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Abstract
In this paper we construct a complete set of representatfebe irreducible
representations of the party algebra. which is the cem@malof the unitary reflec-
tion group G(r, 1, k) in the endomorphism ring of the tensor spac&" under the
condition thatk > n andr > n.

1. Introduction

Let G be a group of linear transformations onkadimensional vector spac¥.
Suppose thatG diagonally acts on tha-times tensor spac&®”. Then the question
how the tensor spac®®" decomposes into irreducible representationsGofs a ba-
sic problem of the classical invariant theory. One way ofdging this problem is to
consider the centralizer algebra @(d’@@”). This approach was successfully done in
casesG = GL;(C) and O,(C). These classical groups produced the centraliZ&ss,
and B, (k) (Brauer algebra [2, 13]) respectively, and the decomjuostof the tensor
representations of the original groups were obtained a$ agethe decompositions of
their centralizers. In the 1980s, thedeformation of these centralizers were discovered
and the various connections between the centralizers dmt ateas (such as knot the-
ory, conformal field theory, etc.) were clarified [10, 14].

In the early 1990s, Jones and Martin independently definechbéngtion algebra
P,(Q) as the generalization of the Temperley-Lieb algebra aedRbtts model in sta-
tistical mechanics. This algebra corresponds to the c¢ase &, in the classical in-
variant theory above; if the parametér of P,(Q) is specialized to a positive integer
k, the partition algebraP,(k) surjectively mapped to the centralizer E;l(d/®”) where
G = &, and if furtherk is large enough, @ > n is sufficient), this map becomes
injective [5]. In the paper [5, 9], they considerdd,,, the set of all the set parti-
tions of {d1,...,d,,r1,...,1r,}, as a basis ofP,(Q) and defined the product among
each element of [,,. Further, they showed that,(Q) is generated by the symmetric

2000 Mathematics Subject Classification. Primary 05E10p&@ary 20C30.



432 M. Kosuba

group G,—acting onV®" by tensor factors permutation—and two special elements
and Aq,.

Inspired by the work of Jones, Tanabe considered the Gase a unitary reflec-
tion group of typeG(r, p, k) where G(r, p, k) is an indexp subgroup ofG(r, 1, k),
and G(r, 1, k) is a group ofk x k monomial matrices whose non-zero entries aité
roots of unity [11]. In the paper [12], Tanabe showed that cﬁ,n,qlk)(v®”) is gener-
ated by the symmetric grou, together with three further special operatoEs, F;
and H, , . (Note that the unitary reflection groug&(r, p, k)} include the symmetric
group &, = G(1,1,k). The operatorsE, and Fii becomeA;, and A; respectively in
P,(Q), and the operatof, , ; is not defined in case = 1.)

In this paper, we study further about the caSe= G(r,1,k) (k > n, r > n):
we construct a complete set of irreducible representatiamsich corresponds to
“Hoefsmit-analogues” of Young's seminormal represeotai of the symmetric
group [4].

This paper is organized as follows. First we define gasty algebra A, as an
abstract algebra generated by the symmetric gréypand one of the above opera-
tors f = E, = A1p, which will turn out to be a subalgebra of the partition algeb
P,(Q). In fact, a basis of4, has one to one correspondence with a subsef[gf
called the set ofseat-plais (see Section 1.1). We showed in the previous paper [6]
that any word ofA, is reduced to one of thetandardwords of the generators un-
der the defining relations and each standard word corresptndne of the seat-plans
(see Definition 1.1). Similarly to the partition algebragté exists a surjective homo-
morphism fromA, to End;(.1(V®"). Moreover, ifk > n andr > n, this homo-
morphism becomes injective (Proposition 1.2 and 1.3). Next explicitly construct a
complete set of representatives of the irreducible reptatens of the party algebra
A, drawing the Bratteli diagram of the towedg C A; C --- C A, and defining
the tableaux on it. Finally we check that these repres@msitare irreducible and non-
equivalent each other. Comparing the square sum of the elegfethe irreducible rep-
resentations with the number of the seat plans (standardswofr the generators) we
find that A, is semisimple.

1.1. Definition of the party algebra. First, we define the party algebrd,.

DEerINITION 1.1. LetZ be the ring of rational integers. We putp = A; =
Z. For an integem > 1, the party algebrad, is defined overZ by the following
generators:

fv Slv s27 R Sll*l
and relations:

s?=1 (I<i<n-1) (P1)

SiSi+18; = Si+18iSi+1 1<i<n-2), (P2)
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i+l iitl
S i fi

Fig. 1. Generators of4,

SiS; = S;S; (li—jl=2 1<i,j<n-1), (P3)
A= (P4)
fsi=s1f = f, (P5)
fsi=sif B=<i<n-1), (P6)
fsafsa=safsa2f, (P7)
f52515382 f 52515352 = 525185352 f 2515352 f - (P8)
Putting
fi=f

Sfi = (sica---s281)(si - - - 5382) falsasz - - - 5i) (5152 - - - 5i-1)
(=23 ....n-1),

we obtain another presentation df, by f;s ands;s.

s?=1 (l<i<n-1), (P1)
SiSi+18i = §i+18:Si+1 l<i<n-=-2), (P2)
SiSj =88 (li—jl=2 1<i,j<n-1), (P3)
f2=1 (l<i=n-1) (P4)
fisi=sifi=fi Al=<i<n-1), (PY)
fifi=1ifi (I=<ij=n-1), (PE)
si fi+1Si = Siv1 fiSi+1 (l<i<n-2) (P7)
fisj=sjfi (li—jl=z2 1<ij=n-1) (P8)

For the new generators;, f; | 1 < i < n — 1}, we give the diagrams figured
in Fig. 1. In the following, to each word of the generators.4f, we give a diagram
explanation.
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ri r2 73 r4 s

d d d di ds

Fig. 2. A seat-plan

Let D ={dy,do,...,d,} andR = {ry,ro, ..., r,} be two sets, each of which con-
sists ofn distinct elements. We further assume tiiat R = 4. We decompose) L R
into subsetsBy, By, ..., B, (some of B;s might be empty) so that they satisfy

n

|JBi=Dur,

j=1

|Bi| = |Ba| = -+ = | Bal,
|B;ND|=|B;NR| for j=12...,n.

We call such a partition into subsets seat-plan of size n. Let P(n) be the set
of partitions of an integem. Then there exists a partitioh € P(n) such thati =
(A A2, .., A) = (IB11/2, |B2|/2, ..., |B,|/2). The number of seat-plans is

Q) Z < n! >2 1
1eP(n) At agle ! arlas! o’

wherea; = [{A¢; A = i}].

A seat-plan of sizen is illustrated as in Fig. 2. Consider a rectangle with
marked points on the bottom and the samen the top. The: marked points on the
bottom are labeled byi;, ds, ...d, from left to right. Similarly, then marked points
on the top is labeled by, r, ..., r, from left to right. If D U R is divided into non-
empty m subsets, then put shaded circles in the middle of the rectangle so that they
have no intersections. Each of the circles corresponds & arthe non-emptyB;s.
Then we join the 2 marked points and the: circles with 22 shaded bands so that
the marked points labeled by the elementsByf are connected to the corresponding
circle with |Bj| bands. We associate generat@ys f; | 1 <i <n — 1} of A, to the
following special seat-plans

{d17 rl}v e {diflv r,',l}, {div ri+1}v {di+lv rl'}v {di+27 rl'+2}7 LR {dn’ rn}
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ri 72 4] rs4 rs

d d d di ds

d d d di ds

Fig. 3. The product of seat-plans
and

{d]J rl}s L) {dffls ri*l}’ {d[, di+ls ri, ri+l}s {di+27 ri+2}s DR {dns rn}

respectively, which are illustrated in Fig. 1.

Now we define the productv;w, between two of rectanglesn, w, (each of
which corresponds to a seat-plan) by placimg on w,, gluing the corresponding
boundaries and shrinking half along the vertical axis asiin B. We then have a new
diagram possibly containing some closed loops. The produtte resulting diagram,
with the closed loops removed. It is easy to define this prbduderms of seat-plans
(see for example Martin’s paper [9]). The set of the seatglsatisfies the relation
(P1)-(P8). Moreover, in the paper [6], the author showed that therstesne to
one correspondences between the set of seat-plans of: sérel the set of standard
words of 4, and that using only the relation®1)—-(P8) any word of the generators
becomes a standard word. This means that the linear condrinat seat-plans is a
surjective image of4, and it makes a finite dimensional algebra whose dimension is
given by the expression (1).

The following proposition given by Tanabe [12] shows theatieh between the
party algebras and the centralizer algebras of the unitfitgation groups.

Proposition 1.2 (Tanabe [12, Theorem 3.1])Let G(r, 1, k) be the group of all
the monomial matrices of size whose non-zero entries aveth roots of unity Let V
be theC-vector space of dimensioh with the basis elements, e, ..., ¢, on which
G(r, 1, k) acts naturally Let ¢ be the representation of the symmetric grogp on
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37 = meiilee e THees e ' Ry

MER e 1) [ L EaEa e,

Fig. 4. T4,—The Bratteli diagram for the sequen¢d; ® C},

V@ obtained by permuting the tensor product factdrs., for vy, v, ..., v, € V and
for w e G,,

¢(UJ)(U1 QU - Un) = Uy-1(1) ® Uy-1(2) Q- ® Vw=1(n)-
Define furtherg(f) as follows

ep1®ep2®"'®ep,, If pl:p27

el®ez®...®e” = .
$(N)en ®ep ») 0 otherwise

If r > n, then Endg(.10(V®") is generated byp(S,) and ¢(f) and ¢ defines a
homomorphism frond, ® C to Endg(, 1.6 (V®").

Proposition 1.3. Let ¢ be the map previously definedf k& >n, then ¢
is injective

Proof. Using Schur-Weyl reciprocity and counting the disien, the proposition
will be easily checked. ]

1.2. Bratteli diagram of the party algebras. In this subsection, first we make
a diagramr',,, which will turn out to be the Bratteli diagram of the sequergl; ®
C},- Then we define the sets of thableauxon the diagram. Fig. 4 will help the
reader to understand the recipe.

