained from�(i�1) (see the expressions (4), (5) and (7)). Suppose that�(i) (resp.�(i+1), �(i+2)) is
obtained from�(i�1) (resp.�(i), �(i+1)) by moving a box on thej0-th (resp.j1-th, j2-th)
board of�(i�1) (resp.�(i), �(i+1)) to the (j0 + 1)-st (resp. (j1 + 1)-st, (j2 + 1)-st) board.
Then to know the actions ofsi and si+1, it will be sufficient to know that how they
alter the following matrix whose entries are Young diagrams:

(22)
��(i 0)(j )

�
i�1�i 0�i+2; j=j0;j0+1;j1;j1+1;j2;j2+1

:
Since column indices of the matrix above do not necessarily distinct depending on the
differences amongj0; j1 and j2, we have to consider Table 1.

In Table 1, if we replace (j0; j0 + 1; j1; j1 + 1; j2; j2 + 1) with the reverse (j2 + 1;j2; j1 + 1; j1; j0 + 1; j0), then we find Case 3.1 (resp. Case 3.2) turns Case 3.3
(resp. Case 3.4). This meanssisi+1si-action on vP in Case 3.3 (resp. Case 3.4)

Table 1. Classification by differences amongj0, j1 and j2

Case 1 jj0 � j1j � 2; jj1 � j2j � 2; jj2 � j0j � 2
Case 2 j0 = j1 = j2

Case 3.1 (Case 3.3) jj1 � j2j � 2; jj2 � j0j � 2; j1 = j0 + 1
Case 3.2 (Case 3.4) jj1 � j2j � 2; jj2 � j0j � 2; j0 = j1 + 1
(Case 3.3) jj2 � j0j � 2; jj0 � j1j � 2; j2 = j1 + 1
(Case 3.4) jj2 � j0j � 2; jj0 � j1j � 2; j1 = j2 + 1
Case 3.5 jj0 � j1j � 2; jj1 � j2j � 2; j0 = j2 + 1
Case 3.6 jj0 � j1j � 2; jj1 � j2j � 2; j2 = j0 + 1
Case 4.1 (Case 4.2) j0 = j1; jj2 � j0j = jj1 � j2j � 2
(Case 4.2) j1 = j2; jj0 � j1j = jj2 � j0j � 2
Case 4.3 j2 = j0; jj1 � j2j = jj0 � j1j � 2
Case 5.1 j1 = j0 + 1; j2 = j1 + 1
Case 5.2 (Case 5.3) j2 = j0 + 1; j1 = j2 + 1
(Case 5.3) j0 = j1 + 1; j2 = j0 + 1
Case 5.4 (Case 5.5) j2 = j1 + 1; j0 = j2 + 1
(Case 5.5) j0 = j2 + 1; j1 = j0 + 1
Case 5.6 j1 = j2 + 1; j0 = j1 + 1
Case 6.1 (Case 6.4) j2 = j1 = j0 + 1
Case 6.2 (Case 6.5) j1 = j0 = j2 + 1
Case 6.3 (Case 6.6) j0 = j2 = j1 + 1
(Case 6.4) j0 = j1; j2 = j0 + 1 = j1 + 1
(Case 6.5) j1 = j2; j0 = j1 + 1 = j2 + 1
(Case 6.6) j2 = j0; j1 = j2 + 1 = j0 + 1
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j0-th board

i + 2 �� = �(i+2)(j0)
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H
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i � 1 � = �(i�1)(j0)

(j0 + 1)-st board
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�(1) �(2) �(3)

�
�

�
�

�
�

H
H

H
H

H
H�(1) �(2) �(3)

�� = �(i�1)(j0 + 1)

Fig. 5. Case 2 Hasse diagrams of Young diagrams onj0-th and (j0 + 1)-st board

is obtained fromsi+1sisi+1-action onvP in Case 3.1 (resp. Case 3.2) by changing in-
dices of tableaux and vice versa. Similarly, the conditionsCase 4.2, 5.3, 5.5, 6.4, 6.5,
and Case 6.6 are obtained from the conditions Case 4.1, 5.2, 5.4, 6.1, 6.2 and
Case 6.3, respectively. Hence, we have only to consider Case1, 2, 3.1, 3.2, 3.5, 3.6,
4.1, 4.3, 5.1, 5.2, 5.4, 5.6 and Case 6.1–6.3.

In the following, to simplify the notation, we write merelysivP instead of��(si)(vP ). Further, for a Young diagram�, we use the notation�� (resp.�+) to de-
note a Young diagram which is obtained from� by removing (resp. adding) a box
from (resp. to)�.

CASE 1. First we consider Case 1, the most general case. In this case, column
indicesj0; j0 + 1; j1; j1 + 1; j2 and j2 + 1 of the matrix (22) are all distinct each other.
Since in this case, the actions ofsi and si+1 are both presented by the matrix (7), they
merely exchange the entries of the matrix (22). By direct calculation, we can check
that sisi+1sivP = si+1sisi+1vP in this case.

CASE 2. Next we consider Case 2. The assumptionj0 = j1 = j2 means that on
the way from�(i�1) to �(i+2) of P , three boxes of� = �(i�1)(j0) are removed and
they are attached to�� = �(i�1)(j0 + 1) one by one. Let Fig. 5 be Hasse diagrams
which respectively describe how Young diagrams on thej0-th and the (j0+1)-st boards
of P would transform themselves (Some of the Young diagrams may be virtual ones.
However, we do not have to care about that, since the associate coefficients would be
zero). Let

� �(r)�(q)

�
 � �(s)�(t)
�
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be the vector which corresponds to a tableau obtained fromP by replacing Young di-
agrams on thej0-th and the (j0 + 1)-st boards of�(i) (resp.�(i+1)) with �(r) and �(s)
(resp.�(q) and �(t)). For this vector,si gives the following matrix;

� ae(q;r) be(q;r)be(q;r) a�e(q;r)
�
 � ad(s;t) bd(s;t)bd(s;t) a�d(s;t)

� ;
and si+1 gives the following matrix;

� ae0(q;r) be0(q;r)be0(q;r) a�e0(q;r)
�
 � ad 0(s;t) bd 0(s;t)bd 0(s;t) a�d 0(s;t)

� :
Here e(q; r) = d(�(q); �(r); �), d(s; t) = d(��; �(s); �(t)), e0(q; r) = d(��; �(q); �(r)) andd 0(s; t) = d(�(s); �(t); � ). Hence, using a result of the paper [14], we can easily check
that in this casesisi+1sivP = si+1sisi+1vP holds.

CASE 3. We consider mainly Case 3.1 (Case 3.3). For the explanation below,
see Table 2.

Put (�(i�1)(j0); �(i�1)(j1); �(i�1)(j1 + 1)) = (�; �; ��). If �(i�1)(j1) 6= �(i+1)(j1) in
the tableauP , then si and si+1 both give linear transformations defined by the ma-
trix of type (7) and we can apply Case 1. Hence we have only to consider the case�(i�1)(j1) = �(i+1)(j1), namely, we assume the following:
1) One box in � on the j0-th board is removed and it is attached to� on thej1-th board.
2) Then the attached box on thej1-th board is again removed and it is attached to�� on the (j1 + 1)-st board.
We keep our eyes on thei-th and the (i + 1)-st coordinates of Table 2. Let

(23)

� �(j0) �(j1) �(j1 + 1) �(j2) �(j2 + 1)�(j0) �(j1) �(j1 + 1) �(j2) �(j2 + 1)

�

be a vector which corresponds to a tableau obtained fromP by replacing Young dia-
grams on thej0-th, j1-th, (j1 + 1)-st, j2-th and (j2 + 1)-st boards of thei-th (resp. (i +
1)-st) coordinate with�(j0); �(j1); �(j1 + 1); �(j2); �(j2 + 1) (resp.�(j0); �(j1); �(j1 +
1); �(j2); �(j2 + 1)). By the definition of tableaux, we find that all the entries of the

Table 2. Case 3.1 (Case 3.3)jj1 � j2j � 2, jj2 � j0j � 2, j1 = j0 + 1

coordinate boardj0 j1 j1 + 1 j2 j2 + 1i � 1 � � �� 
(1) 
�(2)i �� �+
(1) �� 
(1) 
�(2)i + 1 �� � � 
(1) 
�(2)i + 2 �� � � 
�(1) 
(2)
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matrix (23) will be recovered from the entries of the second column. Hence instead of
using the matrix (23) we merely write

� �(j1)�(j1)

� :
Let

��+
(r) �� r = 1; : : : ; b(�)

	
be the set of Young diagrams such that�+

(r) ⊲ � and���(r 0) �� r 0 = 1; : : : ; b0(�)
	

the set of Young diagrams such that��(r 0) ⊳ �. Let

vP =

� �+
(1)�
�

be the vector indexed by the tableauP . Then by definition (50) and (7) and using no-
tation (21), we can check that bothsisi+1sivP and si+1sisi+1vP are equal to the
following:

b(�)X
r=1

H
 �2

�+
(r)�+

(1)

!� ��+
(r)
�

+
b0(�)X
r 0=1

H
 �2

��(r 0)�+
(1)

!
aer0 ;1

� ���(r 0)
� :

As for Case 3.2 (3.4), 3.5, and Case 3.6, using Table 3, 4 and Table 5 respectively
we can more easily check thatsisi+1sivP = si+1sisi+1vP .

