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Introduction

This paper is concerned with the asymptotic expansion, due to
Fefferman [2], of the Bergman kernel for a strictly pseudoconvex
domain. Restricting ourselves to the class of complete Reinhardt domains
in C?, we consider the symbol of a pseudodifferential operator which
represents the singularity of the Bergman kernel. We give an integral
representation of that symbol (see Theorem 2 in Section 1). By using
that integral representation, we identify six coefficients of Fefferman’s
asymptotic expansion (see Theorems 1 and 1’ in Section 1).

Given a bounded strictly pseudoconvex domain Q in C¥ with C®
boundary 09, we consider the Bergman kernel K(z) for z € Q, which is
restricted to the diagonal of Q@ x Q. Let Ae C*(Q) be a negatively signed
defining function of Q in the sense that <0 in Q and |grada 4|>0 on
0Q. Let us recall a classical result of Hormander [5] asserting that

N!

0.1) lim[——/l(z)]N“K(z)=—N—J[—l] (20)>0 for 2o € 092,
T

z—20
where J[—A] denotes the Levi determinant defined by

A 0A/0%, )

J— A= (=¥ J[A]) = —d
[(=A=(=D7 T et(ax/az,. 0%4/02,0%,

Fefferman [2] refined this result by showing that

|
%J[/U (——"’ﬂw/(z) 1og[—/1<z)])

(0.2) K(z)= TR e

with @, Y € C® near 0Q. If one considers the Taylor expansions
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N o0
o= LIA"+O0(AN*Y), ¢~ Y LY
= n=0

n=0

with L¢, LY € C*(0Q), then (0.2) gives rise to an asymptotic expansion of
K(2). Conversely, starting from such an expansion, one can construct
¢ and Y satisfying (0.2). We thus refer to (0.2) as Fefferman’s asymptotic
expansion.

We normalize L? and LY by considering L, € C*(0Q) which satisfy

o 1 9
O yYlogl—A~ Y Loi"—  with 8=,

AN+L n=0 A 04

that is, L,=(—1)"{N//(N—n)!} L? for n<N and L,=(—1)"Nl{(n—N—1)
ILY_n_, for n>N. We are interested in determining the coefficients
L,. Note that ¢, ¥ depend on the choice of 4 and that L, depend on
A and the coordinates near the boundary. With an appropriate choice
of A, an invariant theory for ¢,  were developed by Fefferman [3] and
Graham [4] in the context of local biholomorphic geometry. We shall
not discuss, in the text, the relation between that invariant theory and
our results. We only mention here that our Theorem 1 may be obtained
by using a result of Graham [4].

We now assume that N=2 and that Q is a complete Reinhardt
domain. Then, the mapping

0.3) x=log|z,|, y=log|z,| for z=(2z, 2,) € Q

defines an unbounded domain log|Q|cR?2, called the logarithmic real
representation domain of Q, which takes the form log|Q|={y <f(x), x € I},
where fe C®(I) with I=(— o0, x,) satisfies f' <0, f"<0 and

lim f(x)< +o00, limf(x)=—oc0.

x]—o xtx,

The function A=y —f(x) is a defining function of log |Q|, and its pull-back
by (0.3), denoted again by A, defines dQn{z;2,#0}. Thus one can
consider Fefferman’s asymptotic expansion (0.2) for this local defining
function 4 of Q.

Fefferman’s asymptotic expansion for the class of complete
Reinhardt domains QcC? was previously studied by Boichu and
Coeuré[1]. They showed that the coefficient L;, the boundary
value of 2, is a polynomial of f2*¥ (0 <k <6) divided by (f’)°. Analyzing
that polynomial, they further tried to prove that if Y|,o=0 then Q
is biholomorphic to a ball. Our results are obtained by modifying
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their ideas.

Roughly speaking, Boichu and Coeuré considered a one-parameter
family of Reinhardt domains Q! (0<t<1), with x € I arbitrarily fixed,
such that Q!=Q, that Q% is locally biholomorphic to a ball, and
that the real domain log|Q,| for each t is tangent to the curve
Olog|Q| to second order at the point (x,f(x)). Using the Bergman
kernel K. of €, they obtained an asymptotic expansion

© 1
0.4) K(z)~ Z ——'6;”K;(z)|,=0 with x=log|z,/[,

m=0

which we refer to as the asymptotic expansion via boundary variations. It
should be mentioned that we have not explained preliminary procedures
such as localization of the boundary. Con-sequently, the notation used
here is slightly different from that in the text; it is also different from
that of Boichu and Coeuré [1].

By using (0.4), Boichu and Coeuré obtained a polynomial ¥ =2(f",
" eee, f®) such that Z/(f")°=y|,q. However, they did not give the
explicit form of #. Also, the relation between the asymptotic expansions
(0.4) and (0.2) was not clear. We modify the construction of the
one-parameter family Y so that the relation between (0.4) and (0.2)
becomes obvious. Specifically, we get

1 " JI[A] )
"—‘atz K (D)|=0= ?‘Lnal :{—3,

(2n)! 0P Ki(2)|i=0=0

modulo C® as functions of (4,x). Then we are naturally led to a fairly
simple formula of giving all the coefficients L, (see Theorem 2). Using
that formula, we identify L, for n<5 (see Theorem 1 for n<3 and
Theorem 1’ for n=4,5). The proof of Theorem 1’ is computer-aided.

In the identification of L, for n<5, we first get messy expressions
of L, in terms of the derivatives f@*™(x) for m=0 (see Propositions 1
and 1’). These expressions are simplified by using the derivatives of a
function p=p(v) defined by

p(v)=f"(x) with v=f(x).

Note that x> v is a one-dimensional hodograph transformation and that
1/p is the second derivative of the Legendre transform of f.

We have in particular Ly= —(p?p)"/4!. As a corollary of this fact,
we show that the global condition Y|,o=0 (i.e. L;=0) characterizes the
ball. It should be noted that this characterization is not a consequence
of the invariant theory which asserts that Q is locally biholomorphic to
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a ball in a neighborhood of a boundary point if and only if Ly=L,=0
there (cf. Graham [4]). In order to show that Q is biholomophic to a
ball, we solve the ordinary differential equation

{p(0)*pP(v)}"=0 for —0<v<0

under boundary conditions which come from the strict pseudoconvexity
of 0Qn{z,z,=0}.

The idea of using the function p is again inspired by the paper of
Boichu and Coeuré [1]. In fact, our function p is a modification of
theirs defined by

ppc(v) =log[—f"(x)] with v=f"(x).

They wrote the condition Y|,o=0 as a boundary value problem for a
differential equation satisfied by pyc, and tried to show that the solution
corresponds to a domain which is biholomorphic to a ball [1, Théoréme
4]. However, the proof is incorrect—the proof of [1, Lemme 4] involves
a wrong use of Taylor’s formula and the statement of [1, Lemme 4] is
false. It seems to the present author that to prove the above mentioned
characterization of a ball by using the function pgc is extremely difficult.

This paper consists of five sections. The first section gives the
statement of the results. We first state the identification of the coefficients
L, for n<5 (Theorems 1 and 1’), and then gives the characterization of
the ball as Corollary of Theorem 1. We next give a formula by which
one can compute, in principle, all the coefficients L, (Theorem 2).
Finally, we add some explanation to that formula.

In Section 2, we assume Theorem 1 and prove its Corollary. In
Section 3, Theorems 1 and 1’ are proved, assuming the validity of
Theorem 2. We prove Theorem 2 in Section 4. The proof of Theorem
2 requires several technical lemmas, which are proved in the final section.

Let us emphasize that all our results except Corollary of Theorem 1 are
those for the real domain log|Q)| rather than those for the Reinhardt domain
Q. In Theorems 1, 1" and 2, the boundedness of Q and the strict
pseudoconvexity of the boundary points at which z,2,=0 are imposed
in order to simplify the description, and these restrictions can be eliminated
without changing the proof—even the smoothness of the boundary 0Q
up to the portion z;2,=0 is not necessary to assume. In Subsection
3.5, we consider a family of complete Reinhardt domains which are locally
biholomorphic to a ball. The boundary of each domain is strictly
pseudoconvex except at the portion z,=0; some domains are unbounded
and/or weakly pseudoconvex. This family is used in order to simplify
calculations in the proof of Theorem 1.
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in the Szegd6 kernel, in Complex Geometry (G. Komatsu and Y. Sakane,
eds.), Lect. Notes in Pure Appl. Math. 143, pp. 77-96, Marcel Dekker,
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1. Statement of the results

1.1. Coefficients of the asymptotic expansion. Let Q be a
bounded strictly pseudoconvex domain in C? with C® boundary. We
assume that Q is a complete Reinhardt domain, that is,

{21, 22) € C% |z(| S|y, |25] Slooy]} <

for every (wy, w,) € Q. In order to express the asymptotic expansion of
the Bergman kernel, we consider the logarithmic real representation
domain log|Q)|, which is the image of QN {z;z,#0} under the mapping
(21, 2,) > (loglz,|, log|z,]). Let us set

f(x):=sup{y € R; (x,y) € log|Q|} for x € I:=(—00, x,),
A(2) : =log|z,| —f(log|z,|) for z=(z,, 2,) € C* with z,;2,#0,
where x,:=sup{x € R; (x, y) € log|Q| with some y € R} Then,
loglQ|={(x, y) € IxR; :=y—f(x) <0},

and A=A(2) is a defining function of dQN{z,2,#0}. Note that the strict
pseudoconvexity of 0QN{z,2z,#0} implies f’<0. We now make a change
of variables x — f'(x) and introduce a function p € C®(f'(1)) defined by

p(@)=f"(x) with v=f(x) for x € I.