Fix a positive integen. Let

a=[a(l),...,a)]

be ann-tuple of Young diagrams. Thg-th coordinate of the tuple is referred the
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j-th board The height |l¢|| of « is defined as the weight sum of the sizes of all the
la(j)|s. Namely,|le| is defined by

leell =) jlae(i)l-
j=1

Let
Ay(@) ={a=[a(1),...,c(m)] | llell =7}

be a set ofn-tuples of heighti. For « € A, (i), we seta(0) =n — i (the horizontal
Young diagram of depth 1 and of width — i) if necessary. Letx < @ ora T

denote thatx is obtained froma by removing one box from the Young diagram on
the j-th board and adding the box to the Young diagram on the {)-st board for
somej (0 < j < n —1). The diagraml', is defined as the Hasse diagrdm of

Finally we define the sets of the tableaux Bp. For e € A,(n), The setT(«) of
tableaux of shape is defined by

T(a) = {P = (@@, a®, ... o) ‘ «@=[4,....0, o =a,

o < o™ for O0<i<n-— 1}.

1.3. Construction of the irreducible representation. Now we have defined the
sets of tableaux om',, we define linear transformations of the tableaux. Qebe the
field of rational numbers an&o = Q(v2, V3, .. ., J/n) its extension. In the following,
the linear transformations are defined oves. They will turn out to be a complete
set of representatives of the irreducible representatidng,,(Kq) = A, ® Ko. Similar
methods are used for example in the references [1, 3, 10,413, 1

Let V(a) = ®perKovp be a vector space oveKp with the standard basis
{vp|P € T(a)}.

For a generatos; of A4,(Kp), we define a linear mapy(s;) on V(«) giving the
matrix M; with respect to the basisvp | P € T(x)}. Namely, for a tableaux? =
(@@, a®, ... a") of T(x), define py(s;))(vp) = > oer@(Mi)orvo. Let Q = (O,
oD /™). If there is anip € {1,2,...,n — 1} \ {i} such thata( % a'(®, then
we put

(Mi)QP = O

In the following, we consider the case thefo) = a/(® for ig € {1,2,...,n — 1} \ {i}.
CAseE 1. First, we assume that‘~1 and o*V) of the tableauP coincide with

each other except on thgth and the { + 1)-st boards. In this case() is obtained

from «(~Y by moving a box in the Young diagram on theth board to the Young
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diagram on the { + 1)-st board andx(*? is obtained froma( by moving another
box in the Young diagram on th¢-th board to the Young diagram on thg € 1)-st

board. Denote the Young diagram on thigh board of a2 (resp.a®, al*) by

2071 (resp.A®, A1) and denote the Young diagram on thet(1)-st board ofe¢—1

(resp.a®, ) by ¢¢-1 (resp.c®, ¢@*), Let u < A or A > u denote thatu is

obtained fromA by removing one box. Recall that ¥ < © < A then we can de-
fine theaxial distanced = d(v, u, ). Namely, if u differs from v in its ro-th row and
co-th column only, and ifa differs from w in its r;1-th row andc;-th column only, then
d =d(v, i, 1) is defined by

h —1 if >
@ d=d. )= =) — (o —ro) = { Mo =L T o=,
1—hy(ro,c1) if ro<re

Here h; (i, j) is the hook-lengthat (i, j) in A and fori = (A1, Ao, ...) the hook-length
h, (i, j) is defined by

(i, j)=xi —j+Hhes e = jH =i+ 1

Since At > A0 » A0*1) we can define the axial distandg = d(A(*D, 1), A1),

Similarly, sincez® 1 < ¢® < ¢@*D, we can define the axial distaned = d(¢¢Y,

¢ DY if |dy| > 2 (resp.|ds] > 2), then there is a unique Young diagrarmz A®)

(resp.¢’ # ¢@) which satisfiesA?1 > A > A0*D (resp.¢(~Y < ¢ < ¢@*D), Let
01, 0>, 03 be tableaux of shape which are obtained fronP by replacing £©, ;)

on the j-th and the {+1)-st board ofe® with (\?), ¢), (*/, @), (), ¢’) respectively.
For the basis elements given by the above tableaux, we ddfedintear mapp(s;)

by the following matrix:

Pa(8i): (Vp, Vo, V0,, Vo,) = (Vp, Vo, Vo, Vo,) M,

where
1 1 [az-1 d? -1 1
dvd> di\  d? d?
1 |d5—1 1 di — -
M, = 1 2 didy df d22 d12 d2

d\ a2
d2 — 1 1 d?—1 [d?— 1 [a2-1
d? d2 dldg d\ d?
d?—1 [d?— 7-11 1 [d2-1 1
d? d2 d? di\ d3 didy
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If we put

1 /
(3) ag = E and by =+/1— aﬁ,

then M; is written as follows:

4) M; = ( d - bay ) ® ( o D, >

bdl —dg, bdz —dq,
Even if |di]=1 (resp. |d2| =1), we still adopt the matrix (4) sincé, =0
(resp.b,, = 0).

CAsE 2. Next, we consider the case that*? is obtained froma(-2 by re-
moving one box from the Young diagram on theth board and adding the box to
the Young diagram on thej ¢ 2)-nd board. Let, A, 8 be the Young diagrams on the
j-th, the (i + 1)-st and the [+ 2)-nd boards ofx(~1 respectively andv—, A, 8* the
Young diagrams on the corresponding three boards‘@? respectively. Let{ka) | r =
1,2,...,b(%)} (resp.{k(;,) |r"=1,2,...,b'(0)}) be the set of all the Young diagrams
which satisfyxz;) > A (resp.)\@) < A) and let Py, P,, ..., Py (resp. Q1, Qo, ...,
Oy(y) be all the tableaux which are obtained frofh by replacing the Young dia-
grams on thej-th, the (i + 1)-st and the { + 2)-nd board ofa® with o=, A, B
(resp.a,x(‘r,), B*). For the basis elements given by the above tableaux, weed#fim
linear map by the following matrix:

()2
Mi)p,.p= | —F————,
o
(5) h())? 1
(Mi)p,.0, = (M)o, p. = ,
e orh J h (,\(;,)) h (,\(j)) d (x(‘r,), A, xg))
(M,‘)Q,.,Q,_r =0.

Here h(1) is the product of all the hook-lengths i1

h) =TT mG. ).

(i.j)er

Putting

kA _ [h()h(R)
©) H(E)_VMMMW’
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and combining the expression (2) and (3), we can wiiteas follows:

)\2
(Mi)p.,.p, =H o)
()" (r)

i)0O, P M; PO, H a - + )
IMI 0 i o )"(r/) ) -(i;) d()\(’_,),k,)»(l_))

(Mi)g,.0, =0.

CAsE 3. Finally, we consider the remaining cases. In these cafsed?) is ob-
tained froma~Y by moving one box to the next board andaif*? is obtained from
o® by moving another box to the next board in a tablgauthen exchanging theth
step and thei(+ 1)-st step, we have another table@u For the basis elements given
by the above tableaux, we define the linear map by the follgwiratrix:

7) (vp,vo) = (vp, vo)M; = (vp, vQ)( 2 é )

1.4. Main theorem. Now we have completed the preparation, we state the fol-
lowing main result.

Theorem 1.4. Let a=[x(l),...,a(n)] be an n-tuple of Young diagrams in
A,(n). Let Q be the field of rational numbers ando=Q(v/2,v/3,..., /n)
its extension

1. Define p, as follows

Pa(si)vp = Z (Mi)orvo,
Q€T ()

vp if «a@=[0,11,0,...,0]

pulf)ve 0 otherwise

Then (py, V(a)) defines an absolutely irreducible representation4f( Ko).
2. Fora,a € A,(n), the irreducible representationg, and p, of A,(Kg) are equiv-
alent if and only ife = «'.
3. Conversely for any irreducible representatiom of A,(Kp), there exists anx €
A,(n) such thatp and p, are equivalent
In other words {p, | @« € A,(n)} make a complete set of the representatives of the
irreducible representations aofl, (Kj).

Corollary 1.5. The party algebrag.A,(Ko)} are absolutely semisimplend the
Bratteli diagram of the sequended;(Ko)}i=o.1..... IS given by the grapit,.
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Let o' be anr-tuple of Young diagrams such that o and

T(; &) = {(oc(o), oD a(”_l)a(")) € T() | oY = o'}

Let V(a'; ) be a subspace d¥(«) spanned by{vy | Q € T(«'; &)}. Since A,_1(Ko)
is isomorphic to the subalgebtd’ = (f, s1, ..., s, 2) of A,(Ko), considering the def-
inition of p, we find that the subspacé(e’; o) is stable under the action od’. Fur-
ther, applying the theorem above replacingvith n — 1, we find thatV(«/; «) affords
an irreducible representation of,_1(Ko). In the proof of the theorem above, we will
further obtain the following restriction rule.

Corollary 1.6. For a € A, (n), the branching rule of the restriction of irreducible
representation of4,(Ko) to the subalgebrad’ = A,(Ky) is given as follows

V(w) = P V(e,;) as A,_1(Ko)-modules

)
@), <

2. Preliminary results for the axial distances and the hoolengths

To prove the main theorem, our main task is to show the wdlkddness of the
representation$p,}. Since py(s;) is defined by the matrix/; in the theorem and the
entries of M; are written in terms ofu,, b; and H(k1/(uv)), the task will be done
by showing the various relations among them. In this sectiom show miscellaneous
relations amongy,, by, H(xA/(v)) defined by the expressions (2), (3) and (6).

First we note that by the definition of, and b, we immediately have:?+53 = 1.
Using this we obtain the following relations amofw,} and {b,} by direct calculation:

Lemma 2.1. Let dy, d1, d» be non-zero integers such thdg = di + d,. Then we
have the following
1. —Qq, g, * gy, t Ag,Agqy = 0,
2. adlaﬁ2 + adobﬁ2 = adzagl + adobi.

which satisfya(j) > o (resp.a(j,) < «). If A and 1 are a pair of Young diagrams
such thatx > u, then we have{uz',_)} > A and {hon) 2 1

In the following, we assume thaxa) =) and Ay = M

Fors =2 ...,b(k), We putke) = pwipyUn(y = AUug,. Further, ety = A7, \(A\w).
If A¢) is @ Young diagram, then there exists an indexuch thati,) = u,. More
precisely, we have the following:
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Lemma 2.2. Let {¢,} be axial distances defined by = d(u,k,kzj,)). Then
we have

{()\E'r), k(,)) | b, 70, r=1,..., b()»)} = {(K(s), uz's)) | s=2,..., b(,u)}.

