Osaka University Knowledge Archive

Title	On fixed point free involutions of T^{3}
Author(s)	Ritter, Gerhard X.
Citation	Osaka Journal of Mathematics. 1975, 12(2), p. $365-373$
Version Type	VoR
URL	https://doi.org/10.18910/10454
rights	
Note	

Osaka University Knowledge Archive : OUKA
https://ir. library.osaka-u.ac.jp/
Osaka University

ON FIXED POINT FREE INVOLUTIONS OF T3

GERHARD X. RITTER

(Received July 12, 1974)

1. Introduction. In 1962, Y. Tao [4] proved the following theorem in this Osaka Mathematical Journal:

Theorem. If h is a fixed point free involution of $S^{1} \times S^{2}$, and if M is the 3-manifoldobtained by identifyingx and $h x$ in $S^{1} \mathrm{X} S^{2}$, then M is either homeomorphic to (1) $S^{1} \times S^{2}$, or (2) the 3-dimensional Klein Bottle, or (3) $S^{1} \times \boldsymbol{P}^{2}$, or (4) $P^{3} \# P^{3}$.

In order to prove the theorem, Tao used a result of Livesay [2] and simple cut and paste techniques. The question naturally arises as to whether or not Tao's method can be applied to classify the orbit spaces of fixed point free involutions on any manifold of the form $S^{\mathbf{1}} \times F$, where F is a compact surface. We answer this question affirmatively in the case when F is the 2 -dimensional torus T^{2}. In particular, we shall show that if h is a fixed point free involution on the 3dimensional torus $T^{3}=S^{1} \times T^{2}$, then pasting the points equivalent under h, we must obtain either T^{3}, or $S^{1} X K^{2}$, or K^{3}, or the torus bundle over S^{1} obtained from [0,1]X T^{2} by identifying the boundaries with a homeomorphism h of period two such that $h(m)=m^{-1}$ and $h(l)=m l$, where ($m, /$) is a meridian-longitude system for T^{2}.
2. Preliminaries. The interior of a topological mainfold M will be denoted by int M and the boundary by ∂M. The n-dimensional sphere, torus and Klein bottle will be denoted by S^{n}, T^{n}, and K^{n}, respectively.

Since we may assume [3] that T^{3} has a fixed triangulation and that h acts piecewise linearly on this triangulation, the objects in this paper (maps, neighborhoods, simple closed curves, etc.) should always be considered from the polyhedral point of view.

We shall think of T^{3}, K^{3} and $S^{1} X K^{2}$ as obtained from [0,1]X T^{2} by identifying $0 \times T^{2}$ with $1 \times T^{2}$. Thus, if (m, l) denotes a meridian-longitude pair for T^{2} and $m_{i}=i \times m, l_{i}=i \times l(i=0,1)$, then identifying $0 \times T^{2}$ with $1 \times T^{2}$ so that m_{0}, l_{0} gets glued onto m_{1}, l_{1}, respectively, results in a manifold homeomorphic to T^{3}. For K^{3} we must identify m_{0}, l_{0} with m_{1}^{-1} and l_{1}^{-1}, respectively, and for $S^{1} X$ K^{2}, m_{0}, l_{0} identifies with m_{1}^{-1} and l_{1}, respectively.

3. Classification of $\boldsymbol{T}^{\mathbf{3}} / \boldsymbol{h}$

Theorem 1. If h is a fixed point free involution on T^{3}, then there is a torus T in T^{3} which does not separate T^{3} and T has the property that either $T=h T$ or T $\cap h T=\phi$.

Proof. Let $T=0 \times T^{2}$. If $h T \neq T$ and $T \cap h T \neq \phi$, then, by using small isotopic deformations of T whenever necessary, we may suppose that $T \cap h T$ consists of a finite number of disjoint simple closed curves. If / is a component of $T \cap h T$,then J satisfies one of the following three properties:
(i) J is homotopically trivial on both T and $h T$.
(ii) J is homotopically trivial on one of T or $h T$, but not both.
(iii) / is homotopically non-trivial on both T and $h T$.