Table 3. Case 3.2 (Case 3.4)jj1�j2j � 2,jj2 � j0j � 2, j0 = j1 + 1

coordinate boardj1 j0 j0 + 1 j2 j2 + 1i � 1 � � �� 
(1) 
�(2)i � ��(1) � 
(1) 
�(2)i + 1 �� � � 
�(1) 
(2)i + 2 �� � � 
�(1) 
(2)

Table 4. Case 3.5jj0�j1j � 2, jj1�j2j �
2, j0 = j1 + 1

coordinate boardj2 j0 j0 + 1 j1 j1 + 1i � 1 � � �� 
(1) 
�(2)i � ��(1) � 
(1) 
�(2)i + 1 � ��(1) � 
�(1) 
(2)i + 2 �� � � 
�(1) 
(2)

Table 5. Case 3.6jj0 � j1j � 2, jj1 � j2j � 2, j2 = j0 + 1

coordinate boardj0 j2 j2 + 1 j1 j1 + 1i � 1 � � �� 
(1) 
�(2)i �� �+
(1) �� 
(1) 
�(2)i + 1 �� �+
(1) �� 
�(1) 
(2)i + 2 �� � � 
�(1) 
(2)
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CASE 4. We consider mainly Case 4.1 (Case 4.2). For the explanation below,
see Table 6.

Put (�(i�1)(j0); �(i�1)(j0 + 1)) = (�; � ). The assumptionj0 = j1 means that on the
way from �(i�1) of P to �(i+1) of P , two boxes of� = �(i�1)(j0) are removed and
they are attached to� = �(i�1)(j0 + 1) one by one. Hence we can put (�(i)(j0); �(i)(j0 +
1)) = (�; �) and (�(i+1)(j0); �(i+1)(j0 + 1)) = (�; � ) using the Young diagrams such that� ⊲ � ⊲ � and � ⊳ � ⊳ � . Further, put (�(i�1)(j2); �(i�1)(j2 + 1)) = (�; 
�). The
assumptionjj2 � j0j = jj1 � j2j � 2 means that we can put (�(i)(j2); �(i)(j2 + 1)) =
(�(i+1)(j2); �(i+1)(j2 + 1)) = (�; 
�) and (�(i+2)(j2); �(i+2)(j2 + 1)) = (��; 
 ) using the
Young diagrams such that� ⊲ �� and 
� ⊳ 
 . Let

(24)

� �(j0) �(j0 + 1) �(j2) �(j2 + 1)�(j0) �(j0 + 1) �(j2) �(j2 + 1)

�

be a vector which corresponds to a tableau obtained fromP by replacing Young dia-
grams on thej0-th, (j0+1)-st, j2-th and (j2+1)-st boards of thei-th (resp. (i+1)-st) co-
ordinate of� with �(j0); �(j0+1); �(j2); �(j2+1) (resp.�(j0); �(j0+1); �(j2); �(j2+1)).
By the definition of tableaux, we find that all the entries of the matrix (24) will be
recovered from the first two columns. Hence instead of using the matrix (24) we
merely write � �(j0) �(j0 + 1)�(j0) �(j0 + 1)

� :
Let

vP =

� � �� �
�

be the vector indexed by the tableauP . Put d = d(�; �; �) and f = d(�; �; � ). Let �0
(resp.�0) be a (possibly virtual) Young diagram which satisfies� ⊲ �0 ⊲ � (resp.� ⊲�0 ⊲ � ) and�0 6= � (resp.�0 6= �). Then by definition (4) and (7), we can check that
both sisi+1sivP and si+1sisi+1vP are equal to the following:

adaf
� � �� �

�
+ adbf

� � �� �0
�

+ bdaf
� � ��0 �

�
+ bdbf

� � ��0 �0
� :

Table 6. Case 4.1 (Case 4.2)j0 = j1, jj2 � j0j = jj1 � j2j � 2

coordinate boardj0 j0 + 1 j2 j2 + 1i � 1 � � � 
�i � � � 
�i + 1 � � � 
�i + 2 � � �� 
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As for Case 4.3, using Table 7 we can check thatsisi+1sivP = si+1sisi+1vP .
CASE 5. Let

��+
(r)	 and

���(r 0)	 be the sets of Young diagrams defined in
Case 3.1. We also use the notationer 0;r as in (21). Similarly, let

�� +
(s)	 and

���(s 0)	 be
the sets of Young diagrams such that� +

(s) ⊲ � and ��(s 0) ⊳ � respectively. Further, letffs 0;1g be the set of axial distances defined byfs 0;1 = d���(s 0); � ; � +
(1)

�
.

First we consider Case 5.1. For the explanation below, see Table 8.
Put

��(i�1)(j0); �(i�1)(j1); �(i�1)(j2); �(i�1)(j2)
�

= (�; �; � ; ��):
As we saw in Case 3.1, under the assumptionj1 = j0 + 1, if �(i�1)(j1) 6= �(i+1)(j1),
then we can attribute this case to one of the previous ones. Hence we may assume�(i�1)(j1) = �(i+1)(j1). The same things also hold for�(i)(j2) and �(i+2)(j2). Hence we
may further assume that�(i)(j2) = �(i+2)(j2). In other words, we have only to consider
a tableauP of the form presented by the data in Table 8. As we saw in the previous
cases, we keep our eyes on thei-th and the (i + 1)-st coordinates of Table 8. Let

(25)

� �(j0) �(j1) �(j2) �(j2 + 1)�(j0) �(j1) �(j2) �(j2 + 1)

�

be a vector which corresponds to a tableau obtained fromP by replacing Young di-
agrams on thej0-th, j1-th, j2-th and (j2 + 1)-st board of thei-th (resp. (i + 1)-st)
coordinate with�(j0); �(j1); �(j2); �(j2 + 1) (resp.�(j0); �(j1); �(j2); �(j2 + 1)). By
the definition of tableaux, we find that all the entries of the matrix (25) will be re-
covered from the entries of the second and the third columns.Hence instead of using

Table 7. Case 4.3j2 = j0, jj1 � j2j = jj0 � j1j � 2

coordinate boardj0 j0 + 1 j1 j1 + 1i � 1 � � � 
�i � � � 
�i + 1 � � �� 
i + 2 � � �� 

Table 8. Case 5.1j1 = j0 + 1, j2 = j1 + 1

coordinate boardj0 j1 j2 j2 + 1i � 1 � � � ��i �� �+
(1) � ��i + 1 �� � � +

(1) ��i + 2 �� � � �
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the matrix (25) we merely write

� �(j1) �(j2)�(j1) �(j2)

� :
Using these notation, we write

vP =

" �+
(1) �� � +

(1)

#
:

Then by definition (50) and (7) we find thatsisi+1sivP is equal to the following:

b(� )X
s=1

b(�)X
q=1

H
 �2

�+
(q)�+

(1)

!
H
 � 2

� +
(s)� +

(1)

!" �+
(q) �� � +

(s)
#

+
b(�)X
r=1

b0(� )X
s 0=1

H
 �2

�+
(r)�+

(1)

!
H
 � 2

��(s 0)� +
(1)

!
afs0;1

" � ��(s 0)�+
(r) ��(s 0)

#

+
b0(�)X
r 0=1

b(� )X
s=1

H
 �2

��(r 0)�+
(1)

!
H
 � 2

� +
(1)� +

(s)
!
aer0 ;1

" ��(r 0) � +
(s)��(r 0) �
#

+
b0(�)X
r 0=1

b0(� )X
s 0=1

H
 �2

��(r 0)�+
(1)

!
H
 � 2

��(s 0)� +
(1)

!
aer0 ;1afs0;1

" � ��(s 0)��(r 0) �
#
:

Here we used Lemma 2.5 1, 2 to obtain the first line of the equation above. In this
equation, if we exchange� and � , exchange the first and the second columns of ma-
trices, and exchange the first and the second rows of the matrices, then we have the
same equation. This meanssi+1sisi+1-action andsisi+1si-action onvP coincide.