Let K(2) for z € Q denote the Bergman kernel of  restricted to the
diagonal of Qx Q. Recalling that K(z) is independent of (2,/]2,],2,/]2,),
we write

1.1) L(A, x)=L(A4v)=(21)%|2,2,|2K(2).
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Using the notation in Fefferman’s expansion (0.2), we have

(e

We state a preliminary result as follows.

Theorem 0. Under the conditions and the notation as above, the
singularity of L(A;v) in (1.1) takes the form

L(A;v)=

p:v) {2Lo(v)_Ll(v) L L) +l+23 L,(v)A"~?

JE 2T T A ) log[—’l]}

modulo C'(Qn{z,z,#0}) for any prescribed | € No:={0, 1, 2, ---}, where the
coefficients L,(v) are determined by p and its derivatives at v.

Several coefficients can be explicitly determined. In fact, we have:
Theorem 1. In Theorem 0 above, the coefficients L,=L,(v) for
0<n<3 are given by
L =1 L =3 —1 p” L =l (pp(3))l L ] —i (pzp(4))”
R T ST '
Theorem 1. Two more coefficients are given by

SIL,=(p(p*p®)") — %p‘2>(p2p<“’>" + %(pp“’)z,

_ 6'L5 — (P(p(p2p(4))m)")' + 4(pp(3)(p2p(4))u)¢

+3@%) (0p?) — ")*/2)
+ 6P(6)p(4)p3 + 9@(5))21)3 + SOP(S)P(4)[)'1>2
+ 10@(4))2pﬂp2 + 32(17(4))2(191)2P~

Let us conclude this subsection by giving a consequence of Theorem
1. By solving the differential equation (p2p™*)”"=0 under boundary
conditions coming from the strict pseudoconvexity assumption on
0QN{z,2,=0}, we get the following:

Corollary of Theorem 1. Under the assumption of Theorem 1, if
the coefficient L vanishes identically, then Q is globally equivalent to a
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ball. In other words, if Yy=0 on 0Q in Fefferman’s expansion (0.2), then
Q={alz,|* +b|z,|> <1} with a, b>0.

The proof of this corollary is given in Section 2.
It should be emphasized that the boundedness of Q and the strict
pseudoconvexity of dQn{z,2,=0} are crucial in the Corollary above.

1.2. Formal integral representation of the full expansion. We
shall present, in Theorem 2 below, a formula of giving the coefficients
L, of the asymptotic expansion in Theorem 0. That formula takes the
form of an integral representation, which gives rise to Theorems 1 and
1’. The integrand is a formal power series of a parameter, where the
coefficients are polynomials multiplied by an exponential function to
use the standard notation R[[-]] and R[]. That is, R[[t]] denotes the
totality of formal power series in T with real coefficients, and R[u] stands
for the set of all real polynomials in pu.

In order to motivate the formulation of Theorem 2, let us first write
the asymptotic expansion in Theorem 0 as

(1.2) L v) ~ POF 1w ezl
4‘ n=0 /1

where 0; and 0;' denote differentiation and indefinite integration,
respectively. Since we are concerned only with the singularity at A= —0,
the ambiguity of indefinite integration is irrelevant. One may naturally
express the right side of (1.2) by using a pseudodifferential operator, that is,

~1_p) & 1
Lon(050) 3 52 =20 Y Lw 7,

where L! (f;v) € R[[1™]].

Let us next recall another implication of Theorem 0 concerning the
dependence of L,(v) on the derivatives of p(v). Noting an elementary
relation

(1.3) F2m ()= (p(0)d,)"p(v) with v=F(x) for m € N,

we see by Theorem 0 that L,(v) is determined by f@*™(x) for m20. We
shall state Theorem 2 in terms of f@*™(x) in place of p™(v). It is
then natural to consider the formal Taylor expansion M*(¢) € R[[£]] of

14 M=TErO ?f’ F@E_ f (1 —o)f"(x+ &) do,
0
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and write L,(v)=L,[M"], etc. when we wish to emphasize the dependence
on M.
For technical reasons that will become obvious later, we write
Li (£;9)=L*M*)(r) with 1"!=12. Then, the problem is reduced to
writing down explicitly L*[M*](t) € R[[t?]] such that
-1

(1.5) L(4, x)~ L [M)(0; 1'% @ig-

Our result is described as follows.

Theorem 2. Under the assumption of Theorem 0, the asymptotic
relation (1.5) is valid with

# e 1J dy 2
(1.6) L M](z): 2) oA € R[[z7]],
where
1.7) H’[JVI’;](#,T):J exp[ué + Mi(x¢)&*] d¢ € R[[]].
R

In the next subsection, we shall explain the statement above.

1.3. Explanation of Theorem 2. Let us begin by explaining (1.6)
with (1.7). We define

[e o)

FM¢, 1) = Zoam(f)t"' € R[[7]]

m=

by the formal Taylor expansion of exp[M?*(1&)¢2 —f"(x)é%/2). Then, we
can write (1.7) more explicitly as follows:

H M )(»,7) =J FHMI(E, 1) exp [ué +f(Tx) éz] d¢
R

Anlh) 7 exp [Zf” (x)il’

Ms

Il

0

where A, (1) =A,[M%](n) are defined by

3 KON G
Am(u).—jnam(é) exp[ > {5 +f~(x)} ]dé'

Using the fact that ay,(£)=1, we see that

m
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1 — 4
(1.8) Ao(p)y=—>>0, where Bgy:= G

B, 2
Thus 1/H*[M?*](u, t) makes sense as a formal power series in T, so that
we may write

= S B ™ ex [ K ]eR[m]
B o " TP arw) ’

with functions of p, B,,(1) = B,,[M%](n), such that By(u)=B,. Form € N,

we set

—1 2
(1.9) L, [M! :=—fB,,, [ s ]d ,
2[M] 7). (W) exp| YTl ke

which are well-defined by virtue of the following lemma.
Lemma0. A4,(u) and B, (n) for m € N are polynomials of y such that
(1.10) A, (=) =(=1)"A4,(1), Bp(—1)=(—1)"B,(1).
In particular, the integral in (1.9) converges and
Lyiy)2 [M$]1=0 for n € N,,

so that (1.6) makes sense and

(1.11) LMm =1 ;x) Y, L,[M3) o
n=0
Proof of Lemma 0. Recalling a well-known formula for the Hermite
polynomials H,(£):

1 d
f H,(&) eXp[—E(u—é)z] ¢ =p",
R

N

we see that 4,(u) € R[u] and thus B, (1) € R[u]. By definition, we have
FHM(—¢, —1)=F*[M;]({, 1), and thus H*[M}](—p, —7)=H[MZ](1, 7).
This implies (1.10).

Let us restate Theorem 2 as a refinement of Theorem 0.

Restatement of Theorem 2. Under the same assumption as that of
Theorem 0, the singularity of L(A,x) in (1.1) takes the form
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f/r(x)lo+3 2—n__1
5 EOL”[Mi] 03 2

(1.12) L, %)= —

modulo C'*({— o0 <A<0, x € I}) for Iy € N, arbitrarily prescribed, where the
coefficients L,[M%] are defined by (1.9), and 0] ' stands for integration over
(Ao, &) with Aq € (— 00, 0) arbitrarily fixed.

2. Proof of Corollary of Theorem 1

Since Y|,o=0 and p <0, it follows from Theorem 1 that
d2

(2.1) F{p(v)zp“”(v)} =0  for vef().
v

We solve this differential equation under boundary conditions which are
given by the following lemma.

Lemma 1 (cf. Lemme 6 of [1], page 150). Under the same
assumption as that of Corollary of Theorem 1,

peCo(—oc0, ), im2@=2, lim 2V

vt0 U vl—o U

—2.

We assume for a moment the validity of Lemma 1 above and prove
Corollary of Theorem 1. Integrating both sides of (2.1) twice, we use
Lemma 1 and get pY=0. Using Lemma 1 again, we obtain

p(v)=20v—202, that is, f"(x)=2f"(x)—2f'(x)?.

It is elementary to solve this differential equation. Using the strict
pseudoconvexity of Q, we get

ae** +be?*/ ™ =1 with constants a,b>0,

which implies the conclusion of Corollary of Theorem 1. Thus, we are
done if we prove Lemma 1.

