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Introduction

This paper is concerned with the asymptotic expansion, due to
Fefferman [2], of the Bergman kernel for a strictly pseudoconvex
domain. Restricting ourselves to the class of complete Reinhardt domains
in C2, we consider the symbol of a pseudodifferential operator which
represents the singularity of the Bergman kernel. We give an integral
representation of that symbol (see Theorem 2 in Section 1). By using
that integral representation, we identify six coefficients of Fefferman's
asymptotic expansion (see Theorems 1 and Γ in Section 1).

Given a bounded strictly pseudoconvex domain Ω in CN with C00

boundary δΩ, we consider the Bergman kernel K(z) for z e Ω, which is
restricted to the diagonal of Ω x Ω. Let λ e C^ίΩ) be a negatively signed
defining function of Ω in the sense that λ<0 in Ω and |grada λ\>0 on
θΩ. Let us recall a classical result of Hδrmander [5] asserting that

(0.1) lim[-λ(z)]N + iK(z) = — J[-λ](zo)>0 for z0 e 3Ω,
z-*zo 7C

where J[ — λ] denotes the Levi determinant defined by

dzj d

Fefferman [2] refined this result by showing that

(0.2) K(z) = ̂ J[λ](^βr1 + φ(z) \og[-λ(z)]

with φy ψ e C00 near 5Ω. If one considers the Taylor expansions
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w=0 «=0

with L ,̂ Ljf e C^ίδΩ), then (0.2) gives rise to an asymptotic expansion of
K(z). Conversely, starting from such an expansion, one can construct
φ and φ satisfying (0.2). We thus refer to (0.2) as Fefferman's asymptotic
expansion.

We normalize L% and L)f by considering Ln e C°°(δΩ) which satisfy

φ Ά _ 1 d
-wτϊ + ψ\og[-λ]~ 2, Lβi"-—-^ with dλ = —,
Λ n = o Λ CX

that is, LH = (-l)n{N\/(N-n)\}L* for n^N and Ln = (-\)NN\(n-N-l)
ILjf.^.j for n>ΛΓ. We are interested in determining the coefficients
Ln. Note that φ> φ depend on the choice of λ and that Ln depend on
λ and the coordinates near the boundary. With an appropriate choice
of λy an invariant theory for φ, φ were developed by Fefferman [3] and
Graham [4] in the context of local biholomorphic geometry. We shall
not discuss, in the text, the relation between that invariant theory and
our results. We only mention here that our Theorem 1 may be obtained
by using a result of Graham [4].

We now assume that N=2 and that Ω is a complete Reinhardt
domain. Then, the mapping

(0.3) x = log|s:1|, ;y = log|s2| for z = (zu z2) e Ω

defines an unbounded domain log|Ω|<=/?2, called the logarithmic real
representation domain of Ω, which takes the form log|Ω| = {y <f(x), x e /},
where fe C°°(/) with / = ( - o o , x+) satisfies / '<0, / " < 0 and

lim f(χ) < + oo, \imf(x) = — oo.
xj-oo xjx +

The function λ=y— f(x) is a defining function of log |Ω|, and its pull-back
by (0.3), denoted again by λ> defines dΩn{z1z2¥

z0}. Thus one can
consider Fefferman's asymptotic expansion (0.2) for this local defining
function λ of Ω.

Fefferman's asymptotic expansion for the class of complete
Reinhardt domains Ωc=C2 was previously studied by Boichu and
Coeure[l]. They showed that the coefficient L3, the boundary
value of 2φ, is a polynomial off{2 + k)(O^k^6) divided by (f")9. Analyzing
that polynomial, they further tried to prove that if φ\en = 0 then Ω
is biholomorphic to a ball. Our results are obtained by modifying
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their ideas.
Roughly speaking, Boichu and Coeure considered a one-parameter

family of Reinhardt domains Ω̂ . ( O f ί ^ l ) , with xel arbitrarily fixed,
such that Ω*=Ω, that Ω° is locally biholomorphic to a ball, and
that the real domain loglΩξJ for each t is tangent to the curve
51og|Ω| to second order at the point (x,f(x)). Using the Bergman
kernel Kι

x of Ω .̂, they obtained an asymptotic expansion

(0.4) K(z)~ Σ —dTKUz^o with ^
!

which we refer to as the asymptotic expansion via boundary variations. It
should be mentioned that we have not explained preliminary procedures
such as localization of the boundary. Con-sequently, the notation used
here is slightly different from that in the text; it is also different from
that of Boichu and Coeure [1].

By using (0.4), Boichu and Coeure obtained a polynomial 5£ = <£?(/*",
/'", ••, / (8)) such that .27(Π 9 = ̂ Li However, they did not give the
explicit form of ££. Also, the relation between the asymptotic expansions
(0.4) and (0.2) was not clear. We modify the construction of the
one-parameter family Ω̂ . so that the relation between (0.4) and (0.2)
becomes obvious. Specifically, we get

1 -dϊ»κί(z)\t=0Ez ϊψL.dr4 df»+iK'x(z)\t=0^o
(2n)\ πz λό

modulo C00 as functions of (λ,x). Then we are naturally led to a fairly
simple formula of giving all the coefficients Ln (see Theorem 2). Using
that formula, we identify Ln for w^5 (see Theorem 1 for n^3 and
Theorem Γ for w = 4,5). The proof of Theorem Γ is computer-aided.

In the identification of Ln for w^5, we first get messy expressions
of Ln in terms of the derivatives fi2+m\x) for ra^O (see Propositions 1
and Γ). These expressions are simplified by using the derivatives of a
function p=p(v) defined by

p(υ)=f'(x) with v=f'(x).

Note that x \—> v is a one-dimensional hodograph transformation and that
ί/p is the second derivative of the Legendre transform of /.

We have in particular L 3 = — (/>2/>(4))V4!. As a corollary of this fact,
we show that the global condition ψleςi^O (i.e. L 3 = 0) characterizes the
ball. It should be noted that this characterization is not a consequence
of the invariant theory which asserts that Ω is locally biholomorphic to
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a ball in a neighborhood of a boundary point if and only if L 3 = L 4 = 0
there (cf. Graham [4]). In order to show that Ω is biholomophic to a
ball, we solve the ordinary differential equation

{p(v)2p(A)(v)}" = 0 for -oo<*;<0

under boundary conditions which come from the strict pseudoconvexity
of dΩn{ziz2 = 0}.

The idea of using the function p is again inspired by the paper of
Boichu and Coeure [1], In fact, our function p is a modification of
theirs defined by

/>BcM = log[-/'(*)] with v=f(x).

They wrote the condition ψ\eςι = O as a boundary value problem for a
differential equation satisfied by pBCy and tried to show that the solution
corresponds to a domain which is biholomorphic to a ball [1, Theoreme
4], However, the proof is incorrect—the proof of [1, Lemme 4] involves
a wrong use of Taylor's formula and the statement of [1, Lemme 4] is
false. It seems to the present author that to prove the above mentioned
characterization of a ball by using the function pBC is extremely difficult.

This paper consists of five sections. The first section gives the
statement of the results. We first state the identification of the coefficients
Ln for «5Ξ5 (Theorems 1 and Γ), and then gives the characterization of
the ball as Corollary of Theorem 1. We next give a formula by which
one can compute, in principle, all the coefficients Ln (Theorem 2).
Finally, we add some explanation to that formula.

In Section 2, we assume Theorem 1 and prove its Corollary. In
Section 3, Theorems 1 and Γ are proved, assuming the validity of
Theorem 2. We prove Theorem 2 in Section 4. The proof of Theorem
2 requires several technical lemmas, which are proved in the final section.

