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1. Introduction

Let 1 be a positive bounded Borel measure on R? with bounded support and let
supp(u) denote the support of u. For § > 0 and ¢ € R, the LI-(moment) spectrum of
w is defined as

. Insup)_, u(Bs(x;))?
7(g) = lim Zlé ( Ui
6—0+ n

where {Bs(z;)}; is a disjoint family of J-balls with center x; € supp(u) and the supre-
mum is taken over all such families. For ¢ > 1, the LI-dimension (or generalized Rényi
dimension, see e.g. [10], [22]) of u is defined as

(a)
qg—1

dim (u) =

The spectra 7(q) and dim, (1) play a central role in studying the multifractal struc-
ture of the measure p (e.g., the multifractal formalism [6], [9], [10]) and it is of great
interest to compute them. There is a simple formula for 7(q) if u is a self-similar
measure defined by an iterated function system of contractive similitudes satisfying the
open set condition (OSC) ([3], [4], [8], [18], [19]).

The OSC is a separation condition on the similitudes. In the absence of this con-
dition, the dynamics of the iteration is not clear and very few results are known. In
[14] the authors introduced a weak separation condition to study some interesting self-
similar measures defined by similitudes that do not satisfy the OSC. An important class
of examples comes from the self-similar measure p satisfying the identity

1 _ 1 _
(1.1) p=grour +opoyy’,

where 1z = pz, Por = px+(1—p), 1/2 < p < 1 ([12], [13], [14]). It is called an in-
finitely convolved Bernoulli measure (ICBM) because it can be identified (up to a scalar
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994 K.-S. LAU AND S.-M. NGAI

multiple) with the random variable X = Y 7o p* X, where {X}} is a sequence of
i.i.d. random variables each taking values O or 1 with probability 1/2. If p~! is a P.V.
number, then {1, } satisfies the above mentioned weak separation condition and
is singular ([5], [20]). (Recall that an algebraic integer 8 > 1 is a Pisot-Vijayaraghavan
(P.V.) number if all of its conjugates are in modulus strictly less than 1. The golden
ratio (v/5 + 1)/2 is such a number.)

It is interesting to calculate the exact values of 7(q), ¢ € R, for the class of
measures in (1.1) because the OSC fails. Only some partial results to this problem are
known. For p~! equal to a P.V. number, the value of 7(2) for the associated measure
has been calculated in [12] and [13]. For the special case p~! equal to the golden
ratio, the entropy dimension (corresponding to the L!-dimension) has been studied and
estimated by a number of authors (e.g., [1], [2], [11], [17]). For this particular measure,
an explicit formula defining 7(g) for ¢ > 0 was given in [15] recently.

In this paper we continue our study of the ICBM associated with P.V. numbers.
Our goal is to obtain a simple algorithm to calculate the L9-spectrum 7(g) for such
measures when ¢ > 2 is an integer. Note that for any bounded positive Borel measure
with bounded support, it is known that 7(1) = 0 and —7(0) is the box dimension of
the support of the measure (see e.g. [14]). The basic idea to construct the algorithm
can be summarized as follows: First, we observe that for ¢ > 0,

. T 1 e q
(1.2) 7(q) = 1nf{a : hlLr{)lJrW /_oo p(Bnr(z))" dz > O},
where By(z) is the interval [z — h,z + h) (see [12], [15], [22]). For ¢ equal to a
positive integer we let s = (s1,...,8,) € R? and let

1

1.3) & (h) = Tt /_oo pw(Br(t+s1)) - u(Bnr(t + sq)) dt.

By using the self-similar identity (1.1) we can introduce a dynamics on a suitable pa-
rameter set of the s including 0. When p~! is a P.V. number, there are only finitely
many s’s involved (i.e., @g"‘)(h) # 0) and we can represent this dynamics in terms
of a sub-Markov matrix. The maximal eigenvalue of the matrix will give the desired
7(q). This technique is a simplification of that used in [13]. For P.V. numbers that are
solutions of the polynomials 2" —z"~! —...—x—1 =0, n > 2 (including the golden
ratio), the matrix can be reduced to a very simple form.