Proof of Lemma 1. Recall that Q is a strictly pseudoconvex complete
Reinhardt domain in C?. Since, in addition, Q is bounded, it follows
that the set

|0Q| = {(‘zll) 12,]); 2= (24, 2,) € 0Q} cR?

is a C® curve which has endpoints (0, 7,), (r,,0) € dQ with some constants
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ry, r2,>0. Using the strict pseudoconvexity of these points, we see that
the boundary 0Q is given, locally near these points, by

(2.2) |25l =15 =121 [* +|2,|* € (|2,) near 2=(0,7,),
(2.3) 21| =7y = bl +|2,]*€(|2,]) near 2=(ry,0),

where [;, {,>0 are constants. Here, and also in what follows, we use
the notation &(-) to denote a C® even function near 0 € R which changes
from instance to instance.

It is clear that f'(J)=(— o0, 0), which is the domain of definition of
the function p. We need to study the behavior of p(v) as v10 and that
as v/ —00. This amounts to considering dQ near the points (0, r,) and

o 01)‘.6:t us first consider 0Q near (0, r,). Taking logarithm of both sides
of (2.2), we have
f(x)=log r,—le** +e**&(e*), where [:=1,/r,>0.
We differentiate both sides and get
(2.4) fl(x)=—2le**+e**E(e¥), f'(x)=—4le** +e**E(e¥)

as x| —o00. Applying the inverse function theorem to the first equation

of (2.4), we obtain e*=./—v/(2]) {1+ v&(,/ —v)} as v10. This, together

with the second equation of (2.4), yields

(2.5) p()=2v+v%E6(/ —v) as v10.

Therefore, we obtain the first two assertions of Lemma 1.
It remains to verify the last assertion, which follows from

(2.6) p(0)=—20>+v&1//—v) as v|—o0.

The proof of (2.6) is similar to that of (2.5). Starting from (2.3) in
place of (2.2) and setting ' : =1,/r, >0, we argue as before. Then we get

(2.4)  —Uf(x)=2l'e?+eV8(), [f'(x)=—2f(x)*{1+e>E()}
as y:=f(x)| —oo. The first equation of (2.4)" yields

e=./—w/Ql){1+wé ((/(—w)} asw:=1/v10,

which, together with the second equation of (2.4)', implies (2.6) as
desired. Therefore, the proof of Lemma 1 is complete.
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3. Proofs of Theorems 1 and 1’

Assuming the validity of Theorem 2, we prove Theorems 1 and 1’.

3.1. Preliminary observation on the dependence of L,(v) on
p»®(v). Recall Theorem 0 which constitutes a part of the assertion of
Theorem 2. By Theorem 0, we see that each L,(v) is determined by
the derivatives p®(v) for k=0. It is not difficult to see, by recalling
the explanation in Subsection 1.3, that each L, depends only on p®(v)
with #<2n. In order to prove Theorems 1 and 1’, it is useful to give
a refinement of this result. First, some notation.

MULTI-INDEX NOTATION. For a multi-index y=(y,,---,y;) € N, we
define its length as usual by [y|:=7;+:--+y;. Given another integer
m=j, we set

N™:={ye N’ lyl=m, y,2---2y;>0},
where N={1,2,3,---}. In case j=m, we also define
Ng™:={n € Ng; [nl=m, n, 2+ 2n,=0}.
Assuming the validity of Theorem 2, we shall prove the following:

Proposition 0. FEach coefficient L,(v)= L,[M?*] in Theorem 0 is a linear
combination of fE+(x)---fCT(x)/f"(x)*" with y € N*?". In terms of p
and its derivatives, each L, in Theorem 0 is a linear combination of

e"[p] . =p('ll)_ . ,p('lln)/p" wlth ne Ngn.Zn.

Before proving Proposition 0, we do a normalization, which will be
useful also in the remaining subsections. Setting

Y M6 _ 2 fiim
(&)= = meR
MO=—05= X 5 e RI)

so that ff= —1, we consider F*, H* and L* with M?* in place of M%, that is,

e8]

¥ _ 1 2w 21— ﬁt"’_ 2+m "']
FUIMEIE ) =expl & + M(eE)E’] exp[m; Qrmic T

(3.1)  HIM®, T)=J FHM (¢, 0 eXp[#é—%vfz]dé,
R

. 1 du
LY =—J——A—-——
O = ) P (1, )
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Noting that L*[AT%](Ct)= C2L*[M? /C?](z) for an arbitrary constant C >0,
we have from (1.11) that

. 12
(3.2) L*[M](v) = 2 Zo {=f"®}"L,[M] ©*" € RI[<*]].

Proof of Proposition 0. We prove the former statement—the latter
follows immediately from the former via (1.3). It suffices to show that
each 'L,,[Mf‘] is a linear combination of f7,, ---fyy, /f'(x)" with
y € N*?". In order to prove this, we set

Welght (fo+y1' ' 'f;+yjrk) = M - k)

we say that a polynomial in f5,, and 7 is of homogeneous weight w if
it is the sum of monomials with the same weight w. Then we are
reduced to showing that each term in the right side of (3.2) is of
homogeneous weight 0. But this is clear from the expression of L*[A1%](1)
in terms of F*[AT%](¢, 7).

3.2. Proof of Theorem 1. We have given the method of
computation in Subsection 1.3. It is only necessary to evaluate quantities
appearing there and then express the results in terms of the derivatives
of p. Observe by (3.2) that L [M*]=2L*[M*!](0)=1. Thus the first task
is to represent L,[M*] for n=1,2,3 in terms of the derivatives of f. This
is done by the following:

Proposition 1. The coefficients L,=L, [Mfc] forn=1,2,3 are given by
()L =F+
— 3Ly =F5 + 6755+,
4f"(x) Ly =F5+ 12755 + 24755 + 82755 + -+,

where --- in the expression of each L, is a linear combination of f§‘+y1---f5‘+ vi
with y=(yy, -, 7;) € N**" satisfying y; <n+1.

It is not necessary to write down the abbreviated parts in Proposition 1
above. This is because of the following observation, which refines
Proposition 0 in the cases n=1,2,3.

Proposition 2. If n<3 then L, is a linear combination of e,[p] with
N=WMy, ", Nan) € N3™?" satisfying n,=n+1. More explicitly, L, for
n=1,2,3 are linear combinations of

p" for n=1; pWp, pPp’ for n=2;
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and pp*, pIp'p, pp"p, PPN for n=3.
Propositions 1 and 2 are proved in Subsection 3.4 and 3.5.

Proof of Theorem 1. We are almost done by virtue of Proposition
1. It remains only to express the right sides in terms of the derivatives
of p. This is done by using (1.3); specifically, we need

f'=p, —f=p", —Fi=pZp+@®,

and

~fi=pP +4p"p'p + (1),

~Ja=p“p> +pPp'p? +4(0") P +11p" ()2 + ()",

_f’? =P(5)p4 + 1 1p(4)P’p3 + 1 SP(3)p”P3 + 32p(3)(p')2p2 + - ‘o

~fs=pp* +16p®p'p* +26p“p"p* + 76p“(p")?p* + -,
where --- in the expression of —f3,, for m=5,6 is a linear combination
of pM...pmm) with n=(n,, -, N,,) € Ng"™ satisfying 1, <m—2. By virtue of
Proposition 2, the abbreviated parts are irrelevant both in the expressions

above and in Proposition 1. After some algebraic manipulations, we get
the desired conclusion.

3.3. Proof of Theorem 1'. We follow the argument in the previous
subsection. Let us first state substitutes for Propositions 1 and 2.

Proposition 1'. If n=4 or 5, then L,:=L,[M%]={—f"(x)}"L,[M"] is
given by (n+DIL, =Q,+---, where --- is a linear combination of

f2+71,“~,2+yj:=f;+y1“'fj’2c+yj with Y=(V1,"','Vj) € Nj,zn
satisfying y, <4 or j>n; Q4 and Qs are given by

105 . 445 .

-0, =f1o+20f9.3+—2_f8,4+7f8,3.3 +90f7,5 + 1030}?7,4.3

- 107 . 2 2 -
+1740f7 333 +—2—f6,6 +1525f 5.3+ 1030f¢ 4.4 +10440f¢ 4 3 3,

—0Os=fi,+ 30}11,3 + 97f10,4 +492f10,3,3 + 2101?9,5 + 2880}9,4,3

“ - - 7545 .
+5670f9,3,3,3+327fg,6+ 5580735 3 +Tfs,4.4

100095 - - ”
5 fs33.3,3 189, +7668f76,3

+44550f5 4 3.3+
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+12900f; 5 4+ 76140F; 5 3 3 +102930f; 4 4 3+462360f; 4 3.3 3
+7668f6 6.4 +45261f¢ 6.3.3+9540f 5 s + 30438076 5 4 3
+683490f6 5 3.3.3+68560f6 4 4.4+ 1385505F5 4 4.3.3-

Proposition 2'. If n=4 or 5, then L,=L,[M] is a linear combination
of e,[p] with n=(ny,",n,) € Ng"*" satisfying 0,24 and n,,,=0.