In other words there exists a bijectiorr from the set{s | s = 2,...,b(u)} to the set
{r | r=1,...,b(), be, 7 0} such that(kz'r(s)), )»(r(s))) = (K(s), /Jf(';))

Similarly, for r" = 2,...,b'(2), we putvi) = Aqy N Apy = @ N Ay, and wey =
Py Y (A \ n). Then we have the following:

Lemma 2.3. Let {dy} be axial distances defined by, =d(,u@,),u,k). Then
we have

[(M(;/), M(s’)) ‘ btls/ ;é O, s’ = 1, ey b/(/,(,)] = [(v(,./), )\.(_,.,)) ‘ r'= 2, ey b/()\)} .

In other words there exists a bijectiom from the set{r’' | ' =2,...,0'(1)} to the set
{s"|s'=1,...,0(n), bd:, # 0} such that(/,L(_a(r,)), ,U,(g(r/))) = (v(,.r), )\(_r,)).

We have also the following relations amofiy;} and {H}:

Lemma 2.4. Let v, u, A be Young diagrams such that < u < A andd =
d(v, u, A) their axial distance If 4 # 41, then there exists a Young diagragi such
that v < u’ < A which differs fromu. Further in this casewe have the following

VA
bd:H( /).
o

Let A be the set of all the Young diagrams of any size. Consider #utov space
KoA whose natural basis is indexed by the §efl | . € A}. Combining the result of
the previous three lemmas, we have the following:

WA,
{bF, (2] =H <T(())> (2] ‘ b, #0, r=1,..., b(,\)}
(8)
k(s
= {berm [kw]=H <AM§1) [x]

_ 1. M(}))L _
{bd‘,/ I:H'(sf):l =H (MM(X/)) I:M(s’):l

_ _ Vi
={b; v, =H Vi
{ dn(m[ (r )] (MM,@) [ (r)]

sZZ,...,b(u)},

9)




IRREDUCIBLE REPRESENTATIONS OF THEPARTY ALGEBRA 443

Similarly, let Ko(A x A) be the vector space whose natural basis is indexed by

the set
{[ /’1 ]:(A,/L) A,MGA}.

Then we have the following:

+ AF +
b, Aoy | = e g sG] o) be, 20, r=1,...,b(})
) Ay ) LA '

(10)
_ K(s) }_ 0) [ K(s) ] _
=1b,., =H (= s=2.... b))},
{ ()[ e <W(+s)> )
by [ R }:H Bt [ He) } ba, 70, s'=1,...,b (1)
T LAy Biisy ) L Hsry '
(11)

o [0 ] =n (202) [0 ]
V() KAy ) Love

Under the notation in Lemma 2.2, 2.3, in cagg is a Young diagram, we have

r'ZZ,...,b’()»)}.

er =d (1, kM) = —d (1, As Ay -
By Lemma 2.2, ife, # 41, this is also equal to the following:
(12) er = ey =d (1, &, k() = —d (11, sy k() (5= 2),
Similarly, in caseu(y is a Young diagram, we have

ds' = d (H’(:/)’ M, A‘) = _d (M(:/)’ /‘L(s’), A‘) .

By Lemma 2.3, ifdy # £1, this is also equal to the following:
(13) dy = doy = d(ve), 1, 2) = —d (”(r’)v My A) =2
On the other hand, in casey) is a Young diagram, put
(14) poy=wn and e =d(u, A, )\Err)) .
If 1y is @ Young diagram, then we have

e.=d (,u’, A, )‘Z‘)) =d (u(_l), W, )u(,)) .
Further if e, # £1, then we have

(15) e:' = e'/[(s) = d (l‘(’/7 A‘v K(s)) = d (M(T]_)v L, M&)) (S 2 2)
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In cases = 1, we have

(16) eay=di=d (M(l)’ i, A) .
Similarly, in casei is a Young diagram, put

(17) A=A and d. =d (u(;,), u, ,\’) .
If u¢) is a Young diagram, then we have

d_;"’ = d (I’L(;’)v M, )"/> = d (/"L(s’)v )"7 )"2—1))

and
(18) d, =d iy =d (v, V) =d (x(—,_,), A, xgl)) ¢ > 2),

Finally, we put

(20) des =d (ugoy 1.1y
_ - +
1) e, =d (A(,_,), A, A(,_)> .

Using the notation above we finally obtain the following tElas among{a,}
and {a(1)}:

Lemma 2.5. 1. Y 9 n() / h(xy,) =
2. 8 (h0) [ h(3y))ae =0,
3. YD (0 | h(n ey, = h(n)/h(x)  (r' = 1),
2000 /4G = D=
b() au h(A)/h(n) =1 (s"=1),
o T o = |1 o
5. h(u)‘”’Z'é(‘i)ad [ h(ugy) =) Z)b(kl) aj [ h(rgy)-

Proof. The above relations are proved by specializing thrarpaterg to 1 in the
equations of Theorem 0.1-0.2 in the paper [7]. ]

3. Well-definedness of the representations

In this section, we show thdio,} in the main theorem preserve the defining rela-
tions of the party algebra. First in Section 3.1 we check thg} preserve the braid
relation (P2) in Definition 1.1. Actually, this is the main part of the gapNext in
Section 3.2, we check that they also preserve the otheiaesat
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3.1. Preservation of the braid relation. Let P = («©, ..., «™) be a tableau
of shapea. As we defined in Section 1.3 and Section 1.4, the linear mdp;) is
defined by the matrixM; and it is defined by the way how* is obtained from
o1 (see the expressions (4), (5) and (7)). Suppose dfiat(resp. a*D, o*2) is
obtained froma(—Y (resp.a®, «*1)) by moving a box on thgo-th (resp.ji-th, j»-th)
board of =1 (resp.a, «l*V) to the (jo + 1)-st (resp. {1 + 1)-st, (j» + 1)-st) board.
Then to know the actions of; and s;+1, it will be sufficient to know that how they
alter the following matrix whose entries are Young diagrams

@)
(22) <a U ))i—lsi’si+2. J=ioujo+L 1 i+ iz 2+l
Since column indices of the matrix above do not necessaidindt depending on the
differences amongp, j» and j,, we have to consider Table 1.
In Table 1, if we replace j§, jo+ 1, j1, j1 + 1, j2, j2 + 1) with the reverse j6 + 1,
Jo, j1 + 1, j1, jo + 1, jo), then we find Case 3.1 (resp. Case 3.2) turns Case 3.3
(resp. Case 3.4). This meanss;;is;-action onvp in Case 3.3 (resp. Case 3.4)

Table 1. Classification by differences amopg j1 and j,

Case 1 ljo—jil=2 ljp—jel=2 lja—jol=2
Case 2 Jo=Jj1=J2

Case 3.1 (Case 3.3)[j1—jol 22, lj2—Jjol =22 j=jotl
Case 3.2 (Case 3.4)[j1—jol 22, lj2—Jjol =22, jo=j1+t1

(Case 3.3) ljz2—Jol =2, ljo—jl=2, ja=j1+1
(Case 3.4) ljz2—Jol =2, ljo—jl=2, j1=j2+1
Case 3.5 ljo—Jjil =2, lji—jal 22, jo=j2+1
Case 3.6 ljo—Jjil =2, lji—jal 22, jo=jot+1
Case 4.1 (Case 4.2) jo = j1, lj2—Jjol =1j1— jal = 2

(Case 4.2) J1=Jj2s ljo—jil =lj2—Jjol = 2

Case 4.3 J2=Jo, ljr—Jjal =ljo—jil =2

Case 5.1 Ji=jot+l, ja=j1+1l

Case 5.2 (Case 5.3) jo=jo+1, ji=jo+1

(Case 5.3) Jjo=jitl  j2=jotl

Case 5.4 (Case 5.8) jo=j1+1, jo=jo+1

(Case 5.5) Jjo=j2t+l  ji=jotl

Case 5.6 Ji=j2+1l,  jo=j1+1

Case 6.1 (Case 6.4) jo=j1 = jo+1
Case 6.2 (Case 6.5) j1 = jo=jo+1
Case 6.3 (Case 6.6) jo=j,=j1+1
(Case 6.4) Jo=Jji, J2=jotl=j+1
(Case 6.5) J1=J2, Jo=jitl=jp+1
(Case 6.6) j2=Jjo, A=jatl=jo+1l
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i—1 2 = a=(jo) £- =al=Y(jo+1)

>
>

i () I(2) K(3) £ £ £@3)

§
§

i+l v Y(2) V(@3) n@) n@) neE)

<
<

i+2 v = al*2(jo) ¢ =aA(jo+1)
Jjo-th board (jo *+ 1)-st board

Fig. 5. Case 2 Hasse diagrams of Young diagramgigeth and (jp + 1)-st board

is obtained froms;.1s;s;+1-action onvp in Case 3.1 (resp. Case 3.2) by changing in-
dices of tableaux and vice versa. Similarly, the conditi@ase 4.2, 5.3, 5.5, 6.4, 6.5,
and Case 6.6 are obtained from the conditions Case 4.1, 52, &1, 6.2 and
Case 6.3, respectively. Hence, we have only to consider Cage 3.1, 3.2, 3.5, 3.6,
4.1, 4.3, 5.1, 5.2, 5.4, 5.6 and Case 6.1-6.3.

In the following, to simplify the notation, we write merely,vp instead of
Pa(si)(vp). Further, for a Young diagram, we use the notation~ (resp.A*) to de-
note a Young diagram which is obtained froimby removing (resp. adding) a box
from (resp. to)i.

CAse 1. First we consider Case 1, the most general case. In thes catumn
indices jo, jo+1, j1, j1 + 1, jo» and j, + 1 of the matrix (22) are all distinct each other.
Since in this case, the actions g9fands;+; are both presented by the matrix (7), they
merely exchange the entries of the matrix (22). By directudation, we can check
that SiSi+1S;Vp = S;j+15iSi+1Vp in this case.

