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Abstract

We first show that homogeneous submanifolds with abeliaTmabibundle in
a symmetric space of non-compact type occur as principaltsordsf complex
hyperpolar actions on the symmetric space. Next we show #flattomplex
hyperpolar actions with a reflective orbit are orbit equevdl to Hermann type
actions. Furthermore, we classify complex hyperpolaroastiwith a totally geodesic
orbit in the case where the ambient symmetric space is icibtu Also, we list up
the cohomogeneities of Hermann type actions on irredudcilemetric spaces.

1. Introduction

A proper isometric actionH (which is automatically compact) on a symmetric
space of compact type is calledhgperpolar actionif there exists a properly embed-
ded complete flat submanifold of the symmetric space meeting al-orbits orthog-
onally. The submanifoldz is automatically totally geodesic and it is calledsection
of the action. Hyperpolar actions have necessarily simgataits, which are inter-
preted as the polar set of the action. Principal orbits ofelngplar actions are equi-
focal submanifolds in the sense of [17]. A. Kollross [14]sddied hyperprolar actions
on irreducible symmetric spaces of compact type. Accordinghe classification, a
hyperpolar action on the symmetric space is a Hermann acfioa cohomogeneity
one action, where a Hermann action implies the action of ansstmc subgroup of the
isometry group of the symmetric space. Recently, the authby has introduced the
notions of a complex equifocal submanifold in a symmetriacgpof non-compact type
and a complex hyperpolar action on the symmetric space. eThesons are defined as
follows. Let G/K be a symmetric space of non-compact type &hcde an immersed
submanifold inG/K. The submanifoldM is called acomplex equifocal submanifold
if the following conditions (i)—(iii) hold:

(i) M has abelian normal bundle, that is, the sectional curvaifiany 2-plane in the
normal space oM is equal to zero,

(i) the normal holonomy group oM is trivial,

(iii) for any parallel normal vector fieldv of M, the complex focal radii along the
normal geodesig,, with y, (0) = v are independent of the choice gfe M, where
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492 N. KoIkE

¥, (0) is the velocity vector ofy,, at 0.

In the case wheréV is complete and real analytic, the complex focal radii aldmg
normal geodesi¢z of M surjectively correspond to focal points along the comfiedi
normal geodesig® of the complexified submanifolt® (which is a submanifold in the
anti-Kaehlerian symmetric spa¢g®/K°®). See [11] about the definition of the complex
focal radius. See [11, 13] about the study of a complex eqalfsubmanifold. LetH

be a closed subgroup db. If there exists a properly embedded complete flat sub-
manifold ¥ meeting allH-orbits orthogonally, then thél-action onG/K is called a
complex hyperpolar actionThe submanifold® is automatically totally geodesic and it
is called asectionof the action. Note that complex hyperpolar actions are maes-
sarily compact group actions. It is known that principal itelof complex hyperpolar
actions are complex equifocal (see Theorem 12 of [11]). Is gaper, we first show
the following fact.

Theorem A. All homogeneous submanifolds with abelian normal bundleain
symmetric space of non-compact type occur as principalt®rbi complex hyperpolar
actions on the symmetric space and hence they are compléoeju

Thus the study of homogeneous submanifolds with abeliamabbundle in a
symmetirc space of non-compact type is reduced to that ofptemhyperpolar ac-
tions. Complex hyperprolar actions do not necessarily rgwagular orbits (i.e., the
polar set). However, for almost all complex hyperpolar @wiiH on G/K, the com-
plexified actionsH® (which are actions on the anti-Kaehlerian symmetric sgage ©)
have singular orbits (i.e., the polar set). The polar setighbe named complex polar
set of the original action. From this reason, the origindloas were named complex
hyperpolar actions. It is expected that the study of a complgerpolar action will
be useful to that of harmonic analysis on a symmetric spaceonofcompact type. If
H is a symmetric subgroup o6, then theH-action onG/K is called aHermann
type action It is known that a Hermann type action is a complex hyperpalzion
admitting a reflective orbit (see [12]), where the refletyiimplies that the geodesic
reflection in the orbit is a globally well-defined isometry Gf/ K. Conversely we can
show the following statement.