If J is a simple closed curve in $T \cap h T$ such that J bounds a disc D on T or $h T$ with the property that int $D \cap(T \cap h T)=\phi$, then D is called an innermost disc with respect of $T \cap h T$. Our next step is to eliminate all simple closed curves in $T \cap h$ Twhich bound innermost discs on $h T$ and satisfy (i).

Suppose / is a component of $T \cap h T$ satisfying (i) and bounding an innermost disc $D \subset h T$. We denote by E the disc on T bounded by / and let /' be a simple closed curve in $T-E$, sufficiently close to $/$, such that the annulus A on T bounded by $/ \mathrm{U} J^{\prime}$ has the property that $A \cap h T=J$. We now choose a disc D^{\prime} so close to D that D^{\prime} satisfies $D^{\prime} \cap T=\partial D^{\prime}=J^{\prime}$ and $D^{\prime} \cap h T=D^{\prime} \cap h D^{\prime}=\phi$. This choice of D^{\prime} is possible since D is innermost and h is fixed point free. Since we only replaced the disc $A \cup E$ by the disc D^{\prime}, the torus $T^{\prime}=[T-(E \cup A)]$ $\mathrm{U} U$ does not separate T^{3}. It follows that $T^{\prime} \cap h T^{\prime}$ contains fewer components of type (i) which bound innermost discs on $h T$. We repeat this process until we obtain a non-separating torus $T^{\prime \prime}$ with the property that no component of $T^{\prime \prime}$ $\cap h T^{\prime \prime}$ which satisfies (i) bounds an innermost disc on $h T^{\prime \prime}$.

For the sake of convenience, we shall again denote our adjusted torus $T^{\prime \prime}$ by T. Suppose / is a component of $T \cap h T$ satisfying (ii) and bounding a disc D on $h T$. If D is not innermost, then there is a compoent J^{\prime} of $T \cap h T$ with $J^{\prime} \subset$ int D so that the disc $D^{\prime} \subset$ int D bounded by J^{\prime} is innermost. By our previous reduction argument, J^{\prime} cannot satisfy (i), and hence, l^{\prime} must be nontrivial on T. But this is impossible since $D^{\prime} \cap T=J^{\prime}$ and T is incompressible in T^{3}. Similarly, D cannot be innermost on $h T$.

If J is trivial on T and non-trivial on $h T$, then $h J$ is trivial on $h T$ and nontrivial on T which, by the above argument, is impossible. We may conclude that $T \cap h T$ contains no curves satisfying (ii). Furthermore, since all curves satisfying (i) and bounding innermost discs have been removed, either $T \cap h T$ $=\phi$ or the components of $T \cap h T$ must all satisfy (iii).

Since Γ does not separate T^{3}, it is possible that $T \cap h T$ contains exactly one component. We shall consider this case first.
A. $\quad T \cap h T$ consists of exactly one simple closed curve J. Since $h J=J$, there is a sufficiently small regular neighborhood N of J such that $h N=N, \partial N$ separates T^{3} and $(T \cup h T) \cap \partial N$ consists of four disjoint simple closed curves c_{1}, \cdots, c_{4}. The set $\mathrm{U} c_{i}$ divides $d N$ into four annuli a_{1}, \cdots, a_{4} and we assume that all subscripts have been arranged in order to satisfy $a_{1} \cap a_{2}=c_{1} \subset T, a_{2} \cap a_{3}=c_{2} \subset$ $h T, a_{3} \cap a_{4}=c_{3} \subset T$ and $a_{4} \cap a_{1}=c_{4} \subset h T$ (figure 1; the diagram represents a "meridian" cut). The curves c_{1} and c_{3} divide T into two annuli A and B, and we let B denote the annulus containing J. Since $h^{2}=1, h\left(a_{2} \cup a_{4}\right)=a_{2} \cup a_{4}$. It follows that $T^{\prime}=A \cup h A \cup a_{2} \cup a$ ęmains invariant under h. Thus, if T^{\prime} does not separate T^{3}, then T^{\prime} satisfies the conclusion of Theorem 1.

Figure 1.

Figure 2.

