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1. Introduction

Motivated by the work of Gelfand and Fuchs [2], Bott and Haefliger (see
[4]) have defined homomorphisms

Φ: H*(_Csι) -> /Γ^Diff+tS1); R)

Φ: H*(j:sι, so(2)) -> H^BΌifi^S1)8; R)

where £sι is the topological Lie algebra consisting of all C°° vector fields on
S1

9 H*(J?sι) is its continuous cohomology (=the Gelfand-Fuchs cohomology
of S1) and //*(.Γsι, so(2)) is the continuous cohomology of _£sι relative to the
subalgebra so(2)ci-Csι. Diff+(S1) is the topological group of all orientation
preserving C°° diίfeomorphisms of S1 and BΌtff^S1) (resp. BΌi&^S1)8) is the
classifying space for the topological group Diff+(51) (=homotoρy theoretical
fibre of the forgetful homomorphism Diff +(S1)δ -> Diff+(51), here δ denotes the
discrete topology) (resp. Diίf+(51)δ). BΏtfϊ^S1) (resp. BDiίf+(51)δ) classifies
foliated ^-products (resp. foliated ^-bundles) (see [17]). Gelfand and Fuchs
[2] have proved that H*(J?sι) is a free graded algebra with two generators a
of degree 2 and β of degree 3 and it follows that H*(X&y so(2))=R[a, %]/(α%)
where % is the Euler class (see [4]). We may call the images of Φ and Φ
the Gelfand-Fuchs characteristic classes for flat ^-bundles. Thurston [16]
has constructed examples of foliated S^-bunclles to show that the classes a
and % (we omit the symbols Φ and Φ for simplicity, thus a stands for Φ(a)
for example) are independent and also that all the classes an (n^N) vary con-
tinuously, namely there are homology classes σt^H2n(BΌΐS+(S1)8'> Z) with
<σ/, any=t for all t^R. In this paper we describe an extension of Thurston's
argument which proves the nontriviality of the classes an~lβ and %w

Partially supported by the Sonderforschungsbereich Theoretische Mathematik 40, Univer-
sitat Bonn.



546 S. MORITA

Thus we can conclude

Theorem 1.1. The homomorphisms Φ and Φ are injectίve. Moreover
all the classes except %n (n^N) vary continuously so that the Gelfand-Fuchs char-
acteristic classes define mrjective homomorphisms

1); Z) -> R -> 0

H2tt(BΌifi+(Sιγ , Z) -> R®Z -* 0 (n<= N) .

This answers a question of Haefliger (Problem 4 in [13]) affirmatively. We
can also obtain more informations on the homology of βDiiϊ+(*S1) and BDifF+(51)5

by considering the discontinuous invariants of them. See Remark 4.4 and

[12].

2. The Gelfand-Fuchs characteristic classes for flat S1 -bundles

Let us begin by recalling the definition of the homomorphisms Φ, Φ
very briefly (see [4] for details). We also derive some relations among their
images— the Gelfand-Fuchs characteristic classes. Henceforth we write G
for the topological group DiίF+(5

1).
Suppose we are given a foliated ^-product over a C°° manifold M. Thus

there is given a codimension one foliation 3 on MxS1 transverse to the fibres.
Equivalently we are given an ^i-valued C°° 1-form ω on M satisfying the
integrability condition rfω+[ω, ω]=0. For a vector field X^JCM, let us write

r\

ω(X)=ωx(x, f) where ωx(x, t) is a C°° function on MxS1. Then the sub-
Si

bundle T(ω)={X(x)+ωx(x, t) eΞΪ^MxS1); X^XM, (x, ήtΞMxS1} of
dt

the tangent bundle of MxS1 is equal to that of the foliation 3". Let
be the cochain complex of all continuous alternating forms on _£sι. Then the
linear map

φ: C*(j:sι) -> Ω*(Λί) (-de Rham complex of M)

defined by φ(c) (X19 -, Xq)=c(ω(Xl), -, ω(X,)) (^C^J?^), X^XM) com-
mutes with the differentials and we have the induced homomorphism on co-
homology

Φ: #*(-£» -> ̂ *(M; R) .