Theorem B. Let G/K be a symmetric space of non-compact typhere G is
assumed to be simply connectéthen all complex hyperpolar actions on/& admit-
ting a reflective orbit are orbit equivalent to Hermann typetians

Reflective submanifolds are totally geodesic. Hence weraliyuthink if the state-
ment of the above theorem holds even if the part of “reflectivieit” is replaced by
“totally geodesic orbit”. However, it is shown in [5] thatette exist conomogeneity one
(hence complex hyperpolar) actions @yK admitting a totally geodesic orbit which
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is not orbit equivalent to a Hermann type action. Complexengplar actions on ir-
reducible symmetric space of non-compact type admittingtally geodesic orbit are
classified as follows.

Theorem C. Complex hyperpolar actions on an irreducible symmetriccspaf
non-compact type admitting a totally geodesic orbit areidguivalent to a Hermann
type action the Gg-action on SQ@(3, 4/SQ3) x SAO4), the SU1, 2)action on
G2/SQ4), the SI3, R)-action on G/SO4), the Gs-action on S@7, C)/SQ(7) or the
SL(3, C)-action on G/G,.

REMARK 1.1. Five actions other than a Hermann type action in thitestant
are of cohomogeneity one.

From Theorems A, B and C, the following facts for homogenesuismanifolds
with abelian normal bundle follow directly.

Corollary D. Let M be a homogeneous submanifold with abelian normal leundl
in a symmetric space K of non-compact type
(i) If M admits a reflective focal submanifold and G is simply emtad then M
occurs as a principal orbit of a Hermann type action
(i) If M admits a totally geodesic focal submanifold andtGis irreducible then M
occurs as a principal orbit of a Hermann type action or one @é fhon-Hermann type
actions in the statement ofheorem C.

For complex hyperpolar actions admitting a totally geodgsincipal orbit, we can
show the following fact.

Theorem E. Complex hyperpolar actions on an irreducible symmetriccspaf
non-compact type admitting a totally geodesic principabibrare orbit equivalent to
the SQ(1, m— 1)-action on the hyperbolic space §Q, m)/SQm), where m> 2.

2. Proofs of Theorems A, B, C and E

In this section, we shall prove Theorems A, B, C and E. First, prepare the
following lemma.

Lemma 2.1. Let G be a semi-simple Lie group equipped with a bi-invariant
pseudo-Riemannian metric, ), H be a closed subgroup of G G (where H acts
on G by the adjoint representatipand a be an abelian subspace of the normal space
Ts-(He) of the orbit He at ewhere e is the identity element of. Ghen T = exp;(a)
meets all H-orbits througt® orthogonally whereexp, is the exponential map of G
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Proof. Denote by the Lie algebra ofH. Let X € a. Easily we can show
Te(He) = {Y — Z | (Y, Z) € b}
and
(eXRs Xo), (Texps xoH (€XPs X0)) = {Ad(exps Xo) (Y) — Z | (Y, Z) € b}.
For any Y, Z) e h and W € a, we have
(Ad(exps Xo) (YY) —Z, W)e=(Y = Z, W)e=0

Hence it follows that (exg Xo);l(Tex,[,G x,H(eXps Xo)) is orthogonal toa, that is,
Texp, xoH(€XPs Xo) is orthogonal to (exp Xo)«(a) = Texp, x,=. This completes the
proof. O

By using this lemma, we can show the following fact.

Lemma 2.2. Let G/K be a symmetric space of non-compact tyidebe a closed
subgroup of G anch be an abelian subspace of the normal spacgH(eK) of the
orbit H(eK) at eK. Then X := expf) meets all H-orbits through® orthogonally
whereexp is the exponential map of .

Proof. Letn: G — G/K be the natural projection. The spagés identified with
the horizontal lift ofa to e with respect tor. Since orbits of theH x K-action on
G are the inverse images of orbits of thé-action onG/K by =, the subspace
is contained in the normal spadigL(H x K)e of the orbit H x K)e at e. Hence,
according to the previous lemma; = exps(a) meets all H x K)-orbits throughE
orthogonally. ThereforeZ := exp() meets allH-orbits throughZ orthogonally. [

By using this lemma, we prove Theorem A.