CASE 2. Next we consider Case 2. The assumptjgr= j; = j» means that on
the way fromat—0 to o2 of P, three boxes of = «(~Y(jo) are removed and
they are attached t§~ = a(~U(j, + 1) one by one. Let Fig. 5 be Hasse diagrams
which respectively describe how Young diagrams on jgh and the f(o+1)-st boards
of P would transform themselves (Some of the Young diagrams neayittual ones.
However, we do not have to care about that, since the assomiefficients would be

zero). Let
[ e[3]
V(9) ()
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be the vector which corresponds to a tableau obtained fPoby replacing Young di-
agrams on thejp-th and the fo + 1)-st boards ofx® (resp.a(*V) with 1y and &
(resp.vy) andng). For this vector,s; gives the following matrix;

( Ae(q.r) be(q.r) >®< Ad(s,1) bd(s.t) )
be(g.r)  a-e(g.r) bags.y  a—d(s.r)

and s;+1 gives the following matrix;

(ae’(q.r) be’(q.r) ) <ad’(s,t) bzl’(s./) >
® .

begry  a-e.n Pars)y  A—dr(s.)
Here e(q.r) = d(vg), (), 1), d(s. 1) = d(E, &), n()), €'(q.r) = d(v™, vg), () and
d'(s,t) = d(&x). nwy. ¢). Hence, using a result of the paper [14], we can easily check
that in this case;s;+15;vp = s;+15;8;+1vp holds.

Case 3. We consider mainly Case 3.1 (Case 3.3). For the explandtaow,
see Table 2.

Put @(Y(jo), alD(j0), " V(jr + 1)) = (@, 4, 7). If «7D(j1) # @ B(jy) in
the tableaup, thens; and s;+1 both give linear transformations defined by the ma-
trix of type (7) and we can apply Case 1. Hence we have only twsider the case
(1) = «*D(j;), namely, we assume the following:
1) One box ina on the jo-th board is removed and it is attached toon the
Jj1-th board.
2) Then the attached box on thg-th board is again removed and it is attached to
B~ on the (j; + 1)-st board.
We keep our eyes on thieth and the {+ 1)-st coordinates of Table 2. Let
(23) |: Ol(jo) Ol(jl)

BGo) | BUD | BG1+1) B(j2) Bl2+1)

a(a+tl) a(je) aljz2+1) }

be a vector which corresponds to a tableau obtained ffottmy replacing Young dia-
grams on thejp-th, ji-th, (j1 + 1)-st, jo-th and (j, + 1)-st boards of thé-th (resp. (+

1)-st) coordinate with(jo), (ja), a(ja + 1), @(j2), @(jz + 1) (resp.B(jo), B(jr), Bjr +
1), B(j2), B(j2 + 1)). By the definition of tableaux, we find that all the erdrief the

Table 2. Case 3.1 (Case 3.BY — jo| > 2, ljo—Jjol =2, ji=jo+1

coordinate board
Jo ji o+l jo o+l

i—1 o A B~ ) Y@

i o | Ay | AT v v
i+1 a A B () Y@
i+2 a A B Y@ Y(2)
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matrix (23) will be recovered from the entries of the secontlimn. Hence instead of
using the matrix (23) we merely write

|: a(ja) ]

B(j1)

| ¥ = 1,...,b(1)} be the set of Young diagrams such thg} > 1 and
=1,...,0/(2)} the set of Young diagrams such thigl, < A. Let

A.+
e[ ]
be the vector indexed by the table®u Then by definition (5 and (7) and using no-
tation (21), we can check that boths;+is;vp and si+is;s;+1vp are equal to the

following:
b()) 2 YY) )
H + 9+ |: + i| + H ( — > aer,. |: _ ] .
2 (Nr)*(l)) o) ; RPN Rl

r=1

Let {i(,
{A(;,) r’

As for Case 3.2 (3.4), 3.5, and Case 3.6, using Table 3, 4 abig Farespectively
we can more easily check thgts;«1s;vp = sj+15:8;+10p.

Table 3. Case 3.2 (Case 34)—jo| > 2, Table 4. Case 3.5jp—ji| > 2, |j1—Jjo| >

[j2—Jol =2, jo=j1+1 2, jo=j+1
coordinate board coordinate board
JioJo o+l j2 j2t+1 Jjo jo jo+tl ji jitl
i-1 |a 2 B7 vo 7 =1 Ja A BT vy Vo
i @ hy| B Yo Y i @Ay B Yo Ve
i+1 a” | A B Yo Y@ i+1 o )‘(1) B Yo Y@
i+2 e A B vy Y it2 oo A B Yy Y

Table 5. Case 3.6jo — j1l = 2, |j1— j2l =2, 2= jo+1

coordinate board
Jo Jj2 o+l j1 i+l
i—1 o A B~ vy V(E)

i o )\a) B~ v Y
i+1 o A.z—l) B~ )/(I) Y(2)
i+2 o A B y(I) Y2)
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CAsSeE 4. We consider mainly Case 4.1 (Case 4.2). For the explandtéow,
see Table 6.

Put @ Y(jo), aV(jo + 1)) = (A, &). The assumptionj, = j; means that on the
way from a1 of P to «l*D of P, two boxes ofa = al~3(j,) are removed and
they are attached t6 = «/~3Y(jo+ 1) one by one. Hence we can pat‘{(jo), «®(jo+
1)) = (u, ) and @ V(jo), «®V(jo + 1)) = (v, ¢) using the Young diagrams such that
A>u>vandé < n < ¢. Further, put C-Y(j), a V(o + 1)) = 8,y ). The
assumption|j. — jol = |j1 — jo| > 2 means that we can put((j2), @ (j, + 1)) =
(@D (j2), V(2 + 1)) = (B, ") and @*A(j2), a*A(j2 + 1)) = (B, y) using the
Young diagrams such thgt > 8~ andy~ < y. Let

24 [a(m o(jo+1) | a(j2) a(j2+1)}
BUD) Blo+1) | B BU2+1)

be a vector which corresponds to a tableau obtained ffotoy replacing Young dia-
grams on thejo-th, (jo+1)-st, j-th and (j2+1)-st boards of theé-th (resp. (+1)-st) co-
ordinate ofa with a(jo), «(jo+1), a(j2), a(j2+1) (resp.B(jo), B(jo+1). B(j2), B(j2+1)).

By the definition of tableaux, we find that all the entries oé tmatrix (24) will be
recovered from the first two columns. Hence instead of ushmg matrix (24) we
merely write

[ a(jo) a(jo+1) }
B(jo) BUo+1) |

e[ d]

be the vector indexed by the table®u Putd = d(v, u, 1) and f =d(&,n, ¢). Let
(resp.n’) be a (possibly virtual) Young diagram which satisfies- ©' > v (resp.¢ >

n > &) andu #p (resp.n’ #n). Then by definition (4) and (7), we can check that
both s;s;+15;vp ands;+1s;5;+10p are equal to the following:

rog V] rog V]
adaf|:u )]:|+adbf|:/1, )]/:|+bdaf|:/1,/ )]:|+bdbf|:/1,/ )7/:|.

Table 6. Case 4.1 (Case 4.20=j1, lj2— jol =1j1— jal = 2

Let

coordinate board
Jo Jjotl jo 2+l
i—1 A & B Y-
i iz n B v
i+1 v ¢ B Y-
i+2 v ¢ B~ y
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As for Case 4.3, using Table 7 we can check that.is;vp = s;+15;5i+1Vp.

Case 5. Let {i{,} and {i,] be the sets of Young diagrams defined in
Case 3.1. We also use the notatign, as in (21). Similarly, let{¢})} and {¢;,} be
the sets of Young diagrams such tr;rgr, > ¢ and {oy 94¢ respectively. Further, let
{fv.1) be the set of axial distances defined fy; = d(g(;,), Z, ga)).

First we consider Case 5.1. For the explanation below, sete &

Put

(o), D), @D (j2), @D (j2)) = (e 1 ¢ B7).

As we saw in Case 3.1, under the assumptjore jo + 1, if o (1) # o@*D(jy),
then we can attribute this case to one of the previous onesceHave may assume
o (j1) = «D(j;). The same things also hold far)(j,) and a*?(j,). Hence we
may further assume that®)(j,) = «*?(j,). In other words, we have only to consider
a tableauP of the form presented by the data in Table 8. As we saw in theique
cases, we keep our eyes on thth and the {+ 1)-st coordinates of Table 8. Let

a(jo)
(@) |: B(jo)

be a vector which corresponds to a tableau obtained ffory replacing Young di-
agrams on thejo-th, ji-th, jo-th and (, + 1)-st board of thei-th (resp. { + 1)-st)
coordinate witha(jo), c(j1), @(j2), a(j2 + 1) (resp. B(jo), B(j1). B(j2), B(j2 + 1)). By
the definition of tableaux, we find that all the entries of thatmx (25) will be re-
covered from the entries of the second and the third coluHesce instead of using

a(j) a(ja)
B(1)  B(j2)

a(jz+1) }
B(i2+1)

Table 7. Case 4.32 = jo, |j1— Jj2| = ljo— j1| = 2

coordinate board
Jo Jjotl j1i ji+l
i—1 A & B Y-
i " n B v
i+l " n B~ 4
i+2 v ¢ B~ y

Table 8. Case 5.51 = jo+1, jo=j1+1

coordinate board
Jo 1 o J2t1l
i—1 A ¢ B~

o
a” A(+1) s B~
i+1 a” | A gy | BT
o A e B
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the matrix (25) we merely write

[Of(jl) Ol(jz):|
B(1) BG2) 1

Using these notation, we write
)“+
vp = |: )(»1) i :| .
Sy
Then by definition (5 and (7) we find thak;s;+1s;vp iS equal to the following:
b(;) b()") 2 2 +
) IR P L e |
)\.+ )\'+ §+ é.+ )\‘ {+
s=1 ¢=1 (9)™(@) ()>(1) ()
b() b' () 2 2 _
A ¢ Ao
5 H H(—— a,f,_,‘[ ; <s>]
st <’\<+r>k<+1>> (%/)%) BRI
b'(2) b(2) 2 2 - ¥
A 3 Aoy L6
D e e E
ma et Ewée) Moy €
b'(1)v'(¢) 2 2 _
A ¢ AL
e\t ol Aoy €

Here we used Lemma 2.5 1, 2 to obtain the first line of the eguatibove. In this
equation, if we exchange and ¢, exchange the first and the second columns of ma-
trices, and exchange the first and the second rows of the amsitrthen we have the
same equation. This meanss;s;+1-action ands;s;+1s;-action onvp coincide.