We organize this paper as follows. In Section 2, we give some algebraic prelim-
inaries and set up the involved matrix. The main result is proved in Section 3. In
Section 4 we present techniques to reduce the size of the matrix and describe an al-
gorithm to generate it. In Section 5, we derive an explicit expression for the matrix
corresponding to the special class of P.V. numbers mentioned above. Finally in Section
6, we make some remarks on the more general case when 1, 1, are allowed to take
different probability weights.
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2. Algebraic preliminaries

Let 1/2 < p < 1. For ¢ > 2 an integer, we define a set of g-dimensional vectors
by letting s = (0,...,0), and for n > 1,

2.1 Sn=p""(sn-1+ (1 —p)e),
where € = (€1,...,¢4), € =0 or 1.

We first make an important identification for the set of s,’s generated by this iter-
ation process. We identify s,, and s,, whenever s,, = s, + ¢ for some ¢ = ¢(1,...,1)

(i.e., whenever s, and s,, both lie on the same straight line in R? parameterized by
x;i =t+a; 1 <i<q). Let S be the quotient set under such identification. Intuitively,
we think of each s € S as a “line” in RY. It follows from (2.1) that each element in S
has a representation of the form

Let
S1={(s1,...,8¢) €5 |si—s;| <1 forall 1<4,j<gq}.

Geometrically, S; consists of those lines in .S that intersect the unit cube [0, 1]‘1 .
We consider S to be a set of states that spans some vector space (S) (i.e., S is a
basis for the vector space). Define a Markov matrix 7" on S by

1 /
(22) T(s) =5 - > s

where (s€); = p~(s; + (1 — p)e;), € = (€1,...,€q), € = 0 or 1, and the summation
is taken over all such e. We emphasize that the operations - and Z' in (2.2) are
respectively scalar multiplication and addition in the vector space (S). They should be
distinguished from the linear combinations in R? by regarding the s as usual vectors,
as those in (2.1). We also note that the sum of the entries of each column of T is 1.

Proposition 2.1. T is invariant on the subspace of (S) spanned by S\ S.
Proof. Let s € S\ S; with |s; —s;| > 1 and let t = s¢. Then
lti —tj] = p | (si —55) + (1= p)(es — )| > p 7' (1= (1= p)) = 1.

This implies that ¢ € S\ S;. The assertion follows since T'(s) is a linear combination,
in (S), of the s€. O
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Proposition 2.2. If p~! is a P.V. number, then S, is a finite set.

Proof. The proof of this result can be found in [13]. We give another proof
using a lemma of Garsia ([7, Lemma 1.51]): Let 8 > 1 be an algebraic integer, let
B1,...,0 be the algebraic conjugates of § and let o be the number of 3; such that
|Bi| = 1. For an n-th degree polynomial L with integer coefficients a; and height
M :=max{|a;| : i=1,...,n}, if L(B) # 0, then

[ [18:] — 1]
n+1)°([Ig51 1B ME

|L(B)| > (

Now if p~! = 3 is a P.V. number, then the above reduces to

2.3) L@ =M~ I 6l -1]=cC.
[B:|#1

We observe that for s € S, s, = =257 ﬁ"‘ke(j). Hence s € S if and only if
J P k=0 k

n

Zﬁn_k(fg) _ Eg))

k=0

1
<

_ﬁ, for all 1§1,]Sq

Therefore to show that Sy is finite, it suffices to show that the set B defined below is
finite:

B = U{yn=2ﬂ"_knk: me=0o0r £1, |y,| < ﬁ}

n=0 k=0
If y, # ym are two elements in B with n > m, then

n m

Un —Um = DB Fne — > B Fr.

k=0 k=0

We use this to define a polynomial L with coefficients 7 — nj, (letting 7, = 0 for m <
k < n). In this case, L has height at most 2. It follows from (2.3) that |y, — ym| > C.
Since all elements of B are bounded in between +1/( — 1), B must be a finite set
and hence S; must also be finite. O

It follows from Propositions 2.1 and 2.2 that if p~! is a P.V. number, then the
matrix T is of the form

Ty O
24 T =
.4 & 2]
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where T corresponds to the states S; and is a finite sub-Markov matrix. The matrix
T; is the one we need to calculate the spectrum 7(q).