Proof of Theorem A. LetM be a homogeneous submanifold with abelian normal
bundle in a symmetric spac8/K of non-compact type. Sinc# is homogeneous,
there exists a closed subgrotp of G having M as anH-orbit. We shall show that
the H-action is complex hyperpolar. Without loss of generalitye may assume that
M = H(eK). By the assumption, the normal spat&M is an abelian subspace of
Tek(G/K). According to Lemma 2.2, it is shown that the complete flaaltp geo-
desic submanifold := exp(Tgik M) meets allH-orbits throughZ orthogonally. Take
any gK € G/K and a piecewise smooth curye [0, 1] - G/K with x(0) =eK and
u(1) =gK. SinceH-orbits give a singular Reimannian foliation @yK and G/K is
complete, by imitating the proof of Lemma 2.1 of [3] (even hktfoliation has singu-
lar leaves), we can construct a rectangid0, 1] x [0, 1] = G/K such thats(t, -) lies
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in an H-orbit for t € [0, 1], §(-, s) meetsH-orbits orthogonally and thai(t, t) = w(t)
(t € [0, 1]). Clearly we haves(1, 0) e H(gK) N X. Thus the orbitH(gK) meetsX.
Therefore we see that all-orbits meetX orthogonally. This implies that thel-action
is complex hyperpolar and thafl = H(eK) is a principal orbit of theH-action. This
completes the proof. ]

Next, by using Lemma 2.2, we prove Theorem B.

Proof of Theorem B. LefG/K be as in the statement of Theorem B aHdbe
a closed subgroup o such that theH-action onG/K is a complex hyperpolar ac-
tion admitting a reflective orbit. By replacingl by its suitable conjugate group if
necessary, we may assume th#feK) is a reflective orbit. For simplicity, setl :=
H(eK). Since M is reflective, so is alsiM+ := exp(T;xM). Denote byg (resp.f)
the Lie algebra ofG (resp.K). Let g =f + p be the Cartan decomposition. Let
B be the AdQG)-invariant non-degenerate inner product gfsuch thatBl;.; is neg-
ative definite, Blsx, = 0 and Bl,xp = (, ek, Where( , ) is the Riemannian met-
ric of G/K and p is identified with Tex(G/K). Setbh’ := ni(TexM) & TexkM and
m’ = (f © nj(TekM)) @ T M. Clearly we haveg = ' & m’ (orthogonal direct sum)
andn;(Tex M) = n;(T;k M). SinceM is reflective, bothTexM and T;x M are Lie triple
systems. By using these facts, we can show

(2.1) B.p1cy, [B,mlcm’ and W,m]cCyh.

Let H' be the connected subgroup Gf having )y as its Lie algebra. It follows from
(2.1) and the simply connectedness®fthat H’ is a symmetric subgroup d&. That
is, the H’-action onG/K is a Hermann type action. We shall show that theaction
and theH-action have the same orbits. Denote by (resp. py) the orthogonal projec-
tion of g ontop (resp.f). Also, leth be the Lie algebra oH. We haveT,((H x K)e) =
pry(h) +f and Te((H" x K)e) = pr,(h’) +f = TexM +f. On the other hand, it follows
from 7=1(M) = (H x K)e that TekM = pr,(Te((H x K)€)). So we haveTexM = pr, (h)
and henceTg((H’ x K)e) = Te((H x K)e). This implies H’ x K)e = (H x K)e,
which furthermore impliesH'(eK) = H(eK). Let X be a section of theH-action
through eK. Seta := TekE, which is abelian. Sincer C T,k (H'(eK)), it follows
from Lemma 2.2 thatH’-orbits through® meet = orthogonally. On the other hand,
we have [pf(h), Tek M] = pr,([h, TekM]) C Tex M, that is, pf(h) C n;(Tex M), which
together with py(h) = Texk M implies thath C b, that is, H C H’. HenceH’-principal
orbits throughX coincides withH-principal orbits through®. From this fact, it fol-
lows that theH’-action and theH-action have the same orbits. This completes the
proof. J

