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Chapter 1

Introduction

The discovery of the heavy fermion compounds and of the high-temperature
superconductors has revived interest in strong correlations between electrons.
It has been recognized that the many-body effects ascribable to the Coulomb
interaction between electrons mutate the behavior of systems radically. These
systems, where the electron-electron interaction is essentially important, are
called strongly correlated electron systems, and have provided one of the most
active research fields. One of intriguing phenomena in strongly correlated
electron systems is the Mott transition, which is the metal-insulator transi-
tion caused by the Coulomb repulsion between electrons. It is a fundamental
phenomenon of condensed matter physics, however, has not yet been well-
understood. The first sample of the Mott insulator NiO was discovered in the
last 1930s and then many kinds of transition metal oxides have been found to
be the Mott insulators. Various two-dimensional organic compounds which
show the Mott transition have also been discovered. In particular, the fam-
ily of κ-(BEDT-TTF)2X has an anisotropic triangular lattice structure and
this system is regarded as the strongly correlated system with geometrical
frustration. One of novel features of these frustrated systems is the spin liq-
uid ground state. Some of κ-type organics show the Mott transition under
pressure but do not show any signals of magnetic ordering in the insulating
phase at very low temperature. Therefore, these compounds are expected to
have a novel spin liquid ground state, which might be a key to reveal Mott
physics. Another interesting two-dimensional system is the honeycomb lat-
tice system. The honeycomb lattice has the least coordinate number among
two-dimensional systems and strong quantum fluctuations. Furthermore,
this lattice provides a nontrivial dispersion relation in the electron motion
and the single electron density of states. A typecal example of honeycomb
lattice systems is graphene. This system has been intensively studied both
experimentally and theoretically and a lot of exotic electronic properties have
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been reported. Interaction effects on the honeycomb lattice system have been
studied by means of the mean field theory for the Hubbard Hamiltonian and
they have been revealed that the metallic ground state without long-range
order appears at half filling due to its peculiar density of states. Therefore, in
the honeycomb lattice Hubbard model, the Mott transition might occur not
accompanied by antiferromagnetic order and there might be the spin liquid
ground state. This is a very interesting problem.

In this chapter, we first outline the Mott transition and introduce a typical
Mott insulator V2O3 in the next section. In the section 1.2, we briefly review
geometrical frustration in the triangular lattice organic materials κ-(BEDT-
TTF)2X as an example of correlation systems with frustration. In the section
1.3, we introduce honeycomb lattice systems and its physics. Finally, we
present the purpose of this study in the section 1.4.

1.1 Mott Transition

The studies on the Mott transition have come on the discoveries of the in-
sulating behavior of transition metal oxides such as NiO, which is expected
to be metallic within the band theory. In the band theory, the dispersion
relation of electrons is determined by the kinetic energy and periodic po-
tential induced by atoms. If the energy band where the Fermi level lies is
seperated by the band gap and is fully occupied by electrons, the system is
regarded as an insulator because electrons cannot be excited by infinitesimal
energy. Particularly in single band systems, this indicates that if the electron
number per unit cell is odd, the system is metallic, and the even number of
electrons per unit cell gives an insulator. Nonetheless, many of insulating
transition metal oxides are half filled, namely only a half of its band is filled
with electrons, and hence the band theory cannot explain this phenomenon.
Mott and Slater have independently suggested their theories for this prob-
lem. Mott pointed out that insulating state with a half-filled band could
be realized by the strong electron-electron repulsion which localizes the elec-
trons around each atom [1, 2]. In contrast, Slater focused on the fact that
many of Mott insulators are accompanied with magnetic order and argued
that the Mott insulator is stabilized by the band gap induced by long-range
order such as antiferromagnetic order with translational symmetry breaking
which folds the Brillouin zone [3].

One of the minimal model to study the Mott transition is the Hubbard
model, which is given as

H =
∑
i,j,σ

tijc
†
iσcjσ + U

∑
i

ni↑ni↓, (1.1)
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Figure 1.1: Phase diagram in V2O3 as a function of doping with Cr or Ti and
as a function of pressure [5]. The closed and open symbols are for increasing
and decreasing pressure or temperature. Increasing pressure corresponds to
decreasing U/W . There is an empirical scaling of the addition of Cr (Ti)
and a negative (positive) pressure. The behavior of hysteresis shows that
The metal-insulator transition is the first order.

where the first term denotes the kinetic energy and the second one the
Coulomb repulsion between the electrons at the same site. This model is too
difficult to treat except for the trivial limit because it includes the competi-
tion between itinerancy and localization of electrons. In the weak coupling
limit U/W ≪ 1, this model reproduces the metallic behavior described by
the band theory. Here, W denotes the band-width. On the other hand, in
the strong coupling limit U/W ≫ 1, the electrons are localized because of re-
fusal to energy loss by the strong Coulomb repulsion and the system becomes
Mott insulating state. In this regime, the original band is split into the two
sub-bands with energy difference ∆ ∼ U , which are called Hubbard bands.
However, the proper description of the Mott transition is quite difficult and
there have remained many problems.
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The Mott transition is typically found in V2O3, NiS2−xSex and so forth [4].
We take vanadium sesquioxide V2O3 for instance and overview Mott physics.
When applying pressure on V2O3, the band-width W decreases. Doping
with Cr (Ti) also increases (decreases) the band-width because of decrease
(increase) in internal pressure. The phase diagram shown in Fig. 1.1 was ob-
tained by experiments on V2O3 using temperature and pressure as variables.
This phase diagram has three well-defined regions; metal, paramagnetic and
antiferromagnetic insulator. In Fig. 1.1, the transition from paramagnetic
metal to antiferromagnetic insulator accompanied by translational symmetry
breaking is seen at temperature T < 200K. Note that also at high tempera-
ture, 200K < T < 400K, the metal to insulator transition in the paramagnetic
phase is observed. This indicates that the metal-insulator transition is not
explaind only by the magnetic ordering. We can see hysteresis behavior in
both the transitions, therefore the transitions are the first order. One thus
finds that the metal-insulator transition is induced by varying the interaction
strength U/W and temperature T .

In addition, it is pointed out that the values of specific heat coefficient
and Pauli susceptibility measured for the metallic state near the transition
point are extremely larger than those predicted by the band theory [6]. It
implies enhancement of electron mass in the proximity of the Mott tran-
sition. Formation of Hubbard bands and mass enhancement are explained
in the unified framework by applying the dynamical mean field theory to
the Hubbard model in the infinite spatial dimensions [7]. In fact, the phase
diagram close to the experimental results shown in Fig. 1.1 is obtained by
the dynamical mean field theory [7]. The dynamical mean field theory has
strongly promoted research of the Mott transition. Additionally, much effort
has been recently devoted to describe realistic electronic structure by means
of the combination of ab initio calculation and the dynamical mean field the-
ory [8–11]. We will give an explanation of the dynamical mean field theory
in detail in Chap. 2.

1.2 Geometrical Frustration

Recently, many kinds of materials with geometrically frustrated lattice sys-
tems have been systematically made because of advances in the technology
of material synthesis. Geometrical frustration means the situation that ex-
pected spin order state is inhibited due to geometry of lattice structure in
some specific lattice systems such as triangular, kagomé and pyrochlore lat-
tice systems.

As a simplest example of geometrically frustrated systems, we now con-
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Figure 1.2: Sketch of geometrical frustration. Up and down arrows represent
the degrees of freedom of spins. In the left panel, there is no geometrical
frustration because spin configuration is specified uniquely. On the other
hand, the right panel shows that no configuration can be realized that all the
three interactions between neighboring spins are simultaneously minimal on
the single-triangular lattice.

sider the configuration of spins with two degrees of freedom on each site in
the single-triangular lattice shown in Fig. 1.2. The single-square lattice sys-
tem is also shown as a sample of unfrustrated systems for comparison. The
degrees of freedom of spins are represented by up- and down-pointing ar-
rows. Here, we assume that there are antiferromagnetic interactions between
the neighboring spins. On the single-square lattice, the configuration that
the four spins are antiparallel alternately is energetically stable as shown
in the left panel in Fig. 1.2. On the other hand, it is impossible that all
the three interactions between neighboring spins are simultaneously minimal
on the single-triangular lattice as shown in the right panel in Fig. 1.2. As
seen above, the antiferromagnetic ordered state cannot be realized due to
geometry of the lattice in frustrated systems.

One of the interesting phase expected in frustrated systems is the spin
liquid state, which was theoretically suggested by P. W. Anderson in 1973
[12]. The spin liquid has no magnetic order unlike antiferromagnet. In such
systems at very low temperature, novel properties are expected to emerge
due to quantum effects. The competition between charge degrees of freedom
and geometrical frustration effects may also generate unprecedented physics.

A variety of materials with geometrical frustration have been discovered
so far. For example, ZnCu3(OH)6Cl2, which consists of Cu kagomé layers,
shows spin liquid behavior at low temperatures [13–15] and LiV2O4, where V
ions form the pyrochlore lattice structure, shows heavy Fermi liquid behaviors
characteristic of those of the heaviest-mass f -electron systems [16–19].

Here, we consider the family of κ-(BEDT-TTF)2X [20–25] and refer to
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Figure 1.3: Crystal structure of κ-(BEDT-TTF)2X [22]. The top and
left lower figures are vertical and side sectional (in a BEDT-TTF mlecule
plane) views of κ-(BEDT-TTF)2X respectively. We can see that BEDT-TTF
molecule and anion X layers are stacked alternately (top) and BEDT-TTF
molecules are dimerized (left lower). The lower right figure is the sketch of the
crystal structure of κ-(BEDT-TTF)2X where a site corresponds to a dimer of
BEDT-TTF molecules and the dimers form an anisotropic triangular lattice.

physical properties of the triangular lattice systems. The organic materials κ-
(BEDT-TTF)2X are based on BEDT-TTF molecules, where BEDT-TTF is
the abbreviation of bis(ethylenedithio)tetrathiafulvalene, and have the two-
dimensional triangular lattice systems. Here, X denotes a monovalent anion
for example Cu[N(CN)2]Cl, Cu[N(CN)2]Br, CuN(NCS)2, Cu2(CN)3, etc. The
BEDT-TTF molecule has a near planer shape and BEDT-TTF molecule and
anion X layers are stacked alternately as shown in the top panel in Fig. 1.3.
In this system, the anion X sheets play the role of insulating layer and there is
one hole per dimer. Thus, this system can be regarded as the two-dimensional
anisotropic triangular lattice system at half filling as shown in the lower pan-
els in Fig 1.3. In the lower right panel, t and t′ denote the transfer integrals
and the ratio t′/t determines the strength of anisotropy. In particular, this
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Figure 1.4: Phase diagrams on pressure-temperature plane of κ-(BEDT-
TTF)2Cu[N(CN)2]Cl (t′/t = 0.75) (left) and of κ-(BEDT-TTF)2Cu2(CN)3

(t′/t = 1.06) (right) [24]. Antiferromagnetic order is absent at very low
temperatures in κ-(BEDT-TTF)2Cu2(CN)3, which is remarkablly different
from κ-(BEDT-TTF)2Cu[N(CN)2]Cl. Additionally, we can see the reentrant
behavior in the Mott transition in κ-(BEDT-TTF)2Cu[N(CN)2]Cl.

lattice corresponds to square lattice at t′/t = 0 and isotropic triangular lat-
tice at t′/t = 1, respectively. The replacement of anions or deuteration of
BEDT-TTF molecules are powerful ways to apply chemical pressure or to
change strength of anisotropy to these materials. Experimental phase dia-
grams of κ-(BEDT-TTF)2Cu[N(CN)2]Cl and of κ-(BEDT-TTF)2Cu2(CN)3

are shown on the temperature-pressure plane in Fig. 1.4. The strength of
anisotropy t′/t = 0.75 for κ-(BEDT-TTF)2Cu[N(CN)2]Cl corresponds to in-
termediate frustration. On the other hand, κ-(BEDT-TTF)2Cu2(CN)3 has
almost isotropic triangular lattice structure due to t′/t = 1.06. Both of
them show the Mott transition by applying pressure, which corresponds
to decreasing U . Antiferromagnetic insulating state is stable in κ-(BEDT-
TTF)2Cu[N(CN)2]Cl at low temperatures. In contrast, long-range magnetic
order is absent in κ-(BEDT-TTF)2Cu2(CN)3 at least down to 32mK, which
is 4 orders of magnitude lower than the exchange interaction J ∼ 250K.
The result strongly suggests the realization of a quantum spin liquid in κ-
(BEDT-TTF)2Cu2(CN)3 due to strong geometrical frustration [24, 26]. It is
interesting that the Mott transition line of κ-(BEDT-TTF)2Cu[N(CN)2]Cl
curves around 30K under pressure, which is called the reentrant Mott tran-
sition. It is suggested that competition of moderate geometrical frustration
and antiferromagnetic correlation leads to the reentrant transition [25,27].
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1.3 Honeycomb Lattice

The studies of strongly correlated electron systems on the honeycomb lattice
have been strongly promoted by first isolation of graphene, a single atomic
layer of graphite in 2004 [28]. The exotic properties of graphene, such as Dirac
fermion behavior at low energies and anomalous integer quantum Hall effect,
were theoretically predicted several decades ago [29–32]. The exotic prop-
erties stem from the honeycomb lattice structure, i.e., a hexagonal tiling of
carbon atoms, and they are entirely different from those of conventional two-
dimensional systems. In addition, boron nitride [33], magnesium diboride
superconductor [34], etc. have been known as honeycomb lattice systems.

The unique feature of the honeycomb lattice appears the tight-binding
spectrum shown in Fig. 1.5. As shown in the left panel in Fig. 1.5, There are
the two bands and they contact each other only at the so-called Dirac points.
This results in the pseudogap at the Fermi level as seen in the right panel in
Fig. 1.5. This gapless state is called semi-metal or zero-gap semiconductor
because of the existence of the pseudogap. Further, the density of states in
vicinity of the Fermi level is known to be linear. This linearity of the spectrum
around the Dirac points gives rise to an effective low energy description of
the electrons that mimics the spectrum of massless Dirac particles, namely
the quantum mechanical description of the relativistic electrons is given [35].

Figure 1.5: Tight-binding spectrum of honeycomb lattice. The band struc-
ture (left) and the density of states (right) are shown.

8



0

α

c

4

α = 8

α

Excitonic
Insulator

Gapless semimetal

c NN

Figure 1.6: Schematic phase diagram in the α-N plane [36]. The critical
parameters αc ∼ 1 and Nc ∼ 7 to 9. Here, α and N denote a coupling
constant and the number of fermion flavors, respectively.

We overview the properties of honeycomb lattice taking graphene for
instance. The quasi-particle properties of graphene are modified by the
presence of electron-electron interactions [36]. It is possible that the metal-
insulator transition happens by long-range Coulomb interaction because, for
example, spontaneous gap generation due to an excitonic pairing mechanism.
This excitonic insulating state have been intensively studied by means of the
random phase approximation [37–41] and by the Monte Carlo method of
simulating lattice field theories [42–45]. According to the random phase ap-
proximation, a transition to a gapped state is found above a critical coupling
αc ∼ 1 for the number of fermion flavors N = 4 [37, 39]. Here, a coupling α
is defined as the ratio of Coulomb to kinetic energy, namely α = e2/(ϵ0h̄vF),
where e, ϵ0 and vF are the electron charge, the dielectric constant of the
medium and the Fermi velocity, respectively. It has also been found that
the gap is non-zero only below the critical number of fermion flavors Nc ∼ 7
at strong coupling limit α → ∞ [39, 41]. These results are consistent with
those obtained by the Monte Carlo calculation: Nc ∼ 9.6, α ≫ 1 [45] and
αc = 1.1, N = 4 [43]. Those results are shown in Fig. 1.6, which describes the
excitonic insulating phase emerges in strong coupling and the small number
of fermion flavors. For graphene deposited on SiO the value of αSiO2 ∼ 0.79
and is therefore not enough to generate a gap. Further, it is suggested that
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Figure 1.7: Ground state phase diagram of the Hubbard model in the n-U
plane [53]. The next-nearest hopping integral t′/t = 0 (left) and t′/t = −0.2
(right). Here, n denotes particle density and U is interaction strength. In
both cases, dashed and solid lines represent first and second order transitions,
respectively.

some factors change the excitonic instability. The finite doping destroys the
gap very quickly [41]. The magnetic field perpendicular to the graphene
opens an excitonic gap due to the formation of Landau levels [38,46,47], and
an in-plane magnetic field leads to the formation of electron- and holelike
Fermi surfaces which stabilizes a gapped excitonic state [48].