This construction is functorial on the category of foliated S^-products and

hence we have the homomorphism Φ: H*(£sι)-^>H*(BG\ R) at the universal
space level. Next let π: E^N be an oriented foliated ^-bundle over a C°°
manifold N and let U be a coordinate neighborhood in N. Choose a trivializa-
tion π~l(U)~UxS1 as an SO(2) -bundle. This trivialization gives rise to a
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foliated ^-product structure on π~l(U) and so, as before we obtain a cochain
map φ: C*(_£sι)—>Ω*(C7). It turns out that this homomorphism restricted to
the subcomplex C*(~Csιy so(2)) is independent of the choice of the trivialization
π^Lfy^UxS1. Thus patching together these homomorphisms over each
coordinate neighborhoods in N, we obtain a cochain map φ: C*(~Csι, so(2))~->
Ω*(N) and this construction defines the homomorphism Φ: H*(-Csι, so(2))->
H*(BG*\R). We recall that the classes a<=ΞH\j;sι) and /3€Ξ#3(Xji) are

represented by the following cocycles a^C\J2s

1} and /3eC3(J7sι) respectively
[2] (we use the same symbols for the cocycles)

8' S"
dt

dt g 8' S"
h V h1'

dt or
f f
g g'
h h1

g"
h"

(these two cocycles for β are cohomologous and t is the coordinate for
Sl=RIZ, leS1).

Now we consider the fibration

BG -> BG8 -> BG .

Since G has the same homotopy type as the rotation group *SO(2), the map BG
-*BG8 has the structure of an ^-fibration. In fact this can be explained more
explicitly as follows. Let G be the universal covering group of G. Then
it has the expression G={f<=Όif[+(R); Tf=fT}, where T is the translation
by 1 of R and we have a central extension

r\ rpr /^ /~*ι 1

It is easy to see that there is a natural homotopy equivalence BGS~BG (hence-
forth we identify these two spaces) and we have the orientable S^-fibration

T> rr Ol ^ D/^δ - D/^δ
LJ£J == O —^ J-ίvT" —^ /3l_Γ .

This gives rise to the following

Proposition 2.1. We have the Gysin exact sequences

Hm(BG*) H..JJB&)

(with any coefficient),
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where %e#2(BGδ; Z) is the Euler class.

Proposition 2.2. The equality μ\an~lβ)=—an holds for

Proof. Since p*(a)=a, we have only to prove the case n=l. Let ζ
=(π: E-*N) be an oriented foliated SMmndle over a C°° manifold N. Let
us fix an SO(2) structure on ξ. Then the pull back bundle π*ζ=(π\ π*(E)->
£), where π*(E)={(e, e')^ExE\ π(e)=π(e')} and π(e, e')=e, has the structure
of a foliated ^-product because we have an isomorphism of 5O(2)-bundles

π^E^ExS1 defined by (*, e')-*(e, g) where e'=eg, g<=SO(2). These two flat
S^-bundles ξ and π*ζ are classified by the following commutative diagram

I I I P \p
0->Z-> G -> G ->1

where p (resp. p) classifies the bundle ζ (resp. π*ζ). Equivalently we have a
morphism of S^fibrations

E

*\ I
N - > BG8 .

By the universality, it is enough to prove the equality μ*(β(π*ζ))=—a(ζ),
where a(ζ}^H\N\ K) (resp. β(π*ζ)<^H\E\ R)) is the characteristic class of
the bundle ξ (resp. π*ζ) corresponding to a (resp. /?). Let U be a coordinate
neighborhood in N and choose a trivialization π~\U)~ Ux S1 as an *SΌ(2)-bundle.
Then we have a natural isomorphism ^'^'^(UxS^xS1 as SO(2)-bundles,
where E'=π~\U). Let ω be the -ί^-valued C°° 1-form on U defined by the
flat structure ξ restricted to E' and the trivialization E's^UxS1. Similarly let
ω be the ^sι-valued C°° 1-form on UxS1 corresponding to the foliated S1-
product structure on UxS1. Fix a point x^U and let us write

. and
ot

ωx(s,

Lemma 2.3. We have the following equations:

wx(s, t) = ωx(s+t) (X e T,( U)) and

_ / 9 \ 9ωl — ) = -- .
\9sJ dt

Proof. Consider the following commutative diagram
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-\E') = (UXS1)XS1 -> UXS1 = π-

•1 1-
E'= UxS1

π
U

where \(x, s, t)=(x, $+/), (xy s, ^^(UxS^xS1. Clearly we have

~(λ>*ylT(ω)(XtS+tiy where λ* is the differential of the map λ. Since

= iX+ωx(t)£-;
όt

, and λ * - = λ , = , we obtain
ot

, u+v = <ox(s+t)} .

Now let XΪΞ Tx(U)aT(x>s)(Ux S1). Then the lifted vector in T(w)(x>Sιύ should
Λ Λ>

have the form X-\-wx(s, t) — and this vector goes to X-\-ωx(s+t) — under the
dt dt

map λ^. Hence ωx(s, t)=ωx(s-i

rt). Similarly the vector —
OS

lifts

Λ / ft \
to — +ωί — }&T(w)(XfStt) and this vector goes to 0 under λ*. Therefore

uS \ OS '

/ c&\ c\
ω[ — 1= -- . This completes the proof of Lemma 2.3.

\ds/ dt
Now we go back to the proof of Prep. 2.2. Let X, Y<=TX(U). Then the

cohomology class a(ζ)^H2(N', R) is represented by a closed form

which has the value

a(X, Y) = a(ω(X), ω(Y))

ω'x(t) ω'x'(t)

Is'-I dt.

Similarly the element β(π*ζ)^H\E\ R) is represented by a closed form b

) which has the value for X,

~ J

ωx(s, t) ω'χ(s, t) ω'χ'(s, t)

<SY(s, t) ω'γ(s, t) ω'γ'(s, t)

- 1 0 0

ω'x(s+i) ω'χ'(s+t)

ω'γ(s+t) ω'γ'(s+t)

dt



550 S. MORITA

Hence locally we have b=— #Λώ+other terms. By the definition of the
homomorphism μ*: H\E\ R)-*H\N\ R), we have μ*(β(π*ξ))=—a(ξ). This
proves Prop. 2.2.

Corollary 2.4. For any σ(=H2n(BG8) andn<=N, we have <<r, an>= —

3. Relation with the Godbillon-Vey class

In this section we investigate the relation between the Gelfand-Fuchs character-
istic classes for flat S^-bundles and the Godbillon-Vey class for codimension
one foliations [3]. The results of this section should be known to many people
and also we do not use them in the remaining part of this paper except in the
proof of Th. 4.3. We include them here for completeness.

Let BT1 be the classifying space for oriented codimension one Haefliger
structures and letgv^H3(BΓ1 9 R) be the Godbillon-Vey class.

Proposition 3.1. Let h: BGsχS1->BT1 be the classifying map for the
universal codimension one foliation on BG8 xS1. Then we have

h*(gv) = βxl—axi

where ι^H\Sl\ R) is the generator.

Proof. Let ξ be a foliated ^-product over a C°° manifold M. Thus
there is given a codimension one foliation 3 on MxS1 transverse to the fibres
defined by an -/^-valued C°° 1-form ω on M satisfying the integrability condi-
tion rfω+[ω, ω]=0. By the universality, we have only to prove gv(3)=β(ζ)

/N

X 1— a(ζ) X i. As before for a vector field X^XM, let us write ω(X)=ωx(x, t) —
Qt

so that the tangent bundle of 3 is given by

T(3) = {X(x)+ωj(x, ί)^T(Xtύ(MxS^ X^XM> (x,

Hence if we define a 1-form θ£ΞΩ,\Mχ S1) by

θ(X)=-ωx(XζΞ-CMc:j:Mxsι) and θ = 1 ,

then clearly 3 is defined by θ, namely T(3) ={Z<=Ξ T(M X S1) Θ(Z) = 0} . Now
for two vector fields X, Y^J?M, the integrability condition of ω implies

Xω(Y)-Yω(X)-ω([X, Y]) = -[ω(X), ω(Y)] .

Hence

(*) Xωγ— Yωx— ωιXtγi = ωγ-~- ωx— ωx— -ωγ .ot όt
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On the other hand

dθ(X, Y) = -Xωγ+Yωx+ωlXtYΊ and

,^-}=3-ωx.
'QtJ dt

Thus we obtain

Λ r\

dθ(X, Y) = ωx — ωγ -- ωxωγ and
at Qt

dt Qt

This means that if we define a 1-form

= —coχ anddt
then we have dθ=η/\θ. By definition, the Godbillon-Vey class gv(3ί) is re-

r\

presented by the closed 3-form η/\dη. Now applying — to both sides of (*)
Qt

we obtain

d VQ Q Q2 Q2

. —ωγ— JL —cox——ωrv y] = ωγ—-ωx—ωx—-ωγ

Qt Qt Qt ' Qt2 x Qt2

On the other hand

dη(X, Y) = X—ωγ— Y—ωx ωrχ v] andA ' dt dt Qt '

— ——«6*v
Λ «2

Hence if we define a 1-form ^eΩ^ΛίXίS1) by

.(*>—£., and ,(A)_0.

then we have dη=v/\θ. Therefore the Godbillon-Vey form is -η/\dη=-η/\v/\θ.