Next we prove Theorem C.
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Proof of Theorem C. LeG/K be as in the statement of Theorem C afidbe a
closed subgroup o6 such that theH-action onG/K is a complex hyperpolar action
admitting a totally geodesic orbit. According to the cléisation of cohomogeneity
one actions admitting a totally geodesic orbit by Berndtdau [5], if the H-action
is of cohomogeneity one, then the action is orbit equivaterd Hermann type action
or one of five non-Hermann type actions in the statement obfidre C. Assume that
the H-action is of cohomogeneity greater than one. By repladihdoy its suitable
conjugate group if necessary, we may assume Hh@K) is a totally geodesic orbit.
For simplicity, setM := H(eK). Let H’ be a connected subgroup & defined as in
the proof of Theorem B. By the same argument as in the proofhefofem B, we can
show that theH’-action and theH-action have the same orbits. gt := nj(Tex M) @
V=1TekM (C g* == f+ /—1p C g%. Let H* be the connected subgroup G (:=
exp g*) having b’ as its Lie algebra. Since thkel’-action is a complex hyperpolar
action of cohomogeneity greater than one, it follows thatkti*-action is a hyperpolar
action of cohomogeneity greater than one on the irreduaplemetric spac&*/K of
compact type. According to the classification by A. Kollrg$4] of hyperpolar actions
on irreducible symmetric spaces of compact type, kié&-action is orbit equivalent to
a Hermann action. We denote this Hermann action HY*Y. By replacing #’*) by
its suitable conjugate group, we may assume t#t)Y(eK) = (H'*)(eK). Then the
dual action H"*)"" of (H"*) is defined. The {"*)"*-action is a Hermann type action
and it is orbit equivalent to thél’-action. Therefore, théd-action is orbit equivalent
to the Hermann typeH'*)*-action. This completes the proof. O

Next we prove Corollary D.

Proof of Corollary D. According to Theorem AVl occurs as a principal orbit of
a complex hyperpolar action o8/K. If M admits a reflective (resp. totally geodesic)
focal submanifold, then the focal submanifold is a reflect{ivesp. totally geodesic)
singular orbit of the action. Hence the statements (i) afdofi Corollary D follow
from Theorems B and C, respectively. O

Next we prove Theorem E.

Proof of Theorem E. LeG/K be an irreducible symmetric space of non-compact
type andH be a closed subgroup @& whose action onG/K is a complex hyper-
polar action admitting totally geodesic principal orbity BeplacingH by its suitable
conjugate group if necessary, we may assume that the br{@) is a totally geo-
desic principal orbit. LetH’ be a connected subgroup &f defined as in the proof of
Theorem B. As in the proof of Theorem B, we can show that ieaction and the
H-action have the same orbits. Let’* x G*/K — G*/K be the dual action of the
H’-action. Then it is shown that’*(eK) is totally geodesic principal orbit. Hence,
according to the result in [6], thél’*-action is conjugate to th&Qm)-action on the
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sphereSQm+1)/SQm) (m > 2) and hence it is also conjugate to tB&(m)-action on
the sphere, wher&Qm) denotes the subgrouP((lJ 2) ‘ Ae S(Im)] of SQm + 1)

and SO(m) denotes the conjugate grou{ '8‘ 2) ‘ Ae S(Xm)]. It is easy to show

that the tangent spacé&sgm)H*(€SAm)) and TesqmSO(m)(eSAm)) are Lie triple
systems 0fTesgm)(SQmM+1)/SAM)) (C so(m+ 1)) and that they map to each other by
an element of the AGQm))-action. From this fact, it follows that thel’-action is or-
bit equivalent to the dual action of t&J(m)-action, that is, theSQy(1, m — 1)-action
on the hyperbolic spac8Qy(1, m)/SAm). After all, the H-action is orbit equivalent
to the SQy(1, m — 1)-action. U

3. Hermann type actions and their cohomogeneities

In this section, we shall list up Hermann type actions onduble symmetric
spaces of non-compact type and their cohomogeneities. G/ be an irreducible
symmetirc space of non-compact type abdbe a symmetric subgroup db. Let
0 (resp.o) be an involution ofG with (Fix6)o Cc K C Fixé (resp. (Fixo)o C H C
Fix o). By replacingH by its suitable conjugate group if necessary, we may assume
thatd oo =0 0. SetL :=Fix(c o). The orbit H(eK) and explx(H(eK))) are
reflective submanifolds, where exp is the exponential mag oK. It is shown that
the submanifold exfgix(H(eK))) is isometric to the symmetric spade/H N K and
that the cohomogeneity of thel-action is equal to the rank of /H N K. By us-
ing this fact, the cohomogeneities of Hermann type actiomsreducible symmetric
spaces of non-compact type are listed up as in Tables 1-5abte§ 1-5,A- B de-
notes A x B/II, whereIl is a discrete center oA x B. The symboIS(i(\l,/S) in

the line of Type FII-Il of Table 5 denotes the universal coveringS®(1, 8) and the
symbol « in the line of TypeG” of Table 5 denotes an outer automorphismG#:
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Table 1.