Suppose T^{\prime} separates T^{3}. Let U and V denote the components of $T^{3}-T^{\prime}$. Let J^{\prime} be a simple closed curve on T, transverse to c_{1} and c_{3}, and let p and q be the points $c_{1} \cap J^{\prime}$ and $c_{3} \cap J^{\prime}$, respectively. Let p^{\prime} and q^{\prime} be two points in int a_{2} and int a_{3}, close to p and q, respectively (figure 2). We may choose simple arcs a and β on a_{2} and a_{3}, respectively, with $\partial \alpha=p\left(p^{\prime}, \partial \beta=q \cup q^{\prime}, \alpha \cap J^{\prime}=p\right.$, $\beta \mathrm{n} J^{\prime}=q$ and $(\alpha \mathrm{U} \beta) \cap h A=\phi$. Since $a_{3} \Pi T^{\prime}=\partial a_{3}$, either int $a_{3} \subset U$ or int $a_{3} \subset$ V, and we suppose that int $a_{3} \subset U$. Hence q^{\prime} is a point in U and int $N \subset U$. If γ denotes the $\operatorname{arc} \alpha \mathrm{U} \beta \mathrm{U}\left(J^{\prime}-\operatorname{int}\left(B \Pi J^{\prime}\right)\right)$, then $7 \cap h A=\phi$ and we may push γ slightly off $a_{2} \cup a_{3} \cup A$, away from N and missing $h A$. Thus, we can obtain an arc missing T^{\prime}, with one end point in U and the other in V. It follows that T^{\prime} cannot separate T^{3}.
B. $\quad T \cap h T$ contains more than one component. If n is the number of components of $T \cap h T$, then $T \cap h T$ divides $h T$ into n annuli, A_{1}, \cdots, A_{n}, such that $T \cap$ int $A_{i}=\boldsymbol{\phi}$. Each annulus A_{i} can satisfy one and only one of the following conditions:
(1) $\partial A_{i} \cap \partial h A_{i}=\partial A_{i}$
(2) $\partial A_{i} \cap \partial h A_{i}=\phi$
(3) $\partial A_{i} \Pi \partial h A_{i}$ contains exactly one component of $T \Pi h T$.

We consider each of these possibilities separately.

1. Suppose $A_{i} \subset h T$ is an annulus satisfying (1). Then ∂A_{i} divides T into
two annuli A and B. Since $T \cap$ int $A_{i}=\phi$, we may suppose, without loss of generality, that $h A_{i}=A$. Let $T_{1}=A_{i} \cup A$ and $T_{2}=A_{i} \cup B$. Then at least one of the tori T_{1} or T_{2} does not separate T^{3}. For suppose both T_{1} and T_{2} separate T^{3}. Let U_{1}, V_{1} and U_{2}, V_{2} denote the components of $T^{3}-T_{1}$ and $T^{3}-T_{2}$, respectively. Since $B \cap T_{1}=\partial B$, either int $B \subset U_{1}$, or int $B d V_{1}$, and we suppose, without loss of generality, that int $B \subset U_{1}$. Similarly, we may suppose int $A d$ U_{2}. Let p be a point in int B and p_{1}, p_{2} two points sufficiently close to p such that $p_{1} \in U_{1} \cap U_{2}$ and $p_{2} \in U_{1} \Pi V_{2}$. Let a be a simple arc in T^{3} going from p_{1} to p_{2}, and such that $\alpha \cap T=\phi$. Since p_{1} lies in U_{2} and p_{2} in V_{2}, a must intersect T_{2} and it can intersect T, only in int A_{i}. We may assume that $\alpha \cap A_{i}$ consists of a finite number of piercing points. Since p_{1} and p_{2} both lie in U_{1}, and since each time we pierce through A_{i} we pass from U_{1} into V_{1} or vice versa, the number of piercing points in $a \Pi$ int A_{i} must be even. Let $q_{1}, \cdots, q_{2 k}$ denote the components of $a \cap \operatorname{int} A_{i}$, and let the subscripts be ordered such that q_{i} precedes q_{i+1} when traversing a from p_{1} to p_{2}. Let α_{i} denote the subarc of a from $q_{2 i-1}$ to $q_{2 i}$. We now replace each α_{i} by a simple arc $\alpha_{i}^{\prime} \subset$ int A_{i} from $q_{2 i-1}$ to $q_{2 i}$ such that $\alpha_{i}^{\prime} \cap \alpha_{j}^{\prime}=\phi$, if $i \neq j$. Let the new arc thus obtained be again denoted by a. Then pushing each α_{i} slightly off int A_{i} and into U_{1}, we may delete the intersection $\alpha \cap A_{i}$, keeping $\alpha \cap T=\phi$. Thus, we may obtain an arc joining p_{1} in U_{2} with p_{2} in V_{2} and missing T_{2}. This contradicts the assumption that T_{2} separates T^{3}.