Proof of Theorem 1’. 'The procedure is the same as that of Theorem
1; we use Propositions 1’ and 2’ in place of Propositions 1 and 2. It is
necessary to express fi,, with m<10 in terms of the derivatives
of p; we need

—fim=Rn+--- for m<10

where --- is a linear combination of p...p™) with n=(,, ---,n,,) € Ng™

satisfying the following conditions: for m<6, n15>0; for m=7,8,9, n, <4
or 5>0; for m=10, n, <4 or ng>0. In order to shorten the description
of R,, for 55m=10, we set for a moment p,=p® for k € N,; then

Rs=pspo* + 11p4p100° +15p30200° + 320301 *po”
+34p,°p1po” +26p,0, °po,

Re=psbo” +16psp1po* +26p4p200* +76p4b17po> +15p3°p0*
+192p3p,0100°> + 12231 3p0% +340:3p0> +180p,%p 2%,

Ry =p00° +22psp1po° +42D5p100° +156psp,*po* + 56pap3po°
+474p4p2p Do +426p4p1°p0°,

Rg=pgpo’ +29p:0100° +64p6p200° +288p6p1’po” +98pspapo°
+1038pspp1po° +1206psp,3po* +56p,%p0° +1344p,p30100°
+768p4p27po” +5142p4p201*p0”,

Ry =popo® +37pgb1po” +93ppa00” +4910:01°po® + 16206300
+2062p PP 100 +2934pep 1 300> +210psp Do’ +3068psp3p 100"
+1806p5p,2po +14988pspap 1 %po° +1736p,%p100°
+4590p,p3p200° +18864p,0:0,% 0> +20838p,0,2D 100>,

Ryo=p10b0° +46pop1Do® +130pgp,00° +787pgp*po” +255p7P30"
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+3788p1p2p1P0’ +6371p5013b0® +372pspapo® +6426ppap Do’
+3868p6p,% D0 +38224pp2p1200° +25761pp14Po>
+210p5%p8 +8220p5pap 1P’ +11270psp3pobo’
+55328psp3p,2p0° +63456p5p,2D100° +165978psp,p1 00’
+6326p,%p,00" +31016p,2p %008 +7155p,p3% 00
+156894p,p3p,0100° +203304p,030,°p0°

+28768p,0,3p0° +325500p 40,20 200"

After more algebraic manipulations than those in the proof of Theorem
1, we reach the desired result.

Unfortunately, we only have computer-aided proofs of Propositions
1" and 2’ as well as the expression of R, for 5<m=<10. A more acceptable
proof is desired for Theorem 1', or at least for Proposition 2'.

3.4. Proof of Proposition 1. We need to carry out some explicit
computation which corresponds to the explanation in Subsection 1.3. It
is then convenient to restate Proposition 0 in terms of L*[M?*], H*[M¥]
and F*[M*]—normalized expression in (3.1). Recall first that

H'M(, 1) =/2ne™? 3, 4,0 7" € RI1)

1 1 25 & A
. ——— W2 Y B, () e R[],
BTG D Jon. | wo 07 € R

where A4,(u) and B,(u) are polynomials of u with Ayw)y=By(w)=1;
furthermore,

e8]

LAV (t) =~
2n=0

L,7*" e RI[7*]],

where ﬁn=(2n)—1/2J B, (1) exp[ — pu?/2] du are the same as those in (3.2),
R
that is, L,={—f"(x)}"L,[M%]. Then Proposition 0 is restated as

-

I:n= Cn(‘})) 2in_... 2vy l}
veg';ﬂ" C+y)t 4y

where ¢,(y) € R for y=(y1,---,yj)eNj’2" are universal constants inde-
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pendent of the domain Q.
We wish to evaluate c,(y) explicitly. This is done by recalling that

‘ 0 © Fx k
PUTE D=3 1( 5 —J(Z—*'"—«:mr'") e R[[]].

=0k \m=1(2+m)!
In fact, writing F*[MF)(&,1)= i a,(&)T™ € R[[r]] with 4,(&) € R[&], we
m=0

have

d
Jn'

- 1
Am(ﬂ)=f dm(&) exp[——(ll—f)z]
R 2
while B, (1) are determined by
Y Ap_ (B (n)=0 for m21.
k=0

In order to prove Proposition 1, it suffices to verify the following three
statements:

(1°) c(2m) = 1 for n>1;
Q2+2n)! (n+1)!
(29 c,,(2n—1,1)= —1 for n=>2, and 763(4’2)=-—
1+2n)! 3! (n—1)! =7 6! 4! ’
@y e®LD__ 4
6! (31)? 12

Before proving (1°)—(3°) above, let us prepare an elementary Calculus
Lemma. Given y=(y;,--,7;) € N*?", we set

2,, d
L) = f G, ()G, (u) e 2L
R

Vo
where G, (u) € R[u] for m € N, is defined by
1 d¢
Gm —_ m _ - _ 2:|___
(1) Lé eXp[ G 9 Jon-

Calculus Lemma. Let I,(y) for y=(yy, -+, 7)) € N?2" be defined as
above. Then, the following five statements hold:
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i 1,e0="" for nz1;
n!
(ii) In(2n—3,3)=(n+4)w for n23;
(n—2)!

(i) I4(6, 4)=6480=%6! 41

4
(iv) 16(6,6)=101520=1—Z6! (312

(v) 14(6,3,3)= 53280=::—; 6! (31)2.

Proof of (1°). We are concerned with the case y=2n € N*'?". This

case is easy, because the linear term f3,,, appears only as the lowest
order term of 4,,(¢) € R[£(]. We get

f;+2n

A1) =a:|_"2—n)‘!

Goyon()+--+,

where --- is the part which is irrelevant to our purpose. Since B,,(1)
=—A,,(u)+---, it follows from (i) of the Calculus Lemma above that

(2n+2)!

a(2n) = = L @+ D ==

Proof of (2°). Let us consider the case y=(y,,7,) € N**" with
71>Y,. We wish to extract the quadratic term f3,, f3.,, from L,
Inspecting the expansion of F*[M"], we see that

62 (6)-_- fg‘*’)’l f§+y2 4+2n ..
" 2+yt 2 +p)!

b

a ___f;+vn 2414 ... 4 =f;+72 2+y24 ...
SOy & WO e

and EZ”(u) =—A, W+ 2/?1“(;1)/'1”(;1) +---. Consequently,

b

c(N=—1,,,2n+4)+2I,,,2+7,,2+7,)

(2n+4)!
— _m_}. 21, ,(247y,247,),
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where we have used (i) of the Calculus Lemma. In order to get the
desired results, we also use (ii) and (iii) of the Calculus Lemma. Restrict-
ing ourselves to the case y=(2n—1,1), we have

@n+1)!

I, ,(2+7y,,24y,)=(n+6) "

b

which implies the first assertion of (2°). It remains to consider the case
y=(4,2). We have

100 3
624, 2)= —I5(10) +215(6, )= — - + 6! 41=—61 4.

Thus the proof of (2°) is complete.

Proof gf £3°). {t remains to study the case y=(4,1,1) € N>®—the
cubic term fZ(f3)? in L, is concerned. We argue as before. It is sufficient
to look at

R VAT . 75 o
as(f)—'z'a(ﬁ> et aS(é)_aﬁé +oey

X 1 x\ 2 Fx
64(5)=%€6+---, 62(5)=5<3_3')56+..., 51(5)=%53+...’

and Bg(u)=—Ag(u) +245(0)A; (1) + Au(){245(u) — 34, (u)*} +---.

From these,
1
34,1, )= —3 I5(12)+214(9,3)+14(6,6)—314(6,6,3).
Again, we use the Calculus Lemma—(i), (ii) and (iv), (v); then

1 7
— 16(12) +219,3) = —66!(3!)2,

9
16(6,6)= 315(6,3,3)=— 61(31)2,

from which the conclusion follows.

Proof of the Calculus Lemma. The first assertion (i) is a consequence
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of the well-known formula

Lexp[—%(é—u)z] eXP[——uz] N fexp[ 162]

In fact, changing the order of integration

d¢  (2n)

1
W”’iﬁj éz”exp[—j—tfz] N
R T :

In order to get (ii)—(v), we note that G, (u) are modified Hermite
polynomials in the sense that G,(u)=:""H,(iu). It is well-known that

sm
CXP[IIS——S] Z m() —
m!>
which implies

l H,, (1)
osksn Rl (yy—R)! (y2—F)!