Now gv(3) is an element of H3(MχS1; R)^H\M; R)®H2(M\ R). The
first component of gv(ΞF) is represented by the 3-form i*(ηf\v/\θ) where /:
M-*MxSl is the inclusion ί(x)=(x, 1), x<=M, leS1. But clearly i*(η/\vΛθ)

coincides with the 3-form representing the class β(ζ) (here we use the latter

form of the cocycle /SeC3(«Γsι)). Next it is easy to see that η/\v/\θ=rj/\v/\dt
+other terms. Therefore the second component of gv(3) is represented by

the 2-form I η/\vdt. But this is equal to the 2-form representing the class
Js

—a(ζ). Thus we have proved gv(3ϊ)=β(ζ)X 1—a(ζ)X ι .
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Corollary 3.2. Let ζ=(π\ E-+N) be a foliated S1-bundle over a C°° mani-
fold N and let £F be the corresponding codίmension one foliation on E. Then gv(EF)

=β(π*ζ) and therefore μ*(gv(9))=-a(ζ), where μ*ι H\E; R)-*H\N\ R) is
the "integration along the fibres".

Corollary 3.3. The cohomology classes a<ΞH2(BG*\R) and βtΞH\BG*\
R) can be represented by the following Eilenberg-MacLane cocycles a^C\G\ R)
and β^C\G\ R) (again we use the same symbols)

a(u, v} = - dtlog v' (log v')f

logu'(v) (logu'(v)Y

h-id log h1 (log h')'

gh-id logg'(h) (log/(A))'

fgh-id log/'fcΛ) (logf(gh)Y

dt (f,g,hSΞG).

Proof. Thurston has obtained the cocycle a for the Godbillon-Vey class
integrated along the fibres of foliated S^bundles (see [1] for a proof). The
same technique as in [1] or the one in [9] yields the cocycle β for the Godbillon-
Vey class restricted to the canonical cross-section of foliated ^-products (see
[10, 11]). Therefore Cor. 3.3 follows from Prop. 3.1.

4. Thurston's argument

In this section we summarize Thurston's argument [16] of proving the non-
triviality and variability of the Gelfand-Fuchs characteristic classes. The
unit tangent sphere bundles of closed orientable surfaces with constant negative
curvature can be considered as examples of foliated ^-bundles with nontrivial
a and X classes. From the viewpoint of group homology, these examples can
be constructed by making use of the standard representation p: SL2(R)-^G
which is defined by extending the action of PSL2(R) on the unit disc to the
boundary. However it can be checked that p*(α) and p*(%) are linearly de-
pendent. At this point Thurston has considered the lift of p to the 2-fold
coverings: SL2(R)->G(2)=2-fold covering group of G and composed it with
the natural inclusion G(2)—>G (cf. §5) to obtain another representation p':
SL2(R)-*G. Two representations p and p' give rise to the third one p:
SL2(R) * SL2(R)->G and it turns out that p*(#) and ρ*(%) are linearly inde-

-SOC2)

pendent. Moreover he has defined a smooth family of representations πλ (closed
surface of genus 2)-*SL2(R) * SL2(R) with varying a classes (see [1] for de-

SO& )

tails). All of the above can be done in the real analytic category. Thus we have

Theorem 4.1 (Thurston). The clcsses a and % are linearly independent
in H\BDΊS°ί(Sιy!; R) and a defines a surjective homomorphism
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fl^DiffTίS1)'; Z) -> R -» 0 .

Thurston has also constructed examples with varying a". One way to show

this is to combine his another theorem [16] that the Godbillon-Vey class defines

a surjective homomorphism π^BTJ-^R with Mather's deep results [6, 7, 8].

Let us recall the latter. Let Όiffκ(R) be the topological group of all C°° diffeo-
morphisms of R with compact supports. We have a natural map h: BΌiffκ

(R)sχR-^BT1 which classifies the universal codimension one foliation on
BO'iSK(R)s x R. Since this foliation is trivial in a neighborhood of the infinity

of the J?-factor, the map h has an adjoint map H: BΌΊfίκ(R)s-^Ω.BT1.

Theorem 4.2 (Mather [7]). The map H: BΌϊfίκ(R)8-^Ω,BT1 induces an

isomorphism on homology.