If T_{1} does not separate T^{3}, then since $h T_{1}=h\left(A_{i} \cup A\right)=A \cup A_{i}=T T_{1}$ is invariant under h and, therefore, satisfies the conclusion of Theorem 1.

If T_{1} separates T^{3}, then T_{2} does not separate T^{3}. Let J and K denote the components of ∂A_{i}. We may choose disjoint simple closed curves J^{\prime} and K^{\prime} on int B and sufficiently close J and K, respectively, such that the annuli $R_{1} \subset B$ and $R_{2} \subset B$ with $\partial R_{1}=J \cup J^{\prime}, \partial R_{2}=K \cup K$ have the property that $h T \cap$ int R_{i}

Figure 3.
$=\phi$. Let A_{i}^{\prime} be an annulus sufficiently close to A_{i} and B (figure 3) so that A_{i}^{\prime} satisfies the following conditions:
(i) $\quad A_{i}^{\prime} \cap T=A_{i}^{\prime} \cap B=\partial A_{i}^{\prime}=J^{\prime} \cup K$ and $A_{i}^{\prime} \cap h T=\phi$.
(ii) $T^{\prime}=\left(B-\mathrm{U} R_{i}\right) \cup A_{i}^{\prime}$ does not separate T^{3}.
(iii) $A_{i}^{\prime} \cap h A_{i}^{\prime}=\phi$.

Since $T_{2}=B \cup A_{i}$ does not separate T^{3}, condition (ii) can be easily satisfied for A_{i}^{\prime} sufficiently close to A and J^{\prime}, K^{\prime} close to J and K, respectively. Condition (iii) is obtainable since $T \cap$ int $A_{i}=\phi, h A_{i}^{\prime} \cap T=\phi$ and $h A_{i}^{\prime} \cap h T=h \partial A_{i}^{\prime}$.

By our construction, the number of components of $T^{\prime} \cap h T^{\prime}$ is strictly less than the number of components of $T \cap h T$. Since the number of components in $T \Pi h T$ is finite, we can find - by proceeding with the above argument - a torus $T^{\prime \prime}$ which does not separate T^{3} and satisfying exactly one of the following: (a) $h T^{\prime \prime}=T^{\prime \prime}$, (b) $h T^{\prime \prime} \cap T^{\prime \prime}=\phi$, (c) $T^{\prime \prime} \cap h T^{\prime \prime}$ contains exactly one simple closed curve, (d) $T^{\prime \prime} \cap h T^{\prime \prime}$ has r components, $1<r<n$, dividing $h T^{\prime \prime}$ into r annuli, $A_{1}^{\prime \prime}, \cdots, A^{\prime \prime}$, such that no $A^{\prime \prime}$ satisfies condition (1).

Both (a) and (b) satisfy the conclusion of Theorem 1. Case A applies if (c) holds. Thus, in order to complete our proof, we have only to consider (d). For convenience, we again denote $T^{\prime \prime}$ by T and A^{\prime} by A_{i}.
2. Suppose no annulus $A_{i} \subset h T$ satisfies (1) and suppose that for some i, A_{i} satisfies (2). Then ∂A_{i} divides T into two annuli A and B. Since $T \cap$ int $A_{i}=\phi$ and $\partial A \cap \partial h A_{i}=\phi$, we may suppose, without loss of generality, that $h A_{i}$ $\subset \operatorname{int} A$. Let $T_{1}=A_{i} \cup A, T_{2}=A_{i} \cup B$ and J, K the boundary components of A_{i}. As before, at least one of the tori, T_{1} or T_{2}, does not separate T^{3}.