1
;_! Hy, (ﬂ)H“(ﬂ)

for y=(y;,7,) € N>™, where y!=y,! y,!. Setting m=2n, we get

1 (=1 Gy )
3.3 =G, (WG, =
-3 e P ot oA ]
for y=(y4,7,) € N*2".  Multiplying both sides of (3.3) by exp[ —u?/2], we
integrate the results with respect to g. Using the conclusion of (i), we
obtain

n! n (2n—2k)!
fure 5, )
3.9 0= O o=k G

for y=(y,;,7,) € N*2". Therefore, the proofs of (ii)—(iv) are done by
evaluating the right side of (3.4) in these cases. Also, (v) is proved by
a repeated use of (3.3) and (3.4).

Let us first prove (ii)—(iv). We write y,=/, and thus y;=2n—1. In
order to do efficient computation, we note that the right side of (3.4) is
the coefficient of s' in the expansion of {(1+s)*—s}". Since (1+s5)*—s
=1+s+s2=(1—-s3)/(1—5s), it follows that
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{A+5)*—s}"=1+(n);s 4-(2)2 2+<(n)3+( n), )

Y
@.5) (D omim, ) s+ (Der o, 22)
+(Des (-, 224 E22) 006,

where (n);=n(n+1)---(n+1—1). By using this formula (3.5), we obtain
@11)-(@v).

It remains to consider the case y=(6,3,3) e N*!2, Using (3.3), we
have

(—1)* Is_(9—2k; 3)
& 3)_k;o k. (6—R)I(3—R)

We evaluate Iy_,(9—2k,3) by using (3.4). This is not difficult, because
computation is simplified with the aid of (3.5). We thus obtain the desired
result (v).

3.5. Proof of Proposition 2. It is possible to verify the desired
conclusion by direct computation which, however, is lengthy. In order
to shorten the proof, we require a lemma.

Lemma 2. For a,be 2N, with b>0 arbitrarily fixed, consider a
complete Reinhardt domain in C? given by Qa‘b:={|zll7‘|zz|“+|22|b<1}.
Then the following statements hold:

1)  pl) =%(2 +av)v(2 + (a—b)v) =20+ (2a—b)v? +%a(a —b)3, and

the domain of definition of p is the interval —2/a<v<0.

(i) The Bergman kernel K, , does not have log term in the sense that
Y =0 in (0.2).

(iii) If a=0 then Ly=1, L,=b and L,=0 for all n=2.

Here is the only place in the present paper where we encounter
unbounded domains or the breakdown of the strict pseudoconvexity at
boundary points z=(2,, 2,) satisfying 2,2,=0. Note that if a>0 then
Q, ; is an unbounded domain such that the boundary is everywhere strictly
pseudoconvex. If b>2 then Q,, is a bounded domain such that the
boundary is strictly pseudoconvex except at the portion 2,=0. The
domain Q , is the unit ball. As we mentioned at the end of Introduction,
Theorem 2 remains valid for the domains Q,, in Lemma 2.
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Postponing the proof of Lemma 2 for a moment, let us first prove
Proposition 2 with the aid of Lemma 2.

Proof of Proposition 2. Regarding L,=L,[M%] as a function of the
variable v, we write, according to Proposition 0,

. p(ﬂl)_ . .p('lZn)
(3.6) L,=L,(v)=) C,(n) ¢,[p] with e.,[P]=~—PT—
n
and coefficients C,(1)=C,(ny, -**, N2.) € R, where summation is taken over

multi-indices n= (1, -, 1,,) € Ng"*".
Let us first observe that the desired conclusion will be obtained if
we prove the following three statements:

(10) Cn(r’)=0 if '71§2 and ’1#7]0:=(2, “')2) 0) '“)O) € Ng”'zn;
29 Cu1)=0 for n22;
(3°) C3(n)=0 in case n,=3.

In fact, if n=1, then the possible choice of 5 is (2,0) and (1,1), but (1°)
yields C,(1,1)=0. In case n=2, what we want to show is that

C,(n)=0 for n=(1,1,1,1), (2,1,1,0), (2,2,0,0),

a fact which is a consequence of (1°) and (2°). Similarly, if n=3 then
the desired conclusion is

C3(1)=0 in case n, <3,

which follows from (3°) if #,=3, and from (1°) and (2°) if n,<2.

We shall prove (1°), (2°) and (3°) by using Lemma 2. The idea is
simple. That is, for the domains Q,, in Lemma 2, we compute ¢,[p] by
using (i), and specify L, with the aid of (ii) and (iii). Substituting the
results to the both sides of (3.6), we see that certain coefficients C,(1)
must vanish and obtain the desired conclusions (1°), (2°) and (3°). More
precisely, we regard e,[p] as functions of v and consider the behavior as
v10. Then, the left hand side of (3.6) is constant for each n fixed,
whereas the functions e,[p] appearing in the right hand side behave
differently according as the multi-indices n vary. Thus, if e,[p] is
non-constant then correspondingly C,(n)=0.

Let us proceed to the proofs of (1°), (2°) and (3°). In order to show
(1°) and (2°), we take a=0 in Lemma 2, and thus p=2v—bv?, Ly=1,
L,=b and L,=0 for n=2. Hence, setting n=1 in (3.6), we get
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n2 _ 2
®Y _ _apcy@.00+cia, 1) G2
2v—bv

b= C1(2, 0)p”+Cl(1’ 1)

This yields at first C{(1,1)=0 and then C,(2,0)=—1/2. We thus get
=—p"/2(and Ly=1). Letusnexttaken=2in(3.6). Ifn=2then

4 ”n ’
02(1,1’1’1)@) '@’
b

+C,(2,1,1,0) +C5(2,2,0,0)(0")°

+C5(3,1,0,0)pp" + C,(4,0,0,0)p“p=0.

Observing the behavior as v10, we first get C,(1,1,1,1)=C,(2,1,1,0)=0
and then C,(2,2,0,0)=0. The same reasoning applies to the general
case n=2—we see first (1°) and then (2°).

In order to prove (3°), we need to consider Lemma 2 with a#0. Let
n=3. Recall by (1°) and (2°) that C3(n)=0 in case n,<2. Thus (3.6)
takes the form

3

(3.7) 0= ) Cs(1) eylpl,

where n':=(3,1,1,1,0,0), n*:=(3,2,1,0,0,0), n%*=(3,3,0,0,0,0), and

thus e, [p]=pV(®")’/p, elpl=pVp"p’', eplp]=("")’p. As before, we
first get C3(n')=0 from (3.7). Let us next observe that

e,2[p1-2p(0)p"(0) and e,3[p] -0 as v10.

Then (3.7) yields C3(n*)=0, if we choose a and b in such a way that
pP(0)p"(0)#0, that is, a(a—b)(2a—b)#0. Noting that eps[p]#0 as a
function of v, we again use (3.7) and get C;(#®)=0. Therefore, we
obtain (3°), and the proof of Proposition 2 is complete.

Proof of Lemma 2. Direct computation yields (i). Using the fact that
a complete orthogonal system of L? holomorphic functions is given by
monomials

zi2% with k+1—a(j+1)/2>0,
we can show without difficulty that

lz,1*  (8(1+|2,|%p1

) 2/b)
(38) (27'[) K b( )_b 2+2/b< p3 +p2>’

where p:=1—|z,|2p; 2* with p,: =1—|2,|*|2,/. We see that p is a smooth
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defining function of the portion dQN{z,#0}, of which every point is
strictly pseudoconvex. Thus (ii) follows from (3.8). If a=0, then (3.8)
yields

2cosh A b
2 2 2 K =p(7)) ( _ )
@Yl K@ == Gonez ~ sinh?d),

which implies (iii).
4. Proof of Theorem 2

4.1. Reduction to the real domain log|Q}| and some normaliza-
tion. Since monomials form a complete orthogonal system for the Hilbert
space of L? holomorphic functions in Q, it follows that

-1
lz12:°K(2)= ) Iz“|2U IC“lde4(C)/|C1C2|2} ,
aeN Q

where dV,({) denotes the volume element of C? identified with

R*. Making a change of integration variables {;=exp[{;+./—10;]+ (£},
0;) for j=1,2, we get

f |C“|2dV4(C) / |ClC2|2=(2n)2J eza'éde(é),
9

logiQ!

where dV,(¢) is the volume element of R?. Recalling that log|z,|=x
and log |z,|=f(x)+A for x € I, we see that (27m)%|z,2,|? K(2) is a function
of (4,x). Let us denote it by L(4,x) as in (1.1). Then

20,exp[ 20 x + 200, {f(x) + A}]

L(A,x)= ),
JCXP[2G1€+2017J‘(€)] g >
I

aeN?

where we have written ¢ in place of £;. We reduce each fraction by
the factor exp[2a,x+ 2a,f(x)] and shift the integration variable {. Then
we get

(4.1) L, x)=

2 20,4
Z M for A<0, x € I,

aeN? D(a) x)

where
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4.2) D(o; x): =f

I_

exp[2a, & + 20, {f(x + {) —f(x)}] d¢

with I—x={{ € R;é+x € I}.
Regarding x € I as a parameter, we shall investigate the behavior of
L(4,x) as A70. It is convenient to set

E(t; A):=1"%exp[4/t?] with 1:=(2a,)" /2

for s € Z, and write (4.1) as

.1), L, x)= y Earih)

for j=0,1, 2,
aeN? Dj(a; x)

where Dj(a; x):=1 /D(a;x). The desired asymptotic expansion will be
obtained by using a localized version of (4.1),, and the proof of localization
requires (4.1),.

