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Introduction

The Dirichlet problem on Green lines was investigated by Brelot-Choquet
[3]. In their work, we can find some results concerning the relations between
the Dirichlet problem on Green lines and the completion of Green spaces.
Some special compactifications, for instance the Kuramochi's, are becoming
more and more important to the study of the potential theory, as the recent
researches on the compactifications of Green spaces show. It was shown for
instance by F-Y. Maeda [12] that almost every Green line tends to a point of the
Kuramochi boundary of a Green space. We discuss in this paper an extension
of a radial limit of functions on the unit disc in the classical function theory in
connection with the family of Dirichlet solutions. It becomes clear in the
course of the discussion that the Dirichlet solutions on Green lines play an
important role in the study of harmonic functions.

In §1, we discuss the inclusion relations among the families of Dirichlet
solutions related to Green lines. In view of the importance of radial, we have
to get a family of functions having radials. To do so, we investigate two sorts
of modifications a lattice modification and a convex modification. They will be
stated in §2 and in §3 respectively. As an application of our preceding study,
we consider in §4 some classes of holomorphic functions on a hyperbolic Riemann
surface and establish the unicity theorem of Riesz type. §5 is devoted to the
study of Green spaces where all Dirichlet solutions on Green lines are quasi-
bounded. Theorem 10 gives a generalization of a theorem of Garding-Hόr-
mander [9]. In the last section, we show first that in some measure almost every
h-Green line tends to the Kuramochi boundary, by using relative notions in-
troduced by L. Lumer-Naϊm [13], [14]. Then we discuss the relative Dirichlet
problem on /z-Green lines in connection with the Kuramochi's compactification.

For the following notions we refer to Brelot-Choquet [3]. Let Ω be a
Green space. We fix a point y0 in Ω and consider the family X of all Green
lines issuing from y0. On _/?, we introduce the topology homeomorphic to the
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unit sphere and the Green measure £ such that g(~C)=l and <§
r(^)=σX(area of

[e]), for each Borel set e on J7, where [e] is the set of the unit sphere correspond-
ing to e and σ is a constant depending only on the dimension of Ω. We define

Z ) λ = { y e Ω ; Gyo(y)>\}

and

for 0<\<Gyo(yo), where GyQ is the Green function of Ω with pole at y0. A
Green line / is called a regular Green line if inf Gy(y)=0. The set of all regular

Green lines will be denoted by S!. It is known ihsXg^X—^C/)=0.

1. Dirichlet problem on Green lines

1.1. The Dirichlet problem on Green lines was first considered by Brelot-
Choquet. For the following definitions and properties we refer to [3], Let φ
be an extended real valued function on the set of all Green lines J?, i. e., φ is a
mapping from J?into [— oo} -foo]. We consider the class:

{ subharmonic, bounded from above on Ω and)
U''\im u(X | U { - o o } ,

where u(X, I) denotes the value of u at the point a on I where Gyo(a)=\. The
lower solution Qφ is defined to be an upper envelope of 2\p, i.e.,

£,(<!) = sup {κ(β);

Qφ is either harmonic or = -|- oo or Ξ — oo. The upper solution is by definition

Qφ = —Qc-Ψl

It is known that 3φ < Qφ and

Qφ{y0)< \φdg < Jφdg <Qφ(y0) .

If Qφ andQφ are equal and are harmonic, their common harmonic function will
be denoted by Qφ. We denote by Si the set of all Dirichlet solutions Qφ.

Next, let Ω be a compactification of Ω which is resolutive2) and possesses
the following property: except a set of Green lines of Green measure zero, each
Green line converges to a point of Δ=Ω—Ω. For 1<=X converging to a point of
Δ, the limit point of / will be denoted by x(l). Given an extended real valued

1) "dg-a.e." means "except a set of Green lines of Green measure zero".
2) For the resolutΐve compactification, we refer to [4],
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function/on Δ, we define a function on / a s follows:

Γfi/A _ i/W» if / has a limit point x=x(l),
U\\ι) — I 0 ^ otherwise.

Then, we have

It was shown by F-Y. Maeda [12] that the Kuramochi's compactification

Ωκ of Ω possesses the above property. Since the family of all Dirichlet solutions

on Ωκ is MHD(Ω)4) we have

M H D ( Ω ) c i ί .

1.2. A slightly more general formulation of the Dirichlet problem on

Green lines was also considered in [3]. Let {λM} be a monotