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Abstract
In this paper we continue systematic study of the dimension estimate of the

global attractor for the chemotaxis-growth system. Using nonnegativity of solu-
tions we manage significantly to improve dimension estimates with respect to the
chemotactic parameter.

1. Introduction

In this paper we consider the following initial value problem for a chemotaxis-
growth system of equations:

(1.1)

8>>>>>>>>><
>>>>>>>>>:

�u�t
= a4u�r � fur�(�)g + f (u) in �� (0,1),

���t
= b4� � c� + du in �� (0,1),

�u�n
=
���n

= 0 on ��� (0,1),

u(x, 0) = u0(x), �(x, 0) = �0(x) in �.

This problem arises in mathematical biology, whereu(x, t) and�(x, t) denote the pop-
ulation density of biological individuals and the concentration of a chemical substance,
respectively, at the positionx 2 � � R2 and timet 2 [0,1). The mobility of individu-
als is characterized by two effects: one is random walking, and the other is the directed
movement with the tendency to move toward higher concentration of the chemical sub-
stance. This phenomenon is called chemotaxis in biology (for details see Budrene and
Berg [5] or Murray [15]). The constantsa > 0 andb > 0 are the diffusion rates ofu
and �, respectively;c > 0 and d > 0 are the degradation and production rates of�,
respectively. The function�(�) is a sensitivity function due to chemotaxis. The func-
tion f (u) denotes a growth rate ofu. In this paper we consider the case when� � R2
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is a bounded convex domain. For simplicity,�(�) is assumed to be a linear,

(1.2) �(�) = ��
with a chemotactic coefficient� > 0, and f (u) is assumed to be a cubic function

(1.3) f (u) = f u2(1� u)

with a growth coefficientf > 0, respectively.
In order to study aggregating patterns due to chemotaxis andgrowth, there are

several contributions not only from experiments but also from mathematical analysis.
Budrene and Berg [5] experimentally observed thatE. coli bacteria form complex spatio-
temporal colony patterns. In order to understand theoretically such a chemotactic pat-
tern formation, several models have been proposed, e.g., in[3, 10, 13, 16, 20]. Mimura
and Tsujikawa presented in [14] a model (1.1), which is rather simple in the sense
that it is characterized by only four effects: diffusion, chemotaxis, production of a
chemical substance, and growth. In the absence of the growthterm f (u), (1.1) re-
duce to the Keller-Segel equations [12] modeling the initiation of aggregating patterns
of slime mold.

The formation of the colony patterns by chemotaxis is considered as to be a proto-
type of various phenomena of Self-Organization, cf. [11, 17]. According to description
by Synergetics due to Haken [11], the chemical substance plays the role of a conductor
which leads the individuals and is itself produced by them cooperatively. The fractal
dimension of the attractor then corresponds to a reduction of the degrees of freedom
in the process of pattern formation which is called the slaving principle.

The authors have already established in the previous paper [7] the upper and lower
estimate

(1.4) C1�d � dim A � C2(�d)6,

of the fractal dimension dimA of the global attractorA for (1.1) by applying the tech-
nique given in [2, 4, 19]. There we have not used an important property, nonnegativity,
of solutions to (1.1), with the intention of comparing the results with those in the ap-
proximation case discussed in [8], where we have not proved nonnegativity of approxi-
mate solutions. However, by utilizing the nonnegativity ofsolutions, we can revise the
upper estimate shown in [7] to the lower polynomial order of the coefficients in the
equation (1.1).

The paper is organized as follows: In Section 2 we present therevised upper es-
timate of dimA. Then, in Section 3, we state the main result of this paper.

REMARK . Numerical approximation to (1.1) by positivity-preserving scheme will
be studied in the forthcoming paper [9].
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2. Revised upper estimate

As is already well known, the system (1.1) possesses a globalattractor, see [1, 2,
7, 18]. In this section we present an upper estimate for the dimension of the global
attractor. To this end we follow [4, 19] and recall some basicfacts.

Let X be a Hilbert space with inner product (� , � )X and normk � kX, let X be
a compact subset ofX, and S a continuous nonlinear operator acting onX. Then,
S is said to be uniformly quasidifferentiable [4, Definition 10.1.3] on X in the norm
of X if, for each U 2 X, there exists a linear operatorW = S0(U ) in X, called the
quasidifferential, such that

(2.1) kS(U1)� S(U )� W(U1 �U )kX � 
 (kU1 �UkX)kU1 �UkX

holds for anyU1 2 X, where the function
 (� ) is independent ofU and U1 and satis-
fies 
 (� ) ! 0 as� ! 0.

Next consider a continuous dynamical system (St , X, X). According to [19], the
global attractor of (St , X, X) is given byA =

T
0�t<1 StX.

Assume that, for eacht � 0, St is uniformly quasidifferentiable and that, for each
U0 2 X, the quasidifferentialWt = S0t (U0) is generated by the evolution equation

(2.2)
dV

dt
= �A(U (t))V ,

whereU (t) = StU0. It is supposed that the operatorsA(U ) are densely defined, closed
linear operators acting onX and are defined for allU 2 X, and that the domains
D(A(U )) � D are constant. Then, by Babin and Vishik [4, Theorem 10.1.1],dimA is
estimated from above by the smallest integerN

(2.3) dimA � N

satisfying

(2.4) qN < 0.

Here, the numberqN is defined by

(2.5) qN = lim inf
T!1 sup

U02A

1

T

Z T

0
inff� j g

NX
j =0

(�A(U (t))� j , � j )X dt,

U (t) = StU0, and f� j g = f� j 2 Dg j =1,2,::: are arbitrary orthonormal systems inX.
Now we will apply (2.3)–(2.5) for the system (1.1).
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In a similar manner as in [18], and thanks to nonnegativity ofsolutions, we can
establish the following a priori estimates for the solutions in the global attractorA
for (1.1):

ku(t)kL1 =
Z
� u(x, t) dx � 2j�j;(2.6)

Z T

0
ku(t)k2

L2 dt � j�j�T +
4

f

�
;(2.7)

Z T

0
ku(t)k3

L3 dt � j�j�T +
6

f

�
;(2.8)

k�(t)k2
L2 � d2(4c + 2 f )

c2 f
j�j;(2.9)

kr�(t)k2
L2 � d2(4c + f )

bcf
j�j;(2.10)

Z T

0
k4�(t)k2

L2 dt � d2

b2
j�j�T +

8c + f

c f

�
.(2.11)

Next we exploit that, for each fixedt � 0, the operatorSt is uniformly quasi-

differentiable onA in X. For eachU0 =
hu0�0

i2A, the quasidifferentialWt = S0t (U0): X!
X is generated by the linearization equation for (1.1):

(2.12)

8>>>>>><
>>>>>>:

�v�t
= a4v � �r � (vr� + ur�) + f (2u� 3u2)v in �� (0,1),

���t
= b4� � c� + dv in �� (0,1),

�v�n
=
���n

= 0 on ��� (0,1),

where
h u� i =

h
u(t)�(t)

i
= St

h u0�0

i
is a solution of (1.1) whose trajectory is contained in

A. We omit the proof here.
Now we will apply (2.3)–(2.5) to obtain an upper bound for dimA.
Let us define the family of operators

A(U )V =

� �a4v � f (2u� 3u2)v + �r � (vr� + ur�)�dv � b4� + c�
�
,(2.13)

where

U =

�
u�
� 2 A, V =

� v�
� 2 H2

N(�)� H3
N(�).
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Then we can see thatA(U ) is a densely defined, closed linear operator acting onX =
L2(�)�H1(�) and is defined for everyU 2 X� H2(�)�H3(�), and that the domains
D(A(U )) � D = H2

N(�)� H3
N(�).

Let

(2.14)

�� j =

�
y j� j

� 2 D

�
j =1,2,:::

be an orthonormal system inX. Hereafter, the inner product ofX is given by

(2.15) (�, �0)X = hy, y0iL2 + � h3� , 3� 0iL2, � =

�
y�
�
, �0 =

�
y0� 0
� 2 X,

where3 = (�4+1)1=2, and� > 0 is an arbitrary fixed number, which will be specified
below.

Now we calculateqN . In a similar manner as in [7, Equations (2.13)–(2.18)]
we have

(2.16)

(�A(U (t))� j , � j )X

= �akry j k2
L2 + �hy jr�, ry j iL2 + �hur� j , ry j iL2 + f h(2u� 3u2)y j , y j iL2

� �bkr3� j k2
L2 � �ck3� j k2

L2 + �dhy j , 32� j iL2

� �akry j k2
L2 +

�
2
k4�kL2ky j k2

L4 + �kukL3kr� j kL6kry j kL2 +
f

3
ky j k2

L2

� �bkr3� j k2
L2 � �ck3� j k2

L2 + �dky j kL2k32� j kL2

� �a

2
k3y j k2

L2 � 3�b

4
k32� j k2

L2 +
C2

2�2

a
kuk2

L3k3� j k2=3
L2 k32� j k4=3

L2

+

�
a +

f

3
+

C2
1�2

4a
k4�k2

L2

�ky j k2
L2 + ��b� c +

�d2

b

�k3� j k2
L2.

Here, C1 and C2 are some positive constants determined from embedding theorems,
and hence may depend on� but are independent of the coefficients in (1.1).

Summing up in j ,
(2.17)

NX
j =1

(�A(U (t))� j , � j )X

� �a

2

NX
j =1

k3y j k2
L2 � �b

NX
j =1

k32� j k2
L2

+
C2

2�2

a
kuk2

L3

NX
j =1

k3� j k2=3
L2 k32� j k4=3

L2 +

�
a + b� c +

f

3
+
�d2

b
+

C2
1�2

4a
k4�k2

L2

�
N.
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Here we used the fact that

(2.18) ky j k2
L2 + �k3� j k2

L2 = 1,

and hence

(2.19)
NX

j =1

ky j k2
L2 � N,

NX
j =1

k3� j k2
L2 � ��1N.

Integration with respect tot 2 (0, T) and dividing byT yield that

(2.20)

1

T

Z T

0

NX
j =1

(�A(U (t))� j , � j )L2�H1 dt

� �a

2

NX
j =1

k3y j k2
L2 � 3�b

4

NX
j =1

k32� j k2
L2 +

C2
2�2

a
Ku

NX
j =1

k3� j k2=3
L2 k32� j k4=3

L2

+

�
a + b� c +

f

3
+
�d2

b
+

C2
1�2

4a
K�
�

N,

where

Ku =
1

T

Z T

0
ku(t)k2

L3 dt � j�j2=3�1 +
6

f T

�2=3
,(2.21)

K� =
1

T

Z T

0
k4�(t)k2

L2 dt � d2

b2
j�j�1 +

8c + f

c f T

�
,(2.22)

from (2.8) and (2.11). Applying Hölder’s inequality and (2.19) to the third term on the
right-hand side of (2.20) and choosing� = �2=(ab), we have

(2.23)

1

T

Z T

0

NX
j =1

(�A(U (t))� j , � j )L2�H1 dt

� � 1=2
1=a + 1=b

NX
j =1

(k3y j k2
L2 + �k32� j k2

L2)

+

�
a + b� c +

f

3
+
�2d2

ab2
+

C2
1�2

4a
K� +

64C6
2b

27
K 3

u

�
N.
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By the similar discussion as in [6, 7], we obtain

(2.24)

NX
j =1

(k3y j k2
L2 + �k32� j k2

L2) � N=2X
j =1

� j (ky j k2
L2 + �k3� j k2

L2)

=
N=2X
j =1

� j � C0

�
N

2

�2

.

Here, �1, : : : , �N are the firstN eigenvalues of�4N +1 =32, andC0 is some positive
number.

Then we have

(2.25)

1

T

Z T

0

NX
j =1

(�A(U (t))� j , � j )X dt

� � 1=2
1=a + 1=b C0

4
N2

+

�
a + b� c +

f

3
+
�2d2

ab2
+

C2
1�2

4a
K� +

64C6
2b

27
K 3

u

�
N.

Using (2.21) and (2.22) and taking limits, we obtain

(2.26)

qN � � C0=8
a�1 + b�1

N2

+

�
a + b� c +

f

3
+
�2d2

ab2
+

C2
1�2d2

4ab2
j�j + 64C6

2b

27
j�j2�N.

The smallest integerN satisfyingqN < 0 will be at least

(2.27)
N > �

a + b� c +
f

3
+
�2d2

ab2
+

C2
1�2d2

4ab2
j�j + 64C6

2b

27
j�j2�� C0=8

a�1 + b�1

� O((�d)2).

Thus, the number on the right-hand side gives the estimate from above for dimA.

3. Main result

We have already obtained in [7, Section 3] a lower bound for dim A. Combining
this bound with the result given in the preceding section, wecan state main result of
the paper.

Theorem 3.1. The dimension of the global attractorA satisfy the estimate:

(3.1) C1�d � dim A � C2(�d)2
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with some positive constants C1 and C2.
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