We will make a further identification for the states in S;. For s = (s1,...,84) €
S1, we let o (depending on s) be a particular permutation on {1,2,...,q} such that
the state 8, = (55(1),.--,50(q)) € S1 satisfies s5(1) > s502) > -+ > S4(q)- Let

S? = {s, : s € 51} and define
m: 81— 5 by w(s)=s8, and Ty :S57 — Sy by IY =7oTy.

Extend 7 and 77 linearly to (S;) and (SY) respectively. (Note that we have used T
both as a matrix and an operator. This slight abuse of notation will also apply to other
matrices and operators throughout the paper.)

It is easy to see that the entry (s,t) € SY x S{ of the matrix 77 is given by

1
E#{sE €S51: (8o =t, e=(e1,...,€6), =0, or 1},

where s€ is defined as in (2.2) and we use the notation #FE to denote the cardinality
of a set F.

Proposition 2.3. Let 1/2 < p < 1 such that p~' is a P.V. number. Then the
maximal eigenvalues of T\ and T{ are equal.

Proof. It follows directly from (2.2) that 7Y om = mo T} on (S;). Let A and
A% be the maximal eigenvalues of 77 and 77 respectively. Suppose s is a nonnegative
A-eigenvector of T;. Then s = Z: ¢i - 8;, where ¢; > 0 and not all ¢; are zero. This
implies that m(s) # 0. Since

1Y (n(8)) = m(Ti(s)) = w(A- 8) = A m(s),

we conclude that ) is an eigenvalue of Ty, and A < \“.

On the other hand taking the adjoint of the identity 77 o m = m o T}, we have
7* o (T7)* = Ty om*. The eigenvalues of 71" and (77 )* are unchanged, and the same
argument as above implies that A < A. (We can also consider the left eigenvector
instead of using the adjoints.) O

3. The basic theorem.

Let u be the ICBM as defined in (1.1). For each s € S, @ > 0 and h > 0, we
define

(3.1) 3 (h) = h11+a/ p(Br(t+s1)) - pu(Br(t + sq)) dt.
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It is straight forward to verify the following proposition, which justifies the identifica-
tions made in the previous section.

Proposition 3.1. Let @g")(h) be defined as in (3.1). Then the following hold:

(a)If §' is another representation of s, i.e., 8 = s+ c(1,...,1) for some c € R,
then &%) (h) = &L (h).

(b)Let s, be the decreasing rearrangement of the coordinates of s as defined in the
previous section. Then ®) (k) = &\ (h).

Proposition 3.2. ®\*)(h) # 0 for all h > 0 if and only if s € Si.
Proof. The proposition is a simple consequence of the following observation: s €
S if and only if the line t + s with t = (¢,...,t),—00 < t < oo has nonvoid

intersection with [0, 1]9. Using the fact that supp(x) = [0,1], it is easy to show that
this is equivalent to

/00 p(Br(t+s1)) - pu(Br(t+sq))dt #0  for all h >0,

ie., ®(h) # 0 for all h > 0. O

For s € (S) with s = Z' c; - Si, 8; € S, we define
o (h) =Y @I (h

Hence @gffg)( h)=27%%", <I>(a)( h). The Markov matrix T has the following important
invariance property.

Proposition 3.3. Let s € (S). Then for any o > 0 and any h > 0,

1 h
3.2 () (h) = = (Z).
(3.2) s (h) = or (p)

Proof. By linearity, it suffices to show that this holds for all s € S. Using the
self-similar identity (1.1) followed by a change of variables, we have

8@ (h) = 27}:1?/_(:12[(#(3%(%+%))+u(3%(£+%—1—_£)))dt

=1

t 1-
- 20h1+02/ H“ B%;+__€i pp)>dt
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L
_ qu 1+QZ/ H“ %t+ ha— L ) dt

(@) h
= <I>
p Ts(p)

where the summation ) _ is over all € = (e1,...,€¢), €, =0or 1. 0

Proposition 3.4. Let u be the self-similar measure defined by (1.1) with p~*
equal to a PV. number, let Ty be defined as in (2.4) and let )\ be its maximal eigen-

value. Then p?~! < X < 1.