There have also been a lot of studies on mechanism of mass gap genera-
tion, for example the sublattice inversion symmetry breaking due to applying
a staggered magnetic field [49]. Another mechanism is due to spin orbit cou-
pling which induces a quantum spin Hall state. When the mirror symmetry
is broken either by a substrate or external electric field, a Rashba term is
added to Hamiltonian. As a result of additional Rashba term, the mass
gap is induced [50]. Kekulé lattice distortions, which break the translational
symmetry of the lattice, also lead to the opening gaps in graphene [51]. The
possibility of Nagaoka ferromagnetism in doped systems is also predicted by
means of variational [52] and mean field calculations [53]. The magnetic
instability in the Hubbard model obtained by the mean field calculation is
shown in Fig. 1.7. We can see the two types of ferromagnetic ground states:
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Figure 1.8: Phase diagram of the extended Hubbard model in the U -V plane
obtained by the renormalization group analysis in large N expansion. [36,
56]. Here, U and V denote on-site and the nearest neighbor site Coulomb
repulsion, respectively, and Uc stands for the critical coupling. In this phase
diagram, three regions appear: semi-metal (SM), antiferromagnetic phase
(AF) and charge density wave state (CDW).

the Nagaoka ground state with maximally polarized spin (mF = n), and
a weak ferromagnetic state with mF < n, where mF and n denote magne-
tization and particle density, respectively. Further, a negative t′ stabilizes
ferromagnetic states as shown in the right panel in Fig. 1.7. At n = 0.75,
the instability line towards the ferromagnetic phase shows a dip, which is
due to the logarithmic van Hove singularity at n = 0.75 as shown in the
right panel in Fig. 1.5. It is noteworthy that the validity of Hubbard model,
which does not include long-range Coulomb interactions, for investigating
graphene, could be justified either in the presence of strong screening ef-
fects from substrates or by accounting for dynamical screening effects from
graphene itself [54]. As shown in Fig. 1.7, at half filling, the antiferromagnetic
state is favored by the on-site repulsion and competes with the long-range
part of the Coulomb field. The long-range Coulomb interaction can favor
charge density wave instability [40–43, 47, 55]. The effect of the long-range
Coulomb interaction is investigated by the renormalization group analysis
of the extended Hubbard model [56]. The results of semi-metal insulator
transition is shown in Fig. 1.8. When the nearest neighbor site Coulomb in-
teraction V is enough large, the charge density wave state is stable. Further,
the possibility of spin density wave instability at half filling and of d-wave
super conductivitng state in doped regime are suggested by functional renor-
malization group calculation for the t − J model on honeycomb lattice with
on-site and nearest neighbor repulsion [57].
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Let us focus on the Mott transition and antiferromagnetic instability in
the honeycomb lattice Hubbard model only with the nearest-neighbor hop-
ping integral. It is predicted that the metal-insulator transition happens at
finite Hubbard UAF/t = 2.23 by means of the static mean field theory, which
is different from conventional two-dimensional bipartite systems, where the
insulating state is stable for any non-zero U . Here, t denotes the nearest-
neighbor hopping integral. That is because of the existence of the pseudogap
at the Fermi level. Recently, there have been a lot of theoretical studies on the
electronic properties in the Hubbard model on the honeycomb systems with
taking into account quantum fluctuations. S. Sorella and E. Tosatti point
out that the transition between semi-metallic and antiferromagnetic insulat-
ing phases occurs at UAF/t = 4.5± 0.5 by quantum Monte Carlo simulations
for a finite system [58]. T. Paiva et al. obtained similar results by means
of quantum Monte Carlo and series expansion techniques [59] as well as L.
M. Martelo et al. [60] and N. Furukawa [61] by using a variational method.
Those critical values acquired by them are much larger than that by means
of the static mean field theory, which indicates the importance of quantum
fluctuations. In the framework of the cellular dynamical mean field theory
under the assumption that no long-range order is present, the Mott transi-
tion is found at UMI/t ∼ 3.3 [62, 63], which is close to the above-mentioned
critical value UAF. The U(1) gauge theory suggests the existence of non-
magnetic insulating phase in the narrow range 1.68 < U/t < 1.74 [64], and
similar results have been obtained by the SU(2) slave-rotor theory [65, 66],
On the other hand, G. Y. Sun and S. P. Kou report that nonmagnetic in-
sulator appears for 2.88 < U/t < 2.93 and antiferromagnetic insulator for
2.23 < U/t < 2.88 and U/t > 2.93 calculated by using O(3) nonlinear σ
model for the Hubbard model [67]. These slave-fermion theories sometimes
give an artifactitious phase transition because of expanding Hilbert space.
From this viewpoint, the difference of those results may stem from above ar-
tifact. Recently, Z. Y. Meng et al. have found that the two phase transitions
as increasing U , the first from semi-metal to spin liquid, the second to an
antiferromagnetic insulator at UMI/t = 3.5 and UAF/t = 4.3 respectively, by
projective determinantal quantum Monte Carlo simulations [68]. This is of
significance in treating semi-metal, nonmagnetic and antiferromagnetic in-
sulator in a unified framework at zero temperature, however, the results are
obtained by calculations for finite systems and with a large statistical error.

Meanwhile, the single-site dynamical mean field theory gives the critical
values UMI/t ∼ 13.3 for the iterative perturbation theory [69] and UMI/t ∼ 10
by combining with the exact diagonal method as an impurity solver [70],
which are much larger than those by other methods. This fact means that
non-local correlations play quite an important role.
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In spite of many researches have been done for some decades, a lot of
questions remain unclear in the Hubbard model on the honeycomb lattice, for
example how antiferromagnetic correlations affect the phase transitions and if
nonmagnetic insulating phase is stable in strong correlated electron systems
on the honeycomb lattice. It can be the first sample of the nonmagnetic
insulating state without geometrical frustration.

1.4 Organization of the Thesis

In the present thesis, we address the Mott transition on the square and hon-
eycomb lattice systems and present the systematic perspective on the Mott
transition influenced by geometrical frustrations or quantum fluctuations.

Organization of this thesis is as follows; the dynamical mean field theory
and its cluster expansions are reviewed in Chap. 2. These theories are pow-
erful methods to study strongly correlated electron systems. In Chap. 3, we
propose the new methods derived by extension to the cluster version of the
two-site dynamical mean field theory, which enable us to study the spatial
fluctuation effects systematically. By means of these methods obtained in
Chap. 3, we investigate the square Hubbard model with/without geometri-
cal frustration and describe the competition between itinerancy of electrons
and antiferromagnetic short-range order in Chap. 4. Our method is also ap-
plied to the Hubbard model on the honeycomb lattice and the presence of
nonmagnetic insulating state is considered in Chap. 5.
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Chapter 2

Dynamical Mean Field
Theory and Cluster DMFT

The mean field theory is the most convenient method which describes vari-
ous physics such as superconductivity, magnetism, etc. In the system with
strongly correlated electrons, however, effects of dynamical fluctuations which
cannot be incorporated by the static mean field theory, that is, the electron
correlation effects are very important. It is one of the most important prob-
lem to establish a theoretical method which properly treats these many-body
effects due to the electron correlations.

As a theoretical method to study the electron correlation effects, for one-
dimensional systems, the Bethe ansatz solution and/or conformal field the-
ory is applicable to specific systems, which gives an exact solution of specific
physical properties. The density matrix renormalization group, which is the
powerful numerical calculation, can be also applied to the one-dimensional
systems. On the other hand, for the systems with more than two spatial
dimensions, the conclusive methods has not yet been established so far. As
a weak coupling theory, the perturbative renormalization group or fluctua-
tion exchange approximation [71] are known as a good method. The slave-
boson/fermion mean field theory or variational Monte Carlo method might
be able to be applied to the strong coupling regime. As a numerical sim-
ulation for the finite cluster, the Quantum Monte Carlo method is popu-
lar [72–74], and the path integral renormalization group method has recently
developed [26,75–78].

Against this background, the dynamical mean field theory has recently
been developed. This method starts from the limit of the infinite spatial
dimensions and correctly incorporates local electron correlations. The dy-
namical mean field theory has, at first, been proposed as an exact theory
in the spatial dimension d → ∞ by Metzner and Vollhardt [79]. Now, it
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has been regarded as a powerful theoretical framework to study the strongly
correlated electron systems and applied to various systems [7].

2.1 Dynamical Mean Field Theory

In the dynamical mean field theory, the lattice models such as Hubbard model
and periodic Anderson model, which describe the strongly correlated electron
systems, are mapped onto the effective quantum impurity model. In the
effective impurity model, the impurity is coupled to the dynamical or time-
dependently fluctuating field. This is the different point of the dynamical
mean field theory from the static mean field theory.

Here, we consider the Hubbard model,

H =
∑
i,j,σ

tijc
†
iσcjσ − µ

∑
i,σ

c†iσciσ + U
∑

i

ni↑ni↓, (2.1)

and briefly explain the dynamical mean field theory. In (2.1), tij denotes
the hopping integral from ith to jth site, µ is the chemical potential, and U
denotes the Hubbard interaction.

At first, we introduce a brief overview of the dynamical mean field theory.
Figure 2.1. shows its basic concept. The path integral representation [80] is
convenient to derive the effective action in the dynamical mean field theory.
The partition function for the Hamiltonian (2.1) is described by the path

Figure 2.1: In the dynamical mean field theory, an arbitrary site in the lattice
model (left) is chosen as an impurity. The lattice model is then mapped onto
the effective impurity model (right) with the dynamical effective medium
which incorporates the contribution from the surrounding other sites to the
impurity.
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integral representation as

Z =

∫ ∏
i,σ

Dc†iσDciσe
−S (2.2)

S =

∫ β

0

dτ

{∑
i,j,σ

c†iσ(τ)

[(
∂

∂τ
− µ

)
δij + tij

]
cjσ(τ)

+ U
∑

i

ni↑(τ)ni↓(τ)

}
. (2.3)

Here, S is the action and, c and c† are Grassmann numbers. The mapping
shown in Fig. 2.1 corresponds to (i) choice of an arbitrary site (referred to
as site 0) as an impurity and (ii) integrating out all the degrees of freedom
of the sites other than the impurity in the path integral. Of course, the path
integral cannot be carried out exactly. If the path integral approximately is
carried out, it is expected that the effective action Seff for the site 0 would
be

Seff = −
∫ β

0

dτ1dτ2

∑
σ

c†0σ(τ1)G−1
σ (τ1 − τ2)c0σ(τ2)

+ U

∫ β

0

dτn0↑(τ)n0↓(τ), (2.4)

where, Gσ(τ) is the unperturbed Green’s function which is defined as, Gσ(τ) =
−⟨Tτc0σ(τ)c†0σ(0)⟩0, in the effective action Seff, which describes the time-
dependent effective medium. Here, Tτ is the time ordering operator and
⟨· · · ⟩0 denotes the statistical average in Seff without the interaction term.
The effective action (2.4) corresponds to the right panel in Fig. 2.1. If we
impose that the full Green’s function Gσ satisfy the Dyson equation,

Gσ = Gσ + GσΣσGσ, (2.5)

we obtain the relation among Gσ, Gσ and Σσ. Here, Gσ is defined as Gσ(τ) =
−⟨Tτc0σ(τ)c†0σ(0)⟩, by using the statistical average in Seff. Therefore, when
the effective medium Gσ is given, we can obtain the self-energy Σσ and Green’s
function Gσ by solving the effective action (2.4).

On the other hand, the Green’s function Gσ must be consistent with the
local Green’s function in the original lattice model (2.1), because Gσ is the
local Green’s function for the electron at site 0. The local Green’s function
in the Hamiltonian (2.1) is generally written as

Gσ(ω) =
1

N

∑
k

1

ω − εk + µ − Σkσ(ω)
. (2.6)
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Here, εk is the dispersion,

εk =
1

N

∑
i,j

eik·(ri−rj)tij, (2.7)

and Σkσ(ω) is the self-energy for the electron with the wave vector k and spin
σ. In the dynamical mean field theory, only the local self-energy Σσ is ob-
tained due to the above local approximation. If we neglect the k-dependence
of the self-energy, we obtain the Green’s function,

Gσ(ω) =
1

N

∑
k

1

ω − εk + µ − Σσ(ω)
, (2.8)

in terms of the local self-energy Σσ. By using Eqs. (2.5) and (2.8), the Green’s
function for the effective medium Gσ is determined by

G−1
σ (ω) =

[
1

N

∑
k

1

ω − εk + µ − Σσ(ω)

]−1

+ Σσ(ω). (2.9)

If Gσ given, we can solve the effective action (2.4) and calculate the self-
energy Σσ. For given Σσ, we can calculate Gσ using Eq. (2.9). Therefore,
these equations are the self-consistent equations. This is an overview of the
dynamical mean field theory.

In the above discussions, however, we used some assumptions to derive
the self-consistent equation (2.9). So, we next proceed with the microscopic
derivation of the dynamical mean field theory. The calculations below are
important for systematic extensions of the dynamical mean field theory. For
microscopic derivation, we first divide the action for the Hubbard model (2.3)
into three parts,

S = S0 + ∆S + S(0), (2.10)

S0 =

∫ β

0

dτ

{∑
σ

c†0σ(τ)

(
∂

∂τ
− µ

)
c0σ(τ) + Un0↑(τ)n0↓(τ)

}
, (2.11)

∆S =

∫ β

0

dτ

{∑
i,σ

[
ti0c

†
iσ(τ)c0σ(τ) + t0ic

†
0σ(τ)ciσ(τ)

]}
, (2.12)

S(0) =

∫ β

0

dτ

{ ∑
i,j ̸=0,σ

c†iσ(τ)

[(
∂

∂τ
− µ

)
δij + tij

]
cjσ(τ)

+
∑
i̸=0

Uni↑(τ)ni↓(τ)

}
. (2.13)
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Here, S0 is the action for the site 0 chosen as an impurity, ∆S is the coupling
between the site 0 and other sites, and S(0) is for sites except the site 0. The
partition function Z is rewritten by the three actions,

Z =

∫
Dc†0σDc0σe

−S0

∫ ∏
i̸=0,σ

Dc†iσDciσe
−S(0)

e−∆S

= Z(0)

∫
Dc†0σDc0σe

−S0⟨e−∆S⟩(0). (2.14)

Here, ⟨· · · ⟩(0) represents the statistical average for the action S(0), which is
referred to as the cavity average below,

⟨· · · ⟩(0) =
1

Z(0)

∫ ∏
i̸=0,σ

Dc†iσDciσ[· · · ]e−S(0)

, (2.15)

Z(0) =

∫ ∏
i ̸=0,σ

Dc†iσDciσe
−S(0)

. (2.16)

Using the above expressions, we carry out the path integral for degrees of
freedom of all the sites except the site 0. In Eq. (2.14), the action for the
coupling between the site 0 and the other sites, ⟨e−∆S⟩(0) is expanded in
powers of ∆S,⟨

e−∆S
⟩(0)

= 1 − ⟨∆S⟩(0) +
1

2

⟨
(∆S)2⟩(0) − + · · · . (2.17)

In the first order term of the expansion, ⟨c†iσ(τ)⟩(0)c0σ(τ), c†0σ(τ)⟨ciσ(τ)⟩(0),
etc. appear and these terms are not allowed to be by the conservation rule of
the particle number. Also by considering the conservation rule, the second
order term is explicitly written down as

1

2

⟨
(∆S)2⟩(0) =

∫ β

0

dτ1dτ2

∑
σ

c†0σ(τ1)[∑
ij

ti0t0j

⟨
Tτciσ(τ1)c

†
jσ(τ2)

⟩(0)
]

c0σ(τ2). (2.18)

For higher order terms, the approximation which is exact in the limit of
the infinite spatial dimensions, d → ∞ is applied. In order to keep the band
width invariant with increasing the spatial dimension, the hopping integral tij
is scaled as tij → tij/

√
d. Under the scaling, the two-point Green’s function

in Eq. (2.18),
⟨
Tτciσ(τ1)c

†
jσ(τ2)

⟩(0)

is of the order of 1/d, because two hopping
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processes are needed for an electron to move from ith to jth site which are
the nearest neighbor sites of the site 0. On the other hand, in Eq. (2.18),
the hopping integral t2ij and the summation

∑
i,j give contributions of order

1/d and d2, respectively. Therefore, the order of the second order term is
1/d × 1/d × d2 = 1, which gives a non-negligible contribution in the limit of
d → ∞. In the nth order in the expansion, less than n-point Green’s function
appears. As above mentioned, at least two hopping processes appear in
electron transfer between two sites except the site 0. In the n-point Green’s
function, the electron transfers n− 1 times appear, which gives contribution
of the order of (1/d)n−1. In this Green’s function, tnij and n summations also
appears. Therefore, n-point Green’s function is of the order of (1/d)n−1 ×
(1/

√
d)n × dn = (1/

√
d)n−2. From the above discussions, more than three-

point Green’s function vanishes in the limit of d → ∞. In higher order
terms, only the terms which are divided into the product of the two-point

Green’s function survives. Therefore,
⟨
e−∆S

⟩(0)
is calculated in the limit of

the infinite spatial dimensions, d → ∞, as,

⟨
e−∆S

⟩(0) → exp

{
−
∫ β

0

dτ1dτ2

∑
σ

c†0σ(τ1)

[∑
ij

ti0t0jG
(0)
ij (τ1 − τ2)

]
c0σ(τ2)

}
, (2.19)

G
(0)
ijσ(τ1 − τ2) ≡ −

⟨
Tτciσ(τ1)c

†
jσ(τ2)

⟩(0)

. (2.20)

Here, G
(0)
ijσ is called the cavity Green’s function, which describes the influence

of the other sites to the electron at site 0. Substituting the above expression
into Eq. (2.14), we obtain the effective action,

Seff =

∫ β

0

dτ

{∑
σ

c†0σ(τ)

(
∂

∂τ
− µ

)
c0σ(τ) + Un0↑(τ)n0↓(τ)

}

+

∫ β

0

dτ1dτ2

∑
σ

c†0σ(τ1)

[∑
ij

ti0t0jG
(0)
ijσ(τ1 − τ2)

]
c0σ(τ2)

= −
∫ β

0

dτ1dτ2

∑
σ

c†0σ(τ1)G−1
σ (τ1 − τ2)c0σ(τ2)

+ U

∫ β

0

dτn0↑(τ)n0↓(τ). (2.21)
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Here, Gσ is the Green’s function describing the effective medium,

G−1
σ (ω) = ω + µ −

∑
ij

ti0t0jG
(0)
ijσ(ω). (2.22)

The expression (2.21) is consistent with Eq. (2.4), and we confirm that the
Hubbard model is mapped onto the effective impurity model (2.4) in the
infinite spatial dimensions, d → ∞.

In the above discussions, we used the action representation. The Hamil-
tonian representation is also useful. To move to the Hamiltonian formula,
we should only prepare the effective Hamiltonian which corresponds to the
effective action (2.21). The Anderson impurity Hamiltonian,

H =
∑
l,σ

εla
†
lσalσ − µ

∑
σ

c†0σc0σ + Un0↑n0↓ +
∑
l,σ

(
Vla

†
lσcσ + H.c.