From this and also his yet another result [8] that the group ΐ>ΊSκ(R) is perfect,

Mather has concluded that the space BTl is 2-connected. Thus we have

an isomorphism H2(ClBT1;R)=lίom(π3(BTί)9R). Let gvr^H2(SlBT1\R) be the
element corresponding to the Godbillon-Vey class gv: π3(BTl)->R under the

above isomorphism. Then by Cor. 3.2 we have H*(gv')=—a. Here we ^are

considering Όifiκ(R) as a subgroup of G by identifying some open interval / in

S1 with R. It is easy to see that thus defined cohomology class a^H2(BΌifίκ

(J?)δ; R) is well defined independent of the choice of / and the diffeomorphism

l^R. Now let τt(t^R) be a one-parameter family of elements of π^BTj

with gv(τt)=t (Thurston [16]) and let τf

t^π2(ΩlBT1)^H2(Ω,BTl) be the corre-
sponding homology classes. If we set σt=H^1(r/

ί)^H2(BΈ>iSκ(R)8\ Z), then

we have <σ,, α>= — t. Now for any positive integer n^N, choose n mutually

disjoint closed intervals /, in S1 (i=l, ••-,«). If we fix orientation preserving

diffeomorphism of each open interval Zf with R, we obtain a homomorphism
pn: Dίfΐκ(R)χ ••• χΌiSκ(R)-*G and this induces a map pn: BΌifίκ(R)8X •••

χBΌiSκ(R)*->BG*. It can be easily checked that p?(α)= Σ!X
ι = l

X l X ••• X l . Now let β l

ί=σ /Xσ 1X — XσιeJ32ll(SDifFί(Λ)δX •••
(R)8;Z). Then we have <(pn)^(σt\ any^<σt, (Pn^(an)y=(-\γ n\L This

proves the variability of the classes an^H2n(BGδ; R) for all n. In view of Cor.

2.4, we can now conclude

Theorem 4.3. The classes a" and an~lβ in H*(BG8-, R) are variable for all

REMARK 4.4. Above argument can be modified to obtain more informa-

tions on the homology of J3(?δ. Namely it can be shown that the discontinuous

invariants of BGδ arising from the class α are all nontrivial so that we have sur-

jective homomorphisms
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l ) ; Z) -> Sξ(R) -> 0
1); Z) -* Sn

Q-\R)®zR -> 0

> 0

where ^(Λ) denotes the w fold symmetric power of R considered as a Q-vector
space. See [12] for details. Thurston [17] has extensively generalized Ma-
ther 's results [6, 7, 8]. Here we mention only the following, which will play
an essential role in the proof of the nontriviality of %n.

Theorem 4.5 (Thurston [17]). Let H: BG8 -* ABT1 = Map(S\ BΓJ
be the adjoint map of the natural one BG8χS1-*BΓ1. Then H induces an iso-
morphism on homology.

5. The Euler class

Let H be an abstract group. Then it is well known that the set of iso-
morphism classes of central extensions

can be identified with the cohomology group IP(H\ Z). The correspondence
is given as follows. Choose a splitting (as a set map) s: H-*Ά of p such that

$(e)=e, where e, e are the unit elements, and define a cochain %seC*(ίf; Z)
by the equality

W g) = s(f}s(g)s(fgy^Z, /, g^H .

It is easy to check that %s is a cocycle and different splitting yields a cohomol-
ogous one. Thus we have a well defined cohomology class [%Jeίf2(ίf; Z).
Conversely let %eC2(£Γ; Z) be a cocycle. Define a multiplication on the set

Zxίfby

K/) (», g) = (m+n+X(f, g),fg), my neZ,/, g^H .

Then this multiplication is associative and defines a group structure on ZxH,
which we denote by (ZxH)*. The set Z={(m, έ?)e(Zx/f)x; meZ} is a sub-

group of (ZχH)χ and we have a central extension

0 -> Z-^ (Zxfl)x ̂  ίί-> 1 .

Ths isomorphism class of this extension depends only on the cohomology class
[X\^H\H\ Z). In particular if %=%s, then the correspondence (ZxH)*-+
β given by (m,f)-+ms(f) is an isomorphism.

Now let ζ=(ρ: E-*N) be an oriented S^-bundle with Euler class %(£)
\ Z) and for a positive integer k^N, let ζk=(7Ck Ek-^N) be the oriented
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S^-bundle with Euler class %(Q =£%(£). Then it is easy to see that there
is a fibre preserving map b: E-*Ek such that b restricted to each fibre is a &-
fold covering map of S1. The following diagram is clearly commutative

+1

lb*
where μ are the homomorphisms in the Gysin sequences of the ^-bundles
£, ζk. Let us consider a similar situation in the group extension context. Thus let

be a central extension with cocycle %s (s: H-*β is a splitting of p). Then
the natural map BH-+BH has a structure of an oriented θ^-bundle with Euler
class [XJ <ΞH2(H\ Z)=H\BH\ Z). Now let