If T_{1} does not separate T^{3}, let J^{\prime} and K^{\prime} be two simple closed curves on int A, close to J and K, respectively, and A_{i}^{\prime} an annulus sufficiently close to A_{i} such that the following conditions are satisfied:
(i) $\quad A_{i}^{\prime} \cap T=A_{i}^{\prime} \cap A=\partial A_{i}^{\prime}=J^{\prime} \cup K^{\prime}$ and $A_{i}^{\prime} \cap h T=\phi$.
(ii) If R_{1} and R_{2} denote the annuli on A bounded by $/, J^{\prime}$ and K, K^{\prime}, respectively, then $h T \cap$ int $R_{i}=\phi$.
(iii) $T^{\prime}=\left(A-\mathrm{U} R_{i}\right) \cup A_{i}^{\prime}$ does not separate T^{3}.
(iv) $A_{i}^{\prime} \cap h A_{i}^{\prime}=\phi$

As in argument 1. above, all these conditions can be satisfied. By construction, the number of components of $T^{\prime} \cap h T^{\prime}$ is strictly less than the number of components of $T \cap h T$.

If T_{2} does not separate T^{3}, then J and K are not components of $T_{2} \cap h T_{2}$ and, hence, the number of components of $T_{2} \cap h T_{2}$ is strictly less than the number of components of $T \Pi h T$.

Since repeated application of the above algorithm reduces the number of annuli satisfying (2), we may now assume that there is a non-separating torus T in T^{3} such that either $h T=T$ or $h T \cap T$ consists of a finite number of simple closed curves dividing $h T$ into a finite number of annuli, with each annuli satisfy-
ing only condition (3).
3. Suppose each annulus $A_{i} \subset h T$ satisfies (3). Let / be a component of $T \cap h T$ which remains invariant under h, and let A_{i} and A_{j} denote the two annuli on $h T$ with the property $A_{i} \cap A_{i}=J$. Let J_{i} and J_{j} denote the other boundary components of A_{i} and A_{j}, respectively. The curves J and J_{i} divide T into two annuli A and B, and we suppose, without loss of generality, that $h A_{i} \subset A$ and, therefore, $h A_{j} \subset B$. The set $J \cup J_{j}$ divides T into two annuli, B_{1} and B_{2}, and we suppose that $h A_{i} \subset B_{1}$ (figure 4). For the same reasons as given in B.1., at least one of the tori $T_{2}=A_{j} \cup B_{1}$ or $T_{2}=A_{j} \cup B$ does not separate T^{3}.

Figure 4.
If T_{1} does not separate T^{3}, let J_{j}^{\prime} and J^{\prime} be two simple closed curves on int B_{1} close to $J j$ and J, respectively, and A_{j}^{\prime} an annulus with boundary $J_{j}^{\prime} \cup J^{\prime}$, and sufficiently close to A_{j}, such that the following hold:
(i) $A_{j}^{\prime} \cap T=A_{j}^{\prime} \cap B_{1}=J_{j}^{\prime} \cup J^{\prime}$ and $A_{j}^{\prime} \cap h T=\phi$.
(ii) If R_{1} and R_{2} denote the annuli on B_{1} with boundary components J, J^{\prime} and J_{j}, J_{j}^{\prime}, respectively, then $h T \cap$ int $R_{i}=\phi$.
(iii) $T^{\prime}=\left(B_{1}-\mathrm{U} R_{i}\right) \cup A_{j}^{\prime}$ does not separate T^{3}.
(iv) $\quad A_{j}^{\prime} \cap h A_{j}^{\prime}=\phi$.

Again, all these conditions can be satisfied, and the number of components of $T^{\prime} \cap h T^{\prime}$ is strictly less than the number of components of $T \cap h T$.

If T_{1} separates T^{3}, then T_{2} cannot separate T^{3}. Hence, at least one of $B \mathrm{U}$ A_{i} or $\left(B\right.$-int $\left.B_{2}\right) \cup A_{i} \cup A$ does not separate T^{3}.

