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1. Introduction

In 1989, D. Gabai and U. Oertel [8] introduced the concept of the essential lam-
ination, which is a hybrid object lying between incompressible surfaces and taut fo-
liations, and generalizing both. We say that a 3-manifoldaisinar if it contains an
essential lamination. An important result of [8] is that the universal covers of laminar
manifolds are homeomorphic &3.

This fact furnishes a strong method for studying the manifolds obtained by Dehn
surgery along knots, especially concerning Property P Conjecture (nontrivial Dehn
surgery on a nontrivial knot ir§3 never yields a simply-connected manifold) and Ca-
bling Conjecture (Dehn surgery on a non-cable knot cannot yield a reducible mani-
fold). For example, see [4] for non-torus alternating knots, [3], [12] for 2-bridge knots,
[17] for most algebraic knots and [9] for knots with some kind of essential tangle de-
compositions. We note that by [8] a 3-manifold is laminar if and only if it contains an
essential branched surface (for the definition §8g and the above authors who fol-
lowed [8] obtained their results by constructing essential branched surfaces. We note
that sutured manifold theory was used in [14] and [18].

One of their approaches is to construct a closed essential branched sBrface in
the exteriorE € ) of a knotk and show th#® remains essential after any nontriv-
ial Dehn filling alongdE(K) (we call suchB persistently essentipl Then we see, by
[8], that K has Property P in a strong form and that the cabling conjecture is true for
K. (We say that a knoK hastrong Property Pif every manifold obtained by a non-
trivial Dehn surgery along€  has universal coWt.) It is, however, an open question
whether or not every knot with strong Property P admits a persistently essential lami-
nation in its complement.

In [1], [2], M. Brittenham had a paradigm shift in proving strong Property P for
knots. Instead of constructing a branched surface in the complement of a given knot,
he first constructed a branched surface and then embedded a knot in its complement.
More precisely, he first constructed a closed branched sutkace $° finom any in-
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compressible Seifert surface for any knot and then associatedBvith  a pair of ‘canon-
ical’ compressing diskd. and D_ for the horizontal boundary of a fibered neighbor-
hood N (B) of B. He next showed that if a knd  §¥— N (B) transversely intersects
D, and D_ each in a point, therB is persistently essential with resped to

In this paper we develop Brittenham’s approach by using Gabai's sutured manifold
theory. One of the consequences of our result is as follows:

Corollary 1.1. Let B be a branched surface obtained by Brittenham’s construc-
tion as in[2] from any minimal genus Seifert surface for any knotSi and let D,
and D_ be as above. Then for a kna&t 8¢ — N(B), B is persistently essential with
respect tok if and only ik is not cabled and not ambient isotopi$§in- N(B) to
a knot disjoint formD, or D_.

This corollary is proved in Section 5 as Example 5.2.

The contents of this paper are as follows. In Section 2, we recall basic concepts
such as sutured manifold, (persistently essential) branched surface, Dehn filling and
Dehn surgery, and we introduce the notionpoé-taut sutured manifold equipped with
the canonical disk pair. We also state our results in Section 2. Proposition 2.2 assures
that a pre-taut sutured manifold becomes taut when we remove a knot in it, if and
only if the knot ‘inevitably meets each component of the canonical disk pair’. Theo-
rem 2.3 gives a necessary and sufficient condition for a ot in a pre-taut sutured
manifold to yield via Dehn surgery a taut sutured manifold for any nontrivial slope.
Theorem 2.3 is applied to prove strong Property P for some knots (Corollary 2.5). In
Sections 3 and 4, we prove the above result. Finally in Section 5, we give examples of
branched surfaces satisfying the condition of Corollary 2.5, constructed from minimal
genus Seifert surfaces for knots and 2-component links. Then by using the branched
surfaces, we give examples of knots with strong Property P.

2. Preliminaries and statement of results

In this paper, we work in the smooth category. All manifolds are oriented and
all submanifolds are in general position unless otherwise specified. For aKlink in
a 3-manifoldX ,N K, X ), orN K ) denotes a regular neighborhoodkof Xin , and
Ex(K), or E(K) denotes the exterior &l(— N(K)). Following the usual convention as
in [10], we regard a 2-sphere bounding a 3-ball as compressible.

Derinimion ([16]). For a compact surfacé” y_(F) is defined byyx_(F) =
% |x(F;)| where the sum is taken over the componefits Fof  with;) <O. If F
has no componenk;  witly(F;) <0, theny_(F)=0

Let N be a subsurface aiM for a compact oriented 3-manifoldl
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DeriniTion ([16]). For an integral lattice homology clags € Hy(M, N; R), the
(Thurstor) norm of the classa is defined by
x(a) =min{x_(F) | [F] = a, F is an oriented surface properly embedded M,V }. )

Let S be an oriented surface properly embeddedin  ithC N.