Proof. In view of (2.4) and the fact that (S;) contains no invariant subspaces of
T, it is easy to show that the maximal eigenvalue of T3 is strictly less than 1 (see e.g.
[21]).

To prove the lower bound estimate for A, we first claim that if o is such that

= ), then for any 1 < a,

¢ A3 B

/ " (B(t)" dt =

For this we first consider the case 77 is irreducible. Let s = Z; ¢; - 8; be a positive
eigenvector associated with A. Then Propositions 3.2 and 3.3 imply that for A > 0
sufficiently small,

) Q) mh
Qs (h) pn TIS( ) pnés (p)

Inductively, for all m € N and for all A > 0 sufficiently small,
() ( ym A ym g
(3.4 " (p™h) = (;,;) @7 (h).

Since A/p" < 1 by assumption, we have hrn Q(")(h) = 0. The irreducibility of

T, implies that each c; is positive (see eg [21]) Hence, for s = (0,...,0),
hm+ @go)(h) = 0, which proves (3.3). In the case 1) is reducible, by re-arranging
h—0

the basis elements, we can assume that

E, 0 0o ... 0

X Eg_l 0 0
Ty=|: 0 e e,

X 0
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where E;, 1 < ¢ < /£ are irreducible. An inductive argument will yield the same
conclusion [13, Lemma 4.4]. This proves the claim.

Now suppose A < p?~!. Then A = p® for some @ > g — 1. By taking n = ¢ —1
in the above claim, we have

(3.5) lim 1/ u(Br(t))?dt = 0,

1 —
h—0+ hd —oo

which implies that

[e0]

1 q
sup — By (t))" dt < 0.
sup 1 _Oou( r(t))

By using the same argument as in Corollary 4.5 in [13], we have

o0

q
— t
. _oou(Bh(t)) dt > 0,

contradicting (3.5). Hence \ > p9~1.

It remains to show that A # p9~!. Let g(x) be the characteristic polynomial of
Ti. Suppose, on the contrary, A = p?~1. Let 3 = p~! and let p(z) = Y ;_,axz®
be the minimal polynomial of 39!, which is also a P.V. number (see e.g. [20, p.4,
Theorem A]). Let 3; be a conjugate of 39~1. Then both p?~* and By are roots of the
polynomial $(z) = S"p_, an—kz*. This implies that 8" is also a root of ¢(z). But
|87 > 1 > p?~1, contradicting the maximality of \. O

Theorem 3.5. Let q > 2 be a positive integer, let 1/2 < p < 1 such that 3 = p~!
is a PV. number and let u be the self-similar measure defined by (1.1). Then 7(q) =
In A/ Inp where X is the the maximal eigenvalue of T;.

Proof. Let @ =In)/Inp. For s € (S1) a A-eigenvector of T}, a similar deriva-
tion as that for (3.4) yields

@@ (p™h) = &) (h), for m € N and for all h > 0 sufficiently small,

. (@) /1y - S L (@) /1y - .
i.e., 5 ' (h) is multiplicatively periodic on h. Observe also that ®5’(h) is strictly
positive because s = Z: ¢; - 8;, where ¢; > 0 and s; € S; (Proposition 3.2). Hence
there exists s; such that Tim ;,_,o+ ®$* (h) > 0. By using Hélder’s inequality we have

- 1 *
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It follows that 7(¢) < a = InA/Inp. On the other hand, for any 1 < a, the claim in
the proof of Proposition 3.4 implies that

li L[ e
Hence 7(¢) > a and the proof is complete. O

4. Simplification of the matrix 73.

To actually compute the maximal eigenvalue of T3, it is desirable to replace T; by
a matrix of smaller order but has the same maximal eigenvalue. First, by making use
of Proposition 2.3, we can reduce T; to T7. Recall that 77 is defined on the span of
the set of states S7, which consists only of those s € S; with s; > 59 > -+ > 5.