)
, (2.23)

is one of the typical Hamiltonian which leads to the action (2.21). This
Hamiltonian is well known as the model describing the Kondo effect. Here,
a†

lσ (alσ) creates (annihilates) electrons with the effective bath degrees of free-
dom l and spin σ. Note that the infinite bath sites are needed to reproduce
the effective action (2.21). The bath electrons have the dispersion εl and
they are coupled with the impurity by the hybridization Vl. By using the
path integral representation, it is confirmed that the action for the Hamil-
tonian (2.23) is equivalent to the effective action (2.21). In the action, the
Green’s function describing the effective medium Gσ is written in terms of
bath parameters εl and Vl as

G−1
σ (ω) = ω + µ −

∑
l

|Vl|2

ω − εl

. (2.24)

Comparing Eq. (2.24) with Eq. (2.22), we obtain,∑
ij

ti0t0jG
(0)
ijσ(ω) =

∑
l

|Vl|2

ω − εl

≡ ∆(ω), (2.25)

which is called the hybridization function.
We now turn to calculation of the hybridization function ∆(ω). The

cavity Green’s function G
(0)
ijσ in ∆(ω) is written by the cavity average, which

is the statistical average by degrees of freedom except for the site 0, so that it
is difficult to directly calculate this quantity. Therefore, we use the relation
between the cavity Green’s function G

(0)
ijσ and the lattice Green’s function

Gijσ,

G
(0)
ijσ = Gijσ − Gi0σG

−1
00σG0jσ, (2.26)
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which is shown by using the expansion of the lattice Green’s function in the
hopping integral tij [81]. Substituting this equation into ∆(ω) (2.25) and
using the Fourier transformation, we obtain

∆(ω) =
∑
ij

ti0t0j

[
Gijσ − Gi0σG

−1
00σG0jσ

]
=

1

N

∑
k

ε2
kGkσ

−

[
1

N

∑
k

εkGkσ

]
G−1

00σ

[
1

N

∑
k

εkGkσ

]
. (2.27)

Here, G00σ is the local Green’s function in the lattice system and Gkσ is the
lattice Green’s function for the wave vector k and spin σ. By applying the
approximation which neglects the k-dependence of the self-energy to these
Green’s function, they are written as

G00σ(ω) =
1

N

∑
k

Gkσ(ω), (2.28)

Gkσ(ω) =
1

ζ − εk

, (2.29)

ζ ≡ ω + µ − Σσ(ω) (2.30)

Using the above equations, the summations over the wave vector in (2.27)
are computed as

1

N

∑
k

ε2
kGkσ = − 1

N

∑
k

εk − ζ + ζ2G00σ, (2.31)

1

N

∑
k

εkGkσ = −1 + ζG00σ. (2.32)

Here, we use the fact, 1
N

∑
k εk = t00 = 0. By using the above expressions,

the hybridization is computed as

∆(ω) = ζ − G−1
00σ. (2.33)

Finally, we obtain the Green’s function for the effective medium,

G−1
σ (ω) =

[
1

N

∑
k

1

ω − εk + µ − Σσ(ω)

]−1

+ Σσ(ω), (2.34)

which is equivalent to Eq. (2.9). From the above discussions, we have micro-
scopically derived the self-consistent equation in the dynamical mean field
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theory. The dynamical mean field theory has been successfully applied to
the single band Hubbard model [82–88], multi-band Hubbard model [89–97],
periodic Anderson model [98–103], etc.

2.2 Cluster Dynamical Mean Field Theories

In the dynamical mean field theory explained in the previous section, the
local quantum fluctuations are treated but spatial fluctuations are not in-
corporated. Therefore, it is difficult for the dynamical mean field theory to
describe the high-Tc superconductivity, spin wave excitations, etc, where the
non-local correlations are important. In order to study these phenomena,
great effort for including the non-local fluctuations to the dynamical mean
field theory has been made so far. The dynamical mean field theory is ex-
act in the limit of infinite spatial dimensions, d → ∞. So, a systematic
1/d expansion has been tried to recover the spatial fluctuations [104–108].
The higher order terms in the 1/d expansion, however, gives rise to violation
of causality and the 1/d corrected dynamical mean field theory has not yet
well established. Among them, the extended dynamical mean field theory is
one of successful example in extensions of the dynamical mean field theory
and it is the extended method which allows us to treat the inter-site inter-
actions [109–111]. In this method, by explicitly introducing the inter-site
interactions to the model Hamiltonian, the inter-site correlations are incor-
porated in the dynamical mean field theory. The dynamical vertex approx-
imation perturbatively includes the non-local corrections to the self-energy
obtained by the dynamical mean field theory [112]. In the dual fermion
approach, the virtual fermions which undertakes the non-local correlation ef-
fects are introduced. The dynamical mean field type treatment is applied to
the real fermions and the non-local correlations due to the virtual fermions
are diagrammatically treated. This approach is applied to the one- and two-
dimensional Hubbard model, and it is demonstrated that the results show a
good agreement with those by the density matrix renormalization group and
quantum Monte Carlo method [113–115].

These approaches are all extended methods based on the single-site dy-
namical mean field theory. It is also useful for the purpose of incorporating
the spatial fluctuations that the effective impurity model in the dynamical
mean field theory is extended to the effective cluster model. In this section,
the cellular dynamical mean field theory [104, 116, 117] and the dynamical
cluster approximation [118–121] which are the cluster extensions of the dy-
namical mean field theory will be briefly explained.
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2.2.1 Cellular Dynamical Mean Field Theory

One of the methods which include the spatial correlations in the dynamical
mean field theory is cluster-extended method, where the effective impurity
model is replaced with the multi-impurity model, i.e. the effective cluster
model. Several versions of the cluster extension of the dynamical mean field
theory have been proposed. Typical methods are the cellular dynamical mean
field theory [104, 116, 117] proposed by Kotliar et al. and the dynamical
cluster approximation [118–121] by Jarrell et al. In this subsection, the
cellular dynamical mean field theory is explained and the dynamical cluster
approximation is introduced in the next subsection.

As shown in Fig. 2.2, in the cellular dynamical mean field theory, the
original lattice model is approximately mapped onto the effective cluster
model which consists of a few site cluster and an effective medium. In the
effective cluster model, the short-range correlation effects in addition to the
local correlations in the cluster are correctly calculated. In the following,
as an example, in the Nc = 2 × 2 site cluster cellular dynamical mean field
theory for the two-dimensional Hubbard model, the way to map the original
model onto the effective cluster model is explained.

To carry out the mapping onto the effective cluster model shown in
Fig. 2.2, the original lattice is divided into four sublattices, as shown in
Fig. 2.3. Four sites surrounded by dotted line in Fig. 2.3 are regarded as
one site. Then, the length of the primitive translation vectors become twice,
as shown by the arrows in the figure so that the corresponding reciprocal
vectors become half.

Figure 2.2: In the cellular dynamical mean field theory, the original lattice
model (left) is mapped onto the effective cluster model (right) which consists
of a few site cluster coupled to an effective medium. A cluster including some
sites is regard as one site in the framework of the cellular dynamical mean
field theory.
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Figure 2.3: The original lattice (left) and the lattice divided into four sublat-
tices (right). The arrow in the right figure denotes the primitive translation
vector which connects between the same sublattices.

In the sublattice representation, the Hubbard Hamiltonian reads

H = H0 + HI , (2.35)

H0 =
∑

i,j,γ,δ,σ

tγδ (i, j) c†iγσcjδσ − µ
∑
i,γ,σ

c†iγσciγσ, (2.36)

HI = U
∑
i,γ

niγ↑niγ↓. (2.37)

Here, c†iγ (ciγ) creates (annihilates) an electron at the ith site in the sublattice
γ (γ = 1, 2, 3, 4). The hopping integral between the ith site in the sublattice γ
and jth site in the sublattice δ is described by tγδ(i, j) and U is the Hubbard
interaction. In the above expressions, an electron with spin σ at each site has
four sublattice degrees of freedom, 1, 2, 3, 4. In order to derive the cellular
dynamical mean field theory, it is convenient to regard sublattice indices as
not an index which denotes a particular site in the real space but an internal
degree of freedom at a site.

Under this expression, the non-interacting Hamiltonian is converted to
the wave vector representation. The usual Fourier transformation is defined
as

ck̃γσ =
1√
N ′

∑
i

e−ik̃·(r̃i+Rγ)ciγσ. (2.38)

In the expression in Eq. (2.36), however, the sublattice indices are regarded
as internal degrees of freedom so the Fourier transformation is defined as

c̃k̃γσ =
1√
N ′

∑
i

e−ik̃·r̃iciγσ. (2.39)

Here, N ′ is the number of sites and the total number of sites which includes
all sublattices is N = Nc × N ′. By using the Fourier transformation (2.39),
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H0 is rewritten as

H0 =
∑

k̃,γ,δ,σ

tγδ

(
k̃
)

c̃†
k̃γσ

c̃k̃δσ − µ
∑
k̃,γ,σ

c̃†
k̃γσ

c̃k̃γσ, (2.40)

tγδ

(
k̃
)

=
1

N ′

∑
i,j

e−ik̃·(r̃i−r̃j)tγδ (i, j) . (2.41)

The full Green’s function for the total Hamiltonian defined by

G̃γδσ

(
k̃ : τ

)
= −

⟨
Tτ c̃k̃δσ (τ) c̃†

k̃γσ
(0)
⟩

, (2.42)

is obtained as

ˆ̃Gσ

(
k̃ : ω

)
=
[
(ω + µ)1̂ − t̂

(
k̃
)
− ˆ̃Σσ

(
k̃ : ω

)]−1

, (2.43)

in terms of the self-energy Σγδσ. Here, Ô denotes that O is Nc × Nc matrix.
Under the above preparations, the model (2.35) is mapped onto the ef-

fective cluster model. We regarded sublattice degrees of freedom as inter-
nal degrees of freedom so then we can derive the effective cluster model in
the cellular dynamical mean field theory by almost the same procedure as
the standard dynamical mean field theory explained in the previous section.
Starting from the path integral representation of the partition function given
by

Z =

∫ ∏
i,γ,σ

Dc†iγσDciγσe
−S, (2.44)

S = S0 + ∆S + S(0), (2.45)

S0 =

∫ β

0

dτ

{∑
γ,σ

c†0γσ(τ)

[(
∂

∂τ
− µ

)
δγ,δ + tγδ (0, 0)

]
c0δσ(τ)

+ U
∑

γ

n0γ↑ (τ) n0γ↓ (τ)

}
, (2.46)

∆S =

∫ β

0

dτ
∑

i,γ,δ,σ

[
tγδ (i, 0) c†iγσ (τ) c0δσ (τ) + tγδ (0, i) c†0γσ (τ) ciδσ (τ)

]
,

(2.47)

S(0) =

∫ β

0

dτ

{ ∑
i,j ̸=0,γ,σ

c†iγσ(τ)

[(
∂

∂τ
− µ

)
δγ,δ + tγδ (0, 0)

]
cjδσ(τ)

+ U
∑
i̸=0,γ

n0γ↑ (τ) n0γ↓ (τ)

}
, (2.48)
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we expand Z in powers of ∆S and obtain the effective action,

Seff = −
∫ β

0

dτ1dτ2

∑
γ,δ,σ

c†0γσ(τ1)G−1
γδσ(τ1 − τ2)c0δσ(τ2)

+ U

∫ β

0

dτ
∑

γ

n0γ↑(τ)n0γ↓(τ). (2.49)

Here, the Green’s function for the effective medium G−1
γδσ(ω) is obtained as

G−1
γδσ(ω) = ω + µ − tγδ (0, 0) −

∑
ij

∑
γ′δ′

tγγ′ (i, 0) G
(0)
γ′δ′σ (i, j : ω) tδ′δ (j, 0) ,

(2.50)

where the cavity Green’s function is defined by

G
(0)
γδσ (i, j : τ) = −

⟨
Tτciγσ (τ) c†jδσ (0)

⟩(0)

. (2.51)

We can also use the corresponding effective Hamiltonian to the action (2.49),

H =
∑
γ,δ,σ

tγδ (0, 0) c†0γσc0δσ − µ
∑
γ,σ

c†0γσc0γσ + U
∑

γ

n0γ↑n0γ↓

+
∑
l,σ

εla
†
lσalσ +

∑
l,γ,σ

(
Vlγa

†
lσc0γσ + H.c.

)
. (2.52)

In this case, the Green’s function for the effective medium is computed as

G−1
γδσ(ω) = (ω + µ) δγ,δ − tγδ (0, 0) − ∆γδ(ω), (2.53)

where the hybridization function is given by

∆γδ(ω) =
∑

l

VlγVlδ

(ω − ϵl)
= G

(0)
γδσ (i, j : τ) . (2.54)

By generalization of Eq. (2.26), the relation between the cavity Green’s func-

tion G
(0)
γ′δ′σ (i, j : ω) and the lattice full Green’s function Gγδσ (i, j : ω) is the

matrix formula,

Ĝ(0)
σ (i, j) = Ĝσ (i, j) − Ĝσ (i, 0) Ĝ−1

σ (0, 0) Ĝσ (0, j) . (2.55)
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By using this relation, Eq. (2.53) is transformed into

Ĝ−1
σ (ω) = [ω + µ] 1̂ − t̂ (0, 0) −

∑
ij

t̂ (i, 0) Ĝ(0)
σ (i, j) t̂ (j, 0)

= [ω + µ] 1̂ − t̂ (0, 0) −
∑
ij

t̂ (i, 0) Ĝσ (i, j) t̂ (j, 0)

+
∑
ij

t̂ (i, 0) Ĝσ (i, 0) Ĝ−1
σ (0, 0) Ĝσ (0, j) t̂ (j, 0)

= [ω + µ] 1̂ − t̂ (0, 0) − 1

N ′

∑
k̃

t̂
(
k̃
)

ˆ̃Gσ

(
k̃
)

t̂
(
k̃
)

+

 1

N ′

∑
k̃

t̂
(
k̃
)

ˆ̃Gσ

(
k̃
) Ĝ−1

σ (0, 0)

 1

N ′

∑
k̃

ˆ̃Gσ

(
k̃
)

t̂
(
k̃
) .

(2.56)

Here, ˆ̃Gσ

(
k̃
)

is the Green’s function given by Eq. (2.43) and the argument

ω in ˆ̃Gσ is omitted for convenience. By ignoring the momentum dependence

of the self-energy, ˆ̃Gσ

(
k̃
)

is approximated as

ˆ̃Gσ

(
k̃ : ω

)
→
[
(ω + µ) 1̂ − t̂

(
k̃
)
− Σ̂σ (ω)

]−1

=
[
X̂σ (ω) − t̂

(
k̃
)]−1

. (2.57)

Under this approximation, the summations over the wave vector in Eq. (2.56)
are computed as

1

N ′

∑
k̃

t̂
(
k̃
)

ˆ̃Gσ

(
k̃
)

t̂
(
k̃
)

= −t̂ (0, 0) − X̂σ + X̂Ĝσ (0, 0) X̂σ, (2.58)

1

N ′

∑
k̃

t̂
(
k̃
)

ˆ̃Gσ

(
k̃
)

= −1̂ + X̂σĜσ (0, 0) , (2.59)

1

N ′

∑
k̃

ˆ̃Gσ

(
k̃
)

t̂
(
k̃
)

= −1̂ + Ĝσ (0, 0) X̂σ. (2.60)

Finally, the Green’s function for the effective medium is obtained as

Ĝ−1
σ (ω) =

 1

N ′

∑
k̃

[
(ω + µ) 1̂ − t̂

(
k̃
)
− Σ̂σ (ω)

]−1

−1

+ Σ̂σ (ω) . (2.61)
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This can be calculated by the self-energy defined in the effective cluster
model, Σ̂σ (ω). By solving the effective action (2.49), the self-energy Σ̂σ (ω)
is obtained and then the effective medium is recomputed by Eq. (2.61). It-
erating this procedure, we determine the effective medium self-consistently.

The cellular dynamical mean field theory has been applied to the one-
dimensional Hubbard model and extended Hubbard model [122, 123] and it
has been shown that the results are in good agreement with those of the Bethe
ansatz and density matrix renormalization group. Recently, this method has
been successfully applied to the two-dimensional Hubbard model related to
the high-Tc cuprate [124] and the periodic Anderson model which describes
the quantum phase transition in the f -electron systems [125]. The Mott
transition in the Hubbard model with geometrical frustration, which is re-
lated to the metal-insulator transition observed in the κ-type organics, has
been also studied [27, 126, 127] by using the cellular dynamical mean field
theory. The combination of this method with the band calculations have
been proposed and challenge for giving quantitative explanation of exper-
imental results has been done [128]. In the cellular dynamical mean field
theory, however, has a problem that the translational symmetry is broken in
the procedure of mapping onto the effective cluster model, which causes a
problem in particular in describing the d-wave superconductivity [105]. The
periodized cluster dynamical mean field theory recently proposed keeps the
translational symmetry and improves this point [129].

2.2.2 Dynamical Cluster Approximation

In this subsection, another cluster extension of the dynamical mean field
theory, the dynamical cluster approximation is briefly introduced and it is
compared with the cellular dynamical mean field theory. In the single-site
dynamical mean field theory, the k-dependence of the self-energy is ignored.
In other words, the self-energies Σσ(k) at all k points are replaced with one
self-energy Σσ(kΓ : ω) at the Γ point. Here, kΓ = (0, 0, . . . ). In this case, the
lattice Green’s function is given by

Gσ(k : ω) = [ω + µ − εk − Σσ(ω)]−1 . (2.62)

In the dynamical cluster approximation, the Brillouin zone is divided into
several regions called the coarse grained cell. The number of coarse grained
cell Nc corresponds to the cluster size in the cellular dynamical mean field
theory, as explained below. For each coarse grained cell, a cluster momentum
K, which is a typical k point in each coarse grained cell, is assigned. By
using the cluster momentum K, N ′ = N/Nc self-energies with wave vector k
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Figure 2.4: An example for division of the Brillouin zone of the square lattice.
The cluster size is Nc = 4. The dashed square denotes the first Brillouin zone
and four filled circles denote the cluster momenta.

in each coarse grained cell, Σσ(k), are approximately replaced with one self-
energy with cluster momentum K, Σσ(K). In Fig. (2.4), the two-dimensional
Brillouin zone is divided into Nc = 4 coarse grained cells and N self-energies
Σσ(k) are replaced with four self-energies Σσ(K). Therefore, in the dynamical
cluster approximation, the Green’s function is written in terms of Nc self-
energies Σσ(K) as

Gσ(k : ω) = [ω + µ − εk − Σσ(K : ω)]−1 . (2.63)

Note that in the Green’s function with the wave vector k, the self-energy with
the cluster momentum K in the coarse grained cell which includes k. For
Nc = 1, this approximation corresponds to the single-site dynamical mean
field theory and for Nc = N , it becomes exact. In the cellular dynamical mean
field theory, the effective cluster model is derived in the real space, while in
the dynamical cluster approximation, the momentum space is coarse-grained
and the effective cluster model is constructed in the momentum space.

Let us now consider the effective Hamiltonian in the dynamical cluster
approximation. The Hubbard model in k space reads,

H =
∑
k,σ

(εk − µ) c†kσckσ +
U

N

∑
k,k′,q

c†k+q↑ck↑c
†
k′−q↓ck′↓. (2.64)
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Here, εk is the dispersion relation, that is, the usual Fourier transforma-
tion defined by (2.38) of the hopping integral tij. In the dynamical cluster
approximation, the k space is coarse-grained, as above mentioned. So, the
dispersion is averaged in each coarse grained cell,

εk → ε̄K =
1

N ′

∑
k̃

εK+k̃. (2.65)

Here, the wave vector k is replaced with the cluster momentum K in the
coarse grained cell which includes k and also, the summation over k̃ is taken
in each coarse grained cell which includes k. The interaction term is also
averaged. For a generalized q-dependent interaction Uq, the averaged inter-
action reads

Uq → ŪQ =
1

N ′

∑
q̃

UQ+q̃. (2.66)

In the Hubbard model without q-dependence of the interaction, simply Ū =
U . The cluster part is coupled to the effective medium so that the total
effective Hamiltonian is the multi-impurity Anderson Hamiltonian as well as
that in the cellular dynamical mean field theory (2.52),

Heff =
∑
K,σ

ε̄Kc†KσcKσ +
U

Nc

∑
K,K′,Q

c†K+Q↑cK↑c
†
K−Q↓cK↓

+
∑
k,σ

Eka
†
kσakσ +

1

N ′

∑
K,k̃,σ

[
VKk̃c

†
KσaK+k̃σ + H.c.