Next, we consider Case 5.2 (Case 5.3). According to Tablee9pwt

A.+
vp = |: )L(+l) C_ j| .
o %o

Table 9. Case 5.2 (Case 5.3)=jo+1, j1=j»+1

coordinate board

Jo 2 1 atl

i—1 o A ¢ B~

. i oz: ){1) ;_ B~

i+1 o )‘(1) ) B
o A e B
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Then by definition (5 and (7) we find that;.1s;s;+1vp iS equal to the following:
b(2.) 2 +
= \Moro/ o fo

b(o) B0 ) » L
¢ A Aoy &

+ z : z :H ( [ ) afl..\-H < E—— > e, o |: (_’) ©) .
== S0l M ) My 8

Here we applied Lemma 2.5 2, 3 to obtain the first line of theatign above. By
direct calculation, we find thad;s;+1s;+1vp coincides with this equation.

As for Case 5.4 (5.5) and Case 5.6, using Table 10 and Tablesiectively, we
can more easily check thats;+15;vp = $;+15;Si+1Vp.

CAse 6. Throughout Case 6 we adopt the notation introduced ini@@e@ Fur-
ther let f be an axial distance defined by=d(&, n, ¢).

CAse 6.1. (Case 6.4.) j,=j1= jo+ 1.
For the explanation below, see Table 12 and Table 13. Put

(Do), & V(ja). D+ 1)) = (@, 2. 8).

The assumptiory, = j; = jo+ 1 means the following:

1) On the way fromal(~—Y to &, one box ofa* = al~Y(jo) on the jo-th board is
removed and it is attached to= «(~1(j;) on the j;-th board. We put

(@Djo). @), @Dy + 1)) = (@, 1y, £).

2) Then on the way frona( to (), two boxes ofi(;, = «®)(j1) on the j1-th board
are moved to the next board. If the two boxes are both disfimeh the box which
is attached at the former step, then we can attribute this tene of the previous
cases. So we may assume thét1(j;) = 1 (Case 6.1.1) on*1(j;) =)' (Case 6.1.2).
Here A’ is a Young diagram which satisfi@:{l) > A > puandir # A'. Hence we

Table 10. A4 p)=nt+1
able 10. Case 5 (Case 5}—2) ] " Table 11. Case 56 =j2+1, jo=5ht1

Jo=Jj2t1
coordinate board coordinate . . board 1
i J2 o o+l 2% R
— i—1 o A e B
i—1 o A ¢ B . —
, — l o A é’(l) B
i o VS B . -
) _ . = i+1 o | rgy ¢ B
prlode gy o) P i+2 |a A ¢ B
i+2 o A e B
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may put

(o, A, n) (Case 6.1.1)
(o, A, ) (Case 6.1.2)

(a(f+2)(j0), a*2(jy), a2y + 1) = (@, 1, ¢).

Note thaté < n < ¢ and there may exist a Young diagrayh such thaté < n’ < ¢
andn’ #n.

CASE 6.1.1. jo= j1 = jo+1, al~D = (*D),

For the explanation below, see Table 12. Let

a(jo) | a(jy) | a(jr+1)
(26) [ﬂ(jo) B3 ﬂ(jl+1)}

be a vector which corresponds to a tableau obtained fRotmy replacing Young dia-
grams on thejo-th, j;-th and (j; + 1)-st boards of thé-th (resp. ( + 1)-st) coordinate
with a(jo), a(j1), a(j1+1) (resp.B(jo), B(j1), B(j1+1)). As we show below, in the pro-
cess oOfs;s;+15;-action ors;.1s;s;+1-action tovp, a set of entrieda(j; + 1), B(j1 + 1)}

of the matrix (26) containg or »’. Hence under the assumption that the matrix (26)
denotes a tableau which appears in the processsafs;-action ors;.1s;s;+1-action on
vp, We merely write

(™D jo), 2V (j), (i + 1)) = [

(27)
S99 ] i etz | SO0 ] i e plae D) s
For example,
[’\?1)]:[“ ) 5} and [’\?1)]:[“ ) 5]
A al r |n A al A |7

We note that all the tableaux which appear in the followindcwation are distin-
guished by the notation (27). Let

A,+
UP:[ il)]

Table 12. Case 6.1.Jo = ji = jo+ 1, a1 = o(*D)

coordinate board
Jo Jj1=j2 jatl
i—1 at A £
i a Ay £
i+1 o A n
i+2 o " s
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be the vector indexed by a table@ Then we have the following:

/
n
sisiv18ivp = H (F) (af[ /;f :|+bf|: l; ])
1
b(2) 2
A 2
(=), af[ ]
oo () (L T
) ) . b()
'\ A e K(s)
e | <r>}+amzH( )
Ay = \Pake/ L e

r=1

b' (1) < AUJ ) i 1 ’
Senl)a (L2 o)
ke ) sy sy

s'=1

b'(1) )‘M /
*d,, Z H\————)aabai |ay |: He) i| by [ He) }
My My )

s'=1
p() ) B o
A A A
+ H ag . \—aq,, af[ ) :|+bf|: ) ]
; <x(,,) (1)> oy (i) ( V() V()
b'(2) 2 ’
A Iz Iz
+ H ag _,bdc”_, af|: i|+bf|: i| .
rZ:; ()\.(, ’))\'-('—l)> o) ) < V(r’) V(,./)

Here we applied Lemma 2.5 2, 3 to obtain the first line of theatign above. Apply-
ing Lemma 2.2 and 2.4 to the second line, the equation (13)Lamdma 2.3 to the
third line from the bottom, and the equation (9) and Lemmatd.3he last line, we
find that this equation is equal to the following:

b(w) < Al ) < " " ’
= \Moke sy His)

b(2) 2 + b(w)
A |: Ap A K(s)
+a, E H a, (r) ] +a, E H |: $
1 <)‘(+r)’\(+1)> )‘ = (*?n“?n) G

r=1
b () A ,
+ Z H ( Fa— ) (aelai, +ad‘/_,b§:,> (aj |: H :| +bf |: lf i| )
= Mok ) sy

b'(A) 2 _ _ ,
A A AL
+ H|—— (adm_, (ae _ad’,>) af|: (r):|+bf|: (r)] )
; <A(r/)k(+1)> OAE e V() V()
On the other hand, we have
b(x) 2 + +
A A A
$i1815i10p = ey ) H <—) ( [ 4 } *h, [ o D
= \*0*o A A)
b(ll) /
A 2 |: 2 :| M
+ H a ar + +bf +
§ <A(+1)“(+s)> . < I(s) 1)
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W A I w7
N e L O e e e
s=1 M) Hsny Hsry
b'()) _ _ /
)\, 2 )\4 wi
S (2 Yo (o[ 20 o[ ]
" X—; (’\(r )*(1)) e < Vi) Vi)
b(w) i i /
+beIZH< )(f[ + :|+bf|: + })
=\ Hs) 28
b (1) M i ’
Bl (o2, )05 )
o \Ber ) Msr) sy

Now we apply the equation (10) and Lemma 2.2 to the first limg moultiply the last
two lines of the equation above by

AN 1 if b 0
b, H — | = o 79
M)\(l) 0o if b,=0
Then this equation will be equal to the following:
b(») 2 ¥ b(w)
A A AL K(s)
aFlZH< + +> é’r|: (r):|+aele< + +>|: +
= \oro A = \*ore/ L K
b(n) AU 4
() (o] 2 o] )
=\ Mok (O] Hes)
(1) Al /
() o) o] 2, 0] 2]
o ok ‘ H(s) My
b'(n) 2 _ _ 4
A Ao A
+> H| —— ) aeaz a/[ ) i|+bf|: ) ] :
=\t " Ve Vo)
Applying Lemma 2.1 2, 1 to the last two lines of the equatioowe) we obtain the

same equation ags;+15;vp.
CASE 6.1.2. jo=ji = jo+ 1, al~ #ql*D),

Table 13. Case 6.1.2 = j1 = jo+ 1, a1 # (*D

coordinate board
Jo Jj1=j2 jatl
i—1 at A £
i a Ay £
i+1 o N n
i+2 o " s
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In this case we assumed= o(~1(j; + 1) and’ = «(*V(j; + 1) are distinct. So

we find ey Z£1 or b,, # 0. By the same method shown in Case 6.1.1, using Table 13
we can put

Ay ]
(28) vp = [ W

Then we have

(29) Sivp = |: )I\L,

Using the notation (17), we have

(30) Si+18iVp = H ( > |: + i| + H ( — aq, |: — ]
s=1 M(S))"/ M(S) s'=1 M(S,))\/ ' IJJ(S,)

Hence using the notation in Lemma 2.2 and 2.3, we have

b(2) + +
LA A )L
L Q. . = . +
sisieasivr = ) H <)JA+ )(a”[ A } . [ ) ])
r=1 (r)
b(4) 2 ” w7
(31) + H( - )ad',ad,« ( ay [ ]"bf[ - })
; Ky ) My H(s)
b'(A) _ _ ’
A A
Ay Ao TR T, [ P ] .
; <)‘( /)N) o (af[ ) ] f[ V()
Here we used the equation (10) and Lemma 2.2 (resp. the egsafil), (18) and

Lemma 2.3) to obtain the second (resp. bottom) line of theato above.
On the other hand, we have

Wt At W Wt
(32) Si+1Vp = —dq, <af|: )\(‘:}-) ]+bf|: )\(‘:}) i|>+bel (af|: )(\’1) i|+bf|: )(\’1) i|>

Sinceb,, # 0 in this case, using (18), (19) ard, = H(ur(y / (11)) we have

’
_ 128 n
§iSi+1Vp = —de, (af[ I :|+bf|: % j|>
b(x) + + /
A, A,
(33) F2H <W)<f[ Hﬂaf[ H)
b’(}\) _ _ ’
A A A
+ H| == , " 1+p () .
2o o o [ oo
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Hence we have

b(p) 2 /
Iz Iz I
Si+18;iSi+1Vp = Z H ( - ,) (—aelad;, +aelad,\.f> (af [ - } +by [ - } )
=1\ Bt F(sy My
b(x) + +
+> H —'fufr (ae,. [ o } +b,, [ 0 D
=t A )»(,,) A A
b'(x) _ _ /
Yo# (2 Ya,, (o] 20 Jen [ 20 ]).
r'=2 )\(r,))\,/ e V(r/) U(,.r)

Sincee; +dy = d),, using Lemma 2.1 we havea,,ay, + a.,aq, = aq,aq,. Comparing
the equation (31), in this case we figgh;+15;vp = 5;+15;8i+1Vp.