In this section we will identify each state s = (s1,...,8,) € SY uniquely with the
point (s1 — Sg, ..., Sq—1 — Sq) € R?™1. Geometrically this corresponds to identifying
the “line” s € R? with its “point” of intersection with the hyperplane RY~!. We
then describe an algorithm to generate the set Wy of all such points and construct the
matrix A, induced by 77 and such identification. A; and 77 have the same maximal
eigenvalue (Proposition 4.1). In Proposition 4.2 we will further simplify the matrix A;.

Let 7 be the projection of R onto R?~! defined by 7(8) = (s1—5g, - - -, Sq—1—5q)
and define W{ = 7(SY). Let A; be the matrix that is defined on the states W{ and is
induced by 77 and 7, i.e., A; is defined by the identity

4.1 Aior=710Ty on S7.

Proposition 4.1. Assume the same hypotheses of Theorem 3.5. Then

n
Wy = {t eERT:t; = (B~ 1)26"—'“(622) — 65:1)), eg) =0o0rlfor1<j<gq
k=0

and0<k<n, 1>t >--->t;_1 >0, and neN}.

Moreover, A1 and TY have the same maximal eigenvalue.

Proof. The first part is a direct consequence of the explicit form of the states in
S¢ and the definition of 7. The second part follows by using the identity in (4.1) and
the same argument as that in the proof of Proposition 2.3. O

Proposition 4.1 provides us with a convenient algebraic criterion to determine
whether a state in 7(S7) belongs to W{. Summarizing the previous arguments, we
have the following
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Algorithm to construct A;:
(I) Starting from 0 € RY, suppose we have constructed ¢ € WY in the (n — 1)-th

step. Let s = p~1((¢,0) + (1 — p)e), &, =0 or 1, 1 < i < q. Rearrange s to s,
so that s5(1) > S5(2) = *+* = Sy(q) and let

t' = (55(1) = So(g)r+ - -+ S(g—1) — So(a))-

Keep those ¢’ in WY that are distinct from those previously chosen. (The process
terminates when no more new members are generated.)

(II) For the column of the matrix A; corresponding to ¢, the entry corresponding to
t' € WY is given by

1
i(number of appearances of the s that gives t').

We can further reduce the set of states in W{ by discarding those states of the
form (1,...,1,%;41,...,tq—1). These states correspond to those lines s € S{ that
intersect only the boundary of the unit cube {0, 1].

Proposition 4.2. Assume the same hypotheses of Theorem 3.5. Let

Wg = {(t17t27"'7tq—1) S ng t1 < 1},

and let Ag be the restriction of Ay on W§. Then Ay and A, have the same maximal
eigenvalue.

Proof. We can decompose W{ \ W{ into the following disjoint sets
U, = {(1, St .. .,tq_l) € chr Dt < 1}, 1<i<qg—-2.

Let A;; be the matrix obtained by restricting A; on U;. It is easy to check that
A1(U;) C(U;iU---|UUq—2). Hence we can represent the matrix A; on W{ as

Ao O o .- 0

X A1,1 0 0

Al — . . . '
0
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To compare the maximal eigenvalues of Ay and A; ;, we observe that the action of the
iteration s = p~1((t,0) + (1 — p)e€) (as in part (I) of the above algorithm) on

{t =(t1,t2,.. ., tq—2,0): te WG} C WY

is the same as that on U; = {t = (1,tg,...,tq—1) : t2 < 1}. This implies that A; ; is
a principal submatrix of Ag, so the maximal eigenvalue A\ of Ay is larger. Inductively
we can use the same method to compare A; and A;;; and conclude that )\ is the
maximal eigenvalue of the matrix A;. |

By using this proposition we can modify the above algorithm by replacing W{
and A; with W§ and Ag respectively. We end this section by giving the following
commutative diagram which shows the relationships among the different vector spaces
and the associated operators. (Here Id|r denotes the restriction of the identity map to
the space F.)

ldl(Sl) Idl(Wg)
—_

(S) (1) —— (87) —— (W7) (Wg)

| [ E: [ [ 4
(8) L, 81y — T (S7) —T (W) —E (W)