]
. (2.67)

Here, a†
kσ (akσ) creates (annihilates) a fermion in the effective medium.

The bath fermion has the dispersion Ek and it is coupled to the cluster
fermion by VKk̃. The coarse grained Green’s function defined by Ḡσ(K :

τ) = −⟨TτcKσ(τ)c†Kσ(τ)⟩ and the self-energy ΣKσ is computed in the effec-
tive cluster Hamiltonian (2.67). These satisfy the Dyson equation, Ḡσ(K) =
Gσ(K) + Gσ(K)Σσ(K)Ḡσ(K). Here, the Green’s function for the effective
medium GKσ is calculated as

G−1
σ (K : ω) = ω + µ − ε̄K − ∆(K : ω) − Σσ(K : ω), (2.68)

∆(K : ω) =
1

N

∑
k̃

|VKk̃|2

ω − EK+k̃

, (2.69)

where ∆(K : ω) is the hybridization function. On the other hand, for given
the self-energy Σσ(K : ω), the coarse grained Green’s function is also obtained
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by averaging the lattice Green’s function given by Eq. (2.63) in each coarse
grained cell as

Ḡσ(K : ω) =
1

N ′

∑
k̃

1

ω + µ − εK+k̃ − Σσ(K, ω)
. (2.70)

Therefore, by using the above expression and the Dyson equation, the Green’s
function for the effective medium is recomputed as

G−1
σ (K : ω) =

 1

N ′

∑
k̃

1

ω + µ − εK+k̃ − Σσ(K : ω)

−1

+ Σσ(K : ω). (2.71)

Also, the hybridization function is

∆(K : ω) = ω + µ −

 1

N ′

∑
k̃

1

ω + µ − εK+k̃ − Σσ(K : ω)

−1

. (2.72)

These equations determine the bath parameters in the effective Hamiltonian
(2.67). By solving the effective Hamiltonian, we again compute the coarse-
grained Green’s function and the self-energy. This procedure is iterated until
numerical convergence is reached.

If we choose a specific k-space cluster with a corresponding real-space
cluster, we can derive the dynamical cluster approximation also using the
same procedure as the cellular dynamical mean field theory. The difference
between the dynamical cluster approximation and cellular dynamical mean
field theory is whether the periodic boundary condition is imposed on the
cluster or the open one is. In the cellular dynamical mean field theory, as ex-
plained in the previous subsection, the open boundary condition is employed.
On the other hand, the dynamical cluster approximation is formulated in k
space, which indicates that the periodic boundary condition is imposed on
the cluster. This difference influences the Fourier transformation of the hop-
ping matrix element. To convert the cellular dynamical mean field theory
to the dynamical cluster approximation, in the derivation of the cellular dy-
namical mean field theory explained in the previous subsection, we should
just change tγδ(k) into εγδ(k),

εγδ

(
k̃
)

=
1

N ′

∑
i,j

e−ik̃·(r̃i+Rγ−r̃j−Rδ)tγδ (i, j)

= e−ik̃·(Rγ−Rδ)tγδ

(
k̃
)

, (2.73)
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which corresponds to change from the open boundary condition to the pe-
riodic one. Note that in this case, the relation between the cavity Green’s
function and the lattice full Green’s function given by Eq. (2.55) is not justi-
fied. The effective action and Green’s function for the effective medium are
obtained as

Seff = −
∫ β

0

dτ1dτ2

∑
γ,δ,σ

c†0γσ(τ1)G−1
γδσ(τ1 − τ2)c0δσ(τ2)

+ U

∫ β

0

dτ
∑

γ

n0γ↑(τ)n0γ↓(τ), (2.74)

Ĝ−1
σ (ω) =

 1

N ′

∑
k̃

[
(ω + µ) 1̂ − ε̂k̃ − Σ̂σ (ω)

]−1

−1

+ Σ̂σ (ω) . (2.75)

Furthermore, the effective medium Ĝ−1
σ (ω) is diagonalized by the Fourier

transformation from the sublattice representation to the cluster-momentum
one, because the cluster is translationally symmetric due to the periodic
boundary condition. The Fourier transformation is defined by

ciγσ =
1√
Nc

∑
K

eiK·RγciKσ. (2.76)

We thus obtain

Seff = −
∫ β

0

dτ1dτ2

∑
K,σ

c†0Kσ(τ1)G−1
Kσ(τ1 − τ2)c0Kσ(τ2)

+

∫ β

0

dτ
U

Nc

∑
K,K′,Q

c†0K+Q↑(τ)c0K↑(τ)c†0K′−Q↓(τ)c0K′↓(τ), (2.77)

G−1
σ (K : ω) =

 1

N ′

∑
k̃

1

ω + µ − εK+k̃ − Σσ(K : ω)

−1

+ Σσ(ω), (2.78)

which are consistent with the effective Hamiltonian (2.67) and the effective
medium (2.71), respectively.

The dynamical cluster approximation has been successfully applied to
the two-dimensional Hubbard model [130–132]. In these studies, the cluster
size dependence has been systematically investigated and much better con-
vergence than the simulations in the finite size system has been obtained.
Also, the doping dependence of the d-wave superconductivity, antiferromag-
netism [133] and pseudo-gap [120] have been studied and the phase diagram
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has been obtained, which qualitatively explain the experimental results in
High-Tc cuprates. This method has been also successful applied to the tri-
angular lattice Hubbard model and it has been found that geometrical frus-
tration stabilizes the Fermi-liquid metallic state [134].
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Chapter 3

Linearization of DMFT and
Cluster DMFT

In the previous chapter, we reviewed the (ordinal) dynamical mean field the-
ory and its cluster extensions, i.e., the cellular dynamical mean field theory
and the dynamical cluster approximation. In these theories, the original lat-
tice model is mapped onto an effective model, in which a single impurity
site or a cluster is embedded in an effective medium. At this point, we need
some solvers for this effective model. For example, we can use numerical
techniques, such as quantum Monte Carlo method [72–74,135], exact diago-
nalization [136], numerical renormalization group [88] and so on. They are
semi-exact, but require quite heavy computations. On the other hand, we can
also use approximations as in the iterative perturbation theory [137–139] or in
the dynamical mean field theory with non-crossing approximation [140,141].
They do not need heavy numerical calculation, but works only in the limited
parameter region of the interaction and the temperature.

If we focus on the absolute zero temperature, the two-site (linearized)
dynamical mean field theory is considered to be effective [142]. Although
the calculation scheme is extremely simplified, its solution still captures the
low-energy features of the Green’s functions properly. Further, it can be
applied in the wide region of interaction parameter, even where the iterative
perturbation theory or the non-crossing approximation solvers break down,
and provides a unified description of the system from weak to strong coupling
regime.

In the present chapter, we will review the framework of the two-site dy-
namical mean field theory using the Hubbard model as an example. Then,
we extend it to the cluster version, which are called the linearized cellular
dynamical mean field theory and the linearized dynamical cluster approxima-
tion, which enable us to discuss the (short-range) spatial fluctuation effects.
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3.1 Two-Site Dynamical Mean Field Theory

In the present section, we briefly review the two-site dynamical mean field
theory. As an example of lattice systems, we deal with the Hubbard Hamil-
tonian (2.1),

H =
∑
i,j,σ

tijc
†
iσcjσ − µ

∑
i,σ

c†iσciσ + U
∑

i

ni↑ni↓. (3.1)

Let us begin with approximating the local (site-diagonal) Green’s function
to

Glocσ(ω) ≡ G00σ(ω) = [ω − εk + µ − Σσ(ω)]−1

=

∫
dε

ρ0(ε)

ω + µ − Σσ(ω) − ε
, (3.2)

by neglecting the k-dependence of the self-energy. Here, we follow the nota-
tions introduced in the section 2.1, and define the average of the k-dependent
quantity O(k) as

O(k) =
1

N

∑
k

O(k). (3.3)

With this average, the non-interacting density of states is expressed as

ρ0(ε) = δ(ε − εk). (3.4)

This lattice model is mapped onto the effective impurity model described
by the Anderson Hamiltonian (2.23), where the medium around the impurity

Figure 3.1: The concept of the two-site dynamical mean field theory. The
lattice model is mapped onto an effective Anderson model, and the medium
for the impurity is approximately represented by a single site.
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is represented by an infinite number of bath sites. In the two-site dynamical
mean field theory, the number of bath sites is reduced to one: the effective
impurity model consists of two sites, a single impurity and a single bath sites.
The relationship among the original lattice model, the effective impurity and
the simplified two-site models are summarized in Fig. 3.1. The Hamiltonian
of this two-site model is given as

Himp =
∑

σ

(t0 − µ)c†σcσ + Unc↑nc↓

+
∑

σ

εaσa
†
σaσ +

∑
σ

[
Vσa

†
σcσ + H.c.

]
, (3.5)

with

t0 ≡ tii = εk =

∫
dε ερ0(ε), (3.6)

which is assumed to be zero in the previous section 2.1. In this Hamiltonian,
the energy levels of the bath site εaσ and the hybridization Vσ are the un-
known parameters. Without loss of generality, the hybridization parameter
Vσ can be assumed to be real.

Now, let us give an initial guess for the parameters εaσ and Vσ. Then, the
medium Green’s function, i.e., the bare impurity Green’s function (U = 0),
is explicitly written as

Gσ(ω) = [ω + µ − t0 − ∆σ(ω)]−1 , (3.7)

with

∆σ(ω) =
V 2

σ

ω − εaσ

. (3.8)

The full impurity Green’s function (U ̸= 0) can also be calculated numeri-
cally. Actually, it is represented in the Lehmann-Kallen form as

Gimpσ(ω) =
∑

m( ̸=0)

∣∣⟨m|c†σ|0⟩
∣∣2

ω + i0 − Em + E0

+
∑

m(̸=0)

|⟨m|cσ|0⟩|2

ω + i0 − E0 + Em

, (3.9)

at zero temperature, where the eigenpairs Em and |m⟩ are computed by
means of the exact diagonalization of the Hamiltonian (3.5), and m = 0
denotes the ground state. At the same time, the impurity self-energy is
evaluated with the Dyson equation as

Σimpσ(ω) = G−1
σ (ω) − G−1

impσ(ω)

= ω + µ − t0 − ∆σ(ω) − G−1
impσ(ω), (3.10)
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which also gives

Gimpσ(ω) = [ω + µ − t0 − Σimpσ(ω) − ∆σ(ω)]−1 . (3.11)

If an exact solver for the impurity model with infinite bath sites is avail-
able, the parameters in the effective impurity model are chosen in such a way
that the self-consistent condition (2.9),

G−1
σ (ω) = G−1

locσ(ω) + Σσ(ω), (3.12)

or equivalently,
Gimpσ(ω) = Glocσ(ω), (3.13)

is fulfilled. At this point, the local self-energy in the original lattice model is
identified with that in the effective impurity model,

Σσ(ω) = Σimpσ(ω). (3.14)

However, in the two-site dynamical mean field theory, such a consistency can
no longer be satisfied exactly, since we have only a few tunable parameters,
εcσ and Vσ. Instead, we search their values in such a way that the essential
functional features of the left-hand side is well reproduced by the right-hand
side in Eq. (3.13).

The numerically evaluated self-energy is expanded in the low-frequency
regime as

Σσ(ω) = Σimpσ(ω) = aσ + bσω + O(ω2), (3.15)

where the coefficient bσ relates to the renormalization factor Zσ via

Zσ ≡
[
1 − dΣσ(ω)

dω

∣∣∣∣
ω=0

]−1

=
1

1 − bσ

. (3.16)

This factor Zσ should be a positive number, if we assume that the quasi-
particle is well-defined and has a positive mass.

Inserting the expansion (3.15) into Glocσ(ω) and Gimpσ(ω), their coherent
parts, i.e., their low-frequency contributions, are evaluated as

G
(coh)
locσ (ω) = [Z−1

σ ω − δεk − ξσ]−1 (3.17)

G
(coh)
impσ(ω) =

[
Z−1

σ ω − ξσ − ∆σ(ω)
]−1

, (3.18)

with

δεk = εk − t0 (3.19)

ξσ = t0 − µ + aσ. (3.20)
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Now, we come to the trickiest point in the two-site dynamical mean field
theory. We consider the high-frequency expansion of these coherent parts,

G
(coh)
locσ (ω) =

Zσ

ω
+

Z2
σ

ω2
(δεk + ξσ) +

Z3
σ

ω3
(δεk + ξσ)2 + O

(
1

ω4

)
=

Zσ

ω
+

Z2
σ

ω2
ξσ +

Z2
σ

ω3

(
Zσ(δεk)

2 + Zσξ
2
σ

)
+ O

(
1

ω4

)
(3.21)

G
(coh)
impσ(ω) =

Zσ

ω
+

Z2
σ

ω2
ξσ +

Z2
σ

ω3

(
V 2

σ + Zσξ
2
σ

)
+ O

(
1

ω4

)
, (3.22)

where we used δεk = 0 and ∆σ(ω) = ω−1V 2
σ + O(ω−2). This high-frequency

expansion might seem to be strange, but it succeeds in capturing the rough
functional features of G

(coh)
locσ (ω) and G

(coh)
impσ(ω).

Comparing these two asymptotic expansions, we can derive the self-
consistent condition for Vσ as

V 2
σ = Zσ(δεk)

2

= Zσ

∫
dε (ε − t0)

2ρ0(ε). (3.23)

On the other hand, we use the condition for the particle number,

nlocσ = nimpσ, (3.24)

to determine εaσ, where the left- and right-hand sides are defined as

nlocσ ≡ − 1

π

∫ 0

−∞
dω ImGlocσ(ω) (3.25)

nimpσ ≡ − 1

π

∫ 0

−∞
dω ImGimpσ(ω). (3.26)

Figure 3.2: Flowchart of the two-site dynamical mean field theory.
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Figure 3.3: U -dependence of renormalization factor Z of the half-filled Hub-
bard model on the Bethe lattice at absolute zero temperature [142]. Solid
and broken lines show the results by the two-site dynamical mean field theory
(2-site DMFT) and Brinkman-Rice (BR) approximation [143], respectively.
Filled circles and the line along them exhibit semi-exact results by dynamical
mean field theory with numerical renormalization group (NRG) [88], and by
that with exact diagonalization (ED) [136] solvers, respectively. The two-site
dynamical mean field theory well reproduce the semi-exact critical value of
U at the Mott transition.

These self-consistent conditions provide a new guess of parameters εaσ and Vσ

from the initial guess. Iterating this calculation loop until these parameters
converge, we finally obtain the self-consistent solutions. The flowchart of this
algorithm is schematically drawn in Fig. 3.2.

In Fig. 3.3, we show the renormalization factor of the half-filled Hubbard
model on the Bethe lattice at absolute zero temperature, which is calculated
with the two-site dynamical mean field theory (2-site DMFT), together with
those obtained by means of Brinkman-Rice (BR) approximation, the dy-
namical mean field theory combined with numerical renormalization group
(NRG) solver, and that combined with exact diagonalization (ED) solver.
All of these theories show the suppression of the renormalization factor, or
equivalently, the enhancement of the quasi-particle mass, as the Coulomb
interaction U is increased. The Mott transition is described as the vanishing
of the renormalization factor, or the divergence of the quasi-particle mass.
It is noteworthy that this critical value Uc evaluated by two-site DMFT is
quite close to the semi-exact ones by the dynamical mean field theory with
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NRG or ED solvers. We can also see that the renormalization factor in two-
site DMFT is slightly larger than in the semi-exact ones. This is because
two-site DMFT focuses only on the low-frequency regime and neglects the
high-frequency features, e.g., the Hubbard bands.

3.2 Linearized Cellular Dynamical Mean Field

Theory

In the previous section, we briefly reviewed the two-site dynamical mean
field theory, where the self-consistent condition is derived in such a way that
the low-energy feature of the local Green’s function is reproduced by the
impurity one. At this point, we linearized the self-energy to evaluate the
coherent part of the Green’s functions. In the present section, we derive the
linearized cellular dynamical mean field theory, which is a cluster extension
of the two-site dynamical mean field theory, using the same linearization
technique. Such an attempt has been made by E. C. Carter et al. [144],
however, it was not sufficient to treat an effective medium. We improve it to

Figure 3.4: Two-dimensional square lattice regarded as an effective non-
Bravais lattice with two sublattices (left), and corresponding reduction of
Brillouin zone (right). In the left figure, the filled and shaded circles show
the sublattices, and two arrows denotes the primitive translation vector for
the effective non-Bravais lattice. In the right figure, the square enclosed by
the broken line and the shaded one denote the original and reduced Brillouin
zones, respectively.
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systematically construct the linearized cellular dynamical mean field theory.
We use the sublattice representation introduced in the subsection 2.2.1,

and rewrite the Hubbard Hamiltonian as

H =
∑

i,j,γ,δ,σ

tγδ(i, j)c
†
iγσcjδσ − µ

∑
i,γσ

c†iγσciγσ + U
∑

i

niγ↑niγ↓, (3.27)

where the original lattice is divided to Nc sublattices distinguished by the
Greek indices γ, δ = 1, 2, · · · , Nc, and i, j = 1, 2, · · · denote the indices for
the sites in each sublattice. Two examples for the Nc = 2 case are given in
Fig. 3.4 and in Fig. 3.5. Following the spirit of the cluster dynamical mean
field theory, we neglect the k̃-dependence of the self-energy, and approximate
the cluster-local lattice Green’s function to

Ĝlatσ(ω) = Ĝσ(i, i : ω) =
[
(ω + µ)1̂ − t̂

(
k̃
)
− Σ̂σ(ω)

]−1

, (3.28)

where we use the notation in the subsection 2.2.1, and the average for the

k̃-dependent quantity O
(
k̃
)

is taken as

O
(
k̃
)

=
1

N ′

∑
k̃

O
(
k̃
)

(3.29)

Figure 3.5: Two-dimensional honeycomb lattice (left), and its Brillouin zone
(right). In the left figure, the primitive translation vectors, a′

1 and a′
2, are

shown together with the lattice constants, a, a′ =
√

3 a. Two sublattices
are presented by the filled and shaded circles, and the unit cells are enclosed
by the broken lines. In the right figure, the primitive reciprocal vectors are
denoted by b′

1 and b′
2. Some points with high symmetry, Γ, K, K′ and M

points, are also shown in the Brillouin zone drawn with the broken line.
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where N ′ = N/Nc denotes the number of k̃-points, or equivalently, the num-
ber of the cluster cells.