Next, we consider Case 5.2 (Case 5.3). According to Table 9, we put

vP =

" �+
(1) ��+
(1) ��(1)

#
:

Table 9. Case 5.2 (Case 5.3)j2 = j0 + 1, j1 = j2 + 1

coordinate boardj0 j2 j1 j1 + 1i � 1 � � � ��i �� �+
(1) � ��i + 1 �� �+
(1) ��(1) �i + 2 �� � � �
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Then by definition (50) and (7) we find thatsi+1sisi+1vP is equal to the following:

b(�)X
r=1

H
 �2

�+
(r)�+

(1)

!" �+
(r) ��+
(r) ��(1)

#

+
b(� )X
s=1

b0(�)X
r 0=1

H
 � 2

��(1)� +
(s)
!
af1;sH

 �2

��(r 0)�+
(1)

!
aer0;1

" ��(r 0) � +
(s)��(r 0) �
#
:

Here we applied Lemma 2.5 2, 3 to obtain the first line of the equation above. By
direct calculation, we find thatsisi+1si+1vP coincides with this equation.

As for Case 5.4 (5.5) and Case 5.6, using Table 10 and Table 11 respectively, we
can more easily check thatsisi+1sivP = si+1sisi+1vP .

CASE 6. Throughout Case 6 we adopt the notation introduced in Section 2. Fur-
ther let f be an axial distance defined byf = d(�; �; � ).

CASE 6.1. (Case 6.4.) j2 = j1 = j0 + 1.

For the explanation below, see Table 12 and Table 13. Put

��(i�1)(j0); �(i�1)(j1); �(i�1)(j1 + 1)
�

= (�+; �; � ):
The assumptionj2 = j1 = j0 + 1 means the following:

1) On the way from�(i�1) to �(i), one box of�+ = �(i�1)(j0) on the j0-th board is
removed and it is attached to� = �(i�1)(j1) on thej1-th board. We put

��(i)(j0); �(i)(j1); �(i)(j1 + 1)
�

= (�; �+
(1); � ):

2) Then on the way from�(i) to �(i+2), two boxes of�+
(1) = �(i)(j1) on thej1-th board

are moved to the next board. If the two boxes are both distinctfrom the box which
is attached at the former step, then we can attribute this case to one of the previous
cases. So we may assume that�(i+1)(j1) = � (Case 6.1.1) or�(i+1)(j1) = �0 (Case 6.1.2).
Here �0 is a Young diagram which satisfies�+

(1) ⊲ �0 ⊲ � and � 6= �0. Hence we

Table 10. Case 5.4 (Case 5.5)j2 = j1 + 1,j0 = j2 + 1

coordinate boardj1 j2 j0 j0 + 1i � 1 � � � ��i � � ��(1) �i + 1 �� �+
(1) ��(1) �i + 2 �� � � �

Table 11. Case 5.6j1 = j2 + 1, j0 = j1 + 1

coordinate boardj2 j1 j0 j0 + 1i � 1 � � � ��i � � ��(1) �i + 1 � ��(1) � �i + 2 �� � � �
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may put

��(i+1)(j0); �(i+1)(j1); �(i+1)(j1 + 1)
�

=

(
(�; �; �) (Case 6.1.1);
(�; �0; �) (Case 6.1.2);��(i+2)(j0); �(i+2)(j1); �(i+2)(j1 + 1)

�
= (�;�; � ):

Note that� ⊳ � ⊳ � and there may exist a Young diagram�0 such that� ⊳ �0 ⊳ �
and �0 6= �.

CASE 6.1.1. j2 = j1 = j0 + 1, �(i�1) = �(i+1).
For the explanation below, see Table 12. Let

(26)

� �(j0) �(j1) �(j1 + 1)�(j0) �(j1) �(j1 + 1)

�

be a vector which corresponds to a tableau obtained fromP by replacing Young dia-
grams on thej0-th, j1-th and (j1 + 1)-st boards of thei-th (resp. (i + 1)-st) coordinate
with �(j0); �(j1); �(j1+1) (resp.�(j0); �(j1); �(j1+1)). As we show below, in the pro-
cess ofsisi+1si-action or si+1sisi+1-action to vP , a set of entriesf�(j1 + 1); �(j1 + 1)g
of the matrix (26) contains� or �0. Hence under the assumption that the matrix (26)
denotes a tableau which appears in the process ofsisi+1si-action orsi+1sisi+1-action onvP , we merely write
(27)� �(j1)�(j1)

�
if f�(j1 + 1); �(j1 + 1)g 3 �; � �(j1)�(j1)

�0
if f�(j1 + 1); �(j1 + 1)g 3 � 0:

For example,

� �+
(1)�
�

=

� � �+
(1) �� � �

�
and

� �+
(1)�
�0

=

� � �+
(1) �� � �0

� :
We note that all the tableaux which appear in the following calculation are distin-
guished by the notation (27). Let

vP =

� �+
(1)�
� :

Table 12. Case 6.1.1j2 = j1 = j0 + 1, �(i�1) = �(i+1)

coordinate boardj0 j1 = j2 j1 + 1i � 1 �+ � �i � �+
(1) �i + 1 � � �i + 2 � � �



454 M. KOSUDA

be the vector indexed by a tableauP . Then we have the following:

sisi+1sivP = H
 ��+

(1)

! 
af
� ��

�
+ bf

� ��
�0!

+
b(�)X
r=1

H
 �2

�+
(r)�+

(1)

!
ber
 
af
� ��(r)

�
+ bf

� ��(r)
�0!

+ ae1

b(�)X
r=1

H
 �2

�+
(1)�+

(r)
!
aer
� �+

(r)�
�

+ ae1

b(�)X
s=2

H
 ���+

(1)�+
(s)
!� �(s)�+

(s)
�

+
b0(�)X
s 0=1

ae1H
 ���+

(1)��(s 0)
!
a2ds0

 
af
� ���(s 0)

�
+ bf

� ���(s 0)
�0!

+ ae1

b0(�)X
s 0=1

H
 ���+

(1)��(s 0)
!
ads0bds0

 
af
� �(s 0)��(s 0)

�
+ bf

� �(s 0)��(s 0)
�0!

+
b0(�)X
r 0=2

H
 �2

��(r 0)�+
(1)

!
ad 0� (r0) ��ad� (r0)�

 
af
� ��(r 0)�(r 0)

�
+ bf

� ��(r 0)�(r 0)
�0!

+
b0(�)X
r 0=2

H
 �2

��(r 0)�+
(1)

!
ad 0� (r0)bd� (r0)

 
af
� ��(r 0)

�
+ bf

� ��(r 0)
�0! :

Here we applied Lemma 2.5 2, 3 to obtain the first line of the equation above. Apply-
ing Lemma 2.2 and 2.4 to the second line, the equation (13) andLemma 2.3 to the
third line from the bottom, and the equation (9) and Lemma 2.3to the last line, we
find that this equation is equal to the following:

b(�)X
s=1

H
 ���+

(1)�+
(s)
! 

af
� ��+

(s)
�

+ bf
� ��+

(s)
�0!

+ ae1

b(�)X
r=1

H
 �2

�+
(r)�+

(1)

!
aer
� �+

(r)�
�

+ ae1

b(�)X
s=2

H
 ���+

(1)�+
(s)
!� �(s)�+

(s)
�

+
b0(�)X
s 0=1

H
 ���+

(1)��(s 0)
!�ae1a2ds0 + ad 0s0 b2ds0

� af
� ���(s 0)

�
+ bf

� ���(s 0)
�0!

+
b0(�)X
r 0=2

H
 �2

��(r 0)�+
(1)

!�ad� (r0) �ae1 � ad 0� (r0)
�� af

� ��(r 0)�(r 0)
�

+ bf
� ��(r 0)�(r 0)

�0! :
On the other hand, we have

si+1sisi+1vP = ae1

b(�)X
r=1

H
 �2

�+
(r)�+

(1)

!�aer
� �+

(r)�
�

+ ber
� �+

(r)�(r)
��

+
b(�)X
s=1

H
 ���+

(1)�+
(s)
!
a2e1

 
af
� ��+

(s)
�

+ bf
� ��+

(s)
�0!
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+
b0(�)X
s 0=1

H
 ���+

(1)��(s 0)
!
a2e1
ads0

 
af
� ���(s 0)

�
+ bf

� ���(s 0)
�0!