Derinimion. We say thatS isnorm-minimizingin Hx(M, N;R) if S is incom-
pressible inM andy_(S) = x([S]) for [S] € Ho(M, N;R).

Derinimion. A sutured manifolds a manifold pair #/, +) such that;
(1) M is a compact oriented 3-manifold andc OM is a (possibly empty) union of
mutually disjoint annuliA {) and tori T ),
(2) the interior of each component of ~)(contains asuture i.e., an oriented simple
loop which is homologically nontrivial iM +), and
(3) R(v) =cl(OM —~) is oriented so that each componentadt () with the boundary
orientation is homologous iy to a suture.

We denote the union of sutures byy)( and denote byR.(y) (resp. R_(v)) the
union of those components & v) whose positive normal vectors point out of (resp.
into) M.

DeriniTion. A sutured manifold &, ) is taut, if M is irreducible andR {) is
norm-minimizing in Hy(M, v; R).

Derinimion. A sutured manifold #, ) is pre-taut if x_(R+(7)) = x—(R_(%))
and M is obtained from a (possibly disconnected) taut sutured maniféldy) by at-
taching two 1-handles, one aR.(¥) and the other orkR_(5). We denote byD. (resp.
D_) the co-core of the 1-handle attached 8n(7) (resp. R_(¥)). We call D, U D_
the canonical disk pairof (M, 7).

Remark 2.1. For a given pre-taut sutured manifoldt (v), it is elementarily ob-
served as in [11, Lemma 4.4] that the canonical disk pairMf ) is unique up to
isotopies, i.e., if 4,~) is obtained from another taut sutured manifold by attaching
two 1-handles as above ardl, U D’ is the canonical disk pair obtained from it, then
(DL u D’_,d(D, u D)) is properly isotopic to D+ U D_, d(D+ U D_)) in (M, R()).

Note that this does not mean that compressing disksRfdr) are unique up to
isotopies.

Let (M, ~) be a sutured manifold, anf  a knot in Mit . Then the manifold pair
(En(K),vyUIN(K)) naturally inherits a sutured manifold structure froM,(y). We
prove the following in Section 3.
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Fig. 2.1.

Proposition 2.2. Let (M, ~) be a pre-taut sutured manifold, anff  a knot in
intM. Then the sutured manifolfE,,(K), v U ON(K)) is taut if and only ifK is not
ambient isotopic inM to a knot disjoint from a component of the canonical disk pair
of (M, 7).

For the definitions obranched surfaceand essential laminatiorand terminologies
concerning them (e.gfibered neighborhoqdhorizontal and vertical boundary disk
of contact Reeb branched surfacéranched surface fully carrying a laminatiostc.),
see [8]. In this paper, we assume branched surfaces are closed unless otherwise speci-
fied. For a branched surfad®@ N, B ( ) denotes its fibered neighborhood. The boundary
ON(B) is the union of thehorizontal boundary(denoted byo, N(B)) and thevertical
boundary(denoted byo,N(B)). See Fig. 2.1.

For a branched surfacB8 in a 3-manifald , we denoteFyyB ( ) the exterior
cl(X — N(B)) of B in X.

DeriniTioN. A closed branched surfacB  in a 3-manifotd ~ with empty or in-
compressible boundary isssentialif it satisfies the following conditions.
1. B has no disks of contact.
2. 0,N(B) is incompressible inEy K ).
3. There are no monogons iy B( ).
4. No component ob, N(B) is a sphere.
5. Ex(B) is irreducible.
6. B contains no Reeb branched surface.
7. B fully carries a lamination.
For the definition of the term ‘to contain no Reeb branched surface’, see [8, p. 46,
I. 9-13]. In an orientable, irreducible 3-manifold, a branched surface satisfying the
conditions 1, 2, 3 and 4 is calledcompressible

DerinimioN. A transversely oriented branched surfate a branched surfac®
with a global orientation on the 1-foliation oV B( ) whose leaves are the fibers of
N(B).
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DeriniTion.  Let B be a closed transversely oriented branched surface embedded
in a closed 3-manifoldX . Then the manifold paiEy B (J)N(B)) naturally has a
sutured manifold structure and we call this tt@mplementary sutured manifofdr B.

DeriniTion.  Let X be a 3-manifold with a toral boundary compondht , and
(the isotopy class of) an essential simple loodlin . Then) denotes the 3-manifold
obtained fromX and a solid torug by identifyirid/ with T by a homeomorphism
which takes a meridian loop of ta. We say thatX &) is obtained fromX by a
Dehn filling along T with slope a.

DeriniTion.  Let K be a knot in a 3-manifolk , and 16t  be the component of
OEx(K) corresponding t@N(K) and leta be (the isotopy class of) an essential sim-
ple loop inT . ThenX K, «) denotes the manifold obtained frofly K( ) by a Dehn
filling along 7 with slopea. We say thatX K, «) is obtained fromX by aDehn
surgeryalong K with slopea. We say thaix is atrivial slope if « is a meridian loop
on N(K). If « is not a trivial slope, we say that K( «) is obtained by anontrivial
surgery

DeriNniTion. A knot K in a 3-manifoldX is acable knot or called cabled if
there exists a solid toru¥ IX witlk C 9V such thatKk is not isotopic iV
to a core circle of¥ and does not bound a diskVin

Let (M, ~) be a sutured manifold and  a knot in Mit . Then the manifold pair
(M(K, a), v) naturally inherits a sutured manifold structure from,(y). We prove the
following in Section 4.

Theorem 2.3. Let (M, ~) be a pre-taut sutured manifaléind K a knot inintM.
Then the sutured manifold (K, «), ) is taut (and henceM (K, «) is irreducible and
R+(y) U R_(v) is incompressible inM (K, «)) for any nontrivial slopec, if and only
if K is not cabled and not ambient isotopic M  to a knot disjoint from a component
of the canonical disk pair ofM, ).

Derinimion.  Let B be a closed branched surface embedded in a closed 3-manifold
X, andK a knotinEx B ). We say tha® isersistently essentiakith respect tokK ,
if B is essential inEx K ) and remains essential Y\nK, ¢x) for any nontrivial slope
a. A persistently incompressibleranched surface is also defined analogously.

As an immediate corollary of Theorem 2.3, we have the following:

Corollary 2.4. Let B be a closed transversely oriented branched surface embed-
ded in a 3-manifoldX such that the complementary sutured manifoldfor is pre-taut
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and let K be a knot inEx(B). Then the following two conditions are equivalent

(1) B is persistently incompressible with respect k0 and the surgered manifold
Ex(B)(K, «) is irreducible for any nontrivial slopev.

(2) K is not cabled inEx(B) and not ambient isotopic irfEx(B) to a knot disjoint
from a component of the canonical disk pair of the complementary sutured manifold
for B.

Proof of Corollary 2.4. By Theorem 2.3, the condition (1) follows from (2). The
condition (2) obviously follows from (1). In fact, iK can be isotoped to be disjoint
from D, or D_, then B is not incompressible i K( ) and hence Ay B (K)¢)
for any nontrivial slopex. If K is cabled, then some Dehn surgery alokg  vyields a
manifold with a lens space summand. ]

Then consequently we have:

Corollary 2.5. Let B be a closed transversely oriented branched surface embed-
ded in a 3-manifoldX such that the complementary sutured manifol&for is pre-taut.
Suppose thatB  satisfies the conditichs4, 6 and 7 of the definition of the essen-
tial branched surface. LeK be a knot ifix(B) which is not cabled inEx(B) and
not ambient isotopic INEx(B) to a knot disjoint from a component of the canonical
disk pair of the complementary sutured manifold #®r . Th®n is persistently essen-
tial with respect toK . In particular K has strong Property P.

Proof of Corollary 2.5. We show tha®  persistently satisfies the conditions 1-7
of the definition of the essential branched surface. The conditions 2 and 5 are already
assured by Corollary 2.4. The conditions 1, 4, 6 and 7 are not affected by surgeries.
Since B is transversely oriente®,  persistently satisfies the condition 3. Now we have
proved Corollary 2.5. O

3. Proof of Proposition 2.2

The ‘only if’ part of Proposition 2.2 is obvious. Hence we give a proof of the ‘if’
part. Since §£,~) is pre-taut, there exists a taut sutured manifaid, §) from which
(M, ~) is obtained by attaching two 1-handles. LBt U D_ be the canonical disk
pair of (M, ~). Since we consider knots which inevitably meet each component of the
canonical disk pair, we may assume, without loss of generality, Mhat is connected
and hence that/ has at most three connected components. hets] denote the su-
tured manifold €,; K )vUIN(K)). We first show:



PRE-TAUT SUTURED MANIFOLDS AND ESSENTIAL LAMINATIONS 911

Ciam 1. N is irreducible.

Proof of Claim 1. Suppose there exists an essential 2-spfiereN in . R&gard
as a sphere ilM . Then by using standard innermost disk argument together with the
irreducibility of M — (D, U D_), we can moveS by an ambient isotopy &  so that
SN(D+:UD_) = . SinceM — (D. U D_) is irreducible, S bounds a 3-baB in
M — (DU D_), and hence ilZM . Sincd is essential, the imagekof by the above
ambient isotopy is contained i® . Hence it missBs U D_, a contradiction. This
establishes Claim 1. O

Next we show:

Ciam 2. x—(R+(9)) = x([R+(9)]) = x—(R-(0)) = x([R-()]).

Proof of Claim 2. By the definition of the pre-taut sutured manifold,(R.(0)) =
X—(R-(9)). We only provex_(R+(9)) = x([R+(9)]), for we can analogously prove
x—(R_(8)) = x([R_(9)]). Suppose, for a contradiction, that there exists a surface
F in (N,9) such that F ] = R+(0)] in Ho(N,d) and x_(F) < x—_(R+(5)). Since
[F] = [R+(0)], we may assume thalF = s(d) and thatF N ON(K) = (), by capping
off, if necessary, pairs of boundary components by annuli.

SuBCLAIM 1. FN(D+UD_) #0.

Proof. Suppose” N (D« U D_) = () and regardFF as a surface i (~) such
that OF = s(y) and F N K = (. Since [F ] = [R+(5)], we see that f ] = R+(7)] in
H>(M,~). Hence F separate®  into two submanifolds and M_ such thatD, C
M. and D_ C M_. SinceKNF =0, K C M+ or M_, say M.. However this shows
K N D_ ={, a contradiction. O

SinceM — (D+ U D_) is irreducible, standard innermost disk argument allows us
to assume that by isotopies each componen¥ of(D.UD_) is essential inF . LetF;
be the surface obtained by compressingC M) along an innermost disk i, U D _
bounded by a component af N (DU D_). If F;N(D+U D_) # (), we apply the
above procedure td"; to obtain F, (i.e., remove inessential simple loops M by
isotopy, and then compress along a compressing disk containd?l. in D_). After
a finite number of applications of the procedures, we obtain a surface such that
F,N(D:UD_) = 0. Let F' = F,. We regardF’ as a surface inM, %) such that
OF' = 5(3). Since [F ] =[R+(d)], it is easy to see thatF[] = [R+(3)] in Ha(M, 7). We
have the following three cases.

Case l. x_(F)<x_(F)-2
In this case, by the assumption and the definitionsdéf{) and (v, §), we have;
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X—(F) < x=(F) =2 < x—(R+(0)) = 2 = x—(R+(7)) — 2 < x—(R+(¥)). In particular
we havey_(F’) < x_(R+(3)), which contradicts the tautness af/(5).

CAsE2. x_(F)=x_(F)-1.

In this case, we first show the following claim:

SUBCLAIM 2. There exists a disk component, say , of

Proof. There exists ¥ i < n such thaty_(Fi+1) = x_(F;)—1. Let E C D,UD_
be the compressing disk used for obtainifig; from F; and letF;* be the component
of F; that contains)E.

CAseE A, OE is non-separating irf;*. In this case, it is easy to see thEt is a
once-punctured torus, foy_(F;+1) = x—(F;) — 1. By compressing the once-punctured
torus F;*, we obtain a disk component df;.1. Clearly this disk survives ¥’ to give
desiredD .

CAsE B. OE is separating inF;". In this case, it is easy to see thaf is par-
allel to a component obF;*, say 0;. Obviously the component of;+; containingd;
is a disk, which survives i’ to give desiredD . O

Next we show the following subclaim:

SUBCLAIM 3. Let (4, @) be the component ofi{, 4) containing the diskD in
Subclaim 2. Then 4, «) has the product structure obD(x I, 9D x I).

Proof. Leta; be the component of that containsoD. Let R, be the con-
nected component oR.(«) such thatR. N «y # (. Define R_ analogously. The ex-
istence of D implies that the boundary componeRisn a7 of R, and R_ N «ay of
R_ are contractible inA . Sinc&®, and R_ are incompressible by the definition of
norm-minimizing surfaces, this shows that they are disks. Siace s irreducible, the
2-sphereR, U oy U R_ bounds a 3-ballA , which shows that («) has the product
structure above. Il

If M is connected, we see, by Subclaims 2 and 3, fat is a genus two han-
diebody (see Fig. 3.1 (a)). In this case we have(R.(v)) = 1. Hencex_(R+(v)) =
X_(R+(0)) > x_(F) = 0. However, this contradicts the assumption tRat(F’) =
x—(F) — 1, for x_(x) is always non-negative.

SupposeM is not connected (i.e./ consists of two or three connected compo-
nents). ThenM appears as in one of Figs 3.1 (b), (c), (d), (e) and (f). B.e®)(be
the sutured manifold consisting of the components it §) other than 4, «) of Sub-
claim 3. SinceM is connected, we may suppose, without loss of generality, that the
1-handle attached t®.(y) joins A andB .

In cases (b) and (f), and in cases (c) and (e) with one componem®,df) (being
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of the form (O x I,9D x I), it is obvious thatk can be isotoped to miss one com-
ponent of the canonical disk pair, a contradiction. In case (d) with3] being of the
form (D x I,9D x I), we havex_(R+(0)) = 0, which contradicts the assumption that
x—(F) < x_(R+(0)). In other cases (i.e., cases (c), (d) and (e) with no component of
(B, B) being of the form D x I,9D x I)), we havex_(R+(7)) — 1 = x_(R+(%)). By
assumption, we havg_(F’) = x_(F) — 1 < x_(R+(9)) — 1 = x_(R«(7)) — 1. Hence
we havey_(F’) < x—(R«(7)), a contradiction.

CASE 3. x_(F') = x_(F).

SuBCLAIM 4. Two components of’ are disks.

Proof. LetE C D.U D_ be the compressing disk used for obtainiAgfrom F
and let F* be the component of that contaifs.

CAsSeE A.  OE is non-separating irF*.

In this case,F* is a torus, fory_(F1) = x_(F’) = x_(F). SinceM is irreducible,
we see thatF* bounds a solid torus i or is contained in a 3-ballifh . Hence
F* represents the trivial element iH>(M,v) and we can eliminate, without loss of
generality, such a componet® from F'.

CASE B. OE is separating inF*.

In this case, it is easy to see that is an annulus and hence the components of
F, obtained fromF* are disks, which survive i’ to give desired two disk compo-
nents of F’. ]

Since F’ has two disks, two components &f are homeomorphic td? x I as
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proved in Subclaim 3. Since we have assuméchas at most three connected compo-
nents, {/,~) appears as in one of Fig. 3.2 (a), (b), (c) or (d). In (b), (c) and (d),
it is obvious thatK can be isotoped to miss one component of the canonical disk
pair, a contradiction. In (a)x_(R+(d)) = 0, which contradicts the assumption that
X—(F) < x—(R+(0)). Claim 2 is proved. L]

We note that the cases of Fig. 3.1 (b) and Fig. 3.2 (b) can be eliminated
by the definition of the pre-taut sutured manifold because in these cases, we have

X-(R+() 7 x-(R-()).
Finally we show:

Ciam 3. R+(0) and R_(9) are incompressible.

Proof of Claim 3. Suppos&.(§) has a compressing disk and I8t be the
component ofR. () that containsDE. Compressk.(§) along E and letR be a surface
obtained by pushing the interior of the resulting surface imo &). If y_(R*) > 1,
then x_(R) < x—(R+(9)), which contradicts Claim 2. Hencg_(R*) = 0. Since R*
is compressible, this showR* is either a torus or an annulus. K* is a torus, then
R.(%) has a sphere component, contradicting the tautnessfofy). ThereforeR* is
an annulus andk is a union of two disks, which are paralleDtoby Remark 2.1,
and henceK can be isotoped di,, a contradiction. Claim 3 is proved. U

Claims 1, 2, and 3 establish Proposition 2.2. U

4, Proof of Theorem 2.3

For the proof of Theorem 2.3, we prepare two propositions, which are immediate
consequences of a result of D. Gabai’s in [6] and a result of M. Scharlemann’s in [15].

Proposition 4.1. Let X be a Haken manifold whose boundary is a non-empty
union of tori. LetS be a norm-minimizing surface properly embeddeXinvX), and
P a component obX with P N S = (. Then we have the following
(1) For any slopea in P but at most one exceptip§ remains norm-minimizingand
in particular incompressiblein (X(a), 0X(«)), where X () is obtained by a Dehn fill-
ing along P with slopen, and moreover
(2) if there is no essential torug X — S that separatesP and, then X(«) is
irreducible but for at most the exceptional in (1).

Note that a surfac& is essential Mi — S if T is incompressible inM — S, and
not parallel to a subsurface &fM — S in M — S.
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Proof. By [6, Corollary 2.4], Proposition 4.1 (1) holds.Xf § -atoroidal, then
again by [6, Corollary 2.4], Proposition 4.1 (2) holds. Hence it is enough to show
that X is Sp -atoroidal. (See [6], for the definitions of the ter$ys-atoroidal and /-
cobordism) Let V be anI -cobordism ik — S betweenP and a surface, s#/. By
[6, Lemma 1.5],P’ is a torus. Now we use the fact th&t is incompressible inX —S,
which is proved as follows; Suppose there exists a compressingdlisk X — S for
P’. SinceV is anl -cobordismp C cl(X — V). By compressingP’ along D, we ob-
tain a 2-sphereéd X — S. Since X is irreducibleH bounds a 3-bal & . Since
P’ separates? and , we have eitherC B or § C B, which are both impossible.
Therefore, P’ is incompressible inX — S. If there is no essential torus i — S
that separate® anfl , we see thvat is a trivial cobordism 1. This shows that
X is Sp-atoroidal. O

DeriniTion ([7]). Let T C D? x S be a torus bounding a solid tord =
(1/2)D? x S* ¢ D? x S*. We say that a knoK irD? x S with non-zero wrapping
number is a ridge braidif K can be ambient isotoped to lie i K is abtidge
braid if K is isotopic to a knot of the form3, U 8, where 51(C T) and Go(C W) are
arcs such thap, is transverse to each? x {x} and that3, c W N (D? x {p1}), for
somep; € SL.

Proposition 4.2. Let V be a solid torus and a knot i¥  with — K irre-
ducible. LetV’ be a manifold obtained fron¥ by a nontrivial Dehn surgery along
K. Then either one of the following holds.

(1) V'’ is a solid torus andk iD or 1-bridge braid.
(2) K is cabled(and the slope of the surgery is that of the cabling annulus
(3) V' is irreducible anddV’ is incompressible.

We obtain Proposition 4.2 by applying [15, Theorem] to a solid torus. The con-
clusions (1), (2) and (3) above respectively correspond to the conclusions (a), (c) and
(d) of [15, Theorem].

Proof of Theorem 2.3. The ‘only if’ part is easily verified. Actually, some Dehn
surgery along a cable knot yields a lens space summand, akid if s disjointZfrom
or D_, then B is not essential ik K{ ). Now we prove the ‘if’ part. Leﬁ( 01) =
(M(K, ), ) be a sutured manifold obtained fromM(~) by a Dehn surgery alon&
with slope a. We first show:

Ciav 1. If « is nontrivial, thenR 45_1) is norm-minimizing.

Proof. Let (Vi,61) = (Ep(K),y U ON(K)), (N2, 62) a copy of (v, ;) and P;
the component oN; each corresponding tON(K). Identify R (1) with R(5,) by
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an orientation reversing homeomorphism and@et  be the union of tori obtained from
01U d2, and S the image ok 6f) (= that of R (2)). Let N* = (N1 U N3)/~, where~
denotes the above identification. Note that each compone®Ndf (= P, U P, U Q)

is a torus and thaP; N S = (). By Proposition 2.2, we see thawy, J;) is taut. Hence

by [5, Corollary 5.3], ;, ;) has a taut foliation (in particular tangent @ ¢;)j, and
hence so doesN*, 9N*) with S a leaf. We note that [5, Corollary 5.3] involves an
argument of sutured manifold hierarchy. We understand that the term “sutured mani-
fold decomposition” in (a) of Corollary 5.3 in [5] should be read “sutured manifold
hierarchy”. Then by [5, Theorem 2.5] (by Thurston [16}), is norm-minimizing. By
Proposition 4.1,S remains norm-minimizing in the manifd¥d (o)) obtained fromN*

by a Dehn filling alongP; with any nontrivial slopex, because the trivial filling along

P; makesS compressible. Note th&it cufé*(«), ON*) into (M (K, a), ) = (1\71, 5_1)

and (NVa, 02), with. R(5_1) corresponding toS . Sinc&  remains norm-minimizing in
(N*(a), ON*), R(61) is norm-minimizing in (V1, 6;). Claim 1 is proved. U

Next we show:
CLav 2. If « is nontrivial, thenﬁl = M(K, ) is irreducible.

Proof. According to Proposition 4.1, we divide the proof into the following two
cases.

CAse 1. There does not exist an essential torusNn which separates?; =
ON(K) from R (91).

In this case, it immediately follows that there does not exist an essential Torus
in N* which separate®; and S . By the last half of Proposition 4.1, we see that, for
any nontrivial slopea C P1, N*(«) is irreducible. SinceS remains incompressible in
N*(«), standard innermost disk argument shows that the manifald) N, obtained
by cutting N*(«) apart alongS is irreducible. This shows thalg = M(K, ) is irre-
ducible for any nontrivial slopev.

CAsSE 2. There exists an essential torlis A which separates?; = ON(K)
from R(61).

RegardN; as embedded in/ , and let the same synibol denote the imag@e of
in M. Let M; and M, be the closures of the componentsMf—T such thatM; D K.

SuBCLAIM 1. M, is a solid torus.