If $B \cup A_{i}$ does not separate, let J^{\prime} and J_{i}^{\prime} be two simple closed curves on int B, close to J and J_{i}, respectively, and A_{i}^{\prime} an annulus sufficiently close to A_{i} such that the following conditions are satisfied:
(i) $A_{i}^{\prime} \Pi T=A_{i}^{\prime} \Pi B=\partial A_{i}^{\prime}=J^{\prime} \mathrm{U} J_{i}^{\prime}$ and $A_{i}^{\prime} \Pi h T=\phi$.
(ii) If R_{1} and R_{2} denote the two annuli on B bounded by J, J^{\prime} and J_{i}, J_{i}^{\prime}, respectively, then $h T \cap$ int $R_{i}=\phi$.
(iii) $T^{\prime}=(B-\mathrm{U} R i) \cup A_{i}^{\prime}$ does not separate T^{3}.
(iv) $A_{i}^{\prime} \cap h A_{i}^{\prime}=\phi$.

As in the previous cases, all these conditions are easily satisfied, and the
number of components of $T \cap h T^{\prime}$ is strictly less than the number of components of $T \cap h T$.

If $\left(B-\operatorname{int} B_{2}\right) \cup A_{i} \cup A$ gloes not separate, we simply set $T^{\prime}=\left(B-\operatorname{int} B_{2}\right)$ $\cup A_{i} \cup A_{\text {and }}$ note that since $h J_{j} \cap T^{\prime}=\phi, T^{\prime} \cap h T^{\prime}$ contains fewer components than $T \cap h T$.

We have shown that there is always a torus T^{\prime} in T^{3} which does not separate T^{3} and such that either $h T^{\prime}=T^{\prime}$ or $T^{\prime} \cap h T^{\prime}$ has fewer components than $T \cap h T$. Since the number of components of $T \cap h T$ is finite, a finite number of repetition of the above argument will yield a torus $T^{\prime \prime}$ which does not separate T^{3} and such that either $T^{\prime \prime} \cap h T^{\prime \prime}=\phi$ or $T^{\prime \prime}=h T^{\prime \prime}$.

This proves Theorem 1.
Let $M_{1}=T^{3}, M_{2}=K^{3}, M_{3}=S^{1} \times K^{2}$ and M_{4} the torus bundle over S^{1} obtained from [0,1$] \times T^{2}$ by identifying $0 \times T^{2}$ with $1 \times T^{2}$ by a homeomorphism h of T^{2} such that $h^{2}=1, h(m)=m^{-1}$ and $h(l)=m l$, where ($m, /$) is a meridianlongitude system for T^{2}.

Theorem 2. If h is a fixed point free involution on T^{3}, then T^{3} / h is homeomorphic to M_{i} fosome $i=1,2,3$ or 4.

Proof. By Theorem 1, there is a torus $T \subset T^{3}$ which does not separate T^{3} and satisfies either $T \cap h T=\phi$ or $T=h T$. We divide our proof according to these two possibilities.
A. We suppose that $h T=T$. Since T does not separate T^{3} and the inclusion of T into $[0,1] \mathrm{X} T$ induces an isomorphism on the fundamental groups, we have by Theorem 3.4 of [1] that the space obtained from T^{3} by cutting T^{3} open along T must be homeomorphic to $[0,1] \mathrm{X} T$. Thus, we may suppose that h is a fixed point free involution of the toroidal shell $[0,1] \mathrm{X} T^{2}$, leaving each boundary invariant.

Let m_{i} and l_{i} denote the meridian and longitude, respectively, of $i \times T^{2}$, $i=0.1$. Since h is of period two and $h\left(m_{i}\right) \cup h\left(l_{i}\right)$ is a pair of transverse simple closed curves on $i \times T^{2}$ intersecting in exactly one point, it follows that either $h\left(m_{i}\right)=m_{i}$ and $h\left(l_{i}\right)=l_{i}^{ \pm 1}$, or $h\left(m_{i}\right)=m_{i}^{-1}$ and $h\left(l_{i}\right)=l_{i}^{ \pm 1}$ or $h\left(l_{i}\right)=m_{i} l_{i}$, or $h\left(m_{i}\right)=l_{i}$ and $h\left(l_{i}\right)=m_{i}$, or $h\left(m_{i}\right)=l_{i}^{-1}$ and $h\left(l_{i}\right)=m_{i}^{-1}$, or $h\left(m_{i}\right)=m_{i} l_{i}$ and $h\left(l_{i}\right)=l_{i}^{-1}$, up to isotopy on $i \times T^{2}$. Using general positioning, we may assume that $m_{i} \cap h\left(m_{i}\right)$ consists of at most a finite number of crossing points. Since h is of even period and fixed point free, the number of crossing points in $m_{i} \cap h\left(m_{i}\right)$ cannot be odd. Hence, $h\left(m_{i}\right)=m_{i}^{ \pm 1}$ and, similarily, $h\left(l_{i}\right)=l_{i}^{ \pm 1}$, up to isotopy on $i x T^{2}$.