type H G/K =L/HNK cohom
Al-l Sle ()] SL(n,R)/SQAn) SL(n,R)/SAn) n—1
AL’ sQ(p.n-p) SLn.R)/SCM) e Ay A . n-1
Al-Il Sun,R) SL(2n,R)/SQ2n) SL(n,C)/SU(n) n-1
Al | SHPR>EL=R.R) Sl R)/san) SQ(p.n—p)/SQAP)xSCAN—P) | min{p.n—p}
Al-lllY SLn,C)-U (1) SL(2n,R)/SQ2n) SH(n,R)/U(n) n

All-I SO (2n) SU*(2n)/SHn) SL(n,C)/SU(n) n-1
Allll SHn) SU*(2n)/SHn) SU*(2n)/SHn) n-1
All-IlY SKp.N—p) SU(2n)/SHn) SU (ng(’f)';)s/;gf’%) (1) n—1
All-IlI SU*QP);S%’{)(Z”—ZF’) SU*(2n)/SKn) SHp,n—p)/SHP)xSAN—p) | min{p,n—p}
Al SLn,C)-U(1) SU*(2n)/SHn) SO (2n)/U(n) In/2]
Alll-l SQy(p.9) SU(p,q)/S(U(p)xU(a)) SQy(p.q)/SAP)xSAQ) min{p,q}
Alll-l’ SO'(2p) SU(p, p)/SU(p)xU(p)) Sp(p.R)/U(p) p
Alll-ll SH(p.9) SU(2p,29)/ U (2p)xU (29)) SH(p,q)/SH(p)x SHa) min{p,q}
Alll-IlY SHp.R) SU(p, p)/S(U(p)xU (p)) SO(2p)/U(p) [p/2]

. S SU(p—i, j)/S(U(p=i)xU(j)) infp—i,j}

AIHIL | SUGLDxU(P=ia-0) | SUPA/SUMXU@) | st o B S0txo@ery | +mintah
Alll-i’ SU(p,C)-U(1) SU(p, p)/S(U(p)xU(p)) Sl(p,C)/SU(p) p
IV-Al Sqn,C) SL(n,C)/SU(n) SL(n,R)/Sqn) n—1
IV-A2 SL(n,R) SL(n,C)/SU(n) SQn,C)/Sqn) [n/2]
IV-A3 SL“*C)XXUS(LSH'C) SL(n,C)/SU(n) SULN—i)/SUGE)xUM—i)) | mingi,n—i)
IV-A4 SUGi,n—i) SL(n,C)/SU(n) xsjrl{(ii,cég/ssl{%fi) n—2
VA5 SKn,C) SL(2n,C)/SU(2n) SU*(2n)/SHn) n-1
IV-A6 SU*(2n) SL(2n,C)/SU(2n) Spn,C)/Spn) n
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Table 2.
type H G/K =L/HNK cohom
SO, j) (SQ(p-i, J)/SQAp-i)xSAj)) min{p—i,j}
BDH | wsop—ig-j) | SQPA/SAPSA) | (squi,q-))/SC)xSAg-}) | +mini.g=])
DI-l SAp,C) SQ(p, p)/SAP)xSAp) Sl(p,R)-U(1)/SAp) p
DI-lil SU(p,a)-U(2) S(2p,29)/SA2p) x SA29) SU(p,a)/SU(p)x SU(a) min{p,q}
DI-l’ Sl(p,R)-U(1) SQ(p, p)/SAP)xSAp) SA(p,C)/SAp) [p/2]
DIl | SO(2i)xSO/(2n—2i) SO(2n)/U(n) SU(i,n—i)/SU(i ) x SUn—i) mini,n—i}
DIil-1’ sqn,C) SO(2n)/U(n) SAn,C)/Sqn) [n/2]
DIlI-II un) SO (2n)/U(n) SO (2n)/U (n) /2]
DN | SUi,n—i)-U(L) SO'(2n)/U(n) 5 SO?gn(E‘Z)i/)L/’S zn_i) i /21+[(n=i)/2]
DIl " SU(2n)-U(1) SO'(4n)/U (2n) SU(2n)/SHN) n-1
IV-BD1 | SQi,C)xSAn—i,C) sQn,C)/SAn) SQy(i,n—i)/SQi ) x SAN—i) mingi,n—i)
IV-BD2 SQy(i,n—i) sQn,C)/SAn) ngr?(jlcc)g/sso&)m ) i /2+[(n=i)/2]
IV-BD3 SL(n,C)-Sq2,C) sq2n,C)/SA2n) SO'(2n)/U(n) [n/2]
IV-BD4 SO (2n) SQ2n,C)/Sq2n) SL(n,C)/SU)xSA2,C)/SA2) n
Cl-l u(n) Spn,R)/U(n) Sn,R)/U(n) n
chr SUGi,n—i)U (1) SHN.R)/U(n) xSp(SnF(—iil,QI%{/UU(i(L—i) n
CI-I” SL(n,R)-U(1) SH(n,R)/U(n) SLn,R)/SQn) n-1
cHl | Sqi,R)xSHn—i,R) SHN,R)/U () SUGi,n—i)/ (U () xU (n—i)) mini,n—i}
CI-I’ Span,C) Sp2n,R)/U(2n) Spn,C)/Spn) n
Cli-l SU(p.g)-U(1) SH(p.q)/SH(p)x SK(d) SU(p,q)/S(U (p)xU(a)) min{p,q}
Cll-l’ SU(2p)-u(1) SH(p, p)/SHP) < SHP) S(p,C)/SHp) p
Cli-ll SH(p) < SH(d) SH(p,q)/SH p) x SH) SH(p,d)/SHp)x SHA) min{p,q}
) p—_ o1 1)/SH xS o——
ci- St spay/sixsia | (SR RS | e
ci-n” SHp,C) SHP, p)/SHP) xSHP) SU*(2p)/SHp) p—1
IV-C1 SL(n,C)-Sa2,C) SHn,C)/SHn) Sn,R)/U () n
IV-C2 SHN.R) SHn,C)/SHn) SL(n,C)/SU)xSQA2,C)/SA2) n
IV-C3 | SHi,C)xSHn—i,C) SHn,C)/SHn) (i ,n—i)/SHi)x SHn—i) mingi,n—i}
V-Ca SHi,n—i) SHn,C)/SHN) SHi,C)/SHi) n