Proof. We consider the intersectidhn (D, U D_). SinceK N (D+ U D_) # 0
and 7T separateX fromR ~) = R(41), we seeT N (D. U D_) # (b, and by standard
innermost disk argument, we may assume that every componeftofD. U D_) is
an essential loop i . LeE be the closure of an open disk componenb.ofJ(
D_) —T. Then E is a compressing disk fadf W . Sindé is irreducible, this
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shows that7 bounds either a solid torus A or a knot exterior contained in a 3-
ball in M. SinceT separateK amkl~)(= R(J;), the second situation implies that

K is contained in the 3-ball and hendé is ambient isotopic to a knot disjoint form
D, U D_, a contradiction. Henc& bounds a solid toruspih containkhg . This
establishes Subclaim 1. J

SUBCLAIM 2. M, is irreducible and (the image off is incompressibleMf.

Proof. SinceT is an essential torus M, we immediately see that is incom-
pressible inM,. Assume that there exists an essential 2-spl§éri M,. RegardsS? as
embedded inM . Sincé/ s irreducibl§? bounds a 3-ballB i , wheréf, C B.

This shows thatk is contained in a 3-ballM , a contradiction. Hence we have Sub-
claim 2. O

Now assume further thaf is farthest from, i.e., any other essential torus in
M, satisfying the condition of Case 2 is parallelTo . Now we consider the manifold
M, = Mi(K, o). By Subclaim 1, we have one of the conclusions of Proposition 4.2 by
regardingM, = V and 1\711 = V', Since K is not cabled, we do not have the conclu-
sion (2), or the conclusion (1) witk a O-bridge braid.Mf, satisfies the conclusion
(3), then it is easy to show thav, is irreducible by Subclaim 2. Suppose thaty
satisfies the conclusion (1) witk a 1-bridge braid. k&t be the core circle of;.
SinceK is a 1-bridge braid inM,, K is not representing a trivial element &f,(M,).
Hence by an easy homological calculation, we see MakK, of = M(K*, o*), where
o™ is nontrivial. SinceT is farthest fron®;, we can apply the argument of Case 1 to
show thatM K*, «*) is irreducible, and hence thaf K(«) is irreducible. Claim 2 is
proved. Ul

Claims 1 and 2 establish Theorem 2.3. O

5. Examples

Finally in this section, we construct branched surfaces satisfying the condition of
Corollary 2.5 from minimal genus Seifert surfaces for knots and 2-component links
in $. Then by using the branched surfaces, we give examples of knots with strong
Property P.

Derinimion.  For an oriented Seifert surfacg for a link , we dendten
E(L) by the same symbolS . Then the manifold paiNg(ds) = (cl(E(L) —
N(S, E(L))), cl(OE(L)—N(9S, 9E(L)))) naturally has a sutured manifold structure and
we call (N, ds5) the complementary sutured manifofdr S.
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Remark 5.1. It is elementary that if is of minimal genus ang is irreducible,
then Vs, ds) is taut.

ExavpLe 5.2. @rittenham’s branched surfacesnd proof of Corollary 1.1.

We first recall Brittenham’s construction of branched surfaces [2].9.et be an in-
compressible Seifert surface for any knkt First we perform a tubing operation to
S in N(K) along a half ofK, i.e., remove two disks fron§ and cap off by a thin
tube ‘parallel’ to a half ofK. Let [ be a simple loop on tubesl  running parallel to
the other half ofK and otherwise running on the tube. Then ciirldS(S) to [ and
glue S (= K) to [ so that we obtain a transversely oriented closed branched surface
Bs with one locus/ . (See Fig. 5.1 (a), and for the detail [2]. The shaded two disks
define the canonical disk pair.) In [32], it is shown that the complementary sutured
manifold for By is of the form ¥s, d5) U (two 1-handles), where one 1-handle is at-
tached onR.(ds) and the other orR_(ds). Hence if § is of minimal genus, then by
Remark 5.1, the complementary sutured manifold Bgr is pre-taut. Moreover, it is
shown in [1] thatBs satisfies the conditions 1, 4, 6 and 7 of the definition of the es-
sential branched surface. Therefore, by Corollary B, is persistently essential with
respect to any non-cable knot in the exterior B inevitably meeting each compo-
nent of the canonical disk pair. The above argument gives a proof to the ‘if’ part of
Corollary 1.1 and the ‘only if’ part is easily verified as in the proof of Theorem 2.3.

Fig. 5.1 (b) ([1], [8], [13]) depicts the simplest case of Example 5.2, witere is
the disk. The complementary sutured manifold #r is a pre-taut sutured manifold of
the form (D% x I, 9D? x I)U(two 1-handles). This fact was already pointed out in [1].