Let $V_{i}=D^{2} \times S^{1}$,where $i=0,1$ and $D^{2}=\left\{(x, y) \in R^{2} \mid x^{2}+y^{2} \leq 1\right\}$. Then the space obtained by attaching $V_{0} \mathrm{U} V_{1}$ to $[0,1] \times T^{2}$ by gluing ∂V_{i} to ix T^{2} such that the meridian and longitude of V_{i} gets identified with ra,- and l_{i}, respectively, is homeomorphic to the lens-space $L(0,1)=S^{1} \times S^{2}$. Extending h radially to the core of V_{i} induces a piecewise linear extension h^{\prime} of h to all of $S^{1} \mathrm{X} S^{2}$. By
[5], h^{\prime} is equivalent to a standard rotation of $S^{1} X S^{2}$. Therefore, h is equivalent to $e \times k:[0,1] \times T^{2} \rightarrow[0,1] \times T^{2}$, where e is the identity on $[0,1]$ and k is one of the two standard fixed point free involutions of T^{2}. Since T^{2} / k is either homeomorphic to T^{2} or K^{2}, matching again the boundaries of $[0,1] X T^{2}$, we observe that T^{3} / h is either homeomorphic to $S^{1} \mathrm{X} T^{2}$ or $S^{1} X K^{2}$.
B. We suppose that $T \cap h T=\phi$. Since T does not separate T^{3}, we again have by [1] that the set $T \cup h T$ divides T^{3} into two components V and W, each homeomorphic to $[0,1] \times T^{2}$. We must consider two cases, namely $h V=W$ and $h V=V$.

If $h V=W$, then T^{3} / h may be viewed as being obtained from $[0,1] \times T^{2}$ by identifying the boundaries with the homeomorphism h. If m_{i} and l_{i} are as in case A, then either $h\left(m_{0}\right)=m_{1}$ and $h\left(l_{0}\right)=l_{1}^{+1}$, or $h\left(m_{0}\right)=m_{1}{ }^{-1}$ and $h\left(l_{0}\right)=l_{1}{ }^{ \pm 1}$ or $h\left(l_{0}\right)=m_{1} l_{1}$, or $h\left(m_{0}\right)=m_{1} l_{1}$ and $h\left(l_{0}\right)=l_{1}^{-1}$, or $h\left(m_{0}\right)=l_{1}$ and $h\left(l_{0}\right)=m_{1}$, or $h\left(m_{0}\right)=l_{1}^{-1}$ and $h\left(l_{0}\right)=m_{1}^{-1}$, up to isotopy on T^{2}. Thus, for all but the last two cases it is clear that T^{3} / h is homeomorphic to M_{i} for some $i=1,2,3$, or 4. If $h\left(m_{0}\right)=l_{1}$ and $h\left(l_{0}\right)=m_{1}$, then T^{3} / h must be homeomorphic to T^{3}. In order to see this, let J be a $(1,1)$-curve, $m_{0} l_{0}$, on $\mathrm{Ox} T^{2}$ and let R be an annulus properly embedded in V such that $R \cap \partial V=\partial R=J \cup h J$. Then the torus $T^{\prime}=R \cup h R$ does not separate T^{3} and case A applies. We use the exact same argument if $h\left(m_{0}\right)=l_{1}^{-1}$ and $h\left(l_{0}\right)$ $=m_{1}{ }^{-1}$ in order to obtain the non-separating torus T^{\prime}. In this case $T^{3} / h=S^{1} \times$ K^{2} up to homeomorphism since h is orientation reversing.