xSpn—i,C)/Spn—i)
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Table 3.

type H G/K =ZL/HNK cohom
El-l SH4)/{£1} ES/(Sp4)/{+1}) ES/(Sp4)/{+1}) 6
El-I’ SH4,R) ES/(Sp4)/{£1)) SL(6,R)/SQ6)xSL2,R)/SQ2) 6
El-l” SH2,2) ES/(Sp4)/{£1}) SQy(5,5)R/SA5)xSA5) 6
El-ll SU*(6)-SU(2) ES/(SH4)/(£1) Fi/SH3)-Sp(1) 4
EI-Il’ SL(6,R)xSL(2,R) ES/(SH4)/(£1) SH4,R)/(U (4)/{£1}) 4
EI-llI SQ(5,5R ES/(SH4)/{£1)) SH2,2)/((SH2)x Sp(2))/{£1}) 2
El-IV Fi ES/(SH4)/(£1) SU*(6)-SU(2)/SH(3)-SH1) 2
Ell-I SH1,3) E2/SU(6)-SU(2) F#/SH3)-Sp1) 4
Ell-I” SH4,R) E2/SU(6)-SU(2) SH4,R)/U (4) 4
Ell-Il SU(6)-SU(2) E2/SU(6)-SU(2) E2/SU(6)-SU(2) 4
Ell-Il SU2,4)ySU2) E2/SU(6)-SU(2) SQy(4,6)/SA4)xSA6) 4
Ell-Il” SU(3,3)SL2,R) E2/SU6)-SU2) SU(3,3)/S(U(3)xU(3))xSL(2,R)/SOAR) 4
Ell-H SO (10)U(1) E2/SU(6)-SU(2) SO (10)/U(5) 2
Ell-IN’ SOy(4,6)U (1) E2/SU(6)-SU(2) SU(2,4)/ S(U (2)xU (4)) 2
Ell-IV Fi E2/SU6)-SU2) SH1,3)/SH1)x SH3) 1
Elll-I Sp2,2) E;*/Spin(10)U (1) SH2,2)/SH2)xSH2) 2
EllI-Il SU2,4)ySU2) Eg */Spin(10)U (1) SU(2,4)/S(U (2)xU (4)) 2
ENI-II’ SU(L,5)SL2,R) | Eg™/Spin10yU(1) SO (10)/U (5) 2
EN-1NI Spin(10)-U (1) E;4/Spin(10)yU (1) E; 1*/Spin(10)U (1) 2
Ell-INY SO (10)U(1) Eg'%/Spi10)U(1) | SWZ,5)}SL2,R)/S(U(1)xU(5))-SA2) 2
ElN-NE" Sy(2,8)U (1) E5*/Spin(10)U (1) SQy(2,8)/SA2)xSA8) 2
ENl-IV F20 Eg 1*/Spin(10)U (1) F,2%/Spin9) 1
EIV-I Sp(1,3) Eg%®/Fs SU*(6)-SU(2)/SH3)-SH(1) 2
EIV-II SU*(6)-SU(2) E;%%/F4 Sn(1,3)/SH1)-SH3) 1
EIV-III SOy(1,9)U (1) E;%/F4 F,2%/Spin9) 1
EIV-IV Fa Eg%®/F4 Eg%®/F4 2
EIV-IV’ F20 E;%%/F4 SQy(1,9)U(1)/SQ1)x SQ9) 2
IV-Egl Es ES/Es ES/Es 6
IV-Eg2 ES ES/Es SH4,C)/SH4) 4
IV-E63 E2 ES/Es SL(6,C)-SL(2,C)/SU(6)-SU(2) 6
IV-Eg4 Egt ES/Es SQ(10,C)-Sp(1)/Spin(10)-U (1) 6
IV-Eg5 SH4,C) ES/Es ES/SH4) 6