Let us emphasize that all our results except Corollary of Theorem 1 are
those for the real domain log|Ω| rather than those for the Reinhardt domain
Ω. In Theorems 1, Γ and 2, the boundedness of Ω and the strict
pseudoconvexity of the boundary points at which z1z2 = 0 a r e imposed
in order to simplify the description, and these restrictions can be eliminated
without changing the proof—even the smoothness of the boundary <3Ω
up to the portion z1z2 = 0 is not necessary to assume. In Subsection
3.5, we consider a family of complete Reinhardt domains which are locally
biholomorphic to a ball. The boundary of each domain is strictly
pseudoconvex except at the portion z2 = 0; some domains are unbounded
and/or weakly pseudoconvex. This family is used in order to simplify
calculations in the proof of Theorem 1.
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1. Statement of the results

1.1. Coefficients of the asymptotic expansion. Let Ω be a
bounded strictly pseudoconvex domain in C2 with C00 boundary. We
assume that Ω is a complete Reinhardt domain, that is,

{(*!, z2)eC2; K I ^ K I , |*2|^|™2|}ciΩ

for every (wi9 w2) £ Ω. In order to express the asymptotic expansion of
the Bergman kernel, we consider the logarithmic real representation
domain log|Ω|, which is the image of Qn{ziz2¥

z0} under the mapping
l, log|*2|). Let us set

f(x): = sup{y e R;(xyy) e log|Ω|} for x e I: = (-oo, x + )>

λ(z): = Iog|jsr2| —/(log|̂ r11) for z = (ziy z2) e C2 with z1z2φθy

where # + : = sup{# G R; (xy y) e log|Ω| with some y e R} Then,

\ = {(xy y)eIxR; λ:=y-f(x)<0},

and λ = λ(z) is a defining function of dΩn{z1z2φO}. Note that the strict
pseudoconvexity of dΩn{ziz2 Φ0} implies/" < 0. We now make a change
of variables x *-+f'(x) and introduce a function p e C00(/"'(/)) defined by

p{υ)=f"(x) with v=f{x) for x e I.

Let K(z) for ^ e Ω denote the Bergman kernel of Ω restricted to the
diagonal of ΩxΩ. Recalling that K{z) is independent of (z1/\z1\yz2A

zi\)y
we write

(1.1) L(λ, x) = L(λ;v) = (2π)2\Zlz2\
2K(z).
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Using the notation in Fefferman's expansion (0.2), we have

We state a preliminary result as follows.

Theorem 0. Under the conditions and the notation as above, the
singularity of L(λ v) in (1.1) takes the form

Q{v) L Λ v ) i L*{v) i y L > μ i o g r χ\
λ3 λ2 λ ,~3 (n-3) ! *

modulo Cι(Ω,n{z1z2φ0})for any prescribed I e No : = {0, 1, 2, •••}, where the
coefficients Ln{v) are determined by p and its derivatives at v.

Several coefficients can be explicitly determined. In fact, we have:

Theorem 1. In Theorem 0 above, the coefficients Ln = Ln(v) for
0 ^ « ^ 3 are given by

T 1 r " Γ (Wv T (2<4h"T — 1 r — Λ Γ —
i ^ 0 — i , L,γ — — ~P> LΊ—\PP )> ι'3

Theorem 1'. Two more coefficients are given by

4))"')'- \p(2)(P2PιΎ+\(PP(Ύ,

-6\L5 =

+ lθ(p(4-ψp"p2 + 32(pw)2(p')2p.

Let us conclude this subsection by giving a consequence of Theorem
1. By solving the differential equation (p2p{^)Y = 0 under boundary
conditions coming from the strict pseudoconvexity assumption on
dQn{z1z2 = 0}, we get the following:

Corollary of Theorem 1. Under the assumption of Theorem 1, if
the coefficient L 3 vanishes identically, then Ω is globally equivalent to a
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ball. In other words, if ψ = 0 on dΩ. in Feffermanys expansion (0.2), then
2 | 2 < l } with a, b>0.

The proof of this corollary is given in Section 2.
It should be emphasized that the boundedness of Ω and the strict

pseudoconvexity of dίϊn\{z1z2 = 0} are crucial in the Corollary above.

1.2. Formal integral representation of the full expansion. We
shall present, in Theorem 2 below, a formula of giving the coefficients
Ln of the asymptotic expansion in Theorem 0. That formula takes the
form of an integral representation, which gives rise to Theorems 1 and
Γ. The integrand is a formal power series of a parameter, where the
coefficients are polynomials multiplied by an exponential function to
use the standard notation /?[[•]] and /?[•]. That is, JR[[τ] ] denotes the
totality of formal power series in τ with real coefficients, and R[μ] stands
for the set of all real polynomials in μ.

In order to motivate the formulation of Theorem 2, let us first write
the asymptotic expansion in Theorem 0 as

(1.2) L(λ v) ~ ^ΣLn(v)dΓnί-9
4 n = 0 λ

where dλ and dχ1 denote differentiation and indefinite integration,
respectively. Since we are concerned only with the singularity at λ= — 0,
the ambiguity of indefinite integration is irrelevant. One may naturally
express the right side of (1.2) by using a pseudodifferential operator, that is,

n=z()

where Llx(i;v) e R[[τ~1]].
Let us next recall another implication of Theorem 0 concerning the

dependence of Ln(v) on the derivatives of p(v). Noting an elementary
relation

(1.3) / 2 + m ) ( * ) = (/>(̂ )δJm/>(*;) with v=f(x) for m e NOy

we see by Theorem 0 that Ln(v) is determined by/ ( 2 + m)(Λ;) for ra^O. We
shall state Theorem 2 in terms of f(2 + m)(x) in place of p{m)(v). It is
then natural to consider the formal Taylor expansion M*x{ξ) e #[[£]] °f

(1.4) M,(ζ)=A* + ξ) P / ( * " - I (1 -#(«+«{) dσ,
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and write Ln(v) = Ln[M*x], etc. when we wish to emphasize the dependence
on M*x.

For technical reasons that will become obvious later, we write
Llux(τ;v) = L*[Mx](τ) with τ ~ 1 = τ 2 . Then, the problem is reduced to
writing down explicitly L*[M£](τ) e /?[[τ2]] such that

(1.5) " " - "' " - ~ 1

2λ

Our result is described as follows.

Theorem 2. Under the assumption of Theorem 0, the asymptotic
relation (1.5) is valid with

(1.6) L*[M*J(t): = 4 f „ , * * * , e R[[τ2]],

where

(1.7) fl»[Afi](μ,τ) := | exp[μξ + M*x(τξ)ξ2] dξ e R[[τ]].
JR

In the next subsection, we shall explain the statement above.

1.3. Explanation of Theorem 2. Let us begin by explaining (1.6)
with (1.7). We define

F*[Mt

x\(ξ,τ)= Σ^) t m eΛ[[τ] ]
m = 0

by the formal Taylor expansion of exp[M*x(τξ)ξ2—f"(x)ξ2/2]. Then, we
can write (1.7) more explicitly as follows:

^ ^ j dξ

where Am(μ) = Am[M*x](μ) are defined by

Using the fact that ao(ξ) = 1, we see that
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(1.8) Ao(μ)=—>09 where Bo: =

Thus l/ί/*[M£](μ,τ) makes sense as a formal power series in τ, so that
we may write

= ΣH*[Ml](μ,τ) m = 0

with functions of μ, Bm(μ) = Bm[M*x](μ), such that 50(j") = Bo F o r m € No,
we set

(1.9)

which are well-defined by virtue of the following lemma.

Lemma 0. Am(μ) andBm{μ)for m e No are polynomials of μ such that

(1.10) Am(-μ) = (-ί)mAm(μ), Bm(-μ) = (-\)mBm(μ).

In particular, the integral in (1.9) converges and

Ln + 1/2[M*x] = 0for neNo,

so that (1.6) makes sense and

(1.11) L*[M$\(τ)=-f-^- £ Ln[M*x] τ2n.

Proof of Lemma 0. Recalling a well-known formula for the Hermite
polynomials Hm(ξ):

2π

we see that Am(μ) e R[μ] and thus Bm(μ) e R[μ]. By definition, we have
F*[M*xK-ξ, - τ ) = F*[Λί£|(<j;,τ), and thus iϊ*[M^](-μ, - τ ) = iϊ1ί[Mί](μ,τ).
This implies (1.10).

Let us restate Theorem 2 as a refinement of Theorem 0.

Restatement of Theorem 2. Under the same assumption as that of
Theorem 0, the singularity of L(λyx) in (1.1) takes the form
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f"(x)ι° + 3

(1.12) nλ>x)=-LLl £ Ln[M*x] dΓ
2

2λ

modulo Clo({ — oo < 2 ^ 0 , x e I}) for l0 e No arbitrarily prescribed, where the
coefficients Ln[M^\ are defined by (1.9), and δ j 1 stands for integration over
(λo,λ) with λ0 e (— oo, 0) arbitrarily fixed.

2. Proof of Corollary of Theorem 1

Since φ\dςι = O and p<0> it follows from Theorem 1 that

(2.1) ^ { ^ ) ¥ » } = 0 for vef(I).
dv

We solve this differential equation under boundary conditions which are
given by the following lemma.

L e m m a 1 (cf. Lemme 6 of [1], page 150). Under the same
assumption as that of Corollary of Theorem 1,

t TO V t l-αo V

We assume for a moment the validity of Lemma 1 above and prove
Corollary of Theorem 1. Integrating both sides of (2.1) twice, we use
Lemma 1 and get />(4) = 0. Using Lemma 1 again, we obtain

p(v) = 2v-2v2

y that is, /"(*) = 2/'(*)-2/'(x)2.