In the linearized cellular dynamical mean field theory, the number of
the bath sites is reduced to Nc in the effective cluster model. Then, its
Hamiltonian reads

Hclu =
∑
γ,δ,σ

t0,γδc
†
γσcδσ − µ

∑
γ,σ

c†γσcγσ + U
∑

γ

nγ↑nγ↓

+
∑
l,σ

εlσa
†
lσalσ +

∑
l,γ,σ

[
Vlγσa

†
lσcγσ + H.c.

]
, (3.30)

with the bath index, l = 1, 2, · · · , Nc, and

t0,γδ ≡ tγδ(0, 0) = tγδ

(
k̃
)
. (3.31)

Here, cγσ and nγσ are the abbreviations for c0γσ and n0γσ, respectively. The
energy levels of the bath sites εlσ and the hybridization Vlγσ are treated as
unknown parameters. Once an initial guess of these parameters is given,
the medium Green’s function, i.e., the bare electron Green’s function in the
effective cluster model, is explicitly written in the matrix form as

Ĝσ(ω) =
[
(ω + µ)1̂ − t̂0 − ∆̂σ(ω)

]−1

(3.32)

with
∆̂σ(ω) = V̂ †

σ ĝa(ω)V̂σ, ga,lm(ω) = δlm(ω − ωl)
−1. (3.33)

We can also numerically evaluate the cluster Green’s function, i.e., the full
electron Green’s function in the effective cluster model. In fact, it is repre-
sented in the Lehmann-Kallen form as

Gcluγδσ(ω) =
∑

m( ̸=0)

⟨0|cγσ|m⟩⟨m|c†δσ|0⟩
ω + i0 − Em + E0

+
∑

m( ̸=0)

⟨0|c†δσ|m⟩⟨m|cγσ|0⟩
ω + i0 − E0 + Em

, (3.34)

at absolute zero temperature, where Em and |m⟩ are the eigenpairs obtained
via the numerical diagonalization of the Hamiltonian (3.30), and m = 0
denotes the ground state. Then, the cluster self-energy is simultaneously
derived by means of the Dyson equation as

Σ̂cluσ(ω) = Ĝ−1
σ (ω) − Ĝ−1

cluσ(ω)

= (ω + µ)1̂ − t̂0 − ∆̂σ(ω) − Ĝ−1
cluσ(ω), (3.35)
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which also implies

Ĝcluσ(ω) =
[
(ω + µ)1̂ − t̂0 − Σ̂cluσ(ω) − ∆̂σ(ω)

]−1

. (3.36)

In the ideal cellular dynamical mean field theory, namely, that with an
exact solver, the unknown parameters in the effective cluster model are de-
termined with the self-consistent condition,

Ĝ−1
σ (ω) = Ĝ−1

latσ(ω) + Σ̂σ(ω), (3.37)

or equivalently,
Ĝcluσ(ω) = Ĝlatσ(ω). (3.38)

At this point, the cluster-local self-energy in the original lattice model is
identified with that in the effective cluster model,

Σ̂σ(ω) = Σ̂cluσ(ω). (3.39)

However, in the linearized cellular dynamical mean field theory, such a con-
sistency cannot be fulfilled exactly, because of the parameter shortage in
the effective cluster model. Instead, we focus only on the low-energy con-
tributions of the Green’s functions, i.e., their coherent parts Ĝ

(coh)
latσ (ω) and

Ĝ
(coh)
cluσ (ω). Then, we determine the parameters εl and Vlγσ, in such a way

that their essential features of the former is well reproduced by the latter.
In order to evaluate the coherent parts, the numerically computed cluster

self-energy is linearly expanded as

Σ̂σ(ω) = Σ̂cluσ(ω) = âσ + b̂σω + O(ω2). (3.40)

The renormalization factor Ẑσ is also obtained from b̂σ as

Ẑσ =

[
1̂ − dΣ̂σ

dω

∣∣∣∣∣
ω=0

]−1

=
[
1̂ − b̂σ

]−1

. (3.41)

Here, we assume that the matrix Ẑσ is positive definite, which implies that
the quasi-particles are well-defined and have positive masses.

Inserting the linear expansion of the self-energy into Ĝlatσ(ω) and Ĝcluσ(ω),
we obtain their coherent parts as

Ĝ
(coh)
latσ (ω) =

[
ωẐ−1

σ − δt̂
(
k̃
)
− ξ̂σ

]−1

(3.42)

Ĝ
(coh)
cluσ (ω) =

[
ωẐ−1

σ − ξ̂σ − ∆̂σ(ω)
]−1

(3.43)
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with

ξ̂σ = t̂0 − µ1̂ + âσ, (3.44)

δt
(
k̃
)

= t
(
k̃
)
− t̂0. (3.45)

Their high-frequency expansions are

Ĝ
(coh)
latσ (ω) =

1

ω
Ẑσ +

1

ω2
Ẑσ

(
δt̂
(
k̃
)

+ ξ̂σ

)
Ẑσ

+
1

ω3
Ẑσ

(
δt̂
(
k̃
)

+ ξ̂σ

)
Ẑσ

(
δt̂
(
k̃
)

+ ξ̂σ

)
Ẑσ + O

(
1

ω4

)
=

1

ω
Ẑσ +

1

ω2
Ẑσ ξ̂σẐσ

+
1

ω3
Ẑσ

(
δt̂
(
k̃
)

Ẑσδt̂
(
k̃
)

+ ξ̂σẐσ ξ̂σ

)
Ẑσ + O

(
1

ω4

)
, (3.46)

Ĝ
(coh)
cluσ (ω) =

1

ω
Ẑσ +

1

ω2
Ẑσ ξ̂σẐσ

+
1

ω3
Ẑσ

(
V̂ †

σ V̂σ + ξ̂σẐσ ξ̂σ

)
Ẑσ + O

(
1

ω4

)
, (3.47)

where we use δt̂
(
k̃
)

= 0 and ∆̂(ω) = ω−1V̂ †
σ V̂σ + O(ω−2).

Comparing these two expansions, we can derive the self-consistent condi-
tion for V̂σ as

V̂ †
σ V̂σ = δt̂

(
k̃
)

Ẑσδt̂
(
k̃
)
. (3.48)

Due to the positive definiteness of Ẑσ, the expectation value of the right-hand
side operator becomes positive for any quantum states, which shows that it
is also positive definite. Thus, we can numerically find a unitary matrix Û
and a diagonal real matrix D̂ which fulfill

δt̂
(
k̃
)

Ẑσδt̂
(
k̃
)

= ÛD̂2Û †. (3.49)

Then, the hybridization matrix V̂σ can be determined as

V̂σ = D̂Û †. (3.50)

On the other hand, the self-consistent conditions for εlσ is undertaken by

nlatγσ = ncluγσ, (3.51)
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where the right- and left-hand sides are defined as

nlatγσ = − 1

π

∫ 0

−∞
dω ImGlatγγσ(ω) (3.52)

ncluγσ = − 1

π

∫ 0

−∞
dω ImGcluγγσ(ω), (3.53)

respectively. These self-consistent conditions can be used to renew the guess
for the parameters εlσ and V̂σ. Iterating this calculation loop until these
parameters converge, we finally obtain the self-consistent solutions.

Now, let us consider the case of Nc = 2, in more detail. For simplicity,
we assume that the lattice system possesses an inversion symmetry whose
center locates at the middle point between two sites in a unit cell. Then, the

matrix δt̂
(
k̃
)

has the form,

δt̂
(
k̃
)

=

 f0

(
k̃
)

f1

(
k̃
)
− if2

(
k̃
)

f1

(
k̃
)

+ if2

(
k̃
)

f0

(
k̃
)  (3.54)

where, f0

(
k̃
)
, f1

(
k̃
)

and f2

(
k̃
)

are real functions satisfying

f0

(
−k̃
)

= f0

(
k̃
)

, f1

(
−k̃
)

= f1

(
k̃
)

, f2

(
−k̃
)

= −f2

(
k̃
)

. (3.55)

If spontaneous breaking of the inversion symmetry is absent, two sites in the
unit cell are physically equivalent, which implies

Glat/clu11σ(ω) = Glat/clu22σ(ω), Glat/clu12σ(ω) = Glat/clu21σ(ω). (3.56)

Thus, Ĝlat/cluσ(ω) and Σ̂σ(ω) can be diagonalized as(
G̃lat/clu,1,σ(ω) 0

0 G̃lat/clu,2,σ(ω)

)
= Û †Ĝlat/cluσ(ω)Û (3.57)

with

Û ≡ 1√
2

(
1 −1
1 1

)
, (3.58)

and

G̃lat/clu,1,σ(ω) = Glat/clu,11,σ(ω) + Glat/clu,12,σ(ω) (3.59)

G̃lat/clu,2,σ(ω) = Glat/clu,11,σ(ω) − Glat/clu,12,σ(ω). (3.60)
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Since the matrices Ẑσ, V̂ †
σ V̂σ and δt̂

(
k̃
)

Ẑσδt̂
(
k̃
)

are derived from the Green’s

functions, they also should be diagonalized with the same unitary matrix Û .
In other words, the unitary matrix Û in Eq. (3.49) and (3.50) are given by
Eq. (3.58), and we can define Z̃1σ, Z̃2σ, Ṽ 2

1σ and Ṽ 2
2σ via(

Z̃1σ 0

0 Z̃2σ

)
= U †ẐσU,

(
Ṽ 2

1σ 0

0 Ṽ 2
2σ

)
= U †V †

σ VσU. (3.61)

Physically, the unitary transformation (3.57) corresponds to the canonical
transformation, (

c̃1σ

c̃2σ

)
≡ Û †

(
c1σ

c2σ

)
, (3.62)

where c̃1σ and c̃2σ annihilates a σ-spin electron occupying the bonding and
anti-bonding molecular orbitals, respectively. It is convenient to rewrite the
effective cluster model (3.30) in terms of c̃γσ and c̃†γσ:

H̃clu =
∑
γ,σ

t̃0,γ c̃
†
γσ c̃γσ − µ

∑
γ,σ

c̃†γσ c̃γσ +
U

2

∑
γδ

ñγ↑ñδ↓

+
U

2

(
c̃†1↑c̃2↑c̃

†
1↓c̃2↓ + c̃†1↑c̃2↑c̃

†
2↓c̃1↓ + H.c.

)
+
∑
l,σ

εlσa
†
lσalσ +

∑
γ,σ

(
Ṽγσa

†
γσ c̃γσ + H.c.

)
, (3.63)

where t̃0,γ is defined via(
t̃0,1 0
0 t̃0,2

)
= U †t̂0U =

(
t0,11 + t0,12 0

0 t0,11 − t0,12

)
. (3.64)

In this molecular orbital representation, the bonding and anti-bonding or-
bitals are coupled only to the first and second baths, respectively, as shown
in Fig. 3.6. It is noteworthy that we can directly evaluate Z̃γσ from H̃clu as

Z̃γσ =

[
1 − dΣ̃cluγσ

dω

∣∣∣∣
ω=0

]−1

(3.65)

with

Σ̃cluγσ(ω) = (ω + µ) − t̃0γ −
Ṽ 2

γσ

ω − εγσ

− G̃cluγσ(ω) (3.66)

G̃cluγσ(ω) =
∑

m(̸=0)

∣∣⟨m|c̃†γσ|0⟩
∣∣2

ω + i0 − Em + E0

+
∑

m(̸=0)

|⟨m|c̃γσ|0⟩|2

ω + i0 − E0 + Em

, (3.67)
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Figure 3.6: Original cluster model (left) and its molecular orbital represen-
tation (right).

where the eigenpairs Em and |m⟩ are calculated with the numerical diago-
nalization of H̃clu.

The self-consistent condition (3.48) can be rewritten for Ṽγσ as

Ṽ 2
1σ = Z̃1σ

(
f0

(
k̃
)

+ f1

(
k̃
))2

+ Z̃2σ

(
f2

(
k̃
))2

(3.68)

Ṽ 2
2σ = Z̃2σ

(
f0

(
k̃
)

+ f1

(
k̃
))2

+ Z̃1σ

(
f2

(
k̃
))2

, (3.69)

where the right-hand side is derived as

U †δt̂
(
k̃
)

Ẑσδt̂
(
k̃
)
U

= U †δt̂
(
k̃
)

UU †ẐσU †δt̂
(
k̃
)

U

=

Z̃1σ

(
f0

(
k̃
)

+ f1

(
k̃
))2

+ Z̃2σ

(
f2

(
k̃
))2

0

0 Z̃2σ

(
f0

(
k̃
)

+ f1

(
k̃
))2

+ Z̃1σ

(
f2

(
k̃
))2

 . (3.70)

The other condition (3.51) for εlσ is also given in terms of G̃lat/cluγσ(ω) as

ñlatγσ = ñcluγσ (γ = 1, 2), (3.71)
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with

ñlatγσ = − 1

π

∫ 0

−∞
dω ImG̃latγσ(ω) (3.72)

ñcluγσ = − 1

π

∫ 0

−∞
dω ImG̃cluγσ(ω). (3.73)

3.3 Linearized Dynamical Cluster Approxi-

mation

The linearized cellular dynamical mean field theory can be regarded as the
fusion of the two-site dynamical mean field theory and the cellular dynamical
mean field theory. In the present section, the linearized dynamical cluster
approximation is derived, which is another cluster extension of the two-site
dynamical mean field theory based on the dynamical cluster approximation.

In subsection 2.2.2, we pointed out that the difference between the cellular
dynamical mean field theory and the dynamical cluster approximation arises
only from the boundary condition applied to the cluster. Actually, the open
and periodic boundary conditions is used in the cellular dynamical mean
field theory and the dynamical cluster approximation, respectively. From
this viewpoint, we can convert the cellular dynamical mean field theory to

the dynamical cluster approximation only by substituting t̃
(
k̃
)

with

εγδ

(
k̃
)

=
1

N ′

∑
i,j

e−i(r̃i+Rγ−r̃j−Rδ)tγδ(i, j)

= e−ik̃·(Rγ−Rδ)tγδ

(
k̃
)

, (3.74)

where we employ the notation used in subsection 2.2.2. Then, the cluster-
local lattice Green’s function is given as

Ĝlatσ(ω) =
[
(ω + µ)1̂ − ε̂

(
k̃
)
− Σ̂σ(ω)

]−1

, (3.75)

with the k̃-independent self-energy, where the k̃-average is taken as Eq. (3.29).
The effective cluster model used in the linearized dynamical cluster ap-

proximation is written as

Hclu =
∑
γ,δ,σ

ε0γδc
†
γσcδσ − µ

∑
γ,σ

c†γσcγσ + U
∑

γ

nγ↑nγ↓

+
∑
l,σ

εlσa
†
lσalσ +

∑
l,γ,σ

[
Vlγσa

†
lσcγσ + H.c.

]
, (3.76)
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with l = 1, 2, · · · , Nc and ε0γδ = εγδ

(
k̃
)
. From an initial guess of the un-

known parameters, εlσ and Vlγσ, we compute the cluster Green’s function,

Ĝcluσ(ω), by digonalizing this Hamiltonian and using Lehmann-Kallen rep-
resentation (3.34). We also obtain the cluster self-energy as

Σ̂cluσ(ω) = (ω + µ)1̂ − ε̂0 − ∆̂σ(ω) − Ĝ−1
cluσ(ω), (3.77)

which is identified with Σσ(ω). Then, the renormalization factor Ẑσ is com-
puted with Eq. (3.41).

The self-consistent condition for V̂σ is rewritten as

V̂ †
σ V̂σ = δε̂

(
k̃
)

Ẑσδε̂
(
k̃
)
, (3.78)

with
δε̂
(
k̃
)

= ε̂
(
k̃
)
− ε̂0, (3.79)

and those for εl are undertaken by Eq. (3.51). Using these conditions in
order to renew the guess for the parameters V̂σ and εl, we finally obtain the
self-consistent solution in an iterative way.
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Chapter 4

Mott Transition in Hubbard
Model on Square Lattice

In the previous chapter, we have proposed novel linearized theories of the
cluster dynamical mean field theory. One is the linearized version of the
cellular dynamical mean field theory and the other is that of the dynam-
ical cluster approximation. These methods are on the basis of the cluster
dynamical mean field theory combined with the exact diagonalization and
describe low energy physics by means of the linearization of the self-energy.
Because the linearized cluster dynamical mean field theories are not pertur-
bative methods, in principle, they are applicable to any parameter regions
from weak to strong coupling regime. Furthermore, these methods need the
least number of effective bath sites so that necessary CPU time and memory
are much less than the cluster dynamical mean field theory combined with
the exact diagonalization.

In this chapter, we first apply the linearized cellular dynamical mean
field theory and dynamical cluster approximation to the Hubbard model on
the square lattice at half-filling and examine the validity of these methods.
Comparing our results of the linearized methods with those of the ideal cel-
lular dynamical mean field theory and dynamical cluster approximation, i.e.
the cellular dynamical mean field theory and dynamical cluster approxima-
tion combined with the quantum Monte Carlo and numerical renormalization
group method, we demonstrate that the Mott transition points obtained by
the linearized schemes are in good agreement with those of the ideal cellular
dynamical mean field theory and dynamical cluster approximation. We also
compare our results with numerically exact results such as large-site quan-
tum Monte Carlo results and we find that the linearized dynamical cluster
approximation provides qualitatively good results.

Next, we study the Mott transition with geometrical frustration by con-
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sidering the next-nearest neighbor hopping. As frustration is increased, we
show that the critical interaction strength becomes large and geometrical
frustration stabilizes the metallic phase, which are consistent with previous
results. Furthermore, our results of linearized dynamical cluster approxima-
tion qualitatively reproduce those of the path integral renormalization group
method, although our scheme is highly simplified one.

4.1 Model and Method

Hubbard model: We now consider the Hubbard Hamiltonian on the square
lattice with the nearest and next-nearest neighbor hopping integrals,

H = −t
∑
⟨i,j⟩,σ

−t′
∑

(i,j),σ

c†iσcjσ − µ
∑
i,σ

c†iσciσ + U
∑

i

ni↑ni↓. (4.1)

Here, the summation over ⟨i, j⟩ is taken between the nearest-neighbor pair
of sites and (i, j) denotes the next-nearest-neighbor pair of sites. The system
corresponds to the unfrustrated square lattice at t′/t = 0, and frustration
becomes stronger with increasing t′/t. In the following, we consider the
paramagnetic phase without any long-range order.