IV-Es6 | SL(6,C)-SL2,C) ES/Es E2/SU(6)-SU(2) 4
IV- Eg7 SQ(10,C)-Sp(1) ES/Es Eg*/Spin(10)U (1) 2
IV-Eg8 FE ES/Es E;%%/F4 2
IV-Eg9 Eg2® ES/Es F$/Fa 4
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Table 4.

type H G/K =ZL/HNK cohom
EV-V SU®)/{+1} E7/(SU®)/{+1)) E7/(SU@8)/{+1}) 7
EV-V' SL8,R) E7/(SU®8)/{£1}) SL(8,R)/SQ8) 7
EV-V” SU*(8) EZ/(SU@B)/{£1}) ES-U(1)/SH4) 7
EV-V"” SU4,4) E7/(SU®)/{+1)) SQy(6,6)SL(2,R)/(SA6)x SA6))-SA2) 7
EV-VI SO (12)SU(2) EI/(SU8)/{£1)) E2-U(1)/SU(6)-SU2)-U(1) 4
EV-VI' SQy(6,6)SL(2,R) EZ/(SUB)/{£1) SU4,4)/ (U (4)xU (4)) 4
EV-ViI Eg-U() EZ/(SUB)/{£1}) SU*(8)/SH4) 3
EV-VII/ E2U(1) EI/(SUB)/{£1)) SO(12)/U (6) 3
EVI-V Sy, 4) E;5/SO(12)}SU(2) SU(4,4)/S(U (4)xU (4)) 4
EVI-V/ SU(2,6) E;%/SO(12)SU(2) E2/SU(6)-SU(2) 4
EVI-VI SO(12)SU2) E;°/SO(12)SU(2) E;®/SC(12)SU(2) 4
EVI-VI’ SO (12)SL2,R) | E;®/SO(12)SU2) SO (12)SL(2,R)/U(6)-SO2) 4
EVI-VI” SQy(4,8)SUR) E;°/SO(12)SU(2) SQy(4,8)/SQA4)xSAB) 4
EVI-VII E2U(1) E;%/SO(12)SU2) SU(2,6)/S(U(2)xU (6)) 2
EVI-VII' Es4U() E;%/SO(12)SU2) E54/Spin(10)}U (1) 2
EVII-V SU*(8) E;%®/Es-U(1) SU*(8)/SH4) 3
EVII-V’ SU(2,6) E;®/EsU(1) SO (12)/SU(6) 3
EVII-VI SO (12)SU(2) E;%/Es-U(1) SU(2,6)/S(U (2)xU (6)) 2
EVI-VI’ | SQy(2,10)SL(2,R) E;%/EsU(1) Es'4/Spin(10)U (1) 2
EVII-VII Ee-U(1) E;%/Es-U(1) E;%%/Es-U(1) 3
EVII-VII Y EsU() E;%/Es-U(1) SOy(2,10)SL(2,R)/(SA2)x SQ(10)) SO2) 3
EVII-VII Eg2%-U(1) E; ®/EsU(1) Eg?-U(1)/F4 2
IV-E71 E; ES/Er ES/E; 7
IV-E72 El ES/E7 SL(8,C)/SU(8) 7
IV-E73 E;° ES/E7 SQ(12,C)-SL(2,C)/ST(12)-SU(2) 7
IV-E74 E;% ES/E7 ES-C*/EsU(2) 7
IV-E75 SL(8,C) ES/E7 EZ/SU8) 7
IV-E76 SQ12,C)-SL2,C) ES/E7 E;®/SO(12)SU2) 4
IV-E;7 ES-C* ES/E7 E;%%/Es-U(1) 3
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Table 5.