+ ae1

b0(�)X
r 0=2

H
 �2

��(r 0)�+
(1)

!
ad 0� (r0 )

 
af
� ��(r 0)�(r 0)

�
+ bf

� ��(r 0)�(r 0)
�0!

+ be1

b(�)X
s=1

H
 �2

�+
(s)�0

! 
af
� ��+

(s)
�

+ bf
� ��+

(s)
�0!

+ be1

b0(�)X
s 0=1

H
 �2

��(s 0)�0
!
ad 0s0

 
af
� ���(s 0)

�
+ bf

� ���(s 0)
�0! :

Now we apply the equation (10) and Lemma 2.2 to the first line, and multiply the last
two lines of the equation above by

be1H
 ��0��+

(1)

!
=

(
1 if be1 6= 0

0 if be1 = 0
:

Then this equation will be equal to the following:

ae1

b(�)X
r=1

H
 �2

�+
(r)�+

(1)

!
aer
� �+

(r)�
�

+ ae1

b(�)X
s=2

H
 ���+

(1)�+
(s)
!� �(s)�+

(s)
�

+
b(�)X
s=1

H
 ���+

(1)�+
(s)
! 

af
� ��+

(s)
�

+ bf
� ��+

(s)
�0!

+
b0(�)X
s 0=1

H
 ���+

(1)��(s 0)
!�a2e1

ads0 + b2e1
ad 0s0
� af

� ���(s 0)
�

+ bf
� ���(s 0)

�0!

+
b0(�)X
r 0=2

H
 �2

��(r 0)�+
(1)

!
ae1ad 0� (r0)

 
af
� ��(r 0)�(r 0)

�
+ bf

� ��(r 0)�(r 0)
�0! :

Applying Lemma 2.1 2, 1 to the last two lines of the equation above, we obtain the
same equation assisi+1sivP .

CASE 6.1.2. j2 = j1 = j0 + 1, �(i�1) 6= �(i+1).

Table 13. Case 6.1.2j2 = j1 = j0 + 1, �(i�1) 6= �(i+1)

coordinate boardj0 j1 = j2 j1 + 1i � 1 �+ � �i � �+
(1) �i + 1 � �0 �i + 2 � � �
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In this case we assumed� = �(i�1)(j1 + 1) and�0 = �(i+1)(j1 + 1) are distinct. So
we find e1 6= �1 or be1 6= 0. By the same method shown in Case 6.1.1, using Table 13
we can put

(28) vP =

� �+
(1)�0
� :

Then we have

(29) sivP =

� ��0
� :

Using the notation (17), we have

(30) si+1sivP =
b(�)X
s=1

H
 �2

�+
(s)�0

!� ��+
(s)
�

+
b0(�)X
s 0=1

H
 �2

��(s 0)�0
!
ad 0s0

� ���(s 0)
� :

Hence using the notation in Lemma 2.2 and 2.3, we have

sisi+1sivP =
b(�)X
r=1

H
 ���0�+

(r)
!�aer

� �+
(r)�
�

+ ber
� �+

(r)�(r)
��

+
b0(�)X
s 0=1

H
 �2

��(s 0)�0
!
ad 0s0 ads0

 
af
� ���(s 0)

�
+ bf

� ���(s 0)
�0!

+
b0(�)X
r 0=2

H
 ����(r 0)�0

!
ad 0� (r0)

 
af
� ��(r 0)�(r 0)

�
+ bf

� ��(r 0)�(r 0)
�0! :

(31)

Here we used the equation (10) and Lemma 2.2 (resp. the equations (11), (18) and
Lemma 2.3) to obtain the second (resp. bottom) line of the equation above.

On the other hand, we have

(32) si+1vP = �ae1

�af
� �+

(1)�0
�

+ bf
� �+

(1)�0
��

+ be1

�af
� �+

(1)�
�

+ bf
� �+

(1)�
�� :

Sincebe1 6= 0 in this case, using (18), (19) andbe1 = H ���+
(1)

Æ
(��0)� we have

sisi+1vP = �ae1

 
af
� ��0

�
+ bf

� ��0
�0!

+
b(�)X
r=1

H
 ���0�+

(r)
! 

af
� �+

(r)�
�

+ bf
� �+

(r)�
�0!

+
b0(�)X
r 0=1

H
 ���0��(r 0)

!
ad 0� (r0 )

 
af
� ��(r 0)�

�
+ bf

� ��(r 0)�
�0! :

(33)
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Hence we have

si+1sisi+1vP =
b0(�)X
s 0=1

H
 �2

��(s 0)�0
!��ae1ad 0s0 + ae1ads0�

 
af
� ���(s 0)

�
+ bf

� ���(s 0)
�0!

+
b(�)X
r=1

H
 ���0�+

(r)
!�aer

� �+
(r)�
�

+ ber
� �+

(r)�(r)
��

+
b0(�)X
r 0=2

H
 ����(r 0)�0

!
ad 0� (r0)

 
af
� ��(r 0)�(r 0)

�
+ bf

� ��(r 0)�(r 0)
�0! :

Since e1 + ds 0 = d 0s 0 , using Lemma 2.1 we have�ae1ad 0s0 + ae1ads0 = ad 0s0 ads0 . Comparing
the equation (31), in this case we findsisi+1sivP = si+1sisi+1vP .

CASE 6.2. (Case 6.5.) j1 = j0 = j2 + 1.
For the explanation below, see Table 14 and Table 15. Put��(i�1)(j2); �(i�1)(j0); �(i�1)(j0 + 1)

�
= (�; �; � ):

The assumptionj1 = j0 = j2 + 1 means the following.
1) On the way from�(i�1) to �(i+1), two boxes of� = �(i�1)(j0) on the j0-th board
are moved to the (j0 + 1)-st board. We put

��(i+1)(j2); �(i+1)(j0); �(i+1)(j0 + 1)
�

=
��;��(1); �� :

2) Then on the way from�(i+1) to �(i+2), one box of� = �(i+1)(j2) on thej2-th board
is attached to�(i+1)(j0) = ��(1) on thej0-th board. We put��(i+2)(j2); �(i+2)(j0); �(i+2)(j0 + 1)

�
= (��; �; � ):

Similarly as in Case 6.1, we have only to consider the case� ⊲ �(i)(j0) ⊲ ��(1).
Namely, if we put�0 = ��(1) [ (� n �), the following cases should be considered:

��(i)(j2); �(i)(j0); �(i)(j0 + 1)
�

=

(
(�;�0; �) Case 6.2.1;
(�;�; �) Case 6.2.2:

CASE 6.2.1. j1 = j0 = j2 + 1, �(i)(j0) 6= �(i+2)(j0).

Table 14. Case 6.2.1j1 = j0 = j2 + 1, �(i)(j0) 6= �(i+2)(j0)

coordinate boardj2 j0 = j1 j0 + 1i � 1 � � �i � �0 �i + 1 � ��(1) �i + 2 �� � �
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Since � 6= �0 we haved1 6= �1 and bd1 6= 0. By the same method shown in
Case 6.1.1, using Table 14 we can put

(34) vP =

� �0��(1)

� :
Then we have

(35) sivP = �ad1

 
af
� �0��(1)

�
+ bf

� �0��(1)

�0!
+ bd1

 
af
� ���(1)

�
+ bf

� ���(1)

�0! :
Sincebd1 6= 0, using the notation (15), (16) andbd1 = H ���(1)� Æ (��0)� we have

si+1sivP = �ad1

 
af
� �0�

�
+ bf

� �0�
�0!

+
b(�)X
s=1

H
 ���0�+

(s)
!
ae0� (s)

 
af
� ��+

(s)
�

+ bf
� ��+

(s)
�0! :

(36)

Hence using the notation (14), we obtain

sisi+1sivP =
b(�)X
r=1

H
 �2

�+
(r)�0

! ��ad1ae0r + ad1aer �
 
af
� �+

(r)�
�

+ bf
� �+

(r)�
�0!

+
b(�)X
s=2

H
 ���0�+

(s)
!
ae0� (s)

 
af
� �(s)�+

(s)
�

+ bf
� �(s)�+

(s)
�0! :

On the other hand we have

(37) si+1vP =

� �0�
� :

Hence we have

si+1sisi+1vP =
b(�)X
r=1

H
 �2

�0�+
(r)
!
ae0raer

 
af
� �+

(r)�
�

+ bf
� �+

(r)�
�0!