It is elementary to solve this differential equation. Using the strict
pseudoconvexity of Ω, we get

ae2x4-be2f{x) = 1 with constants a,b>0,

which implies the conclusion of Corollary of Theorem 1. Thus, we are
done if we prove Lemma 1.

Proof of Lemma 1. Recall that Ω is a strictly pseudoconvex complete
Reinhardt domain in C2. Since, in addition, Ω is bounded, it follows
that the set

{(\zi\9\z2\);z = (zi9z2) e dΩ}c:R2

is a C00 curve which has endpoints (0, r2), (r l f 0) G <3Ω with some constants
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ri> r2>^- Using the strict pseudoconvexίty of these points, we see that
the boundary 3Ω is given, locally near these points, by

(2.2) l*2l = '2-' i l*il 2 ^*il 4 AI*il) near * = (0,r2),

(2.3) \*i\ = ri-l2\z2\
2 + \z2\*£(\z2\) near z = (ru0)9

where lly 12>O are constants. Here, and also in what follows, we use
the notation $(-) to denote a C00 even function near 0 e R which changes
from instance to instance.

It is clear that/'(/) = ( —oo, 0), which is the domain of definition of
the function p. We need to study the behavior of p{v) as v\0 and that
as v\, — ao. This amounts to considering 5Ω near the points (0, r2) and
(r,, 0).

Let us first consider 5Ω near (0, r2). Taking logarithm of both sides
of (2.2), we have

fix) = log r2 - le2x + e*xg(ex)y where /: = /1/r2 > 0.

We differentiate both sides and get

(2.4) f{x) = - 2le2x + e*x$iex), f\x) = - 4le2x + eAx&iex)

as x\ — oo. Applying the inverse function theorem to the first equation

of (2.4), we obtain ex = y/ -v/i2l) {1 +vS{yf^v)} as */|U This, together
with the second equation of (2.4), yields

(2-5) p(V): ^υ) as

Therefore, we obtain the first two assertions of Lemma 1.
It remains to verify the last assertion, which follows from

(2.6) p(v)=-2v2 + v£i\/J~^v) as v[-oo.

The proof of (2.6) is similar to that of (2.5). Starting from (2.3) in
place of (2.2) and setting /': = l2/r1 > 0, we argue as before. Then we get

Π 4V — 1/f'(γ\ — Ύl'ρ2yA-ρ*yβ(p*\ f"(x\= —2f'(γ\2ί\ 4-P2

as ^ : = / ( Λ ? ) | —oo. The first equation of (2.4)' yields

as w : = 1 /v ΐ 0

which, together with the second equation of (2.4)', implies (2.6) as
desired. Therefore, the proof of Lemma 1 is complete.
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3. Proofs of Theorems 1 and Γ

Assuming the validity of Theorem 2, we prove Theorems 1 and Γ.

3.1. Preliminary observation on the dependence of Ln(v) on
pik)(v). Recall Theorem 0 which constitutes a part of the assertion of
Theorem 2. By Theorem 0, we see that each Ln(v) is determined by
the derivatives p(k\υ) for k^.0. It is not difficult to see, by recalling
the explanation in Subsection 1.3, that each Ln depends only on p^h)(v)
with k^2n. In order to prove Theorems 1 and Γ, it is useful to give
a refinement of this result. First, some notation.

MULTI-INDEX NOTATION. For a multi-index y = (y1,- ,yJ-) e Nj

Oi we
define its length as usual by |y|:=7iH \-yj. Given another integer

^y we set

W'm: = {y e JV; \γ\ = m, y ^ ^ X)

where iV={l, 2, 3, •••}. In case / = ra, we also define

Assuming the validity of Theorem 2, we shall prove the following:

Proposition 0. Each coefficient Ln{v) = Ln[M*x] in Theorem 0 is a linear
combination of f(2 + n)(x) -f(2 + yj)(x)/f"(x)j+n with y e Nj>2n. In terms of p
and its derivatives, each Ln in Theorem 0 is a linear combination of

eηti>]: =Piηi)" -p(η2n)/pn with η e ΛΓ^n'2n.

Before proving Proposition 0, we do a normalization, which will be
useful also in the remaining subsections. Setting

r Σ ^
- / ( x ) m=o

so that/ | = — 1, we consider F*, H*, and L* with M*x in place of M*x, that is,

ξ2+M*M)ξ2]=™p\ Σ= exp[l ξ
2

,τ)=\ F*[(3.1) H*[M*x](μ,τ)=\ F*[M*x](ξ,τ)
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Noting that L*[lffix](Cτ) = C2L*[Mx/C2](τ) for an arbitrary constant C>0,
we have from (1.11) that

(3.2) L>[M*x](τ) = l t i - f " ( x ) } n L n [ M * x ] τ 2 " e R[[τ2]].

Proof of Proposition 0. We prove the former statement—the latter
follows immediately from the former via (1.3). It suffices to show that
each Ln[M*x] is a linear combination of f2 + yi'"f2 + γj/f"(x)n with
γ e iV7'2". In order to prove this, we set

weight (Jϊ+yi-fϊ+γjτ
k) = \y\-k;

we say that a polynomial in /£+m and τ is of homogeneous weight w if
it is the sum of monomials with the same weight w. Then we are
reduced to showing that each term in the right side of (3.2) is of
homogeneous weight 0. But this is clear from the expression of L*[Λ/£](τ)
in terms of F\M\]{ξ, τ).

3.2. Proof of Theorem 1. We have given the method of
computation in Subsection 1.3. It is only necessary to evaluate quantities
appearing there and then express the results in terms of the derivatives
of/>. Observe by (3.2) that L O [ M £ ] = 2 L * [ M ^ ] ( 0 ) = 1. Thus the first task
is to represent L^M^] for w = 1,2,3 in terms of the derivatives of/. This
is done by the following:

Proposition 1. The coefficients Ln = Ln[Mj] for w = 1,2,3 are given by

2f'(x)L
ί
=f

where ••• in the expression of each Ln is a linear combination of f£+yι'-f£+y.
with γ = (γl9 •• ,7j) e Nj'2n satisfying γx<n + l.

It is not necessary to write down the abbreviated parts in Proposition 1
above. This is because of the following observation, which refines
Proposition 0 in the cases n = 1,2,3.

Proposition 2. // n 5Ξ 3 then Ln is a linear combination of eη\p\ with
η = (ηχr..y η2n) e Nl"'2n satisfying ηλ ^ n + 1 . More explicitly, Ln for
n= 1,2,3 are linear combinations of

p" for n = l ; p
(4)
p

y
 p

(3)
p' for n = 2;
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andp«ψ, pWp'p, pWp"p, p^(p')2 forn = 3.

Propositions 1 and 2 are proved in Subsection 3.4 and 3.5.

Proof of Theorem 1. We are almost done by virtue of Proposition
1. It remains only to express the right sides in terms of the derivatives
of p. This is done by using (1.3); specifically, we need

f"=P, -H=P\ -fϊ=P(2)P+(P')2,
and

-H =P(4)P3 + 7P(3)P'P2 + 4(/>") V +1 \P"(P')2

-ft =pi*ψ +1 ipWp'p* +15/><V/>3 + 32/)(3)(p')2/>2 + ,

where in the expression of — / | + m for ra = 5,6 is a linear combination

ofp(nι)...p(fim) with f/ = (ί/1, -~,ηm) e N£'m satisfying ηi<m — 2. By virtue of
Proposition 2, the abbreviated parts are irrelevant both in the expressions
above and in Proposition 1. After some algebraic manipulations, we get
the desired conclusion.

3.3. Proof of Theorem Γ. We follow the argument in the previous
subsection. Let us first state substitutes for Propositions 1 and 2.

Proposition 1'. // n = 4 or 5, then Ln : = LJifiζ] = { - / " ( * ) } W L J M £ | is
given by {n-\-\)\Ln — Qn-\ , where ••• is a linear combination of

satisfying 7 i<4 or j>n; Q4 and Q5 are given by

107
1740/7 ) 3,3 i 3 + — / 6 > 6 + 1525/6 i 5 > 3 +1030/ 6 > 4 > 4 +10440/6,4,3,3 (

- Q5 =/i2 + 30Λi,3 + 97/ 1 O i 4 + 492Λ 0,3,3 + 210/9,5 + 2880/9,4,3

7545
+ 5670/9,3,3,3 + 327/8,6 + 5580/8,5,3 + — / 8 4 4

100095
+ 44550/8,4,3,3 + — — - /8,3,3,3,3 +189/ 7 , 7 + 7668/7,6,3
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+ 12900/7,5j4 + 76140/7,5,3,3 +102930/7,4 > 4,3 + 462360/7>4,3,3,3

+ 7668/6t6,4 + 45261/ 6 i 6 i 3 i 3 + 9540/6>5>5 + 304380/6,5,4,3

+ 683490/6,5,3>3j3 + 68560/6 i 4 i 4 > 4 +1385505/6,4,4>3>3.