Let us look at the dependence of D(a;x) on x more precisely.
Recalling by the definition (1.4) that flx+ &) —f(x)=f'(x)é + M (E)E2, we
have

20, & + 20, {f(x+ &) — )} = (o V)E+20,M ()22,
where p(o; V,): =20, +a,V, with V,:=f(x). Setting for j=0,1,2
(4.3) uio V) :=tu(e V) with 1=(20,) 71/
and ti(I—x):={¢ € R;UE+x € I}, we get

(4.2); Dj(o; x)= f expp;(o; V)¢ +1% 72 M (176)E?] dE.
t—iI-x)

4.2. Heuristic computation explaining Theorem 2. Before
proceeding to the rigorous proof of Theorem 2, we give here two heuristic
arguments. The first heuristics is very simple and is given as follows.
Setting

0

=1 Dy(05 %)

(4.4) L, (%): with %:=2a,,

we assume that the following Laurent expansion is valid:
o0
Lax(®)~ Y, L2 (x) £7"=:L}(¥) about t=c0.

n=0

Then, one may expect that the asymptotic expansion of L(4,x) as 410 is
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reduced to that of L,,,(2a,) as a,T+ 0. In fact, using (4.1), and changing
the order of summation, we are led to

L(4,x)~ {Z Lf,‘“"(x)( i (2a2)2_"exp[2a21]>.

n=0 az=1

Noting that

& -1
Y (2a2)2_"exp[2a2/1]26f"”—2—11— modulo C*® at 1=0,

az=1

we arrive at the asymptotic expansion as in (1.2):
# 2 —1
L(l) x)~Laux(a).) al—‘zj as A‘TO

This explains Theorem 0, which is contained as a part of Theorem 2,
except for the fact that the coefficients L2"*(x) depend only on f™*2)(x)
for m=0.

The second heuristics is concerned with the remaining part of
Theorem 2. This will suggest the integral representation (1.6) of the
symbol L*[M*](t)=L!,(1/1%). Let us begin by recalling a theorem of
Hérmander (0.1) in Introduction. This together with Fefferman’s
expansion (0.2) yields

" 1 1 ) "
0.2) L4 x) =i ;x)ﬁ + O <P) , that is, L™ (x)=— ! ;x).

Starting from (4.1), with (4.2),, we shall first reproduce (0.2), above by
giving an integral representation of L{"™(x), which can be regarded as an
approximate form of Theorem 2. The idea is to regard the definition

of L,,(2a,) in (4.4) as a Riemann’s approximate sum of an integral. Let
us explain these more precisely. Setting

Ha..x(u,’f):=J exp [ué + M, (t€)¢?] d&  with 1= (2a,)""/%,
t—l(I-x)
we have D,(a; x)=H,,(¢;,7) with py:=p,(e; V,), and thus

1 & 2t

Laux(za )= . Ty .
2 2alz=l Haux(ul’t)

Noting how p,=p,(; V,) varies with a, € N, we may regard the series
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above as a Riemann’s approximate sum, and get

1 d
L3%(x)= lim L, (20,)= -f _a
azl +© 2 RHaux(ﬂ’ +O)

This implies (0.2),, because

exp[ué+@cz] i,

Haux(l‘l) +0)= J‘ 2

R

and thus f du/H,, (4, +0)= —f"(x).
R

We have heuristically gotten the zeroth order approximation of
L,,(2a,). Higher order asymptotics of L,,,(2a,) will be obtained if we
take into account of the remainder M, (1&)—f"(x)/2. This idea will be
realized by considering the formal power series expansion about 1=0. We
then reach the precise form of Theorem 2.

4.3. Localization. In this subsection, we basically follow Boichu-
Coeuré [1,Lemme 1]. Let a point x4, € I be arbitrarily fixed, and thus
(%0, f(%0)) € Olog|Q]. In (4.1) with (4.2), we replace f by a function
fe Cc>(]) satisfying

4.5) flx)=f(x) for xe I, f'(x)<O0 for xe I,

where T and I, are open intervals such that x, € I,=I. Then, localization
about x, is possible. Furthermore, we may restrict the index set of
summation from N? to A< N? satisfying

(4.6) Ao A, :={a € N%|u,o(a)]<e} with some £>0,

where f,0(0) = p,(a; f'(x0)) =0y /0, +f'(x9). In order to state these more
precisely, we first set, corresponding to (4.1);,

E,,{(t; ) . - .
L,(Ax)=Y =222 th 1=(2a,)"? for j=0,1,2.
4(4, x) ZA D,(05%) wi (2a3) or j
We then set
" E,. (t;4
LA(A,x)=Z—“M with 1=(2a,) Y2 for j=0,1,2,

aed D~j(a; x)

where Ijj(oc; x) are defined as in (4.2); with fin place of f, and the variable
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x is restricted the interval I,. That is,

Dj(o; x)= f i exp[p;(o; V,)E+ 127 2M (1/€)E?] dE,
t— (I —x)

where

@7 e =T*E9 *J;(Zx) —F@E_flx+d)— ?zx) —f(x)e

for x € I, and ¢ e I—x. Using the expression for j=2, we shall show in
Subsection 5.1 below that:

Lemma 3 (Boichu-Coeuré[1, Lemme 1]). Iffe C®(I) and A = N?
satisfy (4.5) and (4.6), respectively, then L(A, x)EEA(l, x) modulo C* at
(4, x)=(0, xo).

4.4, One-parameter family of domains. Let fe C*(I) satisfy
(4.5). We assume that T=R. Then the set {(x,y) € R? y<f(x)} is the
logarithmic real representation domain of an unbounded (and possibly
incomplete) Reinhardt domain Q< C?. In this subsection, we construct
a one-parameter family of Reinhardt domains ' =« C? (0<t<1) for each
x € I, such that Q! =0 and that Q0 is a quadratic model which is locally
biholomorphic to a ball. The logarithmic real representation domain of
Q). takes the form

{(x+¢,y) € R, y<fi(x+ &)} with ft € C*(R).

Such a family ft (0<t<1) for x € I, has been constructed by Boichu and
Coeuré [1]. In order to get Theorem 2, we need a more careful
construction as follows, because we have to show in particular that desired
asymptotic expansion of L(4,x) depends only on M?*(¢) € R[[£]].

Let us begin by observing that the assumption /=R enables us to
simplify the expression of D~j(oc; x)—we only use the case j=1. That is,
we have, corresponding to (4.2),,

(4.8) Dy (a5 %)= HIML,] iy (5 V), 7)  with t=(20)"*/2
for x € I, where p,(a; V,) was defined by (4.3) and

H[M,(n, T)i=f exp[ué+ M (c$)¢?] d& for p, 1€ R,
R

with M, given by (4.7). Consequently,
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with t=(2a,) " /2,

_ E,(1;2)
4.9 LA, x)= 3
*+9) A= Y o s V0, )

We are now in a position to define a family f! together with the
associated L ,(4,x). Givenx € I, and 0<t<1, we define ff € C®(R) by

Fix+ &) :=f(x) +f (x)E + M (¢)E>.

Then f(x+¢&)=Ffx+¢) and f(x+&)=f(x) +f(x)E+f"(x)€%/2. Thus O}
=0 and Q0 is locally biholomorphic to a ball. Note by the expressions
of (1.4) that

0% Flx+ &) =F"(x+1€) and My(&)=M,(t%),
where MY(E):={fi(x+ &) —Fix)—F) (x)E}/E2. We now define L' (4,x)

and Di(x;x) by (4.9) and (4.8) with M! in place of M,, and thus
LY, x)=L (4, x) and Di(a;x)=D,(x;x). That is,

_ Ey(t; }) By 4)
4.9)" a4, %)= T L5,
(4.9) a4, %) agi H[Mi](ﬂl (6 V), 1) aea Dtl (@ x)

with t=(2a,) 2. Then, an asymptotic expansion of L(1,x) will be
obtained as the Taylor expansion of L'(4,x) about =0 evaluated at
t=1. We shall justify this in the next subsection with additional
assumptions of fe C®(R).

In [1], Boichu and Coeuré considered a family f! defined by

falx+&) = (%) + 1 (x) + 1" (x)E2/2 + t(M (&) — " (x)/2)&>.
We have modified it in order to clarify the dependence of LY(4,x) on
f2*™(x) for m € N, and on V,=f(x).