Linearized cellular dynamical mean field theory: Applying the two-site
cluster linearized cellular dynamical mean field theory to this model, we
obtain the effective Hamiltonian on the molecular-orbital basis,

H̃clu = t
∑
l,σ

(−1)lc̃†lσ c̃lσ − µ
∑
l,σ

c̃†lσ c̃lσ +
U

2

∑
l,l′

ñl↑ñl′↓

+
U

2

(
c̃†1↑c̃2↑c̃

†
1↓c̃2↓ + c̃†1↑c̃2↑c̃

†
2↓c̃1↓ + H.c.

)
+
∑
l,σ

εla
†
lσalσ +

∑
l,σ

(
Ṽla

†
lσ c̃lσ + H.c.

)
, (4.2)

where, εl and Vl (l = 1, 2) are the effective bath parameters. The index
l = 1 (l = 2) denotes the bonding (anti-bonding) orbital. Given the bath
parameters, we exactly diagonalize the Hamiltonian and obtain the eigenpairs
Em and |m⟩. We then calculate the Green’s function using the Lehmann-
Kallen representation,

Gclul(ω) =
∑

m(̸=0)

⟨0|c̃lσ|m⟩⟨m|c̃†lσ|0⟩
ω + i0 − Em + E0

+
∑

m(̸=0)

⟨0|c̃†lσ|m⟩⟨m|c̃lσ|0⟩
ω + i0 − E0 + Em

. (4.3)
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The self-energy Σl(ω) is extracted by the Dyson equation, Σl(ω) = 1/Gl(ω)−
1/Gl(ω) and the renormalization factor Zl = [1 − ∂Σl(ω)/∂ω|ω=0]

−1 is com-
puted by the numerical differentiation. The particle number in the effective
cluster Hamiltonian nclul is also computed. On the other hand, the Green’s
function in the lattice system is obtained on the molecular-orbital basis,

G̃lat1

(
k̃, ω

)
=
[
ω + i0 + µ − Σ2(ω) −

{
f0

(
k̃
)

+ f1

(
k̃
)}]

/D
(
k̃, ω

)
,

G̃lat2

(
k̃, ω

)
=
[
ω + i0 + µ − Σ1(ω) −

{
f0

(
k̃
)

+ f1

(
k̃
)}]

/D
(
k̃, ω

)
,

D
(
k̃, ω

)
=
[
ω + i0 + µ − Σ1(ω) −

{
f0

(
k̃
)

+ f1

(
k̃
)}]

×
[
ω + i0 + µ − Σ2(ω) +

{
f0

(
k̃
)

+ f1

(
k̃
)}]

− f2

(
k̃
)2

.

(4.4)

The particle number in the lattice system nlatl is computed by

ñlatl = − 1

π

∫ 0

−∞
dω ImG̃latl

(
k̃, ω

)
. (4.5)

By linearization of the self-energy, the self-consistent equations is obtained
as,

Ṽ 2
1σ = Z̃1σ

(
f0

(
k̃
)

+ f1

(
k̃
))2

+ Z̃2σ

(
f2

(
k̃
))2

, (4.6)

Ṽ 2
2σ = Z̃2σ

(
f0

(
k̃
)

+ f1

(
k̃
))2

+ Z̃1σ

(
f2

(
k̃
))2

, (4.7)

ñlatlσ = ñclulσ (l = 1, 2). (4.8)

The coefficients
(
f0

(
k̃
)

+ f1

(
k̃
))2

and
(
f2

(
k̃
))2

in the above equations

are numerically computed. For t′/t = 0,
(
f0

(
k̃
)

+ f1

(
k̃
))2

=
(
f2

(
k̃
))2

=

1.5t2.

Linearized dynamical cluster approximation: As mentioned in the section
3.3, the linearized dynamical cluster approximation is obtained by sustitut-

ing t̃
(
k̃
)

with ε
(
k̃
)

via Eq. (3.74). Therefore, we should only rewrite the
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effective Hamiltonian on the molecular-orbital basis,

H̃clu = ε0

∑
l,σ

(−1)lc̃†lσ c̃lσ − µ
∑
l,σ

c̃†lσ c̃lσ +
U

2

∑
l,l′

ñl↑ñl′↓

+
U

2

(
c̃†1↑c̃2↑c̃

†
1↓c̃2↓ + c̃†1↑c̃2↑c̃

†
2↓c̃1↓ + H.c.

)
+
∑
l,σ

εla
†
lσalσ +

∑
l,σ

(
Ṽla

†
lσ c̃lσ + H.c.

)
, (4.9)

with ε0 = 0.4053t, and the coefficients
(
f0

(
k̃
)

+ f1

(
k̃
))2

= 1.379t2 and(
f2

(
k̃
))2

= 0 in Eqs. (4.6) and (4.7). In the effective Hamiltonian (4.9),

the molecular orbital l = 1 (l = 2) corresponds to the cluster momentum
KΓ (KM) mode. Notice that the linearized dynamical cluster approxima-
tion for the square lattice system can directly calculate the Green’s function

G̃latl

(
k̃, ω

)
without summation over k̃ of G̃latl

(
k̃, ω

)
because it is the Bra-

vais lattice. Accordingly, we can simply compute G̃latl

(
k̃, ω

)
as follows;

G̃latl

(
k̃, ω

)
=

∫
dε

ρ0,l(ε)

ω + µ − ε − Σl(ω)
, (4.10)

with

ρ0,l(ε) = δ(ε − εKl+k̃), (4.11)

where, K1/2 denotes KΓ/M.

4.2 Mott Transition in Hubbard Model on

Square Lattice

In this section, we apply the linearized cellular dynamical mean field theory
and dynamical cluster approximation to the Hubbard model at half-filling
on the square lattice and examine the validity of the linearized schemes. We
study the Mott transition and show that the linearized cellular dynamical
mean field theory and dynamical cluster approximation give qualitatively
good results in the weak to intermediate coupling regime.

The Hubbard model on the square lattice has been studied intensively
and extensively because it is believed to capture the essential physics of the
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strongly correlated electron systems, e.g. high-Tc superconductivity, mag-
netism, metal-insulator transition, etc [131, 145–156]. In particular, with
respect to the metal-insulator transition in this model at zero tempera-
ture, there are two conflicting opinions. The first opinion explains that
the antiferromagnetic order due to the purely local correlations is the ori-
gin of the metal-insulator transition in the Hubbard model on the square
lattice [152–154]. It is well-known that the zero-temperature antiferromag-
netic transition point in the square lattice Hubbard model at half-filling is
the infinitesimal interaction due to the perfect nesting. In other words, in
this opinion, the antiferromagnetic transition point can be different from
the pure Mott transition point. The antiferromagnetic transition occurs at
infinitesimal U but the pure Mott transition in the paramagnetic solution oc-
curs at finite U . On the other hand, the second opinion argues that the Mott
insulating gap is present for all U > 0, even if the long-range order is not
considered, due to the non-local fluctuations as in one-dimensional systems
and there is no adiabatic continuity between non-interacting and interacting
eigenstates, which breaks down the perturbation theory [155]. This problem
has stood for a long time.

There are a lot of theories which describe the Mott transition in the Hub-
bard model. There are analytical methods such as the coherent potential ap-
proximation, Gutzwiller approximation, slave-boson mean field theory, etc.,
which are essentially included in the dynamical mean field theory. Numeri-
cal methods are the exact diagonalization for small-site cluster, the quantum
Monte Carlo simulation, variational Monte Carlo, cellular dynamical mean
field theory, dynamical cluster approximation, etc. Each method describes
the Mott transition in the paramagnetic phase of the square lattice Hubbard
model but gives different results. The essential difference is whether there is
the finite critical interaction strength Uc at zero temperature or not. In the
dynamical mean field theory, the Mott transition is induced by the local cor-
relations and the transition point Uc is of the order of the band-width. The
variational Monte Carlo method including the Gutzwiller and doublon-holon
factor as a variational parameter also gives finite Uc. Although the value of Uc

is decreased as the cluster size is enlarged, the cellular dynamical mean field
theory gives finite Uc. These theories correspond to the first opinion above
mentioned. On the other hand, the quantum Monte Carlo simulation shows
no evidence of the finite-U Mott transition, i.e. the system is insulating for
all U > 0. In the Hubbard model at half-filling on the square lattice, there is
no minus sign problem so that the quantum Monte Carlo works well at low
temperatures. Also in the exact diagonalization calculations, the tendency
of the Mott transition has not been observed on the perfect square lattice.
These results correspond to the second picture for the metal-insulator tran-
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sition. Recently, S. Moukouri et al. [131] and T. D. Stanescu et al. [150]
have independently addressed this problem by using the dynamical cluster
approximation and the dynamical Green function approach, respectively. In
these studies, the paramagnetic Mott transition point is the infinitesimal U .
They argue that the insulating state is induced by non-local correlations and
the perturbation theory cannot describe the paramagnetic insulating phase.

As above mentioned, approximate theories tend to provide the first pic-
ture and numerical simulations provide the second one. So, the second opin-
ion is expected to be correct but a simplified theory which describes the sec-
ond picture has not been established so far. Hence, it is desirable to establish
the approximate method which does not need heavy numerical computations
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Figure 4.1: Density of states ρ(ω) for several U obtained by the linearized
cellular dynamical mean field theory. In the upper panel, the density of states
for U/t = 0.0, 2.0, 4.0 is shown. We can see the quasi-particle peak at the
Fermi level (ω = 0) sharper as U increases. In the lower panel, those for
U/t = 5.0, 6.0, 8.0. In contrast, there is no quasi-particle peak and the gap
gradually opens.
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but leads to the infinitesimal transition point. It is also our aim to construct
the simple method which gives the infinitesimal Mott transition point.

4.2.1 Results of Linearized Cellular Dynamical Mean
Field Theory

We now study the metal-insulator transition in the square lattice Hubbard
model by means of the linearized cellular dynamical mean field theory. In
Fig. 4.1, we first show the density of states ρ(ω) for several U . In the upper
(lower) panel in Fig. 4.1, the density of states in the metallic (insulating)
phase is shown. We find that the Mott transition occurs at Uc/t ∼ 5.0. In
the metallic phase, as U/t is increased, the quasi-particle band is renormal-
ized and narrowed near the transition point at U/t = 4.0. For U/t ∼ 5.0,
we find that the insulating gap appears. With increasing U/t, the gap grad-
ually increases and the peaks at the gap edges evolve. The transition point
Uc/t ∼ 5.0 we obtain is in good agreement with that obtained by the cellular
dynamical mean field theory combined with the continuous-time quantum
Monte Carlo method, Uc/t ∼ 6.05 [145]. In addition, the narrow Mott gap
with the pronounced peaks at the gap edges is also described by our linearized
scheme as well as by the cellular dynamical mean field theory. Therefore, our
linearized scheme is qualitatively good approximation for the Mott transition
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Figure 4.2: Density of states ρ(ω) for various U obtained by the two-site
dynamical mean field theory. For U/t = 0.0, 10.0, the system is metallic. As
U/t increases, the system undergoes the Mott transition at Uc/t = 12. In
the insulating phase, for U/t = 14.0, the wide Mott gap appears around the
Fermi level.

57



-3

-2

-1

 0

 1

 2

 3

 3  4  5  6  7  8  9

R
e
Σ

l(
ω

=
0
)-

µ

U/t

U
c
/t

orbital 1
orbital 2

Figure 4.3: ReΣl(ω = 0) − µ as a function of U . The amplitudes of them
abruptly begin to increase linearly at U = Uc as U increases.

in the square lattice.

We note that it is impossible to describe the insulating phase with the
narrow gap by using the single-site dynamical mean field theory. As a ref-
erence, the density of states calculated by the two-site dynamical mean field
theory is shown in Fig. 4.2. In the single-site dynamical mean field theory, as
U/t increases, the effective mass gets enhanced and the quasi-particle band is
strongly renormalized. At the transition point Uc, the effective mass diverges
accompanied by opening the wide Mott gap. The value of the critical inter-
action strength is also quite different. Our transition point by the linearized
cellular dynamical mean field theory is Uc/t ∼ 5.0 and the transition point
by the two-site dynamical mean field theory is Uc/t = 12.0. This indicates
that the mechanism of the metal-insulator transition in the two-dimensional
square lattice is quite different from that of the infinite-dimensional system
and the single-site dynamical mean field theory not including the non-local
correlations cannot capture the nature of the transition. As discussed in
the previous section, the exact Mott-transition point in the square lattice
Hubbard model is expected to be infinitesimal U . The cluster extension
drastically reduces the critical interaction strength so that it is essentially
important.

In order to discuss the mechanism of the Mott transition, we investigate
the effective chemical potential for the Green’s function on the molecular-
orbital basis. In the Green’s function in Eq. (4.4), the constant part of
the self-energy on the molecular-orbital basis, ReΣl(0) leads to the chemical
potential shift in the low energy regime. Therefore, we define the effective
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Figure 4.4: The renormalization factor Z as a function of U obtained by
the linearized cellular dynamical mean field theory (LCDMFT) and by the
two-site dynamical mean field theory (two-site DMFT) for comparison. For
U < Uc, the renormalization factor Z obtained by the linearized cellular
dynamical mean field theory is the very same value as that by the two-site
dynamical mean field theory.

chemical potential as µeffl = µ−ReΣl(0). As shown in Fig. 4.3, the difference
between the effective chemical potential for the bonding and anti-bonding or-
bitals, µeff2 − µeff1, gradually increases with increasing U/t. The difference
causes the split of the bonding and anti-bonding bands, and induces the
metal-insulator transition, which indicates the antiferromagnetic short-range
order. As U/t is further increased, µeff2−µeff1 drastically increases for U > Uc.
Because the size of the insulating gap is proportional to µeff2 − µeff1, the gap
for Uc is very small and it increases with increase of U/t. So, in our theory,
the small gap which cannot be reproduced by the single-site dynamical mean
field theory is described. We thus conclude that the mechanism of the Mott
transition in the square lattice Hubbard model is induced by the antiferro-
magnetic short-range order. In our theory, this short-range order is described
by the well-defined split of the bonding and anti-bonding orbitals.

In the single-site dynamical mean field theory, the renormalization factor
Z is regarded as the order parameter of the zero-temperature Mott transi-
tion. That is, for finite Z, the system is metallic and is insulating for Z = 0.
So, investigation of the renormalization factor is important to discuss the
difference of the mechanism of the Mott transition. In Fig. 4.4, the renor-
malization factors Z calculated by the linearized cellular dynamical mean
field theory (LCDMFT) and by the two-site dynamical mean field theory
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(two-site DMFT) are shown. In the metallic phase, for U/t < Uc/t ∼ 5.0, Z
by the linearized cellular dynamical mean field theory takes almost the same
value as that by the two-site dynamical mean field theory. The important
point is that Z is finite for U > Uc, that is, the effective mass of quasi-
particles is finite in the insulating phase. This clearly demonstrates that the
divergence of the effective mass is not the mechanism of the Mott transition
in the square lattice Hubbard model. In the insulating phase, for U/t > 5.0,
Z by the linearized cellular dynamical mean field theory becomes smaller
than that by the two-site dynamical mean field theory. This is expected to
be due to the antiferromagnetic correlations but Z remains finite.

In the two-site dynamical mean field theory, it is known that Z is over-
estimated for U < Uc. Also in the linearized cellular dynamical mean field
theory, Z in the metallic phase is larger than that in the ideal cellular dy-
namical mean field theory [145,147]. More important difference is the order
of the transition. In the ideal cellular dynamical mean field theory, the tran-
sition is the first order and in our linearized scheme it is crossover. This
is an artifact due to our linearization scheme. To improve this point, it is
necessary to increase the number of bath site in the effective cluster model.

In summary, our linearized cellular dynamical mean field theory captures
the nature of the Mott transition in the square lattice Hubbard model. We
conclude that the mechanism of the Mott transition in this model is the an-
tiferromagnetic short-range order and it is described by split of the bonding
and anti-bonding orbitals in our theory. The Mott transition point is drasti-
cally reduced by the cluster extension and this result is consistent with that of
the ideal cellular dynamical mean field theory. The demerit of our linearized
scheme is the order of the transition, which is expected to be improved by
increase of the number of bath site in the effective cluster model.

4.2.2 Results of Linearized Dynamical Cluster Approx-
imation

We next apply the linearized dynamical cluster approximation to the square
lattice Hubbard model and examine its validity. To investigate the metal-
insulator transition, we show the density of states ρ(ω) for several U in
Fig. 4.5. We find that the insulating gap opens for infinitesimal U and the
gap gradually increases as U/t is increased. This result is quite different from
that of the cellular dynamical mean field theory. In the cellular dynamical
mean field theory, there is finite critical interaction strength. In our linearized
cellular dynamical mean field theory, as discussed in the previous subsection,
the transition point is Uc/t ∼ 5.0. On the other hand, in the linearized dy-
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Figure 4.5: Density of states ρ(ω) for U/t = 0.0, 2.0, 4.0, 6.0 obtained by
the linearized dynamical cluster approximation. The gap opens for U/t =
2.0, 4.0, 6.0.

namical cluster approximation, the transition point is Uc/t ∼ 0. This result
is consistent with that of the ideal two-site cluster dynamical cluster approx-
imation, that is, the dynamical cluster approximation combined with the
numerical renormalization group method [151]. As discussed in the previous
section, the exact Mott transition point is expected to be Uc = 0 in the square
lattice Hubbard model due to the perfect nesting. Therefore, our linearized
dynamical cluster approximation gives a fairly good approximation and cap-
tures the nature of the metal-insulator transition in the Hubbard model on
the square lattice. Note that the finite density of states at the Fermi level is
due to the finite damping parameter used in numerical computations.

Because our linearized scheme is a simplified method, we obtain several
semi-analytical results. This is also a merit of our method. One of useful
semi-analytical results is the quasi-particle dispersion. In terms of the lin-
earized self-energy, ΣK(ω) ∼ ReΣK(0) + (1 − 1/ZK) ω, the Green’s function
is obtained as,

G(k, ω) ∼ ZK

ω + i0 − ZK (εk − µeffK)
. (4.12)

Here, µeffK = µ − ReΣK(0). In the above equation, the effective dispersion
is naturally defined as εeffk ≡ ZK (εk − µeffK). In Fig. 4.6, the effective
dispersions for U/t = 0.0, 6.0 are shown. In the effective dispersion, we can
see the clear insulating gap and it gradually increases with increase of U/t.
The gap formation is understood by the effective chemical potential shift,
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Figure 4.6: Effective dispersion εeffk for U/t = 0.0, 6.0. The effective disper-
sion for the non-interacting system has no gap, while the open gap appears
at the Fermi surface (|kx| + |ky| = π) for finite Coulomb interaction U .

as discussed in the previous subsection. The short-range antiferromagnetic
correlations hybridize the K = (0, 0) and K = (π, π) modes, and induce
the insulating gap. Also, by the interaction effects, the quasi-particle band-
width becomes smaller than the original band-width, which is due to the
renormalization factor ZK.