5. A special family of P.V. numbers.

In this section we will consider the measure associated with the special family of
P.V. numbers p—! = 3, defined by the algebraic equations

5.1 gt -z - .~z —-1=0, n>2

This family includes the golden ratio 35 = (/5 + 1)/2. For this class of numbers, we
will derive a formula for the matrix Ag for each integer ¢ > 2. For completeness we
include a proof of the following known result:

Proposition 5.1. The (3, > 1 satisfying (5.1) is a P.V. number.
Proof. We can write (5.1) as 2™ = (" — 1)/(z — 1) and get
(5.2) g™t — 22" +1=0.

Except for the extra root z = 1, equation (5.2) has exactly the same set of roots as
(5.1). Let f(z) = 2"t — 22" + 1 and g(z) = —22™ + 1. For € > 0 let C. denote the
circle {z : |z| =1+ €}. Then for € > 0 sufficiently small we have

If(2) —g(2)| = "} < | - 22" + 1| =g(2)], 2z¢€Ce
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Hence by Rouché’s theorem f(z) and g(z) have the same number of zeros inside C..
Clearly g(z) has n zeros inside C., and therefore so does f(z). By letting € — 0, it
follows that f(z) must have n zeros in {z : |z| < 1}. It is easy to see that 1 is the only
zero of f(z) on the unit circle and we conclude that (5.1) has n — 1 roots of modulus
less than one. Lastly by writing (5.1) as z = 1+ 2> +--- + z~(=1_ it is obvious
that it has a root 3, > 1. This completes the proof. O

Proposition 5.2. Let n > 2 and let 3, be the P.V. number defined by (5.1). Then
(a) 1 < Bn <2; (b) {Bn}, is an increasing sequence and lim [, = 2.

n—00

Proof. Write 8 = 3,. (5.1) implies that

1-p"
1-p1

(5.3) Be14f 14 g p(D = _
That 3 > 1 is obvious. Multiplying both sides by 1 — 37!, we get 8 =2— 37" < 2
and (a) follows.

- To prove (b) we let g,(z) = 14+ 21 +--- + 2~ (=1, Then G, is a solution of
Z = gn(x). Observe that since g,(z) < gn+1(z) for all z > 0, we have

0= gn(ﬁn) - Bn < gn+l(ﬂn) — Bn-

Moreover, g,+1(z) — z is a strictly decreasing function of z on [0,00) with a unique
zero at * = (1. It follows that 8, < Bp+1. That lim (§, = 2 now follows from
n—oo

(5.3). 0

For fixed 8 = 3,, withn > 2, we let vg =0, v; = 1, and
Up=F""1—pfm2_...8-1 for 2<m<n.

Lemma 5.3. The finite sequence {v,,}7,_, is strictly decreasing and

1
(5.4 ﬂ—_——l——lgvmgl, for 1<m<n.

Proof. Since vm41—vm = fM—20m"1 = gm=1(8-2) <0, {v,}7_; is strictly
decreasing and the upper bound in (5.4) follows. For the lower bound, we notice that
by (5.1), v, = 1/8. Hence for 1 < m < n,
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(The last inequality is because 3(3 —1) —1 > (2(82 — 1) — 1 = 0.) This completes the
proof. ]

Let ¢ > 2 be a positive integer and n > 2 be the degree of the polynomial in (5.1).
For0<k<g—1and 0 <m <n, let

Ve = (B = 1)y -, Um0, 0) € RS,
————
k

Note that for m = 0 or k = 0, all the v,, ; equal (0,...,0); we will simply denote
them by v,.

Theorem 5.4. Fix some = (B,, n > 2, and a positive integer ¢ > 2. Let W§
be the set of states as defined in Proposition 42. Then W§ = {vpmr : 0 < k <
g—1 and 0<m <n}, which has n(q — 1) + 1 elements.

Proof. We will make use of the modified iteration algorithm described at the end
of last section:

s=p""((t,0)+ (1 — p)e) = B(t,0)+ (B—1)e, te Wy, e =0o0r 1.