Proposition 2'. If n = 4 or 5, then Ln = Ln[M*x] is a linear combination

of eη[p] with ij = θ h , •••.fan) e Wo"'2" satisfying η^4 and

Proof of Theorem Γ. The procedure is the same as that of Theorem
1; we use Propositions Γ and 2' in place of Propositions 1 and 2. It is
necessary to express f2+m with » ι ^ l θ in terms of the derivatives
of p; we need

Rm+" for m^ 10

where ••• is a linear combination of p(ηi) - p("m) with η = Oii, ,ηm) e
satisfying the following conditions: for m^6, t]5>0; for m = 7,8, 9, >/i<4
or η5>0; for nt= 10, ηt < 4 or η6>0. In order to shorten the description
of i?m for 5^w^lO, we set for a moment pk=pm for k e JV0; then

=/>5/>o4 + 1 IPAP iPo3 +1 SpsPiPo3 + 32p3Pι2Po

PβPo5

PΊPO6 + MpβPίPo5 + IZPsPiPo5 +

PsPoΊ + ̂ PiPiPo6 + MpsPzPo6 + 28Sp6p1

2p0

5

+ \038p5p2pιp0

5 + I206p5p1

3p0* + 56p4

2p

+ 768p4p2

2p0

5 + 5ί42p4.p2p1

2p0

4,

η + 49ίp7pί

2p0

6 +162p6p3p0

7

+ 2062p6p2p1p0

6 + 2934p6pί

3p0

5 + 2 1 0 / > 5

7

+ I806p5p2

2p0

6 + ί4988p5p2pί

2p0

5 + \736p4.
2p1p0

6

+ 4590p^p3p2p0

6 +18864ptp3pi

 2p0

5 + 20838p4p2

2pιp0

5,

8 + 787pspί

2p0

7 + 255pΊp3p0

8
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+ 3788pΊp2p1p0

Ί + 6371/>7/>1

3/>0

6 + 372p6p4po

s + 6426p6p3p1p0

Ί

+ 3868/)6/>2

2/)0

7 + 38224p6p2p1

2p0

6 + 25761pβp^p0

5

+ 210p5

2p0

s + 8220p5p4p1p0

Ί

4- 28768p4p2

3p0

6 + 325500p4p2

2pi

2p0

5.

After more algebraic manipulations than those in the proof of Theorem
1, we reach the desired result.

Unfortunately, we only have computer-aided proofs of Propositions
Γ and 2' as well as the expression of Rm for 5 ̂ m ^ 10. A more acceptable
proof is desired for Theorem Γ, or at least for Proposition 2'.

3.4. Proof of Proposition 1. We need to carry out some explicit
computation which corresponds to the explanation in Subsection 1.3. It
is then convenient to restate Proposition 0 in terms of L\M^\
and F*[M*X]—normalized expression in (3.1). Recall first that

Λjμ) τm € R[[τ]],
m = 0

->2*2 Σ Bm(μ)τmeR[[τ]],

where Άm(μ) and Bm(μ) are polynomials of μ with ΛQ(μ) = B0(μ) = l;
furthermore,

where LM = (2π)~1/2 B2n(μ) exp[ —μ2/2] dμ are the same as those in (3.2),
JR

that is, Ln = {— f'(x)}nLn[Ml]. Then Proposition 0 is restated as

= V c(v) J

where cn(γ) e R for y = (yi, '",yj) e N*'2n are universal constants inde-
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pendent of the domain Ω.
We wish to evaluate cn(γ) explicitly. This is done by recalling that

oo 1 / oo

fc = 0 # ! \m=l

In fact, writing F*[M*x](ξ,τ)= £ άm(ξ)τm e R[[τ]] with άm(ξ) e R[ξ], we
m = 0

have

while Bm(μ) are determined by

£ Jm.fc(μ)Bk(μ) = 0 formal.

In order to prove Proposition 1, it suffices to verify the following three
statements:

(1°) c"( n) = ~X

 f o r M > !
'Λ 2n)\ (w + 1)!

cn(2n-i,i) - 1 ^3(4,2)
(2) = for n>2, and = —1;

(l+2«)! 3! (n-1)! ~ 6! 4!

( 3 O ) g3(4 )l,l) 41
6! (3!)2 12-

Before proving (l°)-(3°) above, let us prepare an elementary Calculus
Lemma. Given y = (yi, ,yj) s NJ'2n, we set

In(y)=\ Gn(μ).. Gγj(μ) e~^2 dμ

JR

where Gm(μ) e R[μ] for m e No is defined by

~ dξ

2π

Calculus L e m m a . Let In(y) for y = (yi, * ,y7) e Nj'2n be defined as
above. Then, the following five statements hold:
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(i) In(2n)=^-forn^l;

(ii) /B(2n-3,

(iii) /5(6,4) =

(n-2)!

-6!4!;
8

(iv) I6(6,6) = 101520=^6! (3!)2;

(v) 76(6,3,3) 53280 ^
lo

Proof of (1°). We are concerned with the case y — 2n e N1'2". This
case is easy, because the linear term / | + 2 n appears only as the lowest
order term of ά2n(ξ) e R[ξ]. We get

Λ2n(μ)= j

(2 + 2n)\

where ••• is the part which is irrelevant to our purpose. Since B2n(μ)
— —Ά2n{μ)-\ , it follows from (i) of the Calculus Lemma above that

cH(2ή)= -

Proof of (2°). Let us consider the case y = (71,72) e JV2'2π with
7i > 72 We wish to extract the quadratic term
Inspecting the expansion of F*[M£], we see that

J2 + γι J2

and B2n(μ)= -Λ2n(μ) + 2Λyi(μ)Ay2(μ) + •••. Consequently,

(2n
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where we have used (i) of the Calculus Lemma. In order to get the
desired results, we also use (ii) and (iii) of the Calculus Lemma. Restrict-
ing ourselves to the case y = (2n—1,1), we have

which implies the first assertion of (2°). It remains to consider the case
y = (4,2). We have

) ) ^ + ^ 6 ! ! 6 ! .
5! 4

Thus the proof of (2°) is complete.

Proof of (3°). It remains to study the case y = (4,1,1) E ΛΓ3'6—the
cubic term/£(/f)2 in L 3 is concerned. We argue as before. It is sufficient
to look at

fx Λ /fx\2 fx

6! 2 \3!/ 3!

and B6(μ)= -
From these,

, )

Again, we use the Calculus Lemma—(i), (ii) and (iv), (v); then

76(6,6)-3/6(6>3,3)=-?6!(3!)2

)

from which the conclusion follows.

Proof of the Calculus Lemma. The first assertion (i) is a consequence



310 N. NAKAZAWA

of the well-known formula

In fact, changing the order of integration

" dξ

2π n\

In order to get (ii)-(v), we note that Gm(μ) are modified Hermite
polynomials in the sense that Gm(μ) = i~mHm(ίμ). It is well-known that

expl

which implies

[ 1 Ί oo cm

2 J m = 0 ml'

X-Hn{μ)Hy2{μ)= * 1 H ^ M

y!

for y = (yi,y2)
 G N 2 ' m , where y! = yi! y2!- Setting m = 2w, we get

(3.3) -G y i (μ)G y 2 (μ)= 2,

for y = (yi,y2) e ΛΓ2'2". Multiplying both sides of (3.3) by exp[-μ2/2], we
integrate the results with respect to μ. Using the conclusion of (i), we
obtain

(3.4) S / ^ ) = Σ (- 1

for y = (yi,y2)
 e N2j2n. Therefore, the proofs of (ii)-(iv) are done by

evaluating the right side of (3.4) in these cases. Also, (v) is proved by
a repeated use of (3.3) and (3.4).

Let us first prove (ii)—(iv). We write y2 = /, and thus y1 = 2w — I. In
order to do efficient computation, we note that the right side of (3.4) is
the coefficient of sι in the expansion of {(1 +s) 2 — s}n. Since (1+s)2 — s

2 3 - ί ) , it follows that
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(3.5) + l ^ f + ( - M ) 1 ( M ) 1 ^ ^ ( . ^ s
,.5

where (w)ί = w(« + l) (w + /— 1). By using this formula (3.5), we obtain
(iί)-(ίv).