By using the effective dispersion, the size of gap is well defined. In the
case of square lattice, ZKΓ

= ZKM
and ReΣKΓ

(0) = −ReΣKM
(0) because of

the symmetry. Therefore, the gap has simplified form, ∆ = 2ZKΓ
|ReΣKΓ

(0)|.
Note that in this formula, determination of the size of the gap does not suffer
from an ambiguity due to the artificial damping parameter. In the left panel
of Fig. 4.7, we show the size of the gap ∆/t as a function of U/t. We can
clearly see that the size of the gap is non-zero for the infinitesimal U and
it gradually increases as U/t increases. In the right panel of Fig. 4.7, for
comparison, the gap obtained by the ideal dynamical cluster approximation
[131] is shown. In this calculation, up to 64-site cluster model is used and
it is solved by the quantum Monte Carlo method. We find that the results
are good agreement with our results for U/t < 8. For U/t > 8, the gap
of the dynamical cluster approximation changes its behavior and increases
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Figure 4.7: The gap ∆ as a function of U obtained by the linearized dynami-
cal cluster approximation (left) and ∆ at T/t = 1/128 by the dynamical clus-
ter approximation combined with the quantum Monte Carlo method [131]
(right).

proportionally to U/t. The behavior U/t > 8 is different from our results. For
U/t > 8, our linearized dynamical cluster approximation underestimates the
size of the gap. It is due to the linearization of the self-energy. In the strong
coupling regime, the insulating gap is originated from the charge excitation,
that is, the gap is due to the Hubbard gap. Our linearized dynamical cluster
approximation starts from not the real space but k space and the self-energy
is linearized so that our methods cannot reproduce the atomic limit and is not
good approximation in the strong coupling regime. Therefore, our linearized
dynamical cluster approximation is good in the weak to intermediate coupling
regime but not good in the strong coupling regime.

In summary, our linearized cluster dynamical mean field theory has de-
scribed the Mott transition at infinitesimal U and given semi-analytical re-
sults. We have obtained the quasi-particle dispersion, which determines the
well-defined size of the gap. The size of the gap is in very good agreement with
that of the ideal dynamical cluster approximation for weak to intermediate
coupling regime. In the strong coupling regime, our method underestimates
the size of the gap. As mentioned in Chap. 2, the cellular dynamical mean
field theory is formulated in the real-space while the dynamical cluster ap-
proximation is based on wave vector representation. Thereby, the dynamical
cluster approximation is suitable to describe the physics in the region where
electrons show wave nature, namely, the behavior in the weak to intermedi-
ate coupling regime. On the other hand, the cellular dynamical mean field
theory is adapted for the strong coupling physics which require the ability
to describe localization of electrons. In fact, the linearized dynamical clus-
ter approximation describes the insulating state at infinitesimal U and the
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exponentially small gap behavior but does not describe the gap whose size
is proportional to U/t in the strong coupling regime. Therefore, both the
linearized schemes are complementary.

4.3 Mott Transition in Hubbard Model on

Square Lattice with Geometrical Frustra-

tion

In this section, we study the Mott transition in the Hubbard model on the
square lattice with the next-nearest-neighbor hopping integral t′ and discuss
the effects of geometrical frustration on the Mott transition. Geometrical
frustration has attracted much interest in the field of strongly correlated
electron systems. The discovery of heavy fermion behavior in the pyrochlore
compound LiV2O4 [16–19] and superconductivity in the triangular lattice
compound NaxCoO2 · yH2O [157] has stimulated intensive studies of frus-
trated electron systems. Geometrical frustration has also uncovered new as-
pects of the Mott metal-insulator transition, which is now one of the central
issues in the physics of strongly correlated electron systems. In particu-
lar, recent experiments on the triangular lattice organic materials κ-(BEDT-
TTF)2X [20–22, 24, 25] have revealed various interesting physics, such as
a novel spin liquid state in the Mott insulating phase, unconventional su-
perconductivity, etc. Since the path integral renormalization group study
of the triangular lattice Hubbard model [76], the correlated electrons on the
anisotropic triangular lattice have been intensively studied so far [27,134,158].
Another interesting feature in this system is the reentrant behavior of the
finite-temperature Mott transition. Recently, this reentrant Mott transi-
tion in the moderately frustrated regime has been explained by the cellular
dynamical mean field theory [27]. In their paper, common features of the
finite-temperature Mott transition in the paramagnetic phase are discussed:
The critical interaction strength and critical temperature decreases as t′ de-
creases. However, their cellular dynamical mean field theory does not give
good approximation in weakly frustrated regime at very low temperature
and unified understanding has not yet been obtained. Therefore, it is de-
sirable to systematically study the Mott transition in the weakly frustrated
regime at very low temperature. In this section, we study the Mott tran-
sition in the paramagnetic phase of the square lattice Hubbard model with
the next-nearest-neighbor hopping integral by means of the linearized dy-
namical cluster approximation. At zero temperature, the system should be
antiferromagnetically ordered. In the following, however, we investigate the
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Figure 4.8: Density of states for U/t = 0.0, 2.0, 4.0 in the case of t′/t = 0.2.
For U/t = 0.0, 2.0 the system is metallic. On the other hand there exists
the open gap for U/t = 4.0. This behavior is essentially different from the
unfrustrated square lattice Hubbard model where the metallic solution never
appears for finite U .

paramagnetic Mott transition at zero temperature. This corresponds to inves-
tigation of the Mott transition at very low but finite temperature, because at
finite temperature, the magnetic order is forbidden by the Mermin-Wagner
theorem. Our linearized dynamical cluster approximation is also applicable
to calculations at finite temperature.

We now investigate the metal-insulator transition for t′/t = 0.1, 0.2,
0.3. In Fig. 4.8, we show the typical density of states for t′/t = 0.2. As U/t
increases, the gap gradually develops and for U/t = 4.0, one can find the clear
gap around the Fermi level. The point is that there exists the finite critical
interaction strength for the Mott transition. This behavior is essentially
different from that in the square lattice Hubbard model at t′/t = 0. In the
square lattice Hubbard model, the system is insulating for any finite U due
to the perfect nesting. By introducing frustration, t′, the perfect nesting is
relaxed and the metallic state is induced.

In a lot of approximated methods, such as the slave-boson mean field
theory, variational Monte Carlo, cellular dynamical mean field type approx-
imations, the transition point is of the order of the band-width for t′/t = 0
and small t′/t does not change the nature of the paramagnetic Mott tran-
sition, as mentioned in previous sections. Therefore, in these methods, we
cannot discuss the effects of weak frustration on the paramagnetic Mott tran-
sition. On the other hand, our linearized dynamical cluster approximation,
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Figure 4.9: Gap ∆ as a function of U for t′/t = 0.0, 0.1, 0.2, 0.3 calculated
in the framework of the linearized dynamical cluster approximation. In the
frustrated systems, the gap opens at the finite U unlike the behavior in the
unfrustrated systems (t′/t = 0.0). As t′/t increases, the critical interaction
strength becomes large.

despite of many simplifications, describes the infinitesimal U Mott transition
for small t′/t and clarifies the difference between frustrated and unfrustrated
systems. This is a surprising result.

In order to clearly see the behavior of the metal-insulator transition, we
determine the size of the insulating gap analyzing the effective dispersion.
The effective dispersion is calculated in terms of the renormalization factor
and effective chemical potential, as well as in the previous section. By using
the effective dispersion, the size of gap is computed as,

∆ = ZKM

(
εk=(π/2,π/2) − µeffKM

)
− ZKΓ

(
εk=(0,π) − µeffKΓ

)
. (4.13)

In Fig. 4.9, we show the size of the gap ∆/t for t′/t = 0.0, 0.1, 0.2, 0.3. As
t′/t is increased, the transition point Uc becomes large. We thus confirm that
geometrical frustration stabilizes the metallic state, which is consistent with
the result of the previous studies. For U > Uc, the gap gradually increases
with increase of U . The size of the gap around the transition is much smaller
than the size of the Hubbard gap which is of the order of U . This is a similar
situation to the case of the unfrustrated system for t′/t = 0 and different
from the picture of the single-site dynamical mean field theory. Therefore,
in our theory, the mechanism of the Mott transition in the weakly frus-
trated Hubbard model is not the dynamical mean field theory type, i.e., the
Brinkmann-Rice + Mott-Hubbard picture, but due to the antiferromagnetic
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Figure 4.10: Phase diagrams in the t′-U plane obtained by the linearized dy-
namical cluster approximation (left) and by the path integral renormalization
group method [77] (right). The results of the critical value Uc obtained by the
linearized dynamical cluster approximation are in good agreement with those
by the path integral renormalization group method. In the right panel, NMI
and AFI means nonmagnetic and antiferromagnetic insulator, respectively.
The difference of AFI and AFI2 phases is the period of the order, namely,
AFI phase has 2×2 superstructure and AFI2 phase has 2×4 superstructure.
Stripe-ordered insulating phase appears for large t′/t and U/t in the right
panel. The dashed line in the left panel is guide to the eyes.

short-range correlations. In weakly frustrated systems, the antiferromagnetic
correlations are strong as well as in the perfect square lattice system but the
system keeps metallic for small U due to imperfect nesting. For U > Uc, the
energy of the insulating gap induced by antiferromagnetic short-range order
overcomes the kinetic energy and the system becomes insulator.

In the left panel of Fig. 4.10, we summarize our results in the phase
diagram in the t′-U plane. For t′/t = 0, the system is insulating for any
finite U . By introducing the frustration, the metallic phase is induced and
as t′/t increases, its region is expanded. As a reference, in the right panel of
Fig. 4.10, the phase diagram obtained by the path integral renormalization
group method [77] is shown. The path integral renormalization group is ex-
pected to be the most sophisticated numerical simulations for the finite-size
system in the theoretical methods which is applicable to the frustrated Hub-
bard models, although it needs extremely high computational costs. We find
that, surprisingly, the transition points by the linearized dynamical cluster
approximation show very good agreement with those by the path integral
renormalization group method. We thus conclude that our theory captures
the nature of the Mott transition in weakly frustrated Hubbard models.
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Note that the insulating phase obtained by the path integral renormal-
ization group method is the antiferromagnetically ordered in the thermody-
namic limit. So, these results may not seem to be comparable. However, the
path integral renormalization group results are not expected to drastically
change at very low but finite temperature. Therefore, our results are expected
to be consistent with the path integral renormalization group results at in-
finitesimal temperature. In the strongly frustrated regime, t′/t > 0.5, there
are some important open problems, e.g. whether there is the nonmagnetic
ground state or not. In our linearized dynamical cluster approximation, how-
ever, the two-site cluster effective model is employed so that variations from
the perfectly nested square lattice are incorporated by change of the bare dis-
persion while the frustration effects themselves are not included. Also, our
linearized method is not good at strong coupling regime, as discussed in the
previous section. As shown in Fig. 4.10, as frustration is strengthened, the
transition point becomes large. Therefore, the linearized dynamical cluster
approximation used in this study cannot describe the Mott transition in the
strongly frustrated regime. To discuss strong frustration, we should improve
our formulations and employ the effective model with more than three-site
cluster.

In summary, we have studied the paramagnetic Mott transition in the
weakly frustrated Hubbard model by means of the linearized dynamical clus-
ter approximation. It has been shown that the critical interaction strength
of the Mott transition is for t′/t = 0 and it gradually increases with increase
of t′/t. The phase diagram in the t′-U plane is obtained and it is in surpris-
ing agreement with the path integral renormalization group phase diagram.
We have obtained the semi-analytical results for the quasi-particle dispersion
and insulating gap and concluded that the Mott transition in the weakly frus-
trated systems is caused by the competition between the antiferromagnetic
short-range order and itinerancy of electrons. Our method used in this study
cannot describe the Mott transition in the strongly frustrated regime. The
improvement of our method to study this regime is our future work.
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Chapter 5

Mott Transition in Hubbard
Model on Honeycomb Lattice

In the honeycomb lattice, a combination of nontrivial topology and elec-
tronic correlations drives a rich variety of phenomena, e.g., superconductiv-
ity in MgB2 [34], layered nitride superconductors [159–161], spin antiferro-
magnetism in transition metal oxide InCu2/3V1/3O3 [162, 163], topologically
driven quantum phase transitions in anyonic quantum liquids [164], and such
exotic behaviors currently attract much attention experimentally and theo-
retically. Further, the honeycomb optical lattice has already been realized
by using three coplanar laser beams [165–171]. The discovery of graphene,
monolayer graphite, [28, 172, 173] has also promoted research of the honey-
comb lattice systems for several years. Graphene has characteristic prop-
erties ascribable to propagation of its electrons as massless Dirac fermions
in low-energy region and these days various unique behaviors have been re-
ported [50,174].

The interesting feature of the tight-binding model on the honeycomb
lattice is reduction of Fermi surface to two points at half-filling. It results in
the existence of pseudogap at Fermi level and linearity of the non-interacting
density of states in the low-energy region. Therefore, there is no nesting
unlike the square lattice, and the staggered susceptibility χ(2kF) does not
diverge, where kF denotes the Fermi wave number. In fact, in the Hubbard
model on the honeycomb lattice, the static mean field theory predicts that
the transition from paramagnetic semi-metal to antiferromagnetic insulator
occurs at UAF/t = 2.23. This is the first example of Mott-Hubbard transition
at finite Hubbard U among two-dimensional bipartite lattices.

Regarding the charge and spin degrees of freedom, an important feature
of low-dimensional systems is the presence of strong quantum fluctuations
which inhibit long-range order. In particular, the honeycomb lattice has the
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minimal possible coordination number z = 3 among two-dimensional sys-
tems. For example, the square lattice, which is one of typical two-dimensional
systems, has the coordination number z = 4. For this reason, stronger quan-
tum fluctuations exist in the honeycomb lattice than in the square lattice,
where non-local correlations are essentially important to describe the Mott
transition as mentioned in the previous chapter. Thus, it is necessary to em-
ploy a theory which incorporates non-local correlations such as the cluster
dynamical mean field theory in order to investigate the honeycomb lattice.

In the present chapter, we investigate the Mott transition and antiferro-
magnetism in the Hubbard model on the honeycomb lattice. We first show
that quantum fluctuations raise antiferromagnetic transition point strongly
by means of the two-site dynamical mean field theory. Further, we address
the Mott transition by means of the linearized dynamical cluster approxima-
tion and we conclude that nonmagnetic insulating phase is stable in weak to
intermediate coupling regime.

5.1 Model and Method

Hubbard model: We now consider the Hubbard Hamiltonian on the honey-
comb lattice with the nearest-neighbor hopping integral, −t,

H = −t
∑
⟨i,j⟩,σ

c†iσcjσ − µ
∑
i,σ

c†iσciσ + U
∑

i

ni↑ni↓. (5.1)

Here, the summation over ⟨i, j⟩ is taken between the nearest-neighbor pair
of sites.

Two-site dynamical mean field theory for antiferromagnetic order: The
two-site dynamical mean field theory is also useful to investigate antifer-
romagnetic ordered state. We can evaluate quantum fluctuation effects on
antiferromagnetic long-range order. In order to employ the two-site dynami-
cal mean field theory for antiferromagnetic state, the term denoting a virtual
staggered magnetic field,

hs

∑
i,σ

eiQ·ric†iσciσ, (5.2)

with Q = (π, π) is added to the Hamiltonian (5.1). We use this term only
for giving the initial guess of the energy levels of the bath site εaσ and the
hybridization Vσ, and the limit of hs → 0 is taken at an early step in the
calculation loop. Only the first and second order moments of the bare density
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of states, ∫
dε ερ0(ε) = 0 (5.3)∫

dε (ε − t0)
2ρ0(ε) = 3.0t2, (5.4)

are needed for the self-consistent condition (3.23) in the framework of the two-
site dynamical mean field theory. The staggered magnetization is defined as
m ≡ ⟨n↑⟩ − ⟨n↓⟩.

Linearized dynamical cluster approximation: The calculation procedure
for the honeycomb lattice is basically similar to that for the square lattice as
mentioned in the section 4.1. The effective cluster Hamiltonian is the same
as that for the square lattice (4.9). Of course, the parameters are different,

namely, ε0 = 1.466t, and the coefficients
(
f0

(
k̃
)

+ f1

(
k̃
))2

= 0.7126t2

and
(
f2

(
k̃
))2

= 0.1369t2. It is noteworthy that it is impossible to derive

an explicit expression of the Green’s function G̃latl

(
k̃, ω

)
for the honeycomb

lattice system unlike the square lattice system, because the honeycomb lattice
is non-Bravais one. In other words, the Green’s function in the matrix form
ˆ̃Glat

(
k̃, ω

)
is non-diagonal in wave vector representation. So, we should take

the summation over k̃ to obtain G̃latl

(
k̃, ω

)
from G̃latl

(
k̃, ω

)
numerically.

5.2 Feature of Honeycomb Lattice Systems

The Hubbard model on the honeycomb lattice has a unique feature unlike
the conventional two-dimensional systems such as square lattice systems. In
this section, we overview it in brief. For the Hubbard Hamiltonian (5.1), the
bare dispersion for two sublattices shown in Fig. 3.5 is given as

ε̂(k) =

(
0 εAB(k)

ε∗AB(k) 0

)
, (5.5)

where

εAB(k) = −t

[
exp

(
1√
3
ikxa

′
)

+ 2 exp

(
− 1

2
√

3
ikxa

′
)

cos

(
1

2
kya

′
)]

. (5.6)

The bare dispersion is obtained as the eigenenergies of Eq. (5.5);

ε±(k) = ±t

√√√√3 + 2 cos(kya′) + 4 cos

(√
3

2
kxa′

)
cos

(
1

2
kya′

)
, (5.7)
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Figure 5.1: Dispersion in the honeycomb lattice (left) and a zoom of it near
the K point (right). There are two bands which contact each other only at
the K and K′ points. The Dirac cones are located at the K and K′ points.

where the plus (minus) sign applies to the upper (lower) band. This disper-
sion is linear in the vicinity of K (K′) point,

ε±(k) ∼ ±vF|k − kK/K′ |, (5.8)

where vF = (
√

3/2)ta′ denotes the Fermi velocity. We show the full band
structure and magnify it near the K point in Fig. 5.1. We can see the upper
and lower bands contact each other only at the K and K′ points. Therefore
the K and K′ points are called Dirac points since the band dispersion forms
a Dirac cone at around these points.