We divide our proof into the following cases:

()t =wvo = (0,...,0). Then s = (3 — 1)e € R?. Denoting by ¢’ the projection
of the decreasing rearrangement of s onto R?~! by 7 (i.e., ' = 7(s,)), we see that ¢’
is of the form vy, 0 <k <qg— 1

(ii) t =vm i, where 1 <m <n-—1and 1<k < q-—1. Then

(5.5) s=(B—-1)(Bum +e€1,...,0Um + €k, €kt1,. .., €).
By Lemma 5.3,
1
BVm = Vmy1 +12> -1
and therefore (8 — 1)Bv,, > 1. Note that for 7(s,) to belong to W{, the condition
|si —s;| < 1 must be satisfied. This forces e =--- =€, =0and €g41 =+ =€, = 1.
Hence s = (8 — 1)(Bvm, ..., BUm,1,...,1), and by projecting it to R?"! by 7, we
————

k
have t' = v41,6 € W

(ili) t = vk, where 1 < k < g — 1. Then by (5.1), Bv, = 1 and the analogue of
expression (5.5) is

s=(/8_1)(1+617"'71+6k1€k+1a"'76(1)7 1§k§q—1
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Consider the following two subcases.

Case 1. ¢, = 1 for some 1 < i < k. Then for k +1 < 57 < g, the condition
|si—s;j| < 1 becomes (3—1)(2—¢;) < 1. This implies that all ¢; = 1 for k+1 < j <gq
and s=(B—-1)(1+e1,...,1+€,1,...,1). If £ (1 <2 < k) of the ¢; are equal to 1,
then the corresponding ¢’ € W{ is of the form

t'=(B-1)1,...,1,0,...,0) = vy .
¢

Case 2. ¢;, =0 forall 1 <7 < k. Then

s = (ﬂ—1)(15“->1>€k+15"'7€q)

where ¢; =0or1fork+1<j<q If¢(0<¢<qg—k—1)of the ¢; are equal to
1, then t = vy kys. f e, =1 forall k+1 < j <g, then t’ = vo.

The above enumerates all the possible iterations, and hence Wy is as described. It
is direct to see that there are n(q — 1) + 1 distinct v, k. O

We now describe the construction of the matrix Ay based on the proof of Theorem
5.4. For an integer ¢ > 2, we define

() ) () O] 0 0 0 ]
@ (=) - @ o 00 ... (%) ()
M = : s MY = | : Ll
(20 () 0 0 0 () - () (o)
L@ 0 0 0] G - GG

and let M, = Méo) + Mél). Also, we let I, be the m x m identity matrix and let D,,
be the m x m matrix of the form

0 01
0 10
1 0 0

(i.e., the ij-entry of D,, is 1 if i + j = m + 1 and 0 otherwise.)
Theorem 5.5. Suppose we arrange the above v, . in the order

{vl,h e 7v1,q—1,vﬂy Vn,g—15---,Un,1,--- 7”2,(]—17 .. '7”2,1}-
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Then the matrix Ag in Proposition 4.2 is given by

1 0 M, 0
(56) A() = 2_q 0 0 I(n—2)(q—1)
D,y O 0

Proof. The submatrices D,_1 and I(,,_3)(4—1) correspond to case (ii) in the proof
of Theorem 5.4. To see the construction of M, we re-examine the proofs in cases (i)
and (iii). Fix a v, , 1 < k < g — 1. In the first subcase of (iii), for each 1 < ¢ < k,
there are (’f) of the ¢; (1 <4 < k) equal to 1, and hence (I;) of the s can be rearranged
and projected by 7 to t' = v 4. This gives rise to the corresponding columns of Méo).
Similarly the second subcase of (iii) determines the corresponding columns of Mél).
Lastly, it is easy to see that the first columns of Méo) and Mél) are determined by
case (i). This completes the proof. ]

For the golden ratio (3; and for g = 2, 3, Ap equals respectively

00 3 2 2
Lo 22 (o003 22
“lo 2 1], =loo 211
411 0 0 8101 0 0 0
10000

We remark that the algorithm to compute 7(q), ¢ > 2 an integer by using the matrix in
Theorem 5.5 is much faster than the one used in Theorem 4.1 of [15], which requires
computing the inverse of a ¢ X ¢ matrix with each of its entries containing the unknown
defining 7(q). A complete description of 7(g) for 0 < ¢ < oo is given in [15].