+
b(�)X
s=2

H
 ���0�+

(s)
!
ae0� (s)

 
af
� �(s)�+

(s)
�

+ bf
� �(s)�+

(s)
�0! :

(38)

Here we used the equations (10), (15) and Lemma 2.2 to obtain the second line of the
equation above. Sinced1 + er = e0r , we have�ad1ae0r + ad1aer = ae0raer by Lemma 2.1.
Hence in this case we obtainsisi+1sivP = si+1sisi+1vP .
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CASE 6.2.2. j1 = j0 = j2 + 1, �(i)(j0) = �(i+2)(j0).
By the same method shown in Case 6.1.1, using Table 15 we can put

vP =

� ���(1)

� :
Then using the notation (15) and (16), we have

si+1sivP = ad1

b(�)X
s=1

H
 �2

��(1)�+
(s)
!
ae0� (s)

 
af
� ��+

(s)
�

+ bf
� ��+

(s)
�0!

+ bd1

 
af
� �0�

�
+ bf

� �0�
�0! :

By Lemma 2.4 we haveb2d1
= bd1H ���0 Æ ���(1)���. Using this, we find that

sisi+1sivP =
b(�)X
r=1

H
 ����(1)�+

(r)
!

(aera2d1
+ ae0rb2d1

)

 
af
� �+

(r)�
�

+ bf
� �+

(r)�
�0!

+
b(�)X
s=2

H
 �2

��(1)�+
(s)
!
ad1ae0� (s)

 
af
� �(s)�+

(s)
�

+ bf
� �(s)�+

(s)
�0! :

On the other hand we have

si+1sisi+1vP =
b(�)X
r=1

H
 ����(1)�+

(r)
!
ad1a2er

 
af
� �+

(r)�
�

+ bf
� �+

(r)�
�0!

+
b(�)X
r=1

H
 ����(1)�+

(r)
!
ad1aerber

 
af
� �+

(r)�(r)
�

+ bf
� �+

(r)�(r)
�0!

+
b(�)X
s=2

H
 �2

��(1)�+
(s)
!
ae0� (s) (�ae� (s) )

 
af
� �(s)�+

(s)
�

+ bf
� �(s)�+

(s)
�0!

+
b(�)X
s=2

H
 �2

��(1)�+
(s)
!
ae0� (s)be� (s)

 
af
� �(s)�

�
+ bf

� �(s)�
�0! :

Table 15. Case 6.2.2j1 = j0 = j2 + 1, �(i)(j0) = �(i+2)(j0)

coordinate boardj2 j0 = j1 j0 + 1i � 1 � � �i � � �i + 1 � ��(1) �i + 2 �� � �



460 M. KOSUDA

Applying the equations (10), (12) (resp. the equations (15), (8) and Lemma 2.2) to the
second (resp. bottom) line of the equation above, we obtain

si+1sisi+1vP =
b(�)X
r=1

H
 ����(1)�+

(r)
! �ad1a2er + ae0rb2er �

 
af
� �+

(r)�
�

+ bf
� �+

(r)�
�0!

+
b(�)X
s=2

H
 �2

��(1)�+
(s)
!�ad1ae� (s) � ae0� (s)ae� (s)�

 
af
� �(s)�+

(s)
�

+ bf
� �(s)�+

(s)
�0! :

Since d1 + er = e0r and d1 + e� (s) = e0� (s), using Lemma 2.1 2, 1 respectively we findsisi+1sivP = si+1sisi+1vP in this case.

CASE 6.3. (Case 6.6.) j0 = j2 = j1 + 1.

For the explanation below, see Table 16, 17 and 18. Put

��(i�1)(j1); �(i�1)(j0); �(i�1)(j0 + 1)
�

= (�; �; � ):
The assumptionj0 = j2 = j1 + 1 means the following:

1) On the way from�(i�1) to �(i), one box of� = �(i�1)(j0) on the j0-th board is
removed and it is attached to� = �(i�1)(j1) on thej1-th board. We put�(i)(j0 + 1) = �.
2) Then on the way from�(i) to �(i+1), one box of� = �(i)(j1) on thej1-th board is
removed and it is attached to�(i)(j0) on thej0-th board. We put�(i+1)(j1) = ��.
3) Then on the way from�(i+1) to �(i+2), one box of�(i+1)(j0) on thej0-th board are
moved to the next board. We put

��(i+2)(j1); �(i+2)(j0); �(i+2)(j0 + 1)
�

= (��; �; � ):
As well as the Case 6.1, we find that the only following cases should be considered:

��(i)(j0); �(i+1)(j0)
�

=

8>><
>>:

(�0; �) (Case 6.3.1);
(�; �0) (Case 6.3.2);
(�; �) (Case 6.3.3).

Here �0 and �0 are Young diagrams such that� ⊲ �0, � ⊳ �0, �0 6= � and �0 6= �.
Note also that in these cases� ⊲ �.

CASE 6.3.1. j0 = j2 = j1 + 1, �(i+1)(j0) = �i�1(j0), �(i+2)(j0) 6= �(i)(j0).

By the same method shown in Case 6.1.1, using Table 16 we can put

(39) vP =

� �0�
� :
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Using the calculation (37), and (38) in Case 6.2.1, in this case we have

si+1sivP =
b(�)X
r=1

H
 �2

�0�+
(r)
!
aerae0r

 
af
� �+

(r)�
�

+ bf
� �+

(r)�
�0!

+
b(�)X
s=2

H
 ���0�+

(s)
!
ae0� (s)

 
af
� �(s)�+

(s)
�

+ bf
� �(s)�+

(s)
�0! :

(40)

Hence we have

sisi+1sivP =
b(�)X
q=1

H
 �2

�0�+
(q)

! b(�)X
r=1

h(�)h(�+
(r))aerae0r

! 
af
� �+

(q)�
�

+ bf
� �+

(q)�
�0!

+
b0(�)X
q 0=1

H
 �2

�0��(q 0)
! b(�)X

r=1

h(�)h(�+
(r))aerae0raeq0 ;r

! 
af
� ��(q 0)�

�
+ bf

� ��(q 0)�
�0!

+
b(�)X
s=2

H
 ���0�+

(s)
!
ae0� (s)

 
af
� ��+

(s)
�

+ bf
� ��+

(s)
�0!

(41)

The first line of the equation (41) should be 0 by Lemma 2.5 3. Asfor the second
line, sinced1 + er = e0r , we haveaerae0r = ad1(aer � ae0r ) by Lemma 2.1. Hence as well
as the first line, using Lemma 2.5 3 we have

b(�)X
r=1

h(�)h(�+
(r))aerae0raeq0;r = ad1

b(�)X
r=1

h(�)h(�+
(r)) (aeraeq0;r � ae0raeq0 ;r )

=

8>>>>><
>>>>>:

ad1

h(�)h(�)
if q 0 = 1 so��(q 0) = �;

�ad1

h(�0)h(�)
if ��(q 0) = �0;

0 otherwise:
Table 16. Case 6.3.1j0 = j2 = j1 + 1, �(i+1)(j0) = �(i�1)(j0), �(i+2)(j0) 6= �(i)(j0).

coordinate boardj1 j0 = j2 j0 + 1i � 1 � � �i � �0 �i + 1 �� � �i + 2 �� � �
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Hence we obtain

sisi+1sivP = H � ��0
� ad1

 
af
� ��

�
+ bf

� ��
�0!� ad1

 
af
� �0�

�
+ bf

� �0�
�0!

+
b(�)X
s=2

H
 ���0�+

(s)
!
ae0� (s)

 
af
� ��+

(s)
�

+ bf
� ��+

(s)
�0! :

On the other hand, since we have

si+1vP =

� �0��(1)

� ;
using the calculation (34), (35) and (36) in Case 6.2.1 we have

si+1sisi+1vP = �ad1

 
af
� �0�

�
+ bf

� �0�
�0!

+
b(�)X
s=1

H
 ���0�+

(s)
!
ae0� (s)

 
af
� ��+

(s)
�

+ bf
� ��+

(s)
�0! :

Sincee0� (1) = d1 by (16), we find that in this casesisi+1sivP = si+1sisi+1vP .

CASE 6.3.2. j0 = j2 = j1 + 1, �(i+1)(j0) 6= �(i�1)(j0), �(i+2)(j0) = �(i)(j0).

