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Abstract
Let = ( ( )) be the abstract space of Bessel potentials and a pos-

itive smooth Radon measure on . For2 , we give necessary and
sufficient criteria for the boundedness of from( ) into ( ), provided

is contractive. Among others, we shall prove that the boundedness is equivalent
to a capacitary type inequality. Further we give necessary and sufficient conditions
for to be compactly embedded in ( ). Our method relies essentially on es-
tablishing acapacitary strong type inequality.

1. Introduction

In this note we continue our investigations which we began in[2] about trace in-
equalities for operators associated to Dirichlet forms.

Let be a locally compact separable metric space and a positive Radon mea-
sure on whose support is .

Suppose that for each 0 we are given a symmetric strongly continuous con-
tractive Markovian semigroup acting on2( ). Then by interpolation, defines
also a strongly continuous contractive Markovian semigroup acting on ( ) for
every 1 . We shall denote by the latter operator and by its genera-
tor. Consider the gamma transform of [6]

:= ( ) ( )

=
1

( 2) 0

( 2) 1e for every 0
(1)

It is known [6] that such operator induces a set function called the ( )-capacity.
Assume that every ( ( )) has been modified so as to become quasi-
continuous, and let be a positive Radon measure on charging no sets of zero
( )-capacity. Consider the operator

:= ( ) ( ) 1(2)
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12 A. BEN AMOR

Let us emphasize that the latter operator is well defined because two quasi-continuous
functions which coincide -a.e., coincide quasi-everywhere, whence they coincide

-a.e. since does not charge sets of zero capacity.
Our aim in this note is to give necessary and sufficient conditions for the opera-

tor to be bounded or even compact, provided is contractive. In particular we
shall prove that the boundedness of is equivalent to some capacitary inequality.
The importance of the result lies among others in the fact that one get the equivalence
between the fact that is continuously ‘embedded’ into some Lebesgue space and
capacitary-type inequality.

Moreover, once the criteria for the ( )-boundedness of are given, one can
use the continuous embedding of into ( ) as a starting point for defining traces
of elements from on compact subsets. However, this is not thesubject of this
note. For an exposition of this approach in case =R we refer the reader to [20,
chap. 9].

We mention that such results are already known for the spacesof classical Bessel
potentials, for operators given by radially decreasing convolution kernel onR

(see [1, 15]). For Dirichlet spaces as well as contractive Besov spaces, some of them
are already known (see [2, 5, 21, 8, 9]).

The paper is organized as follows: in the next section we shall give the main tools
and some preliminary results to handle the problem. In the last section, we prepare
the capacitary strong type inequality and give the main result.

2. Preliminaries

Let be a locally compact separable metric space and a positive Radon mea-
sure on whose support is . For a positive Radon measure on and 1

, we shall denote by ( ) the real space of Borel measurable (equivalence classes
of functions) on such that ( ) :=

1
. For = , ( )

is the space of measurable -almost everywhere bounded functions on . The corre-
sponding norm will be denoted by ( ). If = the norm ( ) will be
simply denoted by . Further the notation a.e. means -almost everywhere.

The space of continuous functions with compact support on (respectively van-
ishing at infinity) will be denoted by ( ) (respectively0( )). 0( ) is the space
of continuous functions on such that for every 0 there is a compact subset

such that on , the complement of . Both spaces are equipped with the
uniform norm, .

For every 0, let be a symmetric strongly continuous contractive Markovian
semigroup acting on 2, i.e.:
1) lim 0 2 = 0, for every 2.
2) 2 2 for every 2.
3) For every 2 such that 0 1-a.e. we have 0 1-a.e.
It is known that for every 0 and every 1 , decides a strongly continu-
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ous contractive Markovian semigroup on which we denote by . Whence the op-
erator , defined by formula (1), is also Markovian and contractive on every space

for 1 .
From now on we shall definitively fix 0 and 2 . By [4, Theorem

4.1], we have

= ( ) 2(3)

Denote by := ( ). It is easily seen from (3) that = Dom(( )2).
For each we define the norm

:= 1(4)

Now since is injective on , the space is a reflexive Banach
space. We shall denote by the dual space of and by the dual operator
of .

In the sequel we shall make the following two assumptions: First, we assume that
the space isregular, this is

0( ) is dense both in and in 0( )(5)

with respect the relative norms.
Second, we assume that iscontractive, i.e. for every normal contraction

and every , and . A normal contraction, is
a mappingR R such that (0) = 0 and ( ) ( ) for every R.

Let us stress that the latter condition is satisfied for = 2 and= 1 because in
this case 1 2 is a Dirichlet space. It holds also true for every 0 1 and ev-
ery 2 under the conditions given in [11, Corollary 8]. Namely: The second order
square field operator associated to the generator of is positive.