type H G/K =ZL/HNK cohom
EVII-VIII SO(16) ES/SO(16) ES/SO(16) 8
EVIII-VIIT Y SO (16) E8/SO(16) EI.SL(2,R)/SU8)-SAR) 4
EVIII-VIIL " SQy(8,8) E3/SO(16) SQy(8,8)/SOB)*xSA8) 8
EVIII-IX E;°-SH1) ES/SO(16) E;°/SO(12)SU(2) 4
EVIII-IX ' EI.SL2,R) EZ/SO(16) SO'(16)/U(8) 4
EIX-VIII SO (16) Ez%*/E7-SH1) SO (16)/U(8) 4
EIX-VIII / SOy(4,12) Ez2*/E7-SH1) E;°/SO(12)SU(2) 4
EIX-1X E7-SH(1) Ez2*/E7-SH1) Ez%*/E7-SH1) 4
EIX-I1X’ E;°-SH1) Eg2*/E7-SH1) SOy(4,12)/SA4)x SQ(12) 4
EIX-IX" E;%%.SL(2,R) E52*/E7-SH1) E;%-SL(2,R)/Es-U(1)-SQ2) 4
IV Egl Eg ES/Es ES/Es 8
IV Eg2 ES ES/Eg SQ(16,C)/Sq16) 8
IV Eg3 Eg % ES/Eg ESxSL(2,C)/E7-SU2) 8
IV Eg4 SQ(16,C) ES/Eg E§/SQ(16) 8
IV Eg5 ESxSL(2,C) ES/Es Ez2*/E7-SUQ2) 4
Fl-I SH3)-Sp1) F#/SH3)-SHY) F#/SH3)-SH1) 4
Fl-I’ SH1,2)SH1) F#/SH3)-SH1) SQy(4,5)/SO4)x SA5) 4
Fl-1” SE3.R)-SU2,R) | FA/Sp3)-Spl) | SH3.R)/U(3)xSL2,R)/SO2) 4
Fl-Il SQy(4,5) F#/SH3)-SH1) SH1,2)/SH1)xSH?2) 1
Fil-| Sp(1,2)Sp(1) F,2/Spin9) SQy(1,8)/SA(1)x SQAS8) 1
Fll-II Spin(9) F,2%/Spin9) F,2%/Spin9) 1
Fll-11’ S (1,8) F12°/Spin9) SH(1,2)/SH1)xSH2) 1
IV-F1 Fa FS/Fa SH(3,C)/SH3)xSL2,C)/SU2) 4
IV-F2 F20 FC/Fa SQ9,C)/Sq9) 4
IV-F3 SQ9,C) FC/Fa F,2%/Spin9) 1
IV-F4 SK(3,C)-SL(2,C) FS/Fa F#/SH3)-SH1) 4
G SQ4) G%/S04) G%/S04) 2
G SL(2,R)xSL(2,R) G2/SQ4) SQ4)/SQ2)xSQ2) 2
G «(SQ4)) G3/SQ4) SL(2,R)/SO2)xSL(2,R)/SA2) 2
IV-G1 G3 GS/Gs SL(2,C)/SU2)xSL(2,C)/SU(2) 2
IV-G2 SL(2,C)xSL(2,C) GS/G; G2/SQ4) 2
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