By the same method shown in Case 6.1.1, using Table 17 we can put

vP =

� ��0
� :

Since

sivP =

� �+
(1)�0
� ;

Table 17. Case 6.3.2j0 = j2 = j1 + 1, �(i+1)(j0) 6= �(i�1)(j0), �(i+2)(j0) = �(i)(j0).

coordinate boardj1 j0 = j2 j0 + 1i � 1 � � �i � � �i + 1 �� �0 �i + 2 �� � �
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using the calculation (28), (32) and (33) in Case 6.1.2 we have

sisi+1sivP = �ae1

 
af
� ��0

�
+ bf

� ��0
�0!

+
b(�)X
r=1

H
 ���0�+

(r)
! 

af
� �+

(r)�
�

+ bf
� �+

(r)�
�0!

+
b0(�)X
r 0=1

H
 ����(r 0)�0

!
ad 0� (r0 )

 
af
� ��(r 0)�

�
+ bf

� ��(r 0)�
�0! :

On the other hand, using the calculation (29), (30) and (31) in Case 6.1.2, in this
case we have

sisi+1vP =
b(�)X
r=1

H
 ���0�+

(r)
!�aer

� �+
(r)�
�

+ ber
� �+

(r)�(r)
��

+
b0(�)X
s 0=1

H
 �2

��(s 0)�0
!
ad 0s0 ads0

�af
� ���(s 0)

�
+ bf

� ���(s 0)
��

+
b0(�)X
r 0=2

H
 ����(r 0)�0

!
ad 0� (r0 )

 
af
� ��(r 0)�(r 0)

�
+ bf

� ��(r 0)�(r 0)
�0! :

Hence using the notation (20), we have

si+1sisi+1vP =
b(�)X
r=1

H
 ���0�+

(r)
! 

af
� �+

(r)�
�

+ bf
� �+

(r)�
�0!

+
b(�)X
s=1

H
 �2

�+
(s)�0

! b0(�)X
s 0=1

h(�)h(��(s 0))ad 0s0 ads0ads0 ;s
 
af
� ��+

(s)
�

+ bf
� ��+

(s)
�0!

+
b0(�)X
r 0=2

H
 ����(r 0)�0

!
ad 0� (r0)

 
af
� ��(r 0)�

�
+ bf

� ��(r 0)�
�0! :

As for the second line of the equation above, sincee1 + ds 0 = d 0s 0 , by Lemma 2.1 1 we
have the following:

�ad 0s0 ads0
� ads0 ;s =

�ae1ads0 � ae1ad 0s0
� ads0 ;s = ae1

�ads0 ads0;s � ads0 ads0;s � :
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Hence using Lemma 2.5 4, we have

b0(�)X
s 0=1

h(�)h���(s 0)�ad 0s0ads0 ads0 ;s = ae1

b0(�)X
s 0=1

h(�)h���(s 0)�
�ads0 ads0 ;s � ad 0s0 ads0 ;s

�

=

8>>>>><
>>>>>:

ae1

h(�)h(�)
if s = 1 so �+

(s) = �;
�ae1

h(�0)h(�)
if �+

(s) = �0;
0 otherwise.

Thus we obtain

si+1sisi+1vP =
b(�)X
r=1

H
 ���0�+

(r)
! 

af
� �+

(r)�
�

+ bf
� �+

(r)�
�0!

+H � ��0
� ae1

 
af
� ��

�
+ bf

� ��
�0!

� ae1

 
af
� ��0

�
+ bf

� ��0
�0!

+
b0(�)X
r 0=2

H
 ����(r 0)�0

!
ad 0� (r0)

 
af
� ��(r 0)�

�
+ bf

� ��(r 0)�
�0! :

Sinced 0� (1) = e1, in this case we obtainsisi+1sivP = si+1sisi+1vP .

CASE 6.3.3. j0 = j2 = j1 + 1, �(i+1)(j0) = �(i�1)(j0), �(i+2)(j0) = �(i)(j0).

By the same method shown in Case 6.1.1, using Table 18 we can put

vP =

� ��
� :

Table 18. Case 6.3.3j0 = j2 = j1 + 1, �(i+1)(j0) = �(i�1)(j0), �(i+2)(j0) = �(i)(j0).

coordinate boardj1 j0 = j2 j0 + 1i � 1 � � �i � � �i + 1 �� � �i + 2 �� � �
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Replacing�0 with � in the calculation (39), (40) and (41) in Case 6.3.1, we have

sisi+1sivP =
b(�)X
q=1

H
 ��+

(q)

! 
af
� �+

(q)�
�

+ bf
� �+

(q)�
�0!

+
h(�)2

h(�)

b(�)X
r=1

a3erh��+
(r)�

 
af
� ��

�
+ bf

� ��
�0!

+
b0(�)X
q 0=2

H
 �2

���(q 0)
! b(�)X

r=1

h(�)h��+
(r)�a2eraeq0;r

 
af
� ��(q 0)�

�
+ bf

� ��(q 0)�
�0!

+
b(�)X
r=1

ae� (s)H
 ��+

(s)
! 

af
� ��+

(s)
�

+ bf
� ��+

(s)
�0! :

(42)

Here we used Lemma 2.5 3 to obtain the first line of the equationabove.
On the other hand, replacing�0 with � in the calculation (29), (30) and (31) in

Case 6.1.2, we have

sisi+1vP =
b(�)X
r=1

H
 ��+

(r)
!�aer

� �+
(r)�
�

+ ber
� �+

(r)�(r)
��

+
b0(�)X
s 0=1

H
 �2

��(s 0)�
!
a2ds0

 
af
� ���(s 0)

�
+ bf

� ���(s 0)
�0!

+
b0(�)X
s 0=1

H
 ���(r 0)

!
ad� (r0)

 
af
� ��(r 0)�(r 0)

�
+ bf

� ��(r 0)�(r 0)
�0! :

Hence we have

si+1sisi+1vP =
b(�)X
r=1

H
 ��+

(r)
! 

af
� �+

(r)�
�

+ bf
� �+

(r)�
�0!

+
h(�)2

h(�)

b(�)X
s=1

a3ds0h���(s 0)�
 
af
� ��

�
+ bf

� ��
�0!

+
b(�)X
s=2

H
 �2

�+
(s)�

! b0(�)X
s 0=1

h(�)h���(s 0)�a2ds0 ads0 ;s
 
af
� ��+

(s)
�

+ bf
� ��+

(s)
�0!

+
b0(�)X
r 0=2

H
 ���(r 0)

!
ad� (r0 )

 
af
� ��(r 0)�

�
+ bf

� ��(r 0)�
�0! :

(43)

Now we see that the expressions (42) and (43) coincide. The first lines of them are
obvious. As for the second lines of them, by Lemma 2.5 5 they coincide. We show
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that the third line of the expression (42) and the last line ofthe expression (43) are
equivalent. To prove this, we have only to show the following:

(44)
h(�)h(�)

b(�)X
r=1

h(�)h��+
(r)�a2eraer0 ;r = ad� (r0) :

Sinceer + d� (r 0) = er 0;r , by Lemma 2.1 1 we have

a2eraer0 ;r = aer �aerad� (r0) � aer0 ;rad� (r0)� =
�a2er � aeraer0;r � ad� (r0) :

Hence if we use Lemma 2.5 3, we can show that the equation (44) holds. Similarly,
we can show that the last line of the expression (42) and the third line of the expres-
sion (43) are equal. Hence in this case, we obtainsisi+1sivp = si+1sisi+1vp.

3.2. Preservation of the other relations. In the following, we check thatf��g
preserve other relations (P1), (P3)–(P8). By the definition off��g, the relations (P3),
(P4), (P5), (P6) are immediately checked. We focus on the relations (P1), (P7)
and (P8).

Proposition 3.1. �� preserves the relation(P1).

Proof. LetMi be the matrix defined in Section 1. We have only to show thatM2i = I (the identity matrix). In case thatMi is given by the matrix (4) or (7) this is
easily checked.

Consider the case thatMi is given by the matrix (5). Since the matrix is symmet-
ric, in order to show thatM2i = I , we find that the following equations must
be checked:

b(�)X
r=1

h(�)h��+
(r)� +

b0(�)X
r 0=1

1

d���(r 0); �; �+
(r0)

�2 � h(�)h���(r 0)� =
h��+

(r0)

�
h(�)

;
b(�)X
r=1

1

d���(r 00); �; �+
(r)�2 �

h(�)h��+
(r)� =

h���(r 00)

�
h(�)

;
b(�)X
r=1

h(�)h��+
(r)� +

b0(�)X
r 0=1

1d���(r 0); �; �+
(r0)

�d���(t 0); �; �+
(r1)

� � h(�)h���(r 0)� = 0;
b(�)X
r=1

1d���(r 00); �; �+
(r)�d���(r 01); �; �+

(r)� �
h(�)h��+

(r)� = 0;
b(�)X
r=1

1d���(r 00); �; �+
(r)� �

h(�)h��+
(r)� = 0:
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Here 1� r0; r1 � b(�), 1 � r 00; r 01 � b0(�) and r0 6= r1, r 00 6= r 01. Applying Lemma 2.5,
we immediately obtain the equations above.