Let us also emphasize that our assumptions are different from Kazumi-Shigekawa
assumptions [14]. Indeed we do not suppose that 1 , neither the tightness of
the capacity nor the existence of a subalgebraD ( ) whose elements are
bounded and that separates points of .

Here are two examples of spaces satisfying our assumptions.

EXAMPLE 2.1. 1) The heat semigroup on manifolds: Let be an -dimensional
connected complete Riemannian manifold with bounded geometry and positive injec-
tivity radius (cf. [19, pp.282–284] for the definitions). Let be the Laplace-Beltrami
operator on . Then it is known (cf. [18, 19]) that the corresponding heat semigroup

0 defines a strongly continuous contractive Markovian semigroup on for
1 . Moreover by the definition of Bessel spaces on manifolds [18, 19] and
formula (3) we get

= ( )
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the classical space of Bessel potentials on manifolds and inparticular if is an integer
then is the Sobolev space on . By [18, Theorem 4.3] is regular.Further
by the chain rule the space1 is contractive for 1 . Hence 1 ( ) satis-
fies our assumptions for every 2 .
2) Lévy processes [12]: Let :R R, be a continuous negative definite function
with representation

( ) =
R 0

(1 cos( )) ( )

where is Lévy measure integrating the function 1 2. Consider the semigroup de-
fined by

( ) = (2 ) 2

R

( ) ˆ ( )

for (R ), the Schwartz space. Then (see [13]), for every 0, decides acon-
tractive strongly continuous Markovian semigroup on (R ) with generator , for
every 1 . Define

:= (1 ) 2 for 0

Then by [12, Proposition 3.3.14], (R ) is dense in for every 0 and every
2 and by [12, Lemma 3.3.44], is contractive for 0 1 and 2 .

The ( )-capacity, which we denote by Cap , is defined, for an open subset ,
by (cf. [6])

Cap ( ) = inf 1 a.e. on(6)

and for arbitrary subsets by

Cap ( ) = inf Cap ( ) open(7)

We shall say that a property holds quasi-everywhere (q.e. for short) whenever it holds
everywhere except on a set of ( )-capacity zero. A function defined q.e. on
is said to be quasi-continuous if, for every 0 there is an openset with
Cap ( ) such that the restriction of on is continuous.

We recall that, (see [6]) every has a quasi-continuous modification ˜

and that if ˜ 0 a.e. then˜ 0 q.e. Hence in the definition (6) we can change
the assertion a.e. by q.e.

In the sequel we shall implicitly assume that elements from the space have
been modified so as to become quasi-continuous.
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By [6, Lemma 2], for every Borel subset of finite ( )-capacity there is
a unique positive element such that

Cap ( ) = = inf 1 q.e. on(8)

The element is called the ( )-equilibrium potential of .
In what follows, we shall mean by capacity (respectively potential) the ( )-

capacity (respectively the ( )-potential).
Along the note we shall assume that all measures under consideration are Radon

measures and do not charge sets of zero capacity. We shall call these measures smooth
Radon measures and denote them by0.

Proposition 2.1. Let be a Borel subset of having finite capacity. Then=
1 q.e. on .

Proof. Since is contractive, then ˜ := (0 ) 1 , ˜
and ˜ = 1-q.e. on . Hence ˜ is also a minimizer of on the spaceL :=

: 1 q.e. on . Hence ˜ = -q.e. by the uniqueness of , and
the proof is finished.

Let us consider the functionE (see [14, p. 427]) defined on by

E ( ) = 1 1 1sgn 1(9)

where ‘sgn’ is the usual sign-function.
Let be the conjugate of . Consider the operator introduced in[14, 16] and

defined by:

:=
1

sgn(10)

Then is well defined, bijective and continuous. Its inverse operator is given by

1 =
1 1 1

sgn 1(11)

Observing that is an isometry between the spaces and , we get

E ( ) = 1 1 = 1(12)

Here is the duality product between and its dual space.
Let . We say that is positive if 0 for every positive

. Let us denote by + this set.
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Proposition 2.2. Let be a compact subset of . Then there is a unique posi-
tive Radon measure such thatsupp( ) , Cap ( ) = ( )and

E ( ) = for every 0( )(13)

Here is the equilibrium potential of . We shall call the equilibrium measure
of .