It remains to consider the case y = (6, 3,3) e iV3'12. Using (3.3), we
have

1^(6,3,3)-Σ^ J *-' < 9 - 2 * 3>

!̂ ( 6 , 3 , 3 ) Σ
6!3! k% k\ (6

We evaluate 76_fc(9 —2A,3) by using (3.4). This is not difficult, because
computation is simplified with the aid of (3.5). We thus obtain the desired
result (v).

3.5. Proof of Proposition 2. It is possible to verify the desired
conclusion by direct computation which, however, is lengthy. In order
to shorten the proof, we require a lemma.

Lemma 2. For α, b e 2N0 with b>0 arbitrarily fixed, consider a
complete Reinhardt domain in C2 given by Ωfl h: = {|#i|2|#2Γ~Hj22lb<l}
Then the following statements hold:

(i) p{v) = -(2 + av)v{2 + (a- b)v) = 2v + (2a- b)v2 + -a(a - b)v3, and

the domain of definition of p is the interval —2/a<v<0.
(ii) The Bergman kernel Kab does not have log term in the sense that

ψ = 0 in (0.2).
(iii) If a = 0 then L 0 = l, Lx=b and Ln = 0 for all n^.2.

Here is the only place in the present paper where we encounter
unbounded domains or the breakdown of the strict pseudoconvexity at
boundary points z = (zl9z2) satisfying z1z2

:=0. Note that if a>0 then
Ωab is an unbounded domain such that the boundary is everywhere strictly
pseudoconvex. If b>2 then Ωo h is a bounded domain such that the
boundary is strictly pseudoconvex except at the portion z2 = 0. The
domain Ωo 2 is the unit ball. As we mentioned at the end of Introduction,
Theorem 2 remains valid for the domains ΩΛ b in Lemma 2.
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Postponing the proof of Lemma 2 for a moment, let us first prove
Proposition 2 with the aid of Lemma 2.

Proof of Proposition 2. Regarding Ln = Ln[M*x] as a function of the
variable v, we write, according to Proposition 0,

foil 0... frit 2n)

(3.6) Ln = Ln(v) = Σ CM en[p] with ejp] =V- f—
if P

and coefficients Cn(η) = Cn(ηiy * ,^2w) G ^> where summation is taken over

multi-indices η = (ηu '",η2n) e NZH'2H.

Let us first observe that the desired conclusion will be obtained if
we prove the following three statements:

(1°) 0,00 = 0 if ηi£2 and ηΦη°: = {2, - , 2,0, .-,0) e JVg"'2";
(2°) CB(if°) = O for «^2;
(3°) C3(//) = 0 in case fh = 3.

In fact, if n = ί, then the possible choice of η is (2,0) and (1,1), but (1°)
yields C 1 (l, l) = 0. In case w = 2, what we want to show is that

C2(η) = 0 for >/ = (l,1,1,1), (2,1,1,0), (2,2,0,0),

a fact which is a consequence of (1°) and (2°). Similarly, if « = 3 then
the desired conclusion is

C3(ί/) = 0 in case f/i^

which follows from (3°) if *h = 3, and from (1°) and (2°) if η^2.
We shall prove (1°), (2°) and (3°) by using Lemma 2. The idea is

simple. That is, for the domains Qab in Lemma 2, we compute eη[p] by
using (i), and specify Ln with the aid of (ii) and (iii). Substituting the
results to the both sides of (3.6), we see that certain coefficients Cn(η)
must vanish and obtain the desired conclusions (1°), (2°) and (3°). More
precisely, we regard eη[p] as functions of v and consider the behavior as
z fO. Then, the left hand side of (3.6) is constant for each n fixed,
whereas the functions eη[p] appearing in the right hand side behave
differently according as the multi-indices η vary. Thus, if eη[p] is
non-constant then correspondingly Cπ(τ/) = 0.

Let us proceed to the proofs of (1°), (2°) and (3°). In order to show
(1°) and (2°), we take a = 0 in Lemma 2, and thus p = 2v — bv2

y L 0 = l,
Lx=b and Ln = 0 for «^2. Hence, setting n=\ in (3.6), we get
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= -260,(2,
2v — bv

This yields at first C 1 ( l , l ) = 0 and then Cj(2, 0)= -1/2. We thus get
Lx = -/> V2 (and L o = 1). Let us next take wΞ>2 in (3.6). If n = 2 then

Observing the behavior as ι/|Ό> w e f i r s t g e t C 2(l, 1,1,1) = C2(2,1, l,0) = 0
and then C2(2,2,0,0) = 0. The same reasoning applies to the general
case n^2—we see first (Γ) and then (2°).

In order to prove (3°), we need to consider Lemma 2 with aφO. Let
« = 3. Recall by (1°) and (2°) that C3(η) = 0 in case ηx<L2. Thus (3.6)
takes the form

(3.7) 0 = Σ C3(η>) eηj[pl

where ^ : = (3,1,1,1,0,0), η2: = (3, 2,1,0,0,0), η3: = (3, 3,0,0,0,0), and
thus ^i[p]=/>(3)(p')3//), en2\p]=p{3)p»p', eη3[p] = (p(3))2p. As before, we
first get C3(f/1) = 0 from (3.7). Let us next observe that

eη>[p]->2p(3)(0)p"(0) and eηs\p]^0 as υ]0.

Then (3.7) yields C3(η2) = 0, if we choose a and b in such a way that
/>(3)(0)/>"(0)τ*0, that is, a{a-b){2a-b)φQ. Noting that eηs\p]Φ0 as a
function of v, we again use (3.7) and get C3(η3) = 0. Therefore, we
obtain (3°), and the proof of Proposition 2 is complete.

Proof of Lemma 2. Direct computation yields (i). Using the fact that
a complete orthogonal system of L2 holomorphic functions is given by
monomials

z\z\ with

we can show without difficulty that

^Pi \ P P

where p: = ^—\z2\
2pϊ2/b with pA: = l — ki | 2 |# 2 | α . We see that p is a smooth
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defining function of the portion dQn{z2¥
z0}, of which every point is

strictly pseudoconvex. Thus (ii) follows from (3.8). If α = 0, then (3.8)
yields

,~ v9, • <? -rr , x P(v) / 2 c o s h λ b \
(2π)2 *i*2 2 KaJb(z) =?γ - — 3 - - -—j-

4 \smh3λ sinh2/l/>

which implies (iii).

4. Proof of Theorem 2

4.1. Reduction to the real domain log|Ω| and some normaliza-
tion. Since monomials form a complete orthogonal system for the Hubert
space of L2 holomorphic functions in Ω, it follows that

where dVA(ζ) denotes the volume element of C2 identified with

/?4. Making a change of integration variables ζj = exp[ζj + y/— 1 θj] i—> (ξjy

θj) for y=l,2, we get

ί \ζ*\2dVA(ζ) /|C1C2l
2 = (2π)2 ί

J Ω / Jlo»glΩl

where dV2(ξ) is the volume element of R2. Recalling that
and log \z2\=f(x)-\-λ for x e /, we see that ^ π ) 2 ! ^ ^ ! 2 ^ ^ ) is a function
of (λ,x). Let us denote it by L(A, x) as in (1.1). Then

τn \ V 2α2exp[2αiΛ: + 2α2{/(Λ:

αeiV
exp[2a^ + 2azf(ξ)]dξ >

where we have written ξ in place of ξ1. We reduce each fraction by
the factor exp[2α1Λ: + 2α2/(^)] and shift the integration variable ξ. Then
we get

(4.1) LU,*)- Σ 2 a ^ [ Y ] forX<0,XeI,

where
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Jl-
(4.2) D(oc;x):= f exp[2a1ξ + 2a2{f(x + ξ)-f(x)}] dξ

Jl-x

with I-x = {ξ e R ξ + xe /}.
Regarding x e I as a parameter, we shall investigate the behavior of

L(λ, x) as ΛfO. It is convenient to set

Es(τ;λ): = τ-sexp[λ/τ2] with τ: = (2α 2)" 1 / 2

for s e Z, and write (4.1) as

(4.1), L α , * ) = Σ % 7 ^ v *>r/=0flf2,

where Dj(oc x) :=τ~jD(oc;x). The desired asymptotic expansion will be
obtained by using a localized version of (4.1)1, and the proof of localization
requires (4.1)2.