As a simple application of Theorem 5.5 we have

Corollary 5.6. Let p1,, be the ICBM corresponding to 3, = p;;' as defined in
(1.1) and let 7,,(q) be its Li-spectrum. Then

lim 7,(2) = lim dimy(p,,) = 1.

n—oo

Proof. For ¢ = 2 the matrix A,, in Theorem 5.5 is

0 2 2 0 - 0]
0 2 1 0
110001 .- 0 1
= - ;:—Bn
An4. i )
000 1
1 000 ]
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A direct calculation shows that det (A] — B,,) = A"(A — 2) —2(A —1). If we let \,
denote the maximal eigenvalue of By, then

(5.7) A (A —2) — 2(An — 1) = 0.

Observe that \,, > 1 because the column sums of the irreducible matrix B,, are at least
1 and not all equal (see e.g. [21]). Moreover, (5.7) forces lim 00X, > ¢ > 1 for
some constant c. By rewriting (5.7) as (A, —2) — 2(A, — 1)/A? = 0, we conclude that
lim, 00 2(An, — 1)/A7 = 0 and hence lim,,_,o, A, = 2. Consequently, using Theorem
3.5, we have

In(A,/4) In(1/2)

nll»rgoT (2) nll»n;o In p, In(1/2)

0

The following is a list of dim,(x,,, ), rounded off to the 10th decimal place. Note
that the smallest value of dim,(u,,,) occurs at n = 3.

n Bn dim, (pp,,)
2 1.6180338997 0.9923994336
3 1.8392867552 0.9642200274
4 1.9275619755 0.9733294764
5 1.9659482366 0.9835653645
6 1.9835828434 0.9906789642
7 1.9919641966 0.9949638696
8 1.9960311797 0.9973606068
9 1.9980294703 0.9986428460
10 1.9990186327 0.9993102630
15 1.9999694754 0.9999780091
20 1.9999990463 0.9999993121

6. A remark

All the results in the previous sections can be generalized to allow arbitrary proba-
bility weights on the contractive similitudes v; and 1,. More precisely, for 1/2 < p <
1, 0 < a < 1 we can consider the self-similar measure y, defined by

(6.1) fha = apta Y7 + (1 — a@)pq 0 Y3t
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For € = (€1, ..., €), € = 0 or 1, we let |¢] :== D7 | ¢;. We modify the Markov
matrix T in (2.2) by

T(s) := Z'alel(l —a)ilel . g€,
€
and define 717 and Ty exactly the same way as in Section 2. Then the theory goes
through without change.
We conclude this section with the following proposition:

Proposition 6.1. Let u, be the self-similar measure defined as in (6.1) and let
D(a) = dimy(ps). Then D(a) attains its maximum at a = 1/2.

Proof. We will use the random variable setup of the measure p,, i.e., yg is the
distribution measure of the random variable X = Y 7> / p* X where X takes values
1 and —1 with probabilities a and 1 —a. Let p, ;. be the distribution measure of PFX .
A direct calculation shows that its Fourier transform is

|fia,k (€)1 = (2a — 1)° + 4a(1 — a) cos® (p*¢),

which is minimum when a = 1/2 (as a function of a). It follows that for each &,
|ftq (€)|? is minimum when a = 1/2. It is known that

1 — 1
lim———/,uthzdleim—/ 1(€)|2de
h0+ RS Jos (Bn(z)) M3 Ji e 1e3]

M—o00

for any bounded Borel measure y on R? (see [16]). (Here ~ means each quantity
dominates the other by a positive constant.) Using this and the definition of 7(2) given
in (1.2), we conclude that D(a) attains its maximum at a = 1/2. In fact, the above
proof shows that D(a) is symmetric about ¢ = 1/2 and is increasing from ¢ = 0 to

a=1/2. OJ
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