4.5. Asymptotic expansion via boundary variations. In order
to get the asymptotic expansion via boundary variations, we require more
conditions of f. In addition to (4.5), we assume /=R and that

(4.10) sup[fP|<+o00 for k=2, C_<—F(x)<C, for xeR

with some constants C,>C_>0. It is easily seen that the conditions
(4.5) and (4.10) are realized by a function f € C*(R) such that the support
of the third order derivative f¥ is compact and that

IF"(x) —f"(x0)| <& for x € R,

where £¢>0 is arbitrarily prescribed.
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We are now in a position to state the asymptotic expansion via
boundary variations.

Lemma 4 (cf. Boichu-Coeuré [1, Théoréme 1]). Assume that
fe C°(R) and A= N? satisfy respectively (4.10) and

(4.11) AcA):={a e N*a,/a,<a} with some 0<a € R.

Let k, I, m be non-negative integers. Then:

(i) Ifm+I<C_/(C,—C._), then 3 0'0"L}(4, x) exists as a continuous
function of (A,x,t) in (—o0,0)x I, x[0,1].

(i1) In addition to the assumption of (i), if 2k+I1<m—7, then

m—ll s
>, <L,

j=0 : t=0

6’36i<L"A—

) for (4,x) € (—0,0)x I,

extends continuously to 1£0.

Roughly speaking, we have by LLemmas 3 and 4 that

(4.12) L(4, x)~ i —1—'6;"E’,,(l,x)

m=0

t=0

up to A=0, but we have to be careful because of the conditions of Lemma
4. In fact, if & and [ are large, then m must be also large, in which
case C, —C_ should be small. However, f is chosen when C_ and C,
are specified. In order to make C, —C_ small, we must replace f by
a new one. Also, we have to shrink the neighborhood of x, on which
f=f. Keeping these remarks in mind, one may say that (4.12) is valid
after an obvious modification.

4.6. Asymptotic expansion in Theorem 2. In this subsection,
we prove Theorem 2. It is necessary to extract the singularity from
each term of the right side of the asymptotic expansion (4.12) via boundary
variations. The conclusion is very simple; we shall have

-1

(+.13) 0Ll Wm0 = AL (M Dm0 0]

modulo C*® at (4,x)=(0, x,), where L*[M*](t) € R[[t*]] is given by (1.6)
in Theorem 2. This is because the homotopy parameter ¢ has been
introduced in Subsection 4.4 in such a way that (4.13) holds.
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Recall by (1.9) that the right side of (4.13) is written as

(4.14) <m!fB (1) ex [”Z]d >az-m/2_1 ith P,=f"(x)
. - — W1 = X).
2 R m)u P 2P H A 2). x

X

Corresponding to this, we first show that:

Lemma 5. Under the assumption of (i) in Lemma 4, the left side of
(4.13) for <0, x € I, is given by

2
(4.15) m! Y. Ey_(t; ) Bp(ity) exp[ = ]
aeA 2Px

evaluated at 1=20,) "% and p,=p,(a; V,) with V, =f(x).

We shall prove Lemma 5 at the end of Subsection 5.2.
Our next task is to compute (4.15) in Lemma 5 with monomials u*
in place of the polynomials B,(u;). We thus set

2
L::l,'l:l(l)x)=ZE3—m(T))’) ﬂ’i exp[#l —J)
aed 2Px

. 1 u? o, —1
int 1’ I k d 62 m/2 ,
() <2Lu exP[sz] ”) ’ 2

for m, k € N, such that m+k is even. Note that Li,‘,‘,'k(/l, x) depends only
P,, whereas L;'}'(4,x) depends on P, and V,. Recall by Lemma 0 that
B,,(11,) is a linear combination of u% such that m+k is even. In this case, if
m is odd then k is odd and thus Li,’,‘"k(l, x)=0. Now (4.13) is established

if we show that:

Proposition 3. LIt=Li modulo C* at (A,x)=(0,x,), provided
A=A with some a € N satisfying a> — V., , where A is givenin (4.11).

Postponing the proof of Proposition 3 to the next subsection, let us
prove Theorem 2. It is only necessary to summarize the argument we
have had in this section.

Proof of Theorem 2. For x, € I and [, € N, arbitrarily fixed, we shall
show that there exists a neighborhood I,cI of x, such that the relation
(1.12) is valid modulo C({—00<A1<0,x € I,}). This statement implies
Theorem 2 in a form stated precisely in Subsection 1.3. Setting
my=2ly+8, we choose two constants C; >0 satisfying C_ < —f"(x0) <C
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and my+1,<C_/(C, —g_). We take a € N satisfying a> —f'(x,) and set
A=A]. We then take f € C*(I) with T=R satisfying (4.5) and (4.10). It
then follows from Lemmas 3 and 4 that

mo—1 1

LA, x)= Y,

m=0 m'

orLy (4, %)

t=

modulo C"’({—oo <A=0,x € I,}), where I,cI is a neighborhood of
x9. Shrinking I, if necessary, we see by (4.13) that

mo— 1 J—
Lihx= S Lo | o2mr )
m=0 m! t=0 21

modulo C*({—o00<1<0,x € I,}). Here, fractional integration does not
appear by virtue of Lemma 0. We thus get the desired result.

4.7. Proof of Proposition 3. What we have to do is to replace

m int

the series L;'} (4,x) by an integral L} (4,x) up to a C* error. The
case m=k=0 was done by Boichu and Coeuré [1]. In order to extend
their argument to the general case, we begin by stating a lemma, which
is essentially due to Boichu and Coeuré.

Given a € N and b>0, we set

U, ={(p,V,P)e R} 0<p<b, —a<V<0, P<0},

and consider an integral

J(p, V,P):=J S(&p, V,Pydl for (p,V,P)e U,y
R

with the integrand defined by

S&p,V,P):= ), Z\(O"Zy(&p, V, P)™,
aed;

where Z, (&) : =exp[4if] and Z,(&; p, V, P) : =exp[—p +4iVE+4PE?]. Then,

Lemma 6. If b>0 s small enough, then
Jp, V, P)zzl modulo C°(U,,).
p

We shall prove Lemma 6 in Subsection 5.3.
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With the aid of Lemma 6, it is fairly easy to prove Proposition 3

as follows.
The case m=k=0 (cf. Boichu and Coeuré [1]). We write

sum 2 X i T 'u%
L35 (A, x)=07 ), ©XP 72 xp 2P,

aed;

with 7= (20,) "2, py=p,(; V,), and use an elementary equality

]df—-‘cexplizi ]

with po=pe(o; V,) where By=./—P,/(2n) as in (1.8). ’Then,
L:)lf‘(? (l’ x)=2'BO 62 J(_ZA') Vx)Px):

(4.16) 2B f exp [21;105
R

so that Lemma 6 implies L““‘EL"" modulo C® at (4,x)=(0,x,), as
0,0 0

required.
General case. Recalling that m+k is even, we first write, as in the

simplest case m=k=0,

A k T
sum()b x) 02 (m+k)/2 Z exp 1_-_2 T Ug €Xp 2Px ,

acAF

where 0;! stands for integration over (—o0,1). Noting next that
k= ¥ exp [HosTlomor We get

LR (3, ) =2Bo0t~ "2 84T (5,9

b

=0

- A 2
J(s; 4, x): =a§ ex pI: ](E exp [uos + 2Px:|)'

By using an analogue of (4.16), we see that

J(s5; A, x)=J(—2A+Ps%, V,+P,s,P,),

where

so that Lemma 6 yields

I

4.17 sum A B 62 (m+k)/26k—___
(+17) k(hx)= * 24+ P&

b
s=0

where integration 0; ! is restricted to an interval (—&, 1) with b satisfying
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0<b<b. It is immediately seen from (4.17) that if k is odd then
L% (4, x)=0. If kand m are even, then the right side of (4.17) equals

| — k/2 —
et
s=0 (R/72)I\ 2 24

a fact which implies the desired result. Therefore, the proof of Proposition
3 is complete.

nB,
—2A+ P,s?

a% -m/2 (a)._ k/2 a;c

5. Proofs of Lemmas 3-6

5.1. Proof of Lemma 3. We shall show that
(I) Ly:—L,=0 provided A>A, with some ¢>0;
(I1) L, —L, =0 provided ¢>0 is small enough.

Recalling the assumptions (4.5) and (4.6), we see that the desired result
is obtained by using (I) and (II) as follows:

L=LNZELAEEEASEEN2EEA.

In order to prove (I) and (II), let us note that each term of the series
defining £, is a monomial of the form C,X?*¥?* with X=e* and
V=@ [fxe I,, then f(x)=£(x), so that the left sides of (I) and (II)
are both power series of X and Y=¢/™*% We shall prove the
convergence of these series in a neighborhood of (X, Y)=(e*, ¢/*?). By
Abel’s lemma, it suffices to estimate uniformly
E(1; 4)

Ty(a):=sup =——,
: vr Dy(a; %)

|D,(or; x) — Dy (o; x))|
T s= E (t; A -
(0 =sup BB A= ) Batas )

where U; and U, are appropriate neighborhoods of (4, x)=(0,x,). More
precisely,

Sublemma. (i) For any £>0, there exists a neighborhood U,c R?
of (4,x)=(0,x,) such that sup {T\(x);x € N*\ A} < + 0.