Let us look at the dependence of D(ot x) on x more precisely.
Recalling by the definition (1.4) that f(x + ξ)-f(x)=f'(x)ξ + Mx(ξ)ξ2, we
have

where μ(α; Vx): = 2OL1 + α2 F x with Vx: =f(x). Setting for >=0,1, 2

(4.3) μ,(α; Vx): =τ^(α; Fx) with τ = (2α2)"1/2

and τ~j(I—x): = {ξ e R\τjξ + x el}, we get

(4.2), Dj(<x; x) = I exp[μ,(α; Vx)ξ + τ2>-2Mx(τ*ξ)ξ2] dξ.
Jτ-j(I-x)

4.2. Heuristic computation explaining Theorem 2. Before
proceeding to the rigorous proof of Theorem 2, we give here two heuristic
arguments. The first heuristics is very simple and is given as follows.
Setting

(4.4) L a u x(τ): = £ / with τ : = 2α2,

we assume that the following Laurent expansion is valid:

£auχ(ί)~ Σ LT%(x) f-" = :L*ux(τ) about τ=α>.
w = 0

Then, one may expect that the asymptotic expansion of L(λ, x) as A|0 is
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reduced to that of Laux(2α2) as α 2 j + 00. In fact, using (4.1)2 and changing
the order of summation, we are led to

L(λ,x)~ f L?x(x)( Σ (2α2)
2-"exp[2α2A]).

n = 0 \α2 = l /

Noting that

00 _ j

Σ (2α2)
2"Λexp[2α2λ] = a | " M modulo C0 0 at A = 0,

α 2 = 1 2A

we arrive at the asymptotic expansion as in (1.2):

W,x)~LUδλ) dl^ as λ|0.

This explains Theorem 0, which is contained as a part of Theorem 2,
except for the fact that the coefficients L*ux(x) depend only on fm + 2){x)
for m^O.

The second heuristics is concerned with the remaining part of
Theorem 2. This will suggest the integral representation (1.6) of the
symbol L*[M£](τ) = L*ux(l/τ2). Let us begin by recalling a theorem of
Hόrmander (0.1) in Introduction. This together with Fefϊerman's
expansion (0.2) yields

(0.2)0 L(λ, x) =f-~^ + O (J^J, that is, La

o

ux(*) = - S - ψ .

Starting from (4.1)! with (4.2)1, we shall first reproduce (0.2)0 above by
giving an integral representation of LQUX(X), which can be regarded as an
approximate form of Theorem 2. The idea is to regard the definition
of Laux(2α2) in (4.4) as a Riemann's approximate sum of an integral. Let
us explain these more precisely. Setting

Haux(μyτ):= f exp [μξ + Mx(τξ)ξ2] dξ with τ = (2α2)"1/2,
Jτ-ι(I-x)

we have Di(a;x)=Haux(μlyτ) with μ 1 : = μ 1 ( α ; F x ) , and thus

1 °° 2τ

Σ
Noting how μι=μί(a; Vx) varies with α2 e N, we may regard the series
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above as a Riemann's approximate sum, and get

LΪT(x)= lim L a u x (2α 2 )=i
Yaux(/ι, +0)

This implies (0.2)0, because

, +0)= I

JR
and thus dμ/Hm(μ,+0)=-Γ(x).

R

We have heuristically gotten the zeroth order approximation of
Laux(2α2). Higher order asymptotics of Laux(2α2) will be obtained if we
take into account of the remainder Mx(τξ)—f"(x)/2. This idea will be
realized by considering the formal power series expansion about τ = 0. We
then reach the precise form of Theorem 2.

4.3. Localization. In this subsection, we basically follow Boichu-
Coeure [l,Lemme 1]. Let a point x0 e I be arbitrarily fixed, and thus
(xo>f(xo)) G δlog|Ω|. In (4.1) with (4.2), we replace / by a function
fe C°°(/) satisfying

(4.5) f(x)=f(x) for x G 70, /"(*)<0 for x G /,

where /and / 0 are open intervals such that x0 e TQ^I- Then, localization
about x0 is possible. Furthermore, we may restrict the index set of
summation from JV2 to ΛczJV2 satisfying

(4.6) Λ=>Λε: = {αe N2; |μ2o(α)l<^} with some ε>0,

where μ2o(α)==)u2(αί/'(Λ;o))==αi/α2+/'(Λ;o) ^n order to state these more
precisely, we first set, corresponding to (4.1)^,

LΛ(lx)=ΣE2

r:;
{τ;t) with τ = (2a,) " 1 / 2 f o r j = 0 , l f 2 .

We then set

^ ( T ; f with τ = (2a, ) " 1 / 2 f o r / = 0 , 1 , 2 ,
aeΛ Dj(oc;x)

where Dj(oc;x) are defined as in (4.2),- with/in place of/, and the variable
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x is restricted the interval /0. That is,

Dj(<x; *) = ί expt/z/α; Vx)ξ + τ2^2Mx(τjξ)ξ2] dξ,
Jτ-H7-χ)

where

f(x + ξ) -/(*) -J'{x)ξ f{x + ξ) -/(x) -f(x)ξ
(4.7) Mx(ξ): =

ξ2 ξ2

for x e ϊ0 and ξ e T—x. Using the expression for 7 = 2, we shall show in
Subsection 5.1 below that:

Lemma 3 (Boichu-Coeure [1, Lemme 1]). Iffe C°°(7) and A a N2

satisfy (4.5) and (4.6), respectively, then L(λyx) = LΛ(λ,x) modulo C00 at

4.4. One-parameter family of domains. Let Je C°°(7) satisfy
(4.5). We assume that /=/?. Then the set {(x,y) G R2; y<f(x)} is the
logarithmic real representation domain of an unbounded (and possibly
incomplete) Reinhardt domain Ωc=C2. In this subsection, we construct
a one-parameter family of Reinhardt domains Ω^ciC2 (O^ί^ 1) for each
x e To such that Ux = Ω and that Cίx is a quadratic model which is locally
biholomorphic to a ball. The logarithmic real representation domain of
&x takes the form

{(x + ξ,y) e Ri yKfcix + ξ)} with £ β C<°(R).

Such a family/||. ( O ^ ί ^ l ) for x e To has been constructed by Boichu and
Coeure [1]. In order to get Theorem 2, we need a more careful
construction as follows, because we have to show in particular that desired
asymptotic expansion of L(λ, x) depends only on M\(ζ) £ #[[£]].

Let us begin by observing that the assumption T=R enables us to
simplify the expression of Dj(oc;x)—we only use the case / = 1 . That is,
we have, corresponding to (4.2)^

(4.8) D1(a;x) = H[Mx](μ1(oc;Vx),τ) with τ = (2a2y
1'2

for x e /0, where /^(α; Vx) was defined by (4.3) and

H[Mx](μy τ): = ί exp[μξ + Mx(τξ)ξ2] dξ for μ,τ e Ry

JR

with Mx given by (4.7). Consequently,
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(4.9) LAλ,χ)=

We are now in a position to define a family Jx together with the
associated LΛ(λ,x). Given x e To and O ^ ί ^ 1, we define/J 6 (^(i?) by

£ (* + ξ): =f(x) +f'(x)ξ + MM)¥ •

Then # ( * + ξ) =7(x + ξ) and f?(x + ξ) =f(x) +f(x)ξ +f"(x)ξ2/2. Thus &x

=Ω and Cίx is locally biholomorphic to a ball. Note by the expressions
of (1.4) that

d2jx(x + ξ)=?"(x + tξ) and Mx{ζ) = Mx{tξ),

where M'x(ξ) : = {Px{x + ξ)-It

x{x)-(Jt

x)'{x)ξ}/ξ2. We now define L'Λ(λ,x)
and Dj(α Λ ) by (4.9) and (4.8) with Ktx in place of Mx, and thus
L\(λ,x) = LΛ(λ,x) and .D}(α;Λ;) = JD1(α;Λ;). That is,

/ 4 9 y £r ( Λ χ)_ ^ ( τ ; ̂ ) ^ ( τ ; ̂ )

with τ = (2α2)~1 / 2. Then, an asymptotic expansion of L(λ,x) will be
obtained as the Taylor expansion of lJΛ(λyx) about t = 0 evaluated at
t = \. We shall justify this in the next subsection with additional
assumptions of fe C°°(/?).

In [1], Boichu and Coeure considered a family /£ defined by

Άix + ξ) =/(*) +f(x)ξ +f"(x)ξ2/2 + t(Mx(ξ) -f'(x)/2)ξ2.

We have modified it in order to clarify the dependence of DΛ{λyx) on
f(2 + m\x) for m e No and on Vx=f(x).