CASE 6.2. (Case 6.5.)) j1=jo=j2+1.
For the explanation below, see Table 14 and Table 15. Put

(Ol(iil)(jz), Ol(ifl)(jo)’ Ol(ifl)(jo + 1)) = (o, A, &).

The assumptiory; = jop = j2 + 1 means the following.
1) On the way fromat Y to o), two boxes ofr = a«®~1(jy) on the jo-th board
are moved to the jj + 1)-st board. We put

(@D (), @V (jo), @V (jo + 1)) = (a’ Hay ¢ ) :

2) Then on the way frona‘* to a2, one box ofa = «*Y(j,) on the j,-th board
is attached tax(*V(jo) = 15, on the jo-th board. We put

(«2(j2), *3(jo), & A(jo + 1)) = (@ 1. ¢)-

Similarly as in Case 6.1, we have only to consider the case o“(jo) > uq)-
Namely, if we puty’ = Ky Y (A \ ), the following cases should be considered:

(o, u’,n) Case 6.2.1

D). aD(in). oD (i =
o , O » o +1 -
(i), «?(jo), & (jo + 1)) [(a,u, 7) Case 6.2.2

CASE 6.2.1. j1= jo=jo+1, a®(jo) # ad(jo).

Table 14. Case 6.2.1s = jo = jo + 1, a®(jo) # a*2(jo)

coordinate board
Jo Jo=j1 Jjot1l
i—1 o A &
i a w n
i+1 o Kay z
i+2 o~ nw z
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Since u # n' we haved; 7 +1 andb, # 0. By the same method shown i
Case 6.1.1, using Table 14 we can put

34 = “/]
(34) o [“(1)

Then we have
w w7 2 w7
(35) sjvp =—ay, |a |: _ ]+b |: _ i| +by |a [ _ :|+b |: _ ] .
7 Ky ! K@) VY K@) ! M)
Sinceb,, # 0, using the notation (15), (16) arg, = H(/L(‘l)k / (ui')) we have
w w
Si+1SiVp = —dg, af|: N :|+bf|: 5 :|
b(1) ’
) Kl A A e
+y H as |a +b .
; <W“(+s)> © ( Tluty 1771wy
Hence using the notation (14), we obtain
b(2) 2 + + /
A A AL
SiSi+1SiVp = gl H <)‘er)“,> (—aa,a + aga,, ) <af [ )(L) ] +by [ }(L) ] )

= nA K(s) ko |
+ H|l ——|a, ar |: s i| + bf |: S i| .
Yo (o (oo [ s T

On the other hand we have

(36)

(37) Si+1Vp = [ / } .

> &

Hence we have

% ( 22 ) ( ) xy 7
SitSiSi+1Vp = ) H | ——— | a.a., W[r]+m[ r]
=\ A A
b() ’
A K(s) K(s)
+ZH —— | ao, (af[ ¢ }+bf[ ¢ )
= <W“(s) ) © H(s) )

Here we used the equations (10), (15) and Lemma 2.2 to obtaisdécond line of the
equation above. Sincé; + e, = e, we have—aya, +aqa,, = asa. by Lemma 2.1.
Hence in this case we obtais;+15;vp = $;+18iSi+1Vp.

(38)
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CASE 6.2.2. j1= jo= j2+1, al(jo) = al*2(jo).
By the same method shown in Case 6.1.1, using Table 15 we dan pu

[y ]
Vp = _ .
H)

Then using the notation (15) and (16), we have

% < u? ) ( I w
Si+18iVp = dg, H - Qe af|: + ]+bf|: + ]
= \Fory/ Hes) Hes)
w w
+ bd1 ars |: 5 i| + bf |: 2 ] .
By Lemma 2.4 we havé3 = by, H (uu' / (u(l)x)). Using this, we find that
b(2) + + 4
- pA 2 2 Ay Moy
S;Si+15;Vp = ZH ( E— > (ae,_ad +ae;_bd ) (af |: +bf
= \Hote) ' ' A A
+ %H MZ aay a; |: K(s) :I +bf |: K(s) :|/
= \rory) ) 28

On the other hand we have

b(A /
8i+18iSi+1Vp = (Zl) H <“(11L)i?r)> ag,a’ (af [ )L)(tf) } +by [ )”)(tr) } )

+bz()%H < fL)‘-'- >adlaerbgr (af |: )"z;-) j| +bf |: )\-z;') ]/)

= \Foro A) A

!

+ %H <M—2+> ae;(‘v)(—ae,(\,)) (af [ K(f) ] +by |: K(i) ] )

=2 HeayM(s) He(s) Ke(s)

’

+%H < _“2+ )ag;(s)be,m (af [ KS) ] +b; [ "/(\s) } ) '

=2 HeayM(s)

Table 15. Case 6.2.21 = jo = j» + 1, «®@(jo) = al*?(jy)

coordinate board
Jo Jo=j1 Jjot1l
i—1 o A &
[ o jz n
i+1 o Kay z
i+2 o~ nw z
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Applying the equations (10), (12) (resp. the equations,({%) and Lemma 2.2) to the
second (resp. bottom) line of the equation above, we obtain

% < m ) A A T
B Yo o[ ] )
= \Fore) A A
+§L:)H " (ada —ay, a ) af|: ) j|+bf|: ) ]/
— Cr(s €r(s) " Cr(s .
= \rppy) N0 0 20 “)

Sinced; +e. = e, anddy + e;) = e;(s), using Lemma 2.1 2, 1 respectively we find
SiSi+18;Vp = S;i+15iSi+1Vp in this case.

CASE 6.3. (Case 6.6.) jo = jo = j1 + 1.

For the explanation below, see Table 16, 17 and 18. Put
(a(i—l)(jl), a(i—l)(jo)’ a(i_l)(jo + 1)) = (a, A, £).

The assumption, = j, = j1 + 1 means the following:

1) On the way fromat=D to «@), one box ofr = «l~Y(jo) on the jo-th board is
removed and it is attached o= «"V(j;) on the ji-th board. We putx®(jo+1) =1.

2) Then on the way frome) to a@*Y, one box ofa = «®(j;) on the ji-th board is
removed and it is attached t&d?)(jo) on the jo-th board. We putx*V(j;)) = .

3) Then on the way frome(*V to «(*?, one box ofa*(jy) on the jo-th board are
moved to the next board. We put

(a(i+2)(j1), Ol(HZ)(jO), a(i+2)(j0 + ]_)) =(a7,u,2).

As well as the Case 6.1, we find that the only following casesulshbe considered:

(n',2) (Case 6.3.1)
(@D(jo), @D (jo)) = { (u. »') (Case 6.3.2)
(u,r) (Case 6.3.3).

Here u' and A’ are Young diagrams such that> u/, u < A/, A # A andu’ # pu.
Note also that in these casgs> u.

CASE 6.3.1. jo = j2= ji+1, a"™(jo) = &'~ (jo), «*2(jo) # ¢ (jo).
By the same method shown in Case 6.1.1, using Table 16 we dan pu

(39) v,,:[ ’;’ ]
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Using the calculation (37), and (38) in Case 6.2.1, in thisecare have

% ( 8 ) ( ¥ i
Si+18;Vp = H T ae,_ag;_ ar |: (r) i| +bf |: (r) i|
W) A *
/7(;4) A X « !
+ Z H fL ) Yy | 4 |: (S) :| *by |: (S) :| .
=2 \FHe ’ 8 o)

(40)

Hence we have

(41)
b() > b N .
Py 1) A A
B ) E )[4 15)
T\ ) \F ) A A
b0 ) b B L
Py o) A A
+3 H Cava,, @ |+p.| 2@
qZ:l (M/)‘(_qr)> <Z h()»(r))a e A q,,.) (af |: A :| f |: A

W 7 m w7
SATSNNESIEY
; (“’“Zs)) o < i M)

The first line of the equation (41) should be 0 by Lemma 2.5 3.féxsthe second
line, sinced; +e, = e,, we havea, a, = a4 (a., —a.) by Lemma 2.1. Hence as well
as the first line, using Lemma 2.5 3 we have

b(2) b(2)
h(o. h(%)
Z /’l()(u ))ae,ae ey, = Z /’l()» )( e ey, — Qe ey, ,)
(r) (r)
h(u) : _ —
adlm if q/ =1so }\.(q/) -
= h(w) o - _
—adlm if )\.(q,) - MU
0 otherwise

Table 16. Case 6.3.Jo = j» = j1 + 1, @D (jo) = «~V(jo), a@*2(jo) # & (jo).

coordinate board
Ji_Jo=Jj2 jotl
i—1 o A &
[ a w n
i+1 o~ A n
i+2 o nw z




462 M. Kosuba

Hence we obtain

! ’
_ M w w w w
S"si+lsiUP_H<?>a"l <af[ A }+bf[ A D_% <af[ A ]+bf[ A D
b(u) ’
22 % "
+ H|l——]a o |: :| + bf |: i| .
; (W%)) o < 20 28
On the other hand, since we have
_ [ w }
Si+1Vp = - s
M)
using the calculation (34), (35) and (36) in Case 6.2.1 weshav
w w
Si+18i8i+1Vp = —ag, | ar |: N ] +by |: N i|
b() /
) e (e Lty T |
+ H|——)a, |a +b .
; (“’%)) © ( s "L ug
Sincee; ;) = da by (16), we find that in this cases;+is;vp = si+18isi+10p.

CASE 6.3.2. jo = j2 = j1+ 1, «B(jo) # a1 (jo), «*I(jo) = (o).
By the same method shown in Case 6.1.1, using Table 17 we dan pu

)\'+
Sivp = [ )E}) ] )

Table 17. Case 6.3.2 = jo = j1 + 1, «“V(jo) # D (jo), «D(jo) = o (jo).

+

Since

coordinate board
i Jo=Jj2 Jjotl
o A &

i o I n
i+1 a A n
i+2 o~ " e

i—1
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using the calculation (28), (32) and (33) in Case 6.1.2 weshav

’
SiSi+1SiVp = —d,, (af|: ﬁf, i|+bf|: ﬁf, i|>

b(2)

+ZH<NA()> ( f|: kiﬂ i|+bf|: Ai’) D

b'(A) 3= 3= /
, () ()
i 2; " )»( /)N U \ Y [ A ] *bs [ A ] .