ExampLE 5.3. (terated tubing operations

Let S be a minimal genus Seifert surface for a kbt . We concentrate our atten-
tion to a regular neighborhood @fS as in [2,§2]. Let By be a branched surface ob-
tained fromS as in Example 5.2, which looks as in Fig. 5.1 (a) in the regular neigh-
borhood ofdS. Let a; be the arc as in Fig. 5.1 (a) amgh the branched surface ob-
tained by tubingBy along ;. By tubing By successively as in Fig. 5.1 (c), we obtain
a sequence of branched surfadgs B1, B, . ... Then by using the argument as in [11,
§7], we see that the complementary sutured manifalg, ¢,,) for B, is homeomorphic
to (Ns Uss=a,3, x1 (Zn x I) U (two 1-handles)d, %, x I), whereX, is a twice punc-
tured orientable surface of genus  with boundary componénis, and 0,%,, and
1-handles are attached to each componen®(®fs U (X, x I)) — (0%, x I). (The co-
cores of the 1-handles are indicated in Fig. 5.1 (c)Igs.) It is elementary to show
that (Vs Uss=a,3, x1 (Zn x I), 02X, x I) is taut, and hence thatVf, ¢,) is pre-taut.
By the argument in [2§2], we see thatB, # > 0) satisfies the conditions 1, 4, 6
and 7 of the definition of the essential branched surface. Therefore, by Corollary 2.5,
B, is persistently essential with respect to any non-cable knot in the exterid, of
inevitably meeting each component of the canonical disk pair.
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Fig. 5.1 (a).

18

Fig.

Fig. 5.1 (c).
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edge of the above surface.

Fig. 5.1 (d).

In [1], Brittenham introduced the concept pérsistently laminar tanglesA tan-
gle T is calledpersistently laminarif every knot obtained by summing another tangle
with T has a persistently essential lamination in its complement. In particular, by us-
ing B, with S a disk, we see that the-@n — 3, 2n + 3)-pretzel tangle (Fig. 5.1 (d)) is
persistently laminar. The case =0 in the above was shown in [1].

ExavpLe 5.4. Branched surfaces constructed from minimal genus Seifert sur-
faces for 2-component links

Let L = K1 U K, be an oriented 2-component link i§? which has a connected
minimal genus Seifert surfac& . Let be an arc properly embedded $h  connecting
K; and K,. We perform a tubing operation ofi in a neighborhoodvddis in Fig. 5.2
(a) to obtain a compressible surfagé Let I, 1, be simple loops inS’ such thatl; is
parallel toK; except in a neighborhood af wherel; appears as in Fig. 5.2 (a). Then
curl N(K;, S") and glueK; tol; to obtain a transversely oriented closed branched sur-
face Bg . By using an argument similar to that in 2], it is directly observed that
the complementary sutured manifold fBr is of the formig (U (two 1-handles)ds),
where D, and D_ in Fig.5.2 (b) are disks corresponding to the co-cores of the 1-
handles, i.e., the complementary sutured manifold Bgr is pre-taut with canonical
disk pair D, U D_. Let K be a non-cable knot in the complement B inevitably
meeting each component of the canonical disk pair. Now we showBhat is persis-
tently essential. By Corollary 2.5, it is enough to show tBgt satisfies the conditions
1, 4, 6 and 7 of the definition of the essential branched surface. By using the weight
argument as in [1§1], we see thatBy satisfies the conditions 1, 4 and 6. Finally we
show thatBg satisfies the condition 7, i.e., construct a laminaflofully carried by
B as follows.

We take a producs’ x I in S%, wherel = [1,1]. Let A, and A, be annuli in
S’ x I such thatA; =13 x[1/2, 1] and A, = I, x[—1, —1/2]. We take the product lami-
nation £’ = §’xC, whereC is a Cantor set. We cdt along A;UA; (Fig. 5.2 (c)) and
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reglue it as in Fig. 5.2 (d) to obtaid”, i.e., we identify the boundary components of
L' contained in nonk;-side of A; (resp. nonk,-side of A,) with the boundary com-
ponents of£’ contained inly x [1/2, 3/4] (resp.l; x [—3/4, —1/2]). Let 9,.L" denote
the union of boundary components 6f contained inl; x [3/4, 1] and 9,£" denote
those contained i, x [—1, —3/4] (Fig. 5.2 (d)). Curl N K1 x C, £”) and identify
K1 x C with 9.£"”, and K, x C with 9,£" (Fig. 5.2 (e)). Then we obtain a closed
lamination £ which is fully carried byBs . Therefore we see thBg is essential with
respect tokK .

As a concrete example, we start with a Hopf band to obtain a branched surface
in Fig. 5.3. By Corollary 2.5 we see that the sheet bend tangle is persistently laminar
(see Fig. 5.3).
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