4.5. Asymptotic expansion via boundary variations. In order
to get the asymptotic expansion via boundary variations, we require more
conditions of f. In addition to (4.5), we assume / = /? and that

(4.10) s u p ί P ^ + o o for 6^2, C_ ^ -f"(x)^C+ forxeR

with some constants C + > C _ > 0 . It is easily seen that the conditions
(4.5) and (4.10) are realized by a function fe C°°(/?) such that the support
of the third order derivative /*3) is compact and that

lΓ(*) -/"(*o)l <ε for x G Ry

where ε>0 is arbitrarily prescribed.
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We are now in a position to state the asymptotic expansion via
boundary variations.

Lemma 4 (cf. Boichu-Coeure [1, Theoreme 1]). Assume that
fe C^iR) and AaN2 satisfy respectively (4.10) and

(4.11) ΛcΛ f l : = { α e N ,OL1/oL2tka} with some 0<a e R.

Let ky /, m be non-negative integers. Them
(i) If m + /<C_/(C+ — C_), then dk

λd
ι

xd™DΛ(λyx) exists as a continuous
function of (λy xy t) in (— oo, 0) x 70 x [0,1].

(ii) In addition to the assumption of (i), if 2k + l<m — 7, then

m-i i ^

for (λyx)e(-coy0)xϊ0

extends continuously to λ^O.

Roughly speaking, we have by Lemmas 3 and 4 that

(4.12) L(λ,x)~ £ —dγDΛ{λyι

m=om\

up to λ = 0, but we have to be careful because of the conditions of Lemma
4. In fact, if k and / are large, then m must be also large, in which
case C+—C- should be small. However, / i s chosen when C_ and C+
are specified. In order to make C+—C- small, we must replace / b y
a new one. Also, we have to shrink the neighborhood of x0 on which
/ = / . Keeping these remarks in mind, one may say that (4.12) is valid
after an obvious modification.

4.6. Asymptotic expansion in Theorem 2. In this subsection,
we prove Theorem 2. It is necessary to extract the singularity from
each term of the right side of the asymptotic expansion (4.12) via boundary
variations. The conclusion is very simple; we shall have

(4.13)

modulo C" at (λ,x) = (0,xo), where L*[M^](τ) e R[[τ2]] is given by (1.6)
in Theorem 2. This is because the homotopy parameter t has been
introduced in Subsection 4.4 in such a way that (4.13) holds.
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Recall by (1.9) that the right side of (4.13) is written as

(yj(4.14) ( y j *ΛAO
 e x p [ ^ ] φ ) 5 ' " m / 2 i l with p*=

Corresponding to this, we first show that:

Lemma 5. Under the assumption of (i) in Lemma 4, the left side of
(4.13) for λ<0, x e To is given by

(4.15) tn\ Σ E3-m(τ;λ) BJμJ

evaluated at τ = (2α 2)" 1 / 2 and μ1=μi(θί; Vx) with Vx=f'(x).

We shall prove Lemma 5 at the end of Subsection 5.2.
Our next task is to compute (4.15) in Lemma 5 with monomials μ\

in place of the polynomials BJ^μ^), We thus set

for m, k e No such that m + k is even. Note that L™*k(λ9x) depends only
Pχ9 whereas L™™(λy x) depends on Px and Vx. Recall by Lemma 0 that
Sm(μ1) is a linear combination of μ\ such that m + k is even. In this case, if
m is odd then k is odd and thus L™*k(λ9 x) = 0. Now (4.13) is established
if we show that:

Proposition 3. Ls^ = L^k modulo C00 at (λix) = (0,xo)y provided
Λ = Λα

+ with some a e Nsatisfying a > — VXo, where A* is given in (4.11).

Postponing the proof of Proposition 3 to the next subsection, let us
prove Theorem 2. It is only necessary to summarize the argument we
have had in this section.

Proof of Theorem 2. For x0 e I and Zo G No arbitrarily fixed, we shall
show that there exists a neighborhood I0<^I of x0 such that the relation
{1.12) is valid modulo Clo({ — oo <λ^0,x e /0}). This statement implies
Theorem 2 in a form stated precisely in Subsection 1.3. Setting
mo = 2/o + 8, we choose two constants C± >0 satisfying C_ < — f"{xo)<C+
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and mo + /o<C_/(C+ — C_). We take a e N satisfying a> —f(x0) and set
Λ = Λβ

+. We then take/G C°°(7) with Ϊ=R satisfying (4.5) and (4.10). It
then follows from Lemmas 3 and 4 that

mo - 1 I _

m = 0 m!

modulo Clo({ — co<λ^0yxel0})y where I0<^I is a neighborhood of
Λ;0. Shrinking 70 if necessary, we see by (4.13) that

m=o ml τ x t=o 2λ

modulo CZo({ — oo <λ^Oyx e /0}) Here, fractional integration does not
appear by virtue of Lemma 0. We thus get the desired result.

4.7. Proof of Proposition 3. What we have to do is to replace
the series U^{λyx) by an integral L^k(λyx) up to a C00 error. The
case m = k = 0 was done by Boichu and Coeure [1]. In order to extend
their argument to the general case, we begin by stating a lemma, which
is essentially due to Boichu and Coeure.

Given a e N and b>0y we set

, -a<V<0, P<0},

and consider an integral

J(p, V,P):=\ S(ξ; p, V, P) dξ for (p, V, P) e UaJb

JR

with the integrand defined by

S(ξ;p, V,P):=Σ ZάξY^ξ;p, V,P)a\

whereZx(ξ): =exp[4if| and Z2(ξ;p, VyP): = exp[-p + 4/Fξ + 4P(^2]. Then,

L e m m a 6. If b>0 is small enough, then

V9P) = £- modulo

We shall prove Lemma 6 in Subsection 5.3.
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With the aid of Lemma 6, it is fairly easy to prove Proposition 3
as follows.

The case m = k = 0 (cf. Boichu and Coeure [1]). We write

with τ = (2α2)
 1 / 2, μ1=μ1(ot; Vx)y and use an elementary equality

(4.16) 2ί

with μo = μo((x; Vx) where B0=J-Px/(2π) as in (1.8). Then,

L^(λyx) = 2B0 d2

λ J(-2λy Vx,Px)y

so that Lemma 6 implies L™™ = L{£0 modulo C00 at (λyx) = (0,xo), as
required.

General case. Recalling that tn + k is even, we first write, as in the
simplest case m = k = 0,

aeΛΪ

where dλ

 i stands for integration over (— ooyλ). Noting next that
μko = dk

sexp[μos]\s = Oi we get

where

4 7 (λy x) = 2Bodj ~(w+k)/2 dk

s J(s; A, x) ,
s = 0

By using an analogue of (4.16), we see that

J(s;λ,x) = J(-2λ + Pxs
2

y Vx + PxsyPx)y

so that Lemma 6 yields

(4.17) L s

m 7α,x) Ξ j B 0 δ

where integration dλ

 1 is restricted to an interval (— B, λ) with B satisfying
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0<b<b. It is immediately seen from (4.17) that if k is odd then
LSm™(λy x) = 0. If k and m are even, then the right side of (4.17) equals

s=oJ I "(k/2)\

a fact which implies the desired result. Therefore, the proof of Proposition
3 is complete.

5. Proofs of Lemmas 3-6

5.1. Proof of Lemma 3. We shall show that
(I) LN2 — LΛ = 0 provided Λ=>Λε with some ε>0;
(II) LΛc — LΛε = 0 provided ε>0 is small enough.

Recalling the assumptions (4.5) and (4.6), we see that the desired result
is obtained by using (I) and (II) as follows:

L = LN* = LΛ^ = LΛε = LN2 = LΛ.

In order to prove (I) and (II), let us note that each term of the series
defining LΛ is a monomial of the form CaX

2<XίΫ2<X2 with X—ex and
Ϋ=eΐix) + λ. If x G /0, then/(*)=/(*), so that the left sides of (I) and (II)
are both power series of X and Y—e

f(x) + λ. We shall prove the
convergence of these series in a neighborhood of (Xy Y) = (eXo

ye
f("Xo)). By

AbeΓs lemma, it suffices to estimate uniformly

: = supΛ2(α;*)'

|D2(tt;*)-β2(tt;*)|

D2(oc;x)D2(a;x)

where Uγ and ί7π are appropriate neighborhoods of (λ,x) = (0yxo). More
precisely,

Sublemma. (i) For any ε>0, there exists a neighborhood I
of (λy x) = (0, Λ:0) such that sup {Tj(α); α e N2 \ ΛJ < + oo.

(ii) If ε>0 is small enough, then there exists a neighborhood UnczR2 of
(λyx) = (0yxo) such that suρ{T,,(α); α e Λε}< +oo.