On the other hand, using the calculation (29), (30) and (B1¢ase 6.1.2, in this
case we have

b(x) + +
A A A,
ssonr =0 () o [ 0 [ 30])
=\ A M)
(1)
e ([ 2 ][ 2
1 \He? Hs) M)
H() _
A A A
S a af[ ) }ﬂ)f[ 2 ] .
=\ ) Vi) V)
Hence using the notation (20), we have
b(r) + + ’
LA A A
Si+18iSi+1Vp = ZH( - ) <af[ @ }+bf[ ") })
=y A/A()) A A
b(u) 2 b' (1) h( /
D) 2 2
+) H — d/,d, Ad af[ i|+bf|: }
521: (“(s) )Z hwy) ' < G 8
b'(x) _ _ /
A A
+ H 7 " 1+p () )
2; (Ao )’V> o (af[ A } f[ -

As for the second line of the equation above, siage dy =d,,, by Lemma 2.1 1 we
have the following:

(ad;, ad,«) Ady, = (aelad.« - aelad;,) ad;, = e, (A, 04, — ad,aa,,)
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Hence using Lemma 2.5 4, we have

biu) h(M) ag dq,aq, =da %M (ad aq, — Aaq, dq )
ot Wiy 4 7 g

o )
“h(w)

= h()) B
—aelm if /JLE;) = )\./,

if s=1 so pug =4,

0 otherwise.

Thus we obtain

b(x) 4 4 /
LA A A
Si+15iSi+1Vp = ZH < T ) <af |: r) :| +bf |: (r) :| )
=\ A
w
A

b'(x)
A
+§:H(f,)wm(a
=\t

Sinced(’f(l) = ¢1, In this case we obtain;s;+15;vp = $;+15;Si+1Vp.
CASE 6.3.3. jo=j2= j1+1, a(jo) = a~V(jo), a*(jo) = (o).

By the same method shown in Case 6.1.1, using Table 18 we dan pu

!

Table 18. Case 6.3.% = j2 = j1 + 1, a(™(jo) = a~V(jo), a(*2(jo) = a)(jo).

coordinate board
Ji_Jo=Jj2 jotl
i—1 o A &
i o I n
i+1 a” A n
i+2 a” w e
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Replacingy’ with o in the calculation (39), (40) and (41) in Case 6.3.1, we have
b(») . -
1% A A
S ()2 ][]
q=1 ()
A

b(A
L hey? W & ey [ m
h(u) x;,) A o
b'(2) 2 b(2) _ _ ’
Y K. , o
+zH( )z O-ita, (o[ oo 0]
=\ ) h(g)

b()) A i 1 /
+ a a +b .
Z oo < (?))<f|:/"l“(s) ] f[l‘z}) :|>

Here we used Lemma 2.5 3 to obtain the first line of the equadlmove.
On the other hand, replacing with 1 in the calculation (29), (30) and (31) in
Case 6.1.2, we have

b(X) + +
n A A
sisi+vp = ) H (ae,. [ } +b, [ Q) D
3o (i) (o [ ][0
(1) 2 ’
+ZH( Mk>a§‘_,<af|:uu i|+bf|:uu ])
s=1 Hesry ) )
b (1) _ _
w Ar Ao
+ H{—)aqy, af|: ) ]+bf|: ) ] .
; (’Vr')) v ( V() V()

(42)

Hence we have

(43)

b(2) N .
A A
51+1s151+1UP—ZH< e ><af|: )(: ]+bf|: )(:) j|>
r=1 (’)
b(w) 3 ,
h'( )2 ad.: |: 12 :| |: " :|
+ : a +b
h() Z h(r)) TLa A
b(n) 2 b'(n) /
" h(w) ( [ n ] M
+ H —q,dd,, | af +by
; (V«M) 2:2 h(i) 8 1)

b () _ o
w )\' r' )\' r
+ZH(F>ado(’ <af|: g“) ]+bf|: g\‘) i|>
r'=2 ()
Now we see that the expressions (42) and (43) coincide. Tkt liives of them are
obvious. As for the second lines of them, by Lemma 2.5 5 thepoide. We show
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that the third line of the expression (42) and the last linethef expression (43) are
equivalent. To prove this, we have only to show the following

(44)

Sincee, +dy(y = ey, by Lemma 2.1 1 we have

2 — — 2
Ao, Ae,, = e, (af’rado(ﬂ) - af’r',rada(r')) - (ae,- - ae"a()r/,l') Ady iy -

Hence if we use Lemma 2.5 3, we can show that the equation (@ds.hSimilarly,
we can show that the last line of the expression (42) and tiné line of the expres-
sion (43) are equal. Hence in this case, we obtainis;v, = si+15iSi+1Vp.

3.2. Preservation of the other relations. In the following, we check thafp,}
preserve other relations”(l), (P3)—(P8). By the definition of{p,}, the relations P3),
(P4), (P5), (P6) are immediately checked. We focus on the relatioR4)( (P7)
and (P8).

Proposition 3.1. p, preserves the relatio(P1).

Proof. Let M; be the matrix defined in Section 1. We have only to show that
M? =1 (the identity matrix). In case tha¥; is given by the matrix (4) or (7) this is
easily checked.

Consider the case that; is given by the matrix (5). Since the matrix is symmet-
ric, in order to show thatM? =1, we find that the following equations must
be checked:

% h(\) +'§:) 1 ) hGiy)
T h0G) LS d(gyagy)? he)  hR)
bﬁ% 1 ) :h()‘(;é))
r=1 d()“(_ré)’)“’)“z;‘))z h()‘?r)) h()
DRI L ) g
T E Ay R M) d (g 2 2Gy) ()
% 1 )
= Ay kA (Mg i 2gy) h(Gy)
50) 1 e

; d(Agpye 2 ay)  R(AG)



IRREDUCIBLE REPRESENTATIONS OF THEPARTY ALGEBRA 467

Here 1< rg,r1 < b(A), 1 <rj,ry <D'(X) andrg Z ry, ry 7 r1. Applying Lemma 2.5,
we immediately obtain the equations above. U

Proposition 3.2. p, preserves the relatioP 7).

Proof. Consider the subalgebtd, s1, s2) of A,(Kp). This algebra is isomorphic
to the algebraAs(Kp). Hence, it is sufficient to prove that the proposition holds
for A3(Kp).

Put o = [a(1), @(2), «(3)]. Fig. 4 will help the reader to understand the following
argument.

If |«(1)] = 3, then none of the tableau of shapehas P, [],d] at its second
coordinate Hence in this case we hayg /) = 0 and obviously the proposition holds.

Next, consider the case = [[],[ ], Y] and let Q1, Q», Q3 be all the tableaux of
shapea defined by

01 = (¢, [1.0.0).[[10.9.9]. ) .
0> = («, (0. 0.0, [H.0.9] ),
Q3 = (a(O)v [I:L @v @]’ [@7 D’ (0]7 ('l) .

Then the representation matrices j6fand s, with respect to this basis become as fol-

lows:

1 1 1
2 2 2
) 8 8 8 1 1 1
IOOC(f) - 5 IOOC(SZ) - 2 2 ﬁ

001 -
= = 0

V2 2

Hence in this case, we can check that the proposition holddidegt calculation.
Finally, consider the case =[#, #,[ ]]. In this case, there exists only one tableau

of shapewx. The generators, and f identically act on this tableau. Hence in this case

the proposition holds. ]

Proposition 3.3. p, preserves the relatioP8).

Proof. As we saw in the proof of the previous proposition, sit sufficient to
prove the proposition holds fad4(Ko).

Put e = [a(1), 2(2), 2(3), «(4)]. Again Fig. 4 will help the reader to understand
the following argument. Similarly as in the proof of the pmws proposition, we may
assume thalx(1)| < 4.
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Consider the case = [[ [ ],[],4,4]. Let P1,..., Ps be all the tableaux of shape
a defined by
1= (@@, e, [(17,0,0,0],[(1T1,9,0,9], &),
(a(o> o, [T, 9,0,0], [Bﬂ 9,0, @] ,a) :
(a“’) @ [B 9,0, @] [Bi\ @, 9, @] ot)
2 = (@@, [(17,0,0,01,[01.00,9.9], @),
((0) @ [Hg@@] [DD@@]a)
Pe = (. &V, [0.01.0.01. [1.[0.9.9]. ).

Then the representation matrices fifs1, s, and sz with respect to this basis become
as follows:

loot(f) = dlag(Q Os 0, Os o’ 1)5
pals1) = diag(1 1, -1, 1, —1, 1),

1 0 0 0 0 0
-1 \/‘_3,
0o — = o0 0 0
2 2
J3 1
0o — = 0 0 0
2 2
pu(SZ): 1 1 \/E )
0 O 0 > > -
1 1 =2
0 O 0 5 5 o
V2 -2
0 O 0o — —= 0
2 2
1 V2 NG
3 3 0 = 00
V2 2 -3
5 3 0 — 00
pal(s3) = 0 0O 0 0O 10
V6 V3
-~ =~ 0 0 00
3 3
0 0 1 0 00
0 0O 0 0O 01

Using these matrices we can check that the relati®8) (holds.
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Similarly, for the cases = [H,D,@, @], [0, 11,9, 9], [@B @, @], [0, 9,.01. 9],
[9, 4,9, ]], we can concretely obtain the representation matricestlamdaelation {8)
will be checked by the direct calculation. Ul

4. Proof of the main theorem

This section is devoted to prove the main theorem.

In order to know whether two representations 4f(Ko) are equivalent or not, it
is useful to check that how they split into irreducible onas.4,_1(Ko)-modules. So
we consider the following set. Legp be ann-tuple of Young diagrams of height.
Then the restrictiory|,_1 of y to A,_1(Ko) is defined by

VIt = {y,’, Yy < y} .

Lemma 4.1. Leta = [a(1),...,a(n)] and B = [B(L), ..., B(n)] be twon-tuples
of Young diagrams whose heights are bathFor thesew, 8, define two integersg
and k; by

ko=maxj | a(j) 79}, ki=max; | B(j) 7 2}

Assume that > 3. If « # B, then the following statement holds
1) a'll*l # ﬂ|)1711 or e|Se

2) ko=ky, a(j) = B(j) =0 for 1= j < ko and {a(k). (ko)) = {11 1H}.