If $h V=V$ with $h\left(m_{0}\right)=m_{1} l_{1}$ and $h\left(l_{0}\right)=l_{1}{ }^{-1}$, then $h\left(m_{0}\right)$ is a non-trivial multiple in $V=[0,1] \times T^{2}$ of l_{1} and m_{1}. Therefore, $h\left(h\left(m_{0}\right)\right)$ must be homologous in V to a non-trivial multiple of $h\left(l_{1}\right)$ and $h\left(m_{1}\right)$. But $h\left(h\left(m_{0}\right)\right)=m_{0}$ while $h\left(l_{1}\right)=l_{0}{ }^{-1}$. Hence, if $h V=V$, we cannot have $h\left(m_{0}\right)=m_{1} l_{1}$ and $h\left(l_{0}\right)=l_{1}{ }^{-1}$. Similarily, $h\left(m_{0}\right)$ $=m_{1}^{-1}$ and $h\left(l_{0}\right)=m_{1} l_{1}$ is impossible.

If $h\left(m_{0}\right)=l_{1}$ and $h\left(l_{0}\right)=m_{1}$, let S^{3} be obtained from $V=[0,1] \times T^{2}$ by filling in ∂V with two solid tori V_{0} and V_{1} such that the meridian and longitude of V_{0} identify with m_{0} and l_{0}, respectively, while the meridian and longitude of V_{1} identify with l_{1} and m_{1}, respectively. Then h extends naturally to a fixed point free involution of S^{3} which interchanges the core of V_{0} with a core of V_{1}. However, by chapter 3 of [3], this situation is impossible. Similarily, we cannot have $h\left(m_{0}\right)=l_{1}^{-1}$ and $h\left(l_{0}\right)=m_{1}^{-1}$.

If $h\left(m_{0}\right)=m_{1}$ and $h\left(l_{0}\right)=l_{1}$, then as in case A let $S^{1} \times S^{2}$ be obtained from V by filling in ∂V with the two solid tori V_{0} and V_{1}. We now extend h to all of $S^{1} \times S^{2}$ by extending h radially to the core of V_{i}. More precisely, if (x, y, z) $\in V_{0}$, where $(x, y) \in D^{2}$ and $z \in S^{1}$, let R denote the radius of $D^{2} \times\{z\}$ from $(0,0, z)$ to ∂V_{0} passing through (x, y, z). Then, if $\left(x^{\prime}, y^{\prime}, z\right)$ denotes the point $R \cap \partial V_{0}$, map (x, y, z) to the point ($x, y, z^{\prime \prime}$) in V_{1}, where ($x, y, z^{\prime \prime}$) lies on the radius from $h\left(x^{\prime}, y, z\right)=\left(x^{\prime \prime}, y^{\prime \prime}, z^{\prime \prime}\right)$ to $\left(0,0, z^{\prime \prime}\right)$. If we again let h denote this extension, then h is a fixed point free involution on $S^{1} X S^{2}$. It follows from [4]
that h is conjugate to one of the four standard fixed point free rotations of $S^{1} \times S^{2}$. Hence, there is a torus T^{\prime} in [0, 1] X T which is isotopic to $0 \times T$ and invariant under h and case A applies. We argue analogously if $h\left(m_{0}\right)=m_{1}^{-1}$ and $h\left(l_{0}\right)=l_{1}^{ \pm 1}$. This proves Theorem 2.

UNIVERSITY OF FLORIDA

References

[1] E.M. Brown: Unknottingin $M^{2} \times I$, Trans. Amer. Math. Soc. 123 (1966), 480505.
[2] G.R. Livesay: Fixed point free involutions on the 3-sphere, Ann. of Math. 72 (1960), 603-611.
[3] G.X. Ritter: Free Z_{8} actions on S^{3}, Trans. Amer.Math. Soc. 181 (1973), 195-212.
[4] Y. Tao: On fixed point free involutions of $S^{1} \times S^{2}$, Osaka J. Math. 14 (1962), 145-152.
[5] J.L. Tollefson: Involutions on $S^{1} \times S^{2}$ and other 3-manifolds, Trans. Amer. Math. Soc. 183 (1973), 139-152.