P'

be another central extension with splitting s': H—*ϊt' and suppose that [%,/]
=k[Xs] for a positive integer k. Thus there is a cochain γeO^-flΓ; 2Γ) such
that &%5~%/=δγ. In these situations we have

Proposition 5.1. The map p : f f - + f f f defined by p(f)=(k(fs(f)-l)+7(f))
$'(/), where f^ft andf~p(f), is a group homomorphism and the following diagram
is commutative

&.
Corollary 5.2. The following diagram is commutative

P*

The proof of Prop. 5.1 can be carried out by a direct calculation and we omit
it. Now recall that G stands for the topological group Diff+(6'1). For a posi-
tive integer k^N, let G(k) be the A-fold covering group of G. Thus we can

write GW={/eG;/Λ(—)=Λ(—)/} where Λ( l) is the rotation of S1 by 4-
k k k k
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Let pk\ G(k)-+G and ik:G
(k)-*G be the natural projection and the inclusion.

Henceforth we consider G(k} as a subgroup of G via ik. Let us fix a splitting
s: G-*G to the projection^: G->G and let %seC2(G; Z) be the corresponding
cocycle representing the central extension Q^*Z^G->G-*l. If we denote %
for the Euler class [%J<Ξ#2(G; Z\ then we have

Proposition 5.3. />?(%)=

Proof. Let us define a group homomorphism <pΛ: G-*G by φkf(x)= —
k

/<Ξ(5, ΛJ^Λ. Let / be an element of G(k) and set f'=pk(f) Thus we have
f'(kt)=kf(t)where t^S1 and Λ: S1~^S1 is the &-fold covering map. Then it can

be seen that there is an integer d^Z such that s(f)=φks(f)T(^-)y where T( — )
J K K

denotes the translation of R by — . We define a cochain .γeCYG^; Z) by

j(f)=d. We can write s(f)=φk(s(f')-\-j(f)). Now we claim that the equation

holds for all/, g^G(k) (f=pk(f) and g'=ρk(g)). Clearly this is enough for the
proof. Now we calculate

This completes the proof.

REMARK 5.4. Contrast to Prop. 5.3, it is easy to show that i*(ά)—kρf(a)
even on the cocycle level.

p
Let Q-*Z-+ϊϊ^:H-*l be a central extension with cocycle %s. Suppose that

s
we have a group homomorphism p: K-^H. Then the cocycle p*%s defines a
central extension

0 -*Z^(ZxK)p*χs — JΓ-> 1

which may be called the pull back extension by p. If s': K-*(ZxK)p*χs is
the canonical splitting defined by s'(k)=(Qt k), then we have %s/=p*%s. As

for the central extension 0->Z->(?;±G— >1 with the splitting s and group homo-

morphisms ik and />Λ: G(ft)->G, we have

Lemma 5.5. (i) The pull back extension by ik is isomorphic to
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where Gk= {/e(?; f(x-\ -- )=/(#)H -- }, p and s are the restrictions of the original
k k

ones.

(ii) The pull back extension by pk is isomorphic to

P'
0-*Z-^GχZ/k^l G(*> -» 1

s'
where p' restricted to G is defined to be p'~p°φk and it sends the generator K

of the cyclic group Z\k to R( — -)^G(k\ Z is generated by (Γ, K) and finally
k

the splitting s' is given by s'(f)=(s(pk(f))y —y(f) mod k).

Proof. Direct calculation.
In view of Prop. 5.1, 5.3 and Lemma 5.5 there is defined a homomorphism
p: Gk^>GχZ/k so that the following diagram is commutative

0 -> Z - > Gk - > G<*> -̂  1
J x Λ IP ||

We would like to identify this homomorphism.

Proposition 5.6. The homomorphism p : Gk -> G x Z\k is given by

(Note that the homomorphism φk: G-*Gk is an isomorphism.}

Proof. Let f^Gk and we write /=/>(/), f=pk(f) By the definition of
p (see Prop. 5.1), we have

= (i<pϊ1(f<pA*(fr1-'y(m+Ύ(f)W), 0)

This completes the proof.
Let us summarize the above results as

5.7. Diagram. The following diagram is commutative

Xk
Z= Z * - Z =Z
\ \

y i)u y y /. I
— G<*>-i G .
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Now we have the following main result of this section.

Proposition 5.8. For each element σ<=Hm(BG8; Q), let σ'(K) = —
k

- Then we have

Moreover if m=2n, then

Proof. The first statement follows from Diagram 5.7 and Cor. 5.2. The
latter can be proved by Prop. 5.3 and Remark 5.4.