Proposition 3.2. �� preserves the relation(P7).

Proof. Consider the subalgebrahf; s1; s2i of An(K0). This algebra is isomorphic
to the algebraA3(K0). Hence, it is sufficient to prove that the proposition holds
for A3(K0).

Put � = [�(1); �(2); �(3)]. Fig. 4 will help the reader to understand the following
argument.

If j�(1)j = 3, then none of the tableau of shape� has [;; ;;] at its second
coordinate Hence in this case we have��(f ) = 0 and obviously the proposition holds.

Next, consider the case� = [ ; ;;] and letQ1;Q2;Q3 be all the tableaux of
shape� defined by

Q1 =
��(0); [ ;;;;]; [ ;;;;];�� ;

Q2 =
��(0); [ ;;;;]; h ;;;;i ;�� ;

Q3 =
��(0); [ ;;;;]; [;; ;;];�� :

Then the representation matrices off and s2 with respect to this basis become as fol-
lows:

��(f ) =

0
� 0 0 0

0 0 0
0 0 1

1
A ; ��(s2) =

0
BBBBBB�

1

2

1

2

1p
2

1

2

1

2

�1p
2

1p
2

�1p
2

0

1
CCCCCCA
:

Hence in this case, we can check that the proposition holds bydirect calculation.
Finally, consider the case� = [;;;; ]. In this case, there exists only one tableau

of shape�. The generatorss2 andf identically act on this tableau. Hence in this case
the proposition holds.

Proposition 3.3. �� preserves the relation(P8).

Proof. As we saw in the proof of the previous proposition, it is sufficient to
prove the proposition holds forA4(K0).

Put � = [�(1); �(2); �(3); �(4)]. Again Fig. 4 will help the reader to understand
the following argument. Similarly as in the proof of the previous proposition, we may
assume thatj�(1)j < 4.
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Consider the case� = [ ; ;;;;]. Let P1; : : : ; P6 be all the tableaux of shape� defined by

P1 =
��(0);�(1); [ ;;;;;;]; [ ;;;;;;] ;�� ;

P2 =
��(0);�(1); [ ;;;;;;] ; h ;;;;;;i ;�� ;

P3 =
��(0);�(1); h ;;;;;;i ; h ;;;;;;i ;�� ;

P4 =
��(0);�(1); [ ;;;;;;] ; [ ; ;;;;];�� ;

P5 =
��(0);�(1); h ;;;;;;i ; [ ; ;;;;];�� ;

P6 = (�(0);�(1); [;; ;;;;]; [ ; ;;;;];�):
Then the representation matrices off; s1; s2 and s3 with respect to this basis become
as follows:

��(f ) = diag(0;0;0;0;0;1);
��(s1) = diag(1;1;�1;1;�1;1);

��(s2) =

0
BBBBBBBBBBBBBBBBBBB�

1 0 0 0 0 0

0
�1

2

p
3

2
0 0 0

0

p
3

2

1

2
0 0 0

0 0 0
1

2

1

2

p
2

2

0 0 0
1

2

1

2

�p2

2

0 0 0

p
2

2

�p2

2
0

1
CCCCCCCCCCCCCCCCCCCA

;

��(s3) =

0
BBBBBBBBBBBBBBB�

1

3

p
2

3
0

p
6

3
0 0p

2

3

2

3
0

�p3

3
0 0

0 0 0 0 1 0p
6

3

�p3

3
0 0 0 0

0 0 1 0 0 0
0 0 0 0 0 1

1
CCCCCCCCCCCCCCCA

:

Using these matrices we can check that the relation (P8) holds.
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Similarly, for the cases� =
h ; ;;;;i, [;; ;;;;],

h;; ;;;;i, [ ;;; ;;],

[;;;;;; ], we can concretely obtain the representation matrices andthe relation (P8)
will be checked by the direct calculation.

4. Proof of the main theorem

This section is devoted to prove the main theorem.
In order to know whether two representations ofAn(K0) are equivalent or not, it

is useful to check that how they split into irreducible ones as An�1(K0)-modules. So
we consider the following set. Let
 be ann-tuple of Young diagrams of heightn.
Then the restriction
jn�1 of 
 to An�1(K0) is defined by


jn�1 =

�
 0p
���� 
 0p �1 
� :

Lemma 4.1. Let � = [�(1); : : : ; �(n)] and � = [�(1); : : : ; �(n)] be two n-tuples
of Young diagrams whose heights are bothn. For these�;�, define two integersk0

and k1 by

k0 = maxfj j �(j ) 6= ;g; k1 = maxfj j �(j ) 6= ;g:
Assume thatn � 3. If � 6= �, then the following statement holds:
1) �jn�1 6= �jn�1, or else

2) k0 = k1, �(j ) = �(j ) = ; for 1� j < k0 and f�(k0); �(k0)g =
n ; o

.

Proof. Assuming that� 6= � and �jn�1 = �jn�1, we show that the second state-
ment holds. Without loss of generality, we may further assume that k1 < k0, or elsek1 = k0 and j�(k0)j � j�(k0)j. Since if k1 < k0 then �(k0) = ; and j�(k0)j < j�(k0)j,
we may always assume thatk1 � k0 and j�(k0)j � j�(k0)j.

First we show thatj�(k0)j = j�(k0)j (accordingly we havek1 = k0). Assume thatj�(k0)j < j�(k0)j. If there exists aj (0< j < k0) such that�(j ) 6= ;, then there exists
an n-tuple of Young diagrams�0 2 �jn�1 such that

�0 =
��(1); : : : ; �(j 0)+; �(j )�; : : : ; �(k0);;; : : : ;;� ;

where j 0 = j � 1, �(j 0)+ ⊲ �(j 0) and �(j )� ⊳ �(j ). The assumptionj�(k0)j < j�(k0)j
makes us unable to obtain� from �0. This contradicts the assumption�jn�1 = �jn�1.
Hence if j�(k0)j < j�(k0)j, then� must be of the form

� = [;; � � � ;;; �(k0);;; : : : ;;]:
However, this requires that

(45) �jn�1 =
nh;;;; : : : ;;; ; �(k0)�(p);;; : : : ;;i ��� �(k0)�(p) ⊳ �(k0)

o:



470 M. KOSUDA

Sincek1 � k0, � must be written as one of the following forms:
1) k1 = k0 and � = [;;; : : : ;;;;; �(k0);;; : : : ;;],
2) 3� k0 and � =

� ;;; : : : ;;; ; �(k0)�(p);;; : : : ;;�;
3) k0 = 2 and� =

� ; �(k0)�(p);; : : : ;;�,
4) k0 = 2 and� =

h ; �(k0)�(p);; : : : ;;i.
The first one contradicts the assumptionj�(k0)j < j�(k0)j. In the second case, there
exists ann-tuple of Young diagrams�0 �

1
� which is not contained in the set (45).

In the remaining cases, in order that�jn�1 = �jn�1 holds, �(k0)�(p) must be the empty
partition and this contradicts the assumptionn � 3. Hence we obtainj�(k0)j = j�(k0)j.
Accordingly, k1 = k0 follows.

Next we show that f�(k0); �(k0)g =
n ; o

. Since �jn�1 = �jn�1 requires��(k0)�(p)

�� �(k0)�(p) ⊳ �(k0)
	

=
��(k0)�(q)

�� �(k0)�(q) ⊳ �(k0)
	
, we find that�(k0) = �(k0)

or j�(k0)j = j�(k0)j � 2. If �(k0) = �(k0), then �jn�1 = �jn�1 requires�(k0 � 1) =�(k0 � 1) and inductively we obtain�(j ) = �(j ) for 1 � j < k0. This contradicts the

assumption� 6= �. Hence we obtainf�(k0); �(k0)g =
n ; o

.

Finally, we show that�(j ) = �(j ) = ; for 1 � j < k0. Note that sincen � 3, we
can assume that 2� k0. If there exists an�(j ) 6= ; for 1 � j < k0, then there exists
an n-tuple of Young diagrams�0 2 �jn�1 such that

�0 = [�(1); : : : ; �(j 0)+; �(j )�; : : : ; �(k0);;; : : : ;;]:
However sincej�(k0)j = j�(k0)j and �(k0) 6= �(k0), we can not obtain� from �0. This
contradicts the assumption�jn�1 = �jn�1. The same argument also holds for�. Hence
we have�(j ) = �(j ) = ; for 1� j < k0. Thus we have proved the lemma.