Proof of Sublemma. Setting Rx(ξ): = \f(x + ξ)-f(x)]/ξ-f(x0) for
x e 70, we have



BERGMAN KERNEL 325

J 2a2(ϊ- x)
(5 D β2(<x

For ε,>0, we choose δ{, δ[>0 so small that \Rx(ξ)\^ει for \ξ\S<>i and
\x — xo\<δ[. Then

D2(oc;x)^\
Jo

2 α , x J^ exp μ 2 O α ε, or * xc

Given ε>0, we require ε!<ε and setεj = ε — εt. Hot φ Λεthen, by (5.2),

D2(oc;x) C(α2)

which implies (i). We note that (5.2) also yields

Γ2δi

(5.3) D2(a;x)^ expt-ε^] dζ for \x-xo\<δ{
Jo

without any restriction on α G JV2.
Let us prove (ii). We first take <5Π, δ'u>0 small satisfying

f(x + ξ)=f(x + ξ) for \ξ\<δn and \x-xo\<δ'n. Then

\D2(Λ;x)-β2(a;x)\£DF(a;x) + ϋp(a;x) for \x-xo\<δ'U9

where Dd^l{(X\ x) is defined by the right side of (5.1) with the interval of

integration 2α2{(/—x)\ [ — <5n,<5u]} ^n place of 2OL2{Ϊ—X) If δr

n is
sufficiently small, then there exists a constant ε π > 0 such that
^JC(^)^^ ~~εnl£l f° r 1̂1 = ^II

 a n < i l#~#ol<(^i> where the second assumption
of (4.5) was used. Consequently,

Dψ(<*;x)£2\ °° exp[(|Ai20(α)|-βπ)ί]rfί for \x-xo\<δ'n.
J loLidn

If ε>0 is chosen so small that ε<ε u , we get (ii). In fact, the uniform

boundedness of 1 / I D2{a\ x)D2{OL\ x) ) is clear from (5.3).

5.2. Proofs of L e m m a s 4 and 5. Recall that ht

A — yL(ι^ΛEz/D\ and
that E3/D\ is C00 smooth for (λ,x, t) in ( — oo,0] x To x [0,1]. Setting
C/=/oχ[0,1], we shall show that:

Sublemma (cf. Boichu-Coeure [1, Lemme 2]). // m-f/<C_/
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(C+ — C__)y then there exists a constant Cml>0 independent ofcce N2 such that

sup 13^(1/^)1^ C^-r"1-' with τ = (2α2Γ
1/2.

u

Assuming for a moment the validity of Sublemma above, we first
prove (i) and (ii).

Let us begin by observing that Sublemma implies

(5.4) sup \d\dl

xd?(E3/D\)\^CmlE3
x,t

We next note by the assumption (4.11) that

(5.5) ΣχN^~ Σ (2α 2 ) 1 " N / 2 <+oo if 4<N e R.
OLEΛ £ &2 — 1

Then (i) follows from (5.4) and (5.5), because the supremum of EN,(τ\λ)
over a2 E N and λ < — ε is bounded for any ε > 0 and N' e R prescribed.

In order to prove (ii), we note that (i) permits us to use Taylor's
formula which yields

m - l i Λ Γl

LΛ- Σ -ΆVA =7—ττ7 (\-ty-'druAdt.
j=oj\ t=o (m-l) !Jo

It then suffices to estimate \(ήβι

xdϊ (E$/&{)\ uniformly up to /ί = 0. Since
E0(τ;λ)<^\y it follows from (5.4) that

supsup \dk

λd
ι

xdT(E
λ<0 x,t

Noting that — 3+m — I— 2k>4 is guaranteed by assumption, we see that
(5.5) yields the desired estimate.

Therefore, the proof of Lemma 4 is complete if we justify Sublemma.

Proof of Sublemma. For b e NOi μ G R and τ = (2α 2)" 1 / 2 with α2 e N,
we set

* , τ ) : = |Hb[Mx](μyτ):= \ξ\bexp[μξ + Mx(τξ)ξ2] dξy

JR

and thus HO[MX]=H[MX]. Recalling that Dt

i(a;x) = H[Mx](μiitτ) with
μx =μi(a;f(x))j we see by (4.10) that idffiDW is dominated by a constant
multiple of τm~ιmaxHb[Mx\(μ1,tτ)y where the maximum is taken over

/. Given n e N and β = (βly --,βn) e JVg, we set
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n

{μyτ):=H[Mx](μyτ)~n~1 f ] Hβj[Mx](μyτ).

Then Id^δfiί/D^)] is dominated by a constant multiple of ^ " ' m a x
Hβ n[Mx](μ1,tτ)y where the maximum is taken over n = m + l and

/. Therefore, it suffices to show that

(5.6) sup{i?^MJ(μ,σ);μ e R,σ^0yxe Jo}< + oo

with n e Nf β e N% fixed.
Let us prove (5.6). Noting by (4.10) that C_ 5Ξ -2Mx(ξ) <Ξ C + , we have

(μ, σ) ̂  J^- exp ^ J , Hb[Mx](μy σ) ̂ Pb(μ) exp

where P&(μ):= ί \ξ + μ/C_\b exp[-C_^2/2] dξ. Setting

\<n+l)/2_ιι_
Pβ>niμ):={~Uj

we have Hβn[Mx](μyσ)^Pβn{μ)e*v [Cμ2], where

w w + 1 ^ n ( C + - C _ ) - C _

2C_ 2C+ 2C_C+

Note by assumption that C<0. Since Pβn(μ) increases at most in
polynomial order as |μ|->oo, it follows that

sup Pβ<n(μ) exp [Cμ2] <+co,
μeR

which implies (5.6) as desired. Therefore, the proof of Sublemma is
finished.

Proof of Lemma 5. We have observed that the derivative
d™DA(λyx)\t = 0 can be computed by termwise differentiation in (4.9)*. Let
us compare the result with d™L*[Mx](τ)\τ=0. Then, in view of (4.14) and
(4.15), we see that the conclusion follows from the obvious equalities
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5.3. Proof of Lemma 6. We follow the argument of Boichu and
Coeure [1, Lemme 4 and Proposition].

Regarding V and P as parameters, we write J(p) = J(pyVyP) and
S(ξyp) = S(ξ;pyVyP). Then,

1 ya 7 7

which is a meromorphic function of ξ e C having no poles on the real
line JR, where Zi=Z1{ξ) and Z2 = Z2(ξyp) = Z2(ξypy VyP). Observe that
S(ξyp) has exactly two poles ξ = iη± which approach to the real axis as
pjO. More precisely, iη+ and iη_ come from the zeros of 1— Z 2 and
\—Z\Z2y respectively, and

2P~~ V4P 2 4P as

where F + = — F > 0 and F_ = — F— a<0. Let us take a contour Γ on
the upper half-plane {Im £>0} in such a way that

J(p) = 2πi Res S(ξyp) + J+(p) with J+(p)'=\ S(ξyp)dξ

and that J+ (p) remains analytic when pjO as a function of (pyVyP)y

where Resξ = iη + S(ξy p) stands for the residue of S(ξyp) at ξ = iη + . It was
shown by Boichu and Coeure [1], pp. 142-143, that

(5.7) Res S(ξy p) = Res ^ = — ,

which implies the desired result. Thus the proof of Lemma 6 is complete.

We would like to add that the residue calculus (5.7) can be replaced
by simpler calculation as follows. Let us begin by observing that

rs
J(p) = j\p)= S(ξyp)dξy

J -δ

where <5>0 is arbitrarily fixed. We next set

S^,p): = JLAl 1 £2 1 JLJ J 1

so that S(ξ,p) = S1(ξyp)-S2(ξyp). If δ<π/2y then the origin ξ = 0 is the
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only pole of S^ξ.p) and S2(ζ,p) on the interval — δ<ξ<δ—this simple
pole comes from the zero of ί—Z1. We then write Jδ(p) = j\(p) — J2(p),
where

Jj(p): = P v Γ Sj(ξ,p)dξ for / = 1 , 2.
J -δ

Let us first consider J\(p). Note that ξ = iη+ is the unique pole of
*SΊ(£, p) which approaches to the real axis as pjO. Therefore, by
considering a contour on the lower half-plane {Im ζ<0}y we see that

p

πJ\(p)=-πi _ ,
ξ=o 4 1— e p \p

Similarly for Jδ

2{p). That is, considering the pole ξ = iη_ of S2(ξ, p), we get

We thus obtain Jδ(p) = π/(2p) as desired.
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