6. Space of closed curves

Let X be a simply connected topological space and let ΩX (resp. ΛX=
Map^1, X)) be its loop space (resp. space of closed curves) with the compact
open topology. The natural sequence ΩX-+AX-+X is a Hurewicz fibration.
For a positive integer k^N, let ψk: KX-+KX be the continuous map defined

by ψk(ΐ)(t)=l(ki)(lϊΞKX,t<=Sl). Then clearly ψk Spreserves ΩX and the
following diagram is commutative

ΩX-+ΛX-+X

Note that the homotopy group πm(AX) is naturally isomorphic to πm+ι(X)Q)
πm(X) and the action of ι/rA is given by multiplication by k on the first factor
and the identity on the second. Here we would like to know the property of

the linear map ( \h)* ' H*(AX; Q)-*H*(AX\ Q). For that we use the theory
of minimal models due to Sullivan [14] which describes the rational homotopy
theory of spaces in terms of differential graded algebras and maps between
them. Thus for each simply connected space jf£ of finite type (i.e. the homol-
ogy group of K is finitely generated in each degree), there is associated a free
differential graded algebra (abbreviated by d.g.a.) JC over Q, called the minimal
model of K, which is essentially equivalent to the rational Postnikov tower
of K. Also for each homotopy class of continuous map /: K-^L, there is as-
sociated a unique (up to homotopy) d.g.a. map /: J?->JC. Now let JC= A.(x)
(free d.g.a. generated by the generators x) be the minimal model of K. Con-

sider a free algebra ΛJ£— Λ(#, y\ where degree j>=degree x—l. Let s be
the derivation of degree —1 on ΛJC defined by s(x)=y and s(y)=0. We define

a differential d on ΛJC inductively by the condition sdjt-ds=0. Thus dx is
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the same as in JC and dy= — sdx. It is easy to check that d is a differential,
i.e. d2=Q.

Theorem 6.1 (Sullivan [14]). The d.g.a. ΛJC is the minimal model of
ΛK.

The proof of this theorem is given roughly as follows (see [15] for details).

Let e: AKxS^^-^K be the evaluation map. Then for any topological space

C and a continuous map/: CxS^K, there is defined the adjoint map F:

C-+AK making the following diagram commutative

AKxS1 — e—+ K
Fxid\ /f

CxS1 .

Conversely the space AK is characterized by this universal property. Now
consider ΛJ£(|), where dξ=0 with degree f=l, and define a d.g.a. map e:

JC->ΛJC(|) by e(x)=x+ξy. Then given any d.g.a. C and a map /: JC^>C(ξ),
there is the adjoint map F: AJC-*C making the following diagram commutative

JC
f\ /F®id

By the universality, this proves the assertion. Now we have

Proposition 6.2. Let K be a simply connected space of finite type and let

JC=Λ(x) be its minimal model. Then the d.g.a. map φk: ΛJC-^ΛJC correspond-

ing to the map tyk: KK-+KK is given by φk(x)=x and φk(y)=ky.

Proof. The map ψΛ: A.K-+AK is characterized by the following uni-

versal property. Let C be a topological space and let/: CxS1^^K be a con-

tinuous map with the adjoint F: C-+AK. Consider the map fk: CxS1->K

given by fk(c, t)=f(c9 kt) (c£ΞCy t<=Sl). If Fk: C-+ΛK is the adjoint map

of /Λ, then the following diagram is commutative

Now let /: JC-^C(ξ) be the d.g.a. map corresponding to /. Then the d.g.a.

map/*:
id®k

map/*: JC->C(ξ) corresponding to/* is clearly given by the composition JC-+C(ξ)

C(ξ), where ίd®k=id on C and (id®k)(ξ)=kξ. Then it is easy to check

the commutativity of the following diagram
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By the universality this completes the proof.

Corollary 6.3. For all nan-negative integer my the linear map (ψk)*: Hm

(AK] Q)-^Hm(AK; Q) is diagonalizable with eigen values of the form kp where
p is a non-negative integer. Namely Hm(AK] Q)=®Vm(p) where Vm(p)

p^O

Hm(ΛK; Q); (τh)*(σH&V for all k^O}.

Proof. Since we have assumed that the space K is of finite type, it is
enough to prove the assertion for the cohomology group instead of homology.
By Prop. 6.2 the linear map (ψΛ)*: H*(AK; Q)-*H*(AK'y Q) can be com-
puted from the d.g.a. map φk: ΛJC-+Λ.JC. Now for each non-negative integer
p, let (AJC)P be the subspace of Λ JC generated by monomials on x and y whose
number of the generators y are exactly p. By the definition of the differential
in ΛJf, it is easy to see that (AJC)P is a subcomplex of ΛJC and ΛJC=Θ(ΛJC)/>.

Moreover the map φk preserves these subcomplexes. Clearly ^A==multiplica-
tion by k* on (AJC)P. Hence

ίί*(Λ^; 0)«ff*(ΛJQ = ®H*((ΛJC)P)
P^o

and (</^)*:=multiρlication by kp on H*((AJC)P).

We generalize this to arbitrary space.

Proposition 6.4. Let X be a simply connected topological space. Then
for any non-negative integer m, we have a direct sum decomposition Hm(A.X> Q)

= ®Vm(p\ where Vm(p}={σ<ΞHm(KX; Q); (^)*(«r)=#σ/or attk^l}.

Proof. First by considering the geometric realization of the singular
chain complex of X, we may assume that X is a CW complex. Now let
σ^Hm(KX\ Q). Then there is a finite complex L and a continuous map F:
L-+AX such that σ=-F#(τ) for some τ^Hm(L\ Q). Let /: LxS1-^X be
the adjoint of F. Since X is simply connected and LxS1 is compact there is
a simply connected finite subcomplex K of X such that /(LxS^dK. It
follows that F(L)dAK. Thus the element σ comes from Hm(hK\ Q). Since
the map Λ]rk: ΛX-+ΛX preserves the subspace AK we can apply Cor. 6.3
and we are done.

7. Proof of Theorem 1.1

In this section we prove Theorem 1.1. In view of the results of §4 (Th.
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4.1 and Th. 4.3), we have only to prove the nontriviality of the classes %n (n

eΛO For this we use Mather-Thurston's result Th. 4.5 that the map H:
BG8->ABT1 induces an isomorphism on homology. For a positive integer

k let φk: BG8-^»BG8 be the map corresponding to the homomorphism φk:
G-^-G (we use the same symbol) and let ψ*k: ABT1-^ABT1 be the continuous

map defined as before. Then we have

Proposition 7.1. The following diagram is homotopy commutative

BG8

Proof. It is easy to see that the following diagram is homotopy commuta-

tive

idxkl
BG8χS1 - > BT, .

The adjoint of this diagram is the desired one.

7.2. Proof of the nontriviality of %n. It is enough to prove the existence

of elements σn^H2n(BG8'y Z) with <σn, %Λ>ΦO for all n, and by the universal

coefficient theorem we may use the rational homology. We use the induction
on n. For n=l we already know the existence of σx. Thus suppose that

σn is an element of H2n(BG8; Q) with <σM, %*>ΦO. By Prop. 6.4 and Prop,

7.1, there is a direct sum decomposition H2n+ι(BG8

 y Q)— 0 V2n+ι(p), where
P^o

V2n+1(p)={r<=H2a+1(B&; Q); (φ^(r)=kfr for all k^O}. Now let

be the corresponding decomposition. Of course only finitely many τp are

non-zero. By Prop. 5.8 we have (φk)*μ(σrΐ) = μ(σ'n(k)) for some σ£(&) with
<σί(Λ), %M>-^"(Λ+1)<σw, %n>. On the other hand we have (φk}*μ(σn)=

and hence

Then it is easy to see that some linear combination of σn and σ£(&)'s, for ex-

ample

where renumber of non-zero r^'s and Λ>1, should satisfy the equations μ(σn)
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=0 and <σΛ, %n>Φθ. Then from the Gysin sequence (Prop. 2.1), there is an
element σn+1^H2n+2(BG8; Q) such that σw+1n%=σn and hence <σw+1, X

n+1>φO.
This completes the proof.

REMARK 7.3. The above proof of the nontriviality of %w is not construc-
tive. Also it does not work in the real analytic context. From this point
of view, it would be interesting to try to prove the diagonalizability of the linear
map (<?,)*: H*(B&; Q)^H*(B&: Q) directly.

REMARK 7.4. Haefliger has communicated to the author that he has modi-
fied the argument (7.2) to obtain a more direct and simple proof. He first
notes that the map H in Th. 4.5 is equivariant with respect to the natural G-
actions on both sides and then uses the Sullivan model for the corresponding
Borel fibrations. From this argument we can conclude, in particular, that

there is an element σ<^H2m(BG*\ Z] with <σ, %*>=!. This follows from the
fact that the action of G on the space ABT1 has fixed points. However it
seems to the author that the argument (7.2) remains to be useful because of
its explicit nature.
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