(i) If €>0 is small enough, then there exists a neighborhood Uy,= R* of
(4, x)=(0, x) such that sup {Ty(a); @ € A,} <+ c0.

Proof of Sublemma. Setting R (&):=[f(x+&)—f(x)]/E—f(x,) for
x € I,, we have
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(5.1 D~2(oc; x)= exp [1,0()¢ +R~x(125){] dg.

2az(f - X)

For g>0, we choose &, 6;>0 so small that |R (£)|<¢ for |{|<6, and
|x—xo|<d;. Then

@201
(5.2) Dy(x; x)éf exp [(|p20(@) —&)¢lde  for |x—xo| <.
0

Givene>0, werequire g;<eand setgg=e—g. Ifa ¢ A, then, by (5.2),

eXP[2“2513;]< & < &
Dy x) ~ Clay) ~ C(1)

with  C(a,):=1—exp[—2a,0,¢],

which implies (1). We note that (5.2) also yields
(5.3) D@0z f expl—&g] dE  for Jx—xo| <5,
0

without any restriction on a € N2,
Let us prove (ii)). We first take Jy, dp>0 small satisfying

flx+8E=Ff(x+¢&) for || <éy and |x—xo| <6). Then
|D,(0; ) — Dy (o; )| < D3(ot; x) + D3(et; x)  for |x— x| <y,

where D3(a; x) is defined by the right side of (5.1) with the interval of

integration 20,{(I—x)\[—dy,0y]} in place of 20,(T—x). If dy is
sufficiently small, then there exists a constant ¢;>0 such that
R (&)ES —gy|é| for |E| =0y and |x—x,| <Jj, where the second assumption
of (4.5) was used. Consequently,

+ o0

ﬁg"(“; x) < 2J exp[(|pz0(@)] —ey)éldé  for |x—xo| <oy

2a2011
If €>0 is chosen so small that e<gy, we get (ii). In fact, the uniform

boundedness of 1/<D2(oc; x) D,(x; x) | is clear from (5.3).

5.2. Proofs of Lemmas 4 and 5. Recall that L, =% _,E;/D', and
that Es/DY is C® smooth for (4,x,t) in (—o0,0]xI,x[0,1]. Setting
U=1I,x[0,1], we shall show that:

Sublemma (cf. Boichu-Coeuré [1, Lemme 2]). If m+I<C_/
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(C—C.), then there exists a constant C,, ;>0 independent of x € N’ 2 such that
sup |0Lom(1/D)| < Coit™ ™' with t=(2a,)" Y%
U

Assuming for a moment the validity of Sublemma above, we first
prove (i) and (ii).
Let us begin by observing that Sublemma implies

(5.4) sup |6’,‘16§‘6;" (Ea/D~t1)|§Cm,1E3—m+z+2k-
x,t
We next note by the assumption (4.11) that

(5.5) Y<2 Y (20,)! Vi<t if 4<NeR.

aeAd a=1

Then (i) follows from (5.4) and (5.5), because the supremum of Ey. (t; 1)
overa, € Nand A< —¢is bounded for any ¢ >0 and N’ € R prescribed.
In order to prove (ii), we note that (i) permits us to use Taylor’s

formula which yields
_omZly
Ly— ) oLy

i=oJ!

1 ! ~
= 1—" 1oL, dt.
=0 (m—1)! L( "ol

It then suffices to estimate |0%0.0™ (E3/D")| uniformly up to A=0. Since
Ey(t; 1) <1, it follows from (5.4) that

sup sup |040.07" (E+/DY)| S C,, 1734 m 172K,

A<0 x,t

Noting that —3+m—[—2k>4 is guaranteed by assumption, we see that
(5.5) yields the desired estimate.
Therefore, the proof of Lemma 4 is complete if we justify Sublemma.

Proof of Sublemma. Forb e Ny, € R and t1=(2a,)” * with a, € N,
we set

Hy[M (1, 7): =f |¢lPexplué + M (:0)E*] dE,
R

and thus Hy[M,]=H[M,]. Recalling that D'(a;x)=H[M,](y,, tt) with
Uy =y (2 f(x), we see by (4.10) that |0.0™D',| is dominated by a constant
multiple of ™ 'max H,[M,](1,,tt), where the maximum is taken over
b<3m+2l. Given ne N and B=(f,,-:-, B,) € Nj, we set
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Hyp [F,)(1, ) : = HIVL, ), ©) "1 T H D10, 7).
j=1

Then~|6i0;"(1/D~'l)| is dominated by a constant multiple of ™ !max

Hg [M,](py,tt), where the maximum is taken over n=m+/ and
|BI=3m+2l. Therefore, it suffices to show that
(5.6) sup{Hp ,[M)(1,0);t € R,020,x € Io} <+ 00

with n € N, B € Ny fixed.
Let us prove (5.6). Noting by (4.10) that C_ < —2M () £C., we have

- 2 2 - 2
HIM, (4, 0) 2 /C—’iexp [2’2] H,[V,](4, 6) < Py(u) exp [2‘(‘:]

where P,,(u):=f |E+u/C_|P exp[—C_E2/2] dé. Setting
R

C,\o+v2 »
R = i | P

27!.' ji=1
we have Hﬁ,n[Mx](y') 0') §Pﬂ,n(1u') exp [C“Z]) where

n n+l n(C,—-C_)-C_

C:=
2C_  2C, 2C_C,

Note by assumption that C<0. Since Pg,(u) increases at most in
polynomial order as |u|— o0, it follows that

sup Py (1) exp [Cu?] < + o,
ueR

which implies (5.6) as desired. Therefore, the proof of Sublemma is
finished.

Proof of Lemma 5. We have observed that the derivative
OrLt (4, x),=o can be computed by termwise differentiation in (4.9)'. Let
us compare the result with d"L*[M?¥](1)|,—.,. Then, in view of (4.14) and
(4.15), we see that the conclusion follows from the obvious equalities

OFHIM (1, Tly= o =T"(Or H M1, Dlc=0)-
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5.3. Proof of Lemma 6. We follow the argument of Boichu and
Coeuré [1, Lemme 4 and Proposition].

Regarding IV and P as parameters, we write J(p)=J(p, V,P) and
S, p)=S(;p,V,P). Then,

1—28 Z,Z,
1-Z, (1-Z)(1 - Z{Z,)’

S, p)=

which is a meromorphic function of ¢ € C having no poles on the real
line R, where Z,=Z,(¢) and Z,=2,(¢,p)=Z,(, p,V,P). Observe that
S(&, p) has exactly two poles {=in, which approach to the real axis as
pl0. More precisely, in, and in_ come from the zeros of 1—Z, and
1-2Z%Z,, respectively, and

174 V3 p
0§'1t=2—;;i 4—;2—540 as plo0,

where V', =—1V>0 and V_=—V—a<0. Let us take a contour I" on
the upper half-plane {Im £>0} in such a way that

J(p)=2mi Res S(¢,p)+J (p) with J+(P)1=J S(, p) d¢
E=in+ r

and that J,.(p) remains analytic when pl0 as a function of (p,V,P),

where Res,-;,, S({, p) stands for the residue of S(¢,p) at {=in,. It was

shown by Boichu and Coeuré [1], pp. 142-143, that

1
(5.7) Res S(&, p)= Res Zy —,
E=ins E=in4 (I_Zl)(l_Zz) 4’2p

which implies the desired result. Thus the proof of Lemma 6 is complete.

We would like to add that the residue calculus (5.7) can be replaced
by simpler calculation as follows. Let us begin by observing that

s
J(P)EJ"(P)=J‘ S(&, p)de,
-6
where >0 is arbitrarily fixed. We next set

Z,  Z Z, ZiZ,
S , = , S ’ = )
1€, p) 1-2,1- 2, 2(¢, p) 1—z,1-27,

so that S(&, p)=S,(&, p)—S,(&,p). If d<m/2, then the origin {=0 is the
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only pole of S,(¢, p) and S,(&, p) on the interval —d <& < d—this simple
pole comes from the zero of 1—Z,. We then write J%(p)=J%(p)—J5(p),
where

(]
J;?(p):=PVJ Si¢&, p)dé for j=1, 2.

-é

Let us first consider J{(p). Note that {=in, is the unique pole of
S{(&, p) which approaches to the real axis as pl0. Therefore, by
considering a contour on the lower half-plane {Im £<0}, we see that

n e’ T
J%(p)= —ni Res S (¢, p)=—- ——=—.
1(p) t ¢=e§ (& p) 41—e" 4p

Similarly for J5(p). That is, considering the pole £ =iy _ of S,(¢, p), we get
8\ = s —x
J5(p)=miRes S,(&, p)=—-o.
£=0 4p

We thus obtain J%(p)=n/(2p) as desired.
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