The non-interacting density of states ρ0(ε) is given explicitly as

ρ0(ε) =
4

π2

|ε|
t2

1√
Z0

K

(√
Z1

Z0

)
, (5.9)
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Figure 5.2: Non-interacting density of states ρ0(ε). The pseudogap is present
at ε/t = 0 and the density of states is linear around it.

where

Z0 =


(
1 +

∣∣∣ε
t

∣∣∣)2

− [(ε/t)2 − 1]2

4
, |ε/t| ≤ 1

4
∣∣∣ε
t

∣∣∣, 1 ≤ |ε/t| ≤ 3 ,
(5.10)

Z1 =

 4
∣∣∣ε
t

∣∣∣, |ε/t| ≤ 1(
1 +

∣∣∣ε
t

∣∣∣)2

− [(ε/t)2 − 1]2

4
, 1 ≤ |ε/t| ≤ 3 ,

(5.11)

which is derived from Eq. (5.7). Here, K(k) is the complete elliptic integral of
the first kind for the elliptic modulus k. Around ε/t = 0, the non-interacting
density of states (5.9) is approximated by

ρ0(ε) ∼
1√
3 π

|ε|
t2

, (5.12)

which reflects the linearity of the dispersion around the Dirac points and
means the appearance of pseudogap at ε/t = 0. In Fig. 5.2, the non-
interacting density of states is presented. The pseudogap is clearly seen at
the Fermi level in Fig. 5.2, which stems from the linear dispersion. Because
of the presence of the pseudogap structure, a variety of novel phenomena are
expected to be induced.
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5.3 Antiferromagnetic Order by Static and

Two-Site Dynamical Mean Field Theory

In this section, we first review the analysis by the static mean field theory
on the antiferromagnetic long-range order in the Hubbard model on the hon-
eycomb lattice briefly. There we confirm that the results for the honeycomb
lattice are quite different from those for the square lattice. Subsequently, we
investigate the effects of quantum fluctuations on antiferromagnetic order by
means of the two-site dynamical mean field theory.

In the framework of the Hartree-Fock mean field theory, the feature of the
honeycomb lattice is taken in through the non-interacting density of states
given by Eq. (5.9). The Hartree-Fock mean field theory gives the critical
value of the transition to antiferromagnetic insulator UAF as

U−1
AF =

1

2

∫ 0

−∞
dε

ρ0(ε)

|ε|
. (5.13)

When the non-interacting density of states at the Fermi level is non-zero
such as taht for the square lattice, the right-hand side of (5.13) diverges
and UAF = +0. Meanwhile, in the case of the honeycomb lattice, the non-
interacting density of states around ε = 0 is proportional to |ε|, therefore the
right-hand side of (5.13) does not diverge and UAF/t = 2.23. For U > UAF,
within the Hartree-Fock mean field theory, the staggered magnetization, m ≡
⟨n↑⟩ − ⟨n↓⟩, is determined by

1 =
1

2

∫ 0

−∞
dε

ρ0(ε)

m2 + (2ε/U)2
. (5.14)

Thus, it predicts that staggered magnetization m grows as

m ∼ 2π
√

3
t2

U

(
1

UAF

− 1

U

)
, (5.15)

for small m. The existence of the pheudogap at Fermi level in the non-
interacting density of states causes the unusual behavior of magnetization.
That is the antiferromagnetic solution by the Hartree-Fock mean field the-
ory, which neglects the quantum fluctuations. Generally the quantum fluc-
tuations stabilize the metallic state and raise the critical value UAF. In order
to take into account the quantum fluctuation, we next analyze the antiferro-
magnetic order by means of the two-site dynamical mean field theory.

We first present the staggered magnetization m obtained by the two-
site dynamical mean field theory in Fig. 5.3. As a reference, the staggered
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Figure 5.3: U -dependence of the staggered magnetization m by means of
two-site dynamical mean field theory (two-site DMFT) and by static mean
field theory (static MF) computed via Eq. (5.14).

magnetization by the static mean field theory is also shown in Fig. 5.3. We
can see the magnetization m = 0 for small U/t. Note that the present
system does not show antiferromagnetic long-range order for small U/t, even
in the absence of geometric frustration. Further, the magnetization m grows
drastically for U > UAF in contrast to square lattice systems where the
magnetization grows slowly as U is increased. We find the antiferromagnetic
transition point UAF/t ∼ 3.2 by means of fitting of the results obtained by
the two-site dynamical mean field theory for small-m regime via the same
function form as (5.15). This value is much larger than that by the static
mean field theory. We thus conclude quantum fluctuations strongly raise the
antiferromagnetic transition point.

In summary, we have calculated the critical value UAF/t ∼ 3.2 as a point
that staggered magnetization m vanishes by means of fitting of the results
obtained by the two-site dynamical mean field theory for small-m regime
via the same function form as (5.15). The transition point UAF/t ∼ 3.2 is
much larger than that obtained by the static mean field theory UAF/t =
2.23. Therefore we concluded that quantum fluctuations strongly suppress
antiferromagnetic long-range order, which is consistent with the results by
quantum Monte Carlo simulations [58,59,68], the variational method [60,61]
and O(3) nonlinear σ model [67].
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5.4 Mott Transition by Linearized Dynami-

cal Cluster Approximation

In this section, we investigate the Mott transition on the honeycomb lattice
by applying the linearized dynamical cluster approximation to the Hubbard
Hamiltonian (5.1). This method is suitable to describe the Mott transition
induced by the moment formation shown in the previous chapter, and thus
is expected to provide adequate description of the Mott transition on the
honeycomb lattice. In what follows, we assume that there is no long-range
order in the system.

The single-particle density of states for various U is firstly shown in
Fig. 5.4. We can see that the narrow gap opens at U = 2.0, 4.0, 6.0 and
that the magnitude of the Mott gap gradually increases as U is increased.
Our result shows that the Mott transition occurs at an infinitesimal U on
the honeycomb lattice similarly to that on the square lattice. The result is
different from those obtained by the other methods which predict it happens
at finite U [58, 59, 68]. In order to consider the difference, we estimate the
gap ∆. In the framework of the linearized dynamical cluster approximation,
the lattice Green’s function Ĝlatσ(k, ω) is given as

Ĝlatσ(k, ω) =
[
(ω + µ)1̂ − ε̂(k) − Σ̂σ(ω)

]−1

. (5.16)
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Figure 5.4: Density of states for various U calculated by the linearized dy-
namical cluster approximation. The open gap appears for finite U . A zoom
in of the density of states around the Fermi level is presented in the inset.
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each other at the K point, however, they come unstuck for finite U .

Linearly expanding the self-energy in Eq. (5.16), we obtain

Ĝlatσ(k, ω) ∼ Ẑσ

[
ω1̂ − Ẑσ

(
ε̂(k) + âσ − µ1̂

)]−1

, (5.17)

where âσ = Σ̂σ(ω = 0). Thus, we introduce the effective dispersion matrix,

ε̂eff(k) ≡ Ẑσ

(
ε̂(k) + âσ − µ1̂

)
. (5.18)

Here, we can compute Σ̂σ and Ẑσ(ω) via the unitary transformation, namely,

Σ̂σ(ω) = Û ˆ̃Σσ(ω)Û † (5.19)

Ẑσ = Û ˆ̃ZσÛ
†. (5.20)

Eventually we obtain the effective dispersion εeff±(k) as the eigenvalues of the
effective dispersion matrix ε̂eff(k). Because we now consider the honeycomb
lattice at half-filling with particle-hole symmetry, the following relations are
fulfilled;

ã11,σ − µ = − (ã22,σ − µ) (5.21)

Z̃11,σ = Z̃22,σ. (5.22)

Thereby, the effecitive dispersion matrix ε̂eff(k) is rewritten as

ε̂eff(k) = Z̃11,σ

(
0 εAB(k) − (ã11,σ − µ)

ε∗AB(k) − (ã11,σ − µ) 0

)
. (5.23)
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Figure 5.6: U -dependence of gap ∆. The gap ∆ is exponentially small but
finite for any non-zero U .

By diagonalizing Eq. (5.23), the effective dispersion εeff±(k) is obtained as

εeff±(k) = ±Z̃11,σ|εAB(k) − (ã11,σ − µ)|. (5.24)

In Fig. 5.5, the effective dispersion computed by Eq. (5.24) for various U is
presented. It is drawn that the upper and lower bands contact at K point
for U = 0 as mentioned in the section 5.2. The semi-analytical investigation
allows us to clearly draw the band structure. As increasing U , the two bands
move apart from each other. Further, it is found that the effective upper
and lower bands has a minimum and maximum value at the K (K′) point
respectively for finite U as well as the non-interacting dispersion. In other
words, the dispersion only shrinks as U is increased.

We can estimate the value of gap ∆ through the effective dispersion
Eq. (5.24) as follows;

∆ = min{εeff+(k) | k ∈ Brillouin zone}
−max{εeff−(k) | k ∈ Brillouin zone}. (5.25)

Due to the shape of band structure, Eq. (5.25) is specifically transcribed in
the case of the honeycomb lattice to

∆ = εeff+(kK/K′) − εeff−(kK/K′). (5.26)

The gap generation is shown in Fig. 5.6. As shown in Fig. 5.6, the gap ∆
increases with increase of U but the value of gap grows slowly for small U .
For this reason, it might be difficult to compute a minute value of gap by
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the quantum Monte Carlo simulation due to finite size effects or a statisti-
cal error. Perturbation theories from the strong coupling limit are hard to
approach U = 0 limit. Our results show that the Mott transition occurs
at infinitesimal U in the honeycomb lattice systems similarly to that in the
square lattice systems caused by non-local correlations. In other words, it
is concluded that the mechanism of the Mott transition is the short-range
antiferromagnetic correlations which hybridize the two modes both on the
honeycomb lattice and on the square lattice and that both the transition
points are the same value of infinitesimal U because the hybridization of two
modes splits the bands. It implies that the Mott transition in the Hubbard
model with only the nearest hopping integral on any bipartite lattice, which
is particle-hole symmetric, happens at infinitesimal Hubbard U in general
according to the quasi-particle dispersion (5.24). Further, it is quite impor-
tant that our results conclude that nonmagnetic insulating phase emerges
in weak to intermediate coupling regime on the honeycomb lattice because
antiferromagnetic long-range order is absent for U < UAF as shown in the
previous section.

In summary, we have studied the Hubbard model on the honeycomb lat-
tice by means of the linearized dynamical cluster approximation and shown
that the Mott transition point in the honeycomb lattice systems is infinites-
imal U similar to that in the square lattice systems. We calculated the
quasi-particle dispersion and the gap, and found that the gap slowly in-
creases as U is increased. It was shown that the Mott gap is caused by the
short-range antiferromagnetic correlations even though the non-interacting
Fermi surface is reduced to the points on the honeycomb lattice. It was found
that the split of the bands by non-local correlations is essential to open the
Mott gap. According to the absence of antiferromagnetic long-range order
for U/t < UAF/t ∼ 3.2 as shown in the previous section, we concluded that
the nonmagnetic insulating state is stable in weak to intermediate coupling
regime. This is novel nonmagnetic insulating phase.
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Chapter 6

Summary of the Thesis

In this thesis, we proposed novel linearized theories of the cluster dynamical
mean field theory. One is the linearized version of the cellular dynamical
mean field theory and the other is that of the dynamical cluster approxima-
tion. These methods are based on the cluster dynamical mean field theory
combined with the exact diagonalization and describe low energy physics by
the linearization of the self-energy. Because the linearized cluster dynami-
cal mean field theories are not perturbative methods, they are applicable to
any parameter regions from weak to strong coupling regime. Furthermore,
these methods need the least number of effective bath sites so that compu-
tational costs are much less than the cluster dynamical mean field theory
combined with the exact diagonalization. Accordingly, these methods al-
low us to systematically investigate non-local fluctuation effects at very low
computational costs.

We first applied both the methods to the Hubbard model on the square
lattice. Our methods are in good agreement with the ideal cellular dynam-
ical mean field theory or dynamical cluster approximation respectively and
successfully describe the Mott transition. It is concluded that the mechanism
of the Mott transition in this system is antiferromagnetic short-range order.
In particular, the linearized dynamical cluster approximation describes the
insulating state at any non-zero interaction. Further, the size of Mott gap
estimated by means of the linearized dynamical cluster approximation is in
very good agreement with that of the ideal dynamical cluster approximation
in weak to intermediate coupling regime. We showed that the linearized dy-
namical cluster approximation is suitable to describe the physics in weak to
intermediate coupling regime where electrons represent wave nature. On the
other hand, the linearized cellular dynamical mean field theory is adapted for
the strong coupling physics which requires the ability to describe localization
of electrons. Therefore, both the linearized schemes are complementary.
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We next addressed the Mott transition with geometrical frustration by
means of the linearized dynamical cluster approximation. We succeeded in
systematically describing the Mott transition in the unfrustrated and weakly
frustrated square lattice systems and showed that the Mott transition point
gradually increases with strengthening geometrical frustration. We have ob-
tained the semi-analytical results for the quasi-particle dispersion and in-
sulating gap, and concluded the Mott transition in the weakly frustrated
systems is caused by the competition between the antiferromagnetic short-
range order and itinerancy of electrons. To investigate the Mott transition
in the strongly frustrated regime, it is necessary to improve our formulation
to employ the effective model with more than three-site cluster. This is our
future work.

Finally we investigated the Hubbard model on the honeycomb lattice
and concluded that the nonmagnetic insulating phase emerges in weak to in-
termediate coupling regime. We evaluated the antiferromagnetic transition
point UAF/t ∼ 3.2 by means of the two-site dynamical mean field theory and
showed that antiferromagnetic ordered state is absent in weak to intermedi-
ate coupling regime, which is quite different from the square lattice system.
We subsequently investigated the Mott transition by means of the linearized
dynamical cluster approximation. Then we obtained the semi-analytical re-
sults for the quasi-particle dispersion and insulating gap, and showed that
the Mott transition occurs at infinitesimal interaction strength. We thus
concluded that the nonmagnetic insulating state is stable for U < UAF. No
materials with honeycomb lattice structure which evidently shows nonmag-
netic insulating behavior have been found so far, however, we expect that
our findings stimulate and serve for further theoretical and experimental re-
search. The novel methods we proposed, namely the linearized theories of the
cluster dynamical mean field theory, are of wide use so that we also expect
these schemes to contribute to understanding of various phenomena.

82



Reference

[1] N. F. Mott, Proc. Phys. Soc. A 62, 416 (1949).

[2] N. F. Mott, Metal-Insulator Transition (Taylor & Francis, London,
1990) 2nd ed.

[3] J. C. Slater, Phys. Rev. 82, 538 (1951).

[4] M. Imada, A. Fujimori, and Y. Tokura, Rev. Mod. Phys. 70, 1039
(1998).

[5] D. B. McWhan, A. Menth, J. P. Remeika, W. F. Brinkman, and T. M.
Rice, Phys. Rev. B 7, 1920 (1973).

[6] D. B. McWhan, and A. Menth, Phys. Rev. Lett. 27, 941 (1971).

[7] A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Rev. Mod.
Phys. 68, 13 (1996).

[8] F. Aryasetiawan, and O. Gunnarsson, Rep. Prog. Phys. 61, 237 (1998).

[9] P. Sun, and G. Kotliar, Phys. Rev. Lett. 92, 196402 (2004).

[10] K Held, O. K. Andersen, M. Feldbacher, A Yamasaki, and Y-F Yang,
J. Phys.: Condens. Matter 20, 064202 (2008).

[11] V. Oudovenko, G. Pálsson, K. Haule, S. Y. Savrasov, and G. Kotliar,
cond-mat/0409527.

[12] P. W. Anderson, Mater. Res. Bull. 8, 153 (1973).

[13] M. P. Shores, E. A. Nytko, B. M. Bartlett, and D. G. Nocera, J. Am.
Chem. Soc. 127, 13462 (2005).

[14] J. S. Helton, K. Matan, M. P. Shores, E. A. Nytko, B. M. Bartlett, Y.
Yoshida, Y. Takano, A. Suslov, Y. Qiu, J.-H. Chung, D. G. Nocera,
and Y. S. Lee, Phys. Rev. Lett. 98, 107204 (2007).

83



[15] P. Mendels, F. Bert, M. A. de Vries, A. Olariu, A. Harrison, F. Duc,
J. C. Trombe, J. S. Lord, A. Amato, and C. Baines, Phys. Rev. Lett.
98, 077204 (2007).

[16] S. Kondo, D. C. Johnston, C. A. Swenson, F. Borsa, A. V. Mahajan,
L. L. Miller, T. Gu, A. I. Goldman, M. B. Maple, D. A. Gajewski, E.
J. Freeman, N. R. Dilley, R. P. Dickey, J. Merrin, K. Kojima, G. M.
Luke, Y. J. Uemura, O. Chmaissem, and J. D. Jorgensen, Phys. Rev.
Lett. 78, 3729 (1997).

[17] S. Kondo, D. C. Johnston, and L. L. Miller, Phys. Rev. Lett. 59, 2609
(1999).

[18] C. Urano, M. Nohara, S. Kondo, F. Sakai, H. Takagi, T. Shiraki, and
T. Okubo, Phys. Rev. Lett. 85, 1052 (2000).

[19] S. Kondo, C. Urano, Y. Kurihara, M. Nohara, and H. Takagi, J. Phys.
Soc. Jpn. 69, Suppl. B. 139 (2000).

[20] Y. Shimizu, K. Miyagawa, K. Kanoda, M. Maesato, and G. Saito, Phys.
Rev. Lett. 91, 107001 (2003).

[21] F. Kagawa, T. Ito, K. Miyagawa, and K. Kanoda, Phys. Rev. B, 69,
064511 (2004)

[22] F. Kagawa, K. Miyagawa, and K. Kanoda, Nature 436, 534 (2005).

[23] Y. Kurosaki, Y. Shimizu, K. Miyagawa, K. Kanoda, and G. Saito,
Phys. Rev. Lett. 95, 177001 (2005).

[24] K. Kanoda, J. Phys. Soc. Jpn. 75, 051007 (2006).

[25] S. Lefebvre, P. Wzietek, S. Brown, C. Bourbonnais, D. Jérome, C.
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