Proof. Let be compact. Arguing as [14, p.428], we realize that

E ( ) 0(14)

for every such that 0 q.e. on . Now following Fukushima [7, p.75],
for every 0( ) set

( ) := E ( )(15)

Let be compact and 0( ) be positive such that 1 on . Then for
every 0( ) such that supp( ) we have 0 . Hence
using the linearity ofE with respect to the first argument together with (14) we get

( ) ( )

Now we shall extend first from ( ) to ( ). Let ( ). Then there
is a sequence ( ) 0( ) such that lim = 0. Set

˜ := ((( 1) ) 1)

Then by the contractivity property (˜ ) 0( ) and supp(̃ ) supp( ). More-
over ˜ 2 1. Hence approximating by (̃) in the uniform norm and
making use of the inequality (14) we conclude that has a unique extension as a pos-
itive functional, ˜, on ( ). Thereby there is a unique positive Radon measure
such that

˜( ) = for every ( )(16)

In particular, we have

E ( ) = for every ( )(17)

To show that supp( ) it suffices to prove that 0 for every
( ) such that 0 on . Let ( ) be positive on then by the latter

identity and (14) we conclude that 0.
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Now for general , consider the (˜ ) constructed above. Let ( ) be
such that = 1 on . set

:= ˜ + 2 1

Then ( ) ( ) and 0 on , so that 0. Observe that
the supports of the ’s are included in a fixed compact subset and that lim

= 0, yielding

0 lim =(18)

and the result follows.
Now since has compact support, making use of equality (16),˜ extends

to 0( ) as a positive linear functional,̃̃. Hence extends to 0( ), in particular
we achieve

E ( ) = for every 0( )(19)

Finally with the help of the latter identity and the regularity property, we conclude that
( ) = 0 if Cap ( ) = 0 for every subset , so 0. This property together

with the property [6, (c)-p.45] imply that (19) extends to the whole space . Finally,
making use of Proposition 2.1, we get

( ) = = E ( ) = Cap ( )

and the proof is finished.

REMARK 2.1. Let 0 having compact support. Suppose that there is a con-
stant such that

for every

Then defines an element in the space+ as follows

:= R ( ) =

We shall write

:= ( ) =(20)

and identify with . The element will be called the potential of .



18 A. BEN AMOR

Arguing exactly as in the proof of Proposition 2.2 we achievethe following iden-
tity

E ( ) = for every(21)

If = the equilibrium measure of a compact subset, the element will be
called the equilibrium potential of .

3. Trace inequalities and compactness criteria

Among other tools needed to study the boundedness of , we shall need aca-
pacitary strong type inequality[1, 8, 9, 10, 21]. Before giving the result we shall fix
some notations. For every and 0, we set

:= : ( )(22)

Theorem 3.1. Let 2 and 0( ). Then

0
Cap ( )

( 1) 1
(23)

REMARK 3.1. We mention that a capacitary strong type inequality wasfirst
proved by Maz’ya [15, p.209] for the space 1 (R ), 1 with the so
called condenser capacityand with the sharp constant := ( 1)1. The lat-
ter coincides with our constant for = 2 and it was already observed by Fukushima-
Uemura [8] that for 1 2 the constant 4 in (23) is optimal.

Unfortunately, we do not know whether our constant is sharp or not in the general
case.

Proof. We shall follow closely the proof of Adams-Hedberg [1], with a slight
modification. Let 1. Set

:= : ( ) for every Z

The inequality (23) follows from the inequality

=

Cap ( )
1

for every Z and every 1(24)

where := ( ( 1)) 1. Indeed, the latter inequality implies

0
Cap ( 1)

Z

Cap ( )
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( 1)
1

for all 1(25)

Now minimizing ( 1) ( 1) with respect to 1 we get the desired inequality.
So our next aim is to prove the inequality (24).
Let 0( ) be given. Then is a compact subset and is empty for

large . Let be the equilibrium measure of and its equilibriumpotential. For
every Z, we denote by the left side of (24). Then

= ( 1) = ( 1)E ( )

= ( 1) 1 1 1sgn( 1 )

( 1) 1 1(26)

where the latter inequality is obtained from Hölder’s inequality and the contraction
property for the space .

Since 0 a.e. and thereby 1 0 a.e., we get

( 1) 1 1
(27)

For a.e. and every Z, we shall set

( ) := 1 1
( ) ( ) := ( 1) 1 1

( ) and :=

Let us stress that both and are finite. Hence we conclude the proof by showing
that

1 1

1

(28)

for every Z and every 1.
For a.e. , let be the function defined on the real line by ( ) = ( ) for

+ 1. Then

( ( )) 1 = ( ( )) 1( +1( ) ( )) =
1

( )(29)
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yielding that

( ) = ( ( )) 1( ( ) +1( ))

= ( ( )) 1 ( 1) 1 1
(30)

By Hölder’s inequality we get

( ) = (2 ) (2 ) 1 ( 1) ( 1)2

2

1

1

2

1

1

= 2
1

1
2(31)

where

1 := and 2 := 1

Let us observe that

= ( 1 ) = = Cap ( )

implying that 1 = .
On the other hand we have

2 = ( 1) 1 1 1 = ( 1)E ( )

= ( 1)(32)

Now for every , . Hence by Proposition 2.1 we infer that = 1-q.e.
on for every . Thereby

= ( ) for every(33)
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So we conclude that

2
( 1) ( )

1
(34)

and the proof is completed.