Lemma 4.2. Let � = [�(1); : : : ; �(n)] be ann-tuple of Young diagrams of heightn. For an arbitrary distinct pair f�00;�01g � �jn�1, there exists ann-tuple of Young
diagrams
 00 of heightn� 2 such that
 00 �

1
�00 and 
 00 �

1
�01.

Proof. Assume that�00 (resp. �01) is obtained from� by moving a box on thej0-th (resp.j1-th) board. Namely,�00 and �01 are written as follows:

�00 =
h�(1); : : : ; �(j0 � 2); �(j 00)+

(p); �(j0)�(p0); �(j0 + 1); : : : ; �(n)
i ;

�01 =
h�(1); : : : ; �(j1 � 2); �(j 01)+

(q); �(j1)�(q 0); �(j1 + 1); : : : ; �(n)
i :

Here j 00 = j0� 1 andj 01 = j1� 1. Since without loss of generality we may assume thatj1 � j0, the following cases should be considered.
CASE 1. j1 � j0 � 2.
In this case,


 00 =
h�(1); : : : ; �(j 01)+

(q); �(j1)�(q 0); : : : ; �(j 00)+
(p); �(j0)�(p0); : : : ; �(n)

i
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satisfies the required condition.
CASE 2. j1 = j0 � 1.
In this case,


 00 =
h�(1); : : : ; �(j 01)+

(q); �(j1); �(j0)�(p0); : : : ; �(n)
i

satisfies the required condition.
CASE 3. j1 = j0.
In this case,


 00 =
��(1); : : : ; �(j 00)++; �(j0)��; : : : ; �(n)

� :
satisfies the required condition. Here

�(j 00)++ =

8>><
>>:
�(j 00)+

(p) [ �(j 00)+
(q) if �(j 00)+

(p) 6= �(j 00)+
(q);

one of the Young diagrams

such that �(j 00)++ ⊲ �+
(p)(j 00)

if �(j 00)+
(p) = �(j 00)+

(q);

�(j0)�� =

8>><
>>:
�(j0)�(p0) \ �(j0)�(q 0) if �(j0)�(p0) 6= �(j0)�(q 0);
one of the Young diagrams

such that �(j0)�� ⊳ �(j 00)�(p0) if �(j0)�(p0) = �(j0)�(q 0):
Proof of Theorem 1.4. Since we have shown that the representations f��g are

well-defined, we have only to show that they are also absolutely irreducible and mu-
tually non-equivalent. We do this by induction onn.

If n = 0, then the result is obvious. So is the casen = 1. If n = 2, we can eas-
ily check that the (three) representations are mutually non-isomorphic. Since they are
all one-dimensional and dimAn�1(K0) = 3, we find that they make a complete set of
absolutely irreducible representations. Assume thatn � 3 and the theorem holds forn � 1. Let A0 = hf; s1; : : : ; sn�2i be the subalgebra ofAn(K0). This algebra is iso-
morphic to the algebraAn�1(K0). Consider the restriction of the representation�� of
An(K0) to the subalgebraA0. Suppose that�jn�1 = f�01; : : : ;�0kg. We divide the set
T(�) of the standard tableaux of shape� into subsetsT

��01�; : : : ;T��0k�. Here T
��0p�

is the subset ofT(�) whose (n�1)-st coordinate is�0p. We define subspacesV
��0p� of

V(�) corresponding to these subsetsT
��0p�. Namely,

V
��0p� =

X
P2T(�0p)

K0vP :
Then the definition of the action ofs1; : : : ; sn�2 and f implies thatV

��0p� is stable
under the action ofA0 and induction hypothesis shows thatV

��0p� gives an absolutely
irreducible representation ofAn�1(K0) (henceA0) and that ifp 6= q then V

��0p� is not
isomorphic toV

��0q� asAn�1(K0)-modules.
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Let W be a non-zero subspace ofV(�)
K0 asAn�K0
�
-modules, whereK0 de-

notes the algebraic closure of the fieldK0 andAn�K0
�

= An
K0. If we considerW
as anA0
K0-module, then it contains some irreducible componentV

��0p� of A0
K0.
Let �0q (q 6= p) be anothern-tuple of Young diagrams contained in�jn�1. Then by
Lemma 4.2, there exists ann-tuple of Young diagrams
 00 contained in both�0pjn�2

and�0q jn�2. Let P be a tableau of shape� whose (n�2)-nd and (n�1)-st coordinates
are 
 00 and �0p respectively. We can obtain another tableauQ of shape� from P by
replacing the (n� 1)-st coordinate ofP with �0q .

Now we claim that there exists a projectionePQ of An(K0) such thatePQvP = vQ.
By induction assumption,A0 is an absolutely semisimple algebra with the minimal
central idempotentsfz�0g, labeled byn-tuples of Young diagrams of height (n�1). Ac-
cording to the classification in the proof of Lemma 4.2, consider the action ofsn�1 2
An(K0) one by one.

CASE 1. j1 � j0 � 2.

In this case, we havesn�1vP = vQ and the claim is proved.

CASE 2. j1 = j0 � 1.

In this case we have

z�0psn�1vP =
1d��(j1)�(q 0); �(j1); �(j1)+

(p)

�
s h(�(j1))2

h��(j1)�(q 0)�h��(j1)+
(p)

�vQ:
Since the coefficient ofvQ is not equal to zero, the claim is proved.

CASE 3. j1 = j0.

In this case, the following four cases are considered. In each case,z�0psn�1 sendsvP non-zero scalar multiple ofvQ, so the claim is proved. In the following, we putd = d��(j 00); �(j 00)+
(p); �(j 00)++

�
and e = d��(j0)��; �(j0)�(p0); �(j0)

�
.

CASE 3.1. �(j 00)+
(p) 6= �(j 00)+

(q) and �(j0)�(p0) 6= �(j0)�(q 0).
In this case we have

z�0psn�1vP =

sd2 � 1d2

se2 � 1e2
vQ:

CASE 3.2. �(j 00)+
(p) 6= �(j 00)+

(q) and �(j0)�(p0) = �(j0)�(q 0).
In this case we have

z�0psn�1vP =

sd2 � 1d2

1e vQ:
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CASE 3.3. �(j 00)+
(p) = �(j 00)+

(q) and �(j0)�(p0) 6= �(j0)�(q 0).
In this case we have

z�0psn�1vP =
1d
se2 � 1e2

vQ:
CASE 3.4. �(j 00)+

(p) = �(j 00)+
(q) and �(j0)�(p0) = �(j0)�(q 0).

In this case we have

z�0psn�1vP =
1d 1e vQ:

The claim implies that the irreducibleA0-moduleW also containsV
��0q� as well

as V
��0p�. Since the choice of�0p was arbitrary, we obtain

W � M
�0p�1�

V(�0p)
K0 = V(�)
K0 (asA0 
K0-modules):
In casen � 3, Lemma 4.1 asserts that if� 6= � either V(�) and V(�) are non-

isomorphic already asA0-modules, or else

f�;�g =
n
[;; : : : ;;;;; ]; h;; : : : ;;;;; io :

We show that even in the latter case,�� and �� are mutually non-isomorphic. In the
latter case, we have

�jn�1 = �jn�1 = f
 0 = [;; : : : ;;; ; ]g:
Hence we can take
 00 2 
 0jn�2 so that


 00 = [;; : : : ;;; ;;] :
If we choose a tableauP of shape� so that its (n � 2)-nd and (n � 1)-st coordi-
nates coincide with
 00 and 
 0 respectively, then the tableauQ obtained fromP by
replacing then-th coordinate� with � is a tableau of shape�. The generatorsn�1 of
An(K0) acts differently onvP and vQ. HenceV(�) and V(�) are non-isomorphic as
An(K0)-modules.

Since

dim

0
�M�23n V(�)

1
A

2

=
X
�2P (n)

� n!�1! �2! � � � �n!
�2 � 1�1! �2! � � ��n! = dimAn(K0);

f�� j � 2 3n(n)g define a complete set of the representative of the irreducible represen-
tations ofAn(K0). In particular, the party algebraAn(K0) is absolutely semisimple and
the Bratteli diagram of the sequencefAi(K0)gi=0;1;:::;n is given by the graph0n.
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