Proof. Assuming thatt # g and «|,—1 = B|,—1, we show that the second state-
ment holds. Without loss of generality, we may further assuhatk,; < ko, or else
k1 = ko and |B(ko)| = la(ko)l. Since ifky < ko then B(ko) = ¥ and |B(ko)| < la(ko)l,
we may always assume that < kg and |B(ko)| < |a(ko)|.

First we show thaig(ko)| = |a(ko)| (accordingly we have; = kp). Assume that
|B(ko)| < |a(ko)|. If there exists aj (0 < j < ko) such thatx(j) # @, then there exists
an n-tuple of Young diagram#’ € «|,_1 such that

o =[a(d),....a(i) a() ", ... alko), 9, ..., 0],

where j' = j — 1, a(j')" > «(j) and«(j)~ < «aj). The assumptionB(ko)| < | (ko)
makes us unable to obtajf from o'. This contradicts the assumptiai,_; = Bl,—1.
Hence if |B(ko)| < |a(ko)|, thena must be of the form

=0, ,0 alk)?, ..., 0.

However, this requires that

(45) )y = |[@, 0, ..., 0. atko) . 0. ... @] ‘ a(ko);, < a(ko)}.
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Sincek; < kg, B must be written as one of the following forms:

l) k1 = ko andﬂ: [Q,g...,g,ﬂ,ﬂ(ko),ﬂ,...,@],

2) 3<koandp= [D,(ZJ,...,@,D,a(ko)(‘p),@,...,(ZJ],

3) kp=2andB=[T1. a (ko)) g....9],

4) k=2 andf= [H,a(ko)(_p), @@]

The first one contradicts the assumptif(ko)| < |a(ko)|. In the second case, there
exists ann-tuple of Young diagramg’ < B which is not contained in the set (45).

In the remaining cases, in order thél, 1 = a|, 1 holds,a(ko)(‘p) must be the empty

partition and this contradicts the assumptior- 3. Hence we obtaita(ko)| = | B(ko)].
Accordingly, k1 = ko follows.

Next we show that{a(ko), B(ko)} = [D]E} Since «l,_1 = B|,_1 requires
{a(ko);y | (ko) < a(ko)} = {Bko)y) | Blko)y, <t Blko)}, we find thata (ko) = (ko)
or |a(ko)l = [B(ko)l = 2. If a(ko) = B(ko), thenal,—1 = Bl,—1 requiresa(ko — 1) =
B(ko — 1) and inductively we obtaim(j) = g(j) for 1 < j < ko. This contradicts the
assumptione # 8. Hence we obtaifa(ko), B(ko)} = {[D H]

Finally, we show thatx(j) = B(j) =¥ for 1 < j < ko. Note that since: > 3, we
can assume that 2 ko. If there exists arx(j) # @ for 1 < j < ko, then there exists
an n-tuple of Young diagram#’ € «|,_1 such that

o =[a(),...,a(j), a()", ..., alke), D, ..., 7]

However sincela(ko)| = |B(ko)l and a(ko) # B(ko), we can not obtai3 from o'. This
contradicts the assumptiag,,_; = B|,—1. The same argument also holds fér Hence
we havea(j) = B(j) =0 for 1 < j < ko. Thus we have proved the lemma. ]

Lemma 4.2. Leta=[a(l),...,a(n)] be ann-tuple of Young diagrams of height
n. For an arbitrary distinct pair {ag, o} C al,—1, there exists am-tuple of Young
diagramsy” of heightn — 2 such thaty” < ay and y”’ < o).

Proof. Assume thaty, (resp.ea;) is obtained froma by moving a box on the
Jjo-th (resp. ji-th) board. Namelyp; and oy are written as follows:

(X6 = I:a(l)v L) (l(jo - 2)’ a(](/))-('-p)’ O!(jo)(_p,), Ol(jo + 1)’ L) (l(l’l):l ’
aél = I:a(l)v e (l(j]_ - 2)’ a(]i)-('-q)’ a(jl)(_q/)’ a(jl + 1)’ e a(n):l .

Here j; = jo—1 and j; = j1 — 1. Since without loss of generality we may assume that
Jj1 < Jjo, the following cases should be considered.

CAasel. j1<jo—2.

In this case,

)= [a(l), o@Dy @U@ Uy @)y - -+ a(n)]
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satisfies the required condition.
CAsSE 2. j1=jo—1.
In this case,

y' = o), .. (D, G, aliolgy - )|
satisfies the required condition.

CASE 3. j1 = Jo.
In this case,

Y'= [a(l), R0 M 107) I a(n)] .

satisfies the required condition. Here

a(jo)(n Y alio)y) it a(io)y 7 (o))
a(jg)™ = { one of the Young diagrams .

ali’ + = ali + ’
such that a(jo)™ > o, () (o)) = 2(lo)y)
«(jo)p) N @)y it a(jo),) 7 (o))
a(jo)”~ = { one of the Young diagrams . o N 0
if a(.lo)(p/) = ()l(jo)(q,),

such that a(jo) ~ < a(jo),

Proof of Theorem 1.4. Since we have shown that the repregergap,} are
well-defined, we have only to show that they are also abdgluteeducible and mu-
tually non-equivalent. We do this by induction an

If n =0, then the result is obvious. So is the case 1. If » = 2, we can eas-
ily check that the (three) representations are mutually-isomorphic. Since they are
all one-dimensional and dim,_1(Ko) = 3, we find that they make a complete set of
absolutely irreducible representations. Assume that 3 and the theorem holds for
n—1. Let A = (f,s1,...,5, 2) be the subalgebra ofl,(Ky). This algebra is iso-
morphic to the algebrad, 1(Kp). Consider the restriction of the representatjgn of
A,(Ko) to the subalgebrad’. Suppose thate,—1 = {«], ..., a;}. We divide the set
T(a) of the standard tableaux of shapeinto subsetsT(a}). ..., T(et). Here T(e),)
is the subset ofl'(«¢) whose ( — 1)-st coordinate i&},. We define subspacés(a;,) of
V(«r) corresponding to these subsétfx),). Namely,

V() = Z Kovp.

PeT(a))

Then the definition of the action ofi, ..., s, » and f implies thatV(a;,) is stable
under the action ofd” and induction hypothesis shows tﬁﬁ(a;) gives an absolutely
ireducible representation of,_1(Ko) (henceA’) and that ifp # ¢ thenV(«,) is not

isomorphic toV(a;) as A,_1(Ko)-modules.
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Let W be a non-zero subspace ¥{a) ® Ko as A, ( Ko )-modules, wherek, de-
notes the algebraic closure of the fielth and A4,( Ko) = A, ® Ko. If we considerw
as anA’' ® Kg-module, then it contains some irreducible compoﬁ@(&’p) of A ®Ko.
Let o (¢ # p) be anothem-tuple of Young diagrams contained wl,—1. Then by
Lemma 4.2, there exists am-tuple of Young diagramg” contained in bothoc’p|n_2
ande |,». Let P be a tableau of shape whose  —2)-nd and g —1)-st coordinates
are y” and o/, respectively. We can obtain another table@uof shapea from P by
replacing the § — 1)-st coordinate of? with o.

Now we claim that there exists a projectiepy of A,(Ko) such thateppvp = vp.
By induction assumption, A’ is an absolutely semisimple algebra with the minimal
central idempotent$z, }, labeled byn-tuples of Young diagrams of height £1). Ac-
cording to the classification in the proof of Lemma 4.2, cdasithe action ofs,_; €
A, (Ko) one by one.

CAasel. j1<jo—2.
In this case, we have, i1vp = vy and the claim is proved.
CASE 2. ji1=jo— 1.
In this case we have

1 \/ G
(70 @) @G | MG ) h(@l,) 2

Zoz;snflvP = d(

Since the coefficient ob, is not equal to zero, the claim is proved.
CASE 3. J1 = Jo-

In this case, the following four cases are considered. Irh EBGE, 2y, Sn—1 sends
vp non-zero scalar multiple oby, so the claim is proved. In the following, we put

d = d(a(jo). a(jo)ty. @(j)™) ande = d(a(jo) ", @(jo). ¢(jo))-
CasE 3.1. a(jé)zp) 7 O‘(jé)zrq) and O‘(J.O)G,') # Ol(jo)@r)-
In this case we have

2o, Sn—-1VP =

CASE 3.2. a(jo)(,) # (o), and a(jo), = @(jo) -

In this case we have
_|d?-11
Za),Sn—1VpP = TEUQ-
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CAse 3.3. a(jo),) = a(io)iyy and a(jo)y 7 @(jo))-
In this case we have

1 [e?-1
Za;,sn—lvP - E o2 Vg.

CAst 3.4. a(jo),y = «(ig)yy and a(jo);,y = a(jo)y,-
In this case we have
11
Zot;,snflvP - EZUQ-

The claim implies that the irreduciblg’-module W also contain§v(a’q) as well
asV(a),). Since the choice ok, was arbitrary, we obtain

WD @ V() ® Ko = V(&) ® Ko (as. A’ ® Ko-modules)

’
o) s

In casen > 3, Lemma 4.1 asserts that ¢ # B either V(x) and V(B) are non-
isomorphic already asl’-modules, or else

{a, B} = {[@,...,@,@,[D],[@,...,@,@,H]].

We show that even in the latter case, and pg are mutually non-isomorphic. In the
latter case, we have

“|nfl = ﬂ|nfl = {)’, = [@7 ceey Qv Da D]}
Hence we can take” € y’|,_» so that

Y =09,....0,[11,9].

If we choose a tableaw of shapea so that its 4 — 2)-nd and & — 1)-st coordi-
nates coincide withy” and y’ respectively, then the tablea@ obtained fromP by
replacing then-th coordinatex with B is a tableau of shapf. The generatos, ; of
A,(Ko) acts differently onvp and vy. HenceV(«) and V(B) are non-isomorphic as
A, (Kg)-modules.

Since

2

_ n! 2 1 .
dim @V(oc) = Z <A1!A2!~--A,,!> " =dim A, (Ko),

ac, rEP(n)

{pe | @ € Ay(n)} define a complete set of the representative of the irreceicidgbresen-
tations of A4, (Kp). In particular, the party algebrd, (Ko) is absolutely semisimple and
the Bratteli diagram of the sequenéd;(Ko)}i=01...» IS given by the graph,. O
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