Next we shall use Theorem 3.1 to investigate the boundednessof the operator

:= ( ) =(35)

Clearly this is equivalent to the boundedness of the operator

:= ( )(36)

whose to the -equivalence class of associates its -equivalence class. Let
us emphasize that is not one-to-one (see [3, Remark 3.3]).

In the sequel we shall denote, for every compact subset , by :=1 , the re-
striction of to .

Theorem 3.2. Let 0 be a positive measure on, 0 and 2
. Then the following claims are equivalent:

(i) The operator is bounded from into ( ).
(ii) For every compact subset of, the measure + and there is a constant

1 such that

1 1
1( ( ))1(37)

(iii) There is a constant 2 such that

sup
0

( ( ))1
2(38)

for every .
(iv) There is a constant 3 such that

( ( ))1
3 Cap ( )

1
(39)

for very compact subset .
Moreover the constants can be chosen so that

3 2 1 ( )
( 1)( 1)

1

3
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Inequality (38) may be seen as a weak-type Sobolev inequality [17, p.60] where
the gradient energy form is replaced by the ( )-energyE . Hence Theorem 3.2 says
that the trace, the capacitary, and the weak-type Sobolev inequality are equivalent to
each other.

We also infer from (i) (iii) that is of strong ( )-type if and only if it is
of weak ( )-type.

Proof. (i) (ii): Let be a compact subset. Then from the inequality

( )( ( ))1 for every(40)

we conclude that +. Now set := and let . Then

1 1
= E =

( )( ( ))1
( ) ( ( ))1

for every . Yielding 1 1
( ) ( )

1
.

(ii) (iii): For every 0 and every 0( ), we have

( ) = E ( )

= 1 1 1 1 1

1 ( ( ))1(41)

yielding ( ( ))1 1 for every 0 and every 0( ). For
arbitrary we get the result by approximation.

The proof of the implication (iii) (iv) is obvious, so we omitit.
(iv) (i): Let 0( ). Then

=
0

( ) 3
0

Cap ( )(42)

Let us recall that Cap ( )
1

. Thus, since 1, we get

0
Cap ( )

0
Cap ( )

Finally we derive by Theorem 3.1

3 ( 1) 1
(43)
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For an arbitrary the latter inequality is derived by standard approximation
and the proof is finished.

Corollary 3.1. Let 2 and 0 be positive. Assume that for every compact
subset , the measure + and that

:= sup(44)

Then is bounded from into ( ).

Let us observe that measures satisfying (44) extend the notion of potentially
bounded measures in the linear case. Hence Corollary 3.1 generalizes [2, Corol-
lary 3.1]

Proof. Let be a compact subset of . Set the potential of . Then with
the help of Remark 2.1 we get

1 1
= 1 = E ( )

= ( )(45)

and the result follows using Theorem 3.2-ii.

Now we will turn our attention to give necessary and sufficient conditions to
the ( )-compactness of the operator . We fix some notations: Let 0, 0

and the open ball of centered at0 with radius . We denote by := 1
and := .

Theorem 3.3. Let 2 . Then is compact from into ( ) if
and only if the following two conditions are satisfied:
i) For every 0, is compact from into ( ).

ii) lim sup ( ) Cap ( ) compact = 0.

Proof. Suppose that (i)–(ii) are satisfied. Fix 0 arbitrary small. Then by (ii),
for every , large enough and every compact subset := , we have

( ( ))1 Cap
1

(46)

This implies, together with Theorem 3.2-(iv), that is bounded from into
( ) and

(47)
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Now let ( ) such that 1 and ( ) converges weakly to 0 in . Then

( ) ( ) +

( ) +(48)

where the latter inequality is obtained from (47). So passing to the limit and making
use of assumption (i) we get

lim
( )

for every arbitrary small, implying that is compact.
The converse: Let be a compact subset, such that 1-q.e. on .

Set := . Then

( ) = E ( ) 1(49)

leading to

( ) Cap ( )
1 1(50)

Now for a compact subset , set := ( ( ))1 1 , where is the con-
jugate of . Let ( ). Then

1

0 as(51)

By assumption the adjoint operator of , : ( ) is compact. Thus
lim = 0. Let us compute . For convenience we shall omit,
for the moment, the subscript .

Let , then

= = ( ( )) 1(52)

Since is bounded and has compact support we deduce from Remark 2.1 to-
gether with (52) that

= ( ( )) 1 E

= ( ( )) 1 1 1
(53)



TRACE INEQUALITIES 25

Whence ( ) = ( ( )) 1 1 1
and

= ( ( )) 1 1 1
= ( ( )) 1 1(54)

Finally putting all together we get

( ( ))1 Cap ( )
1

( ( ))1 1 = ( )

0 as(55)

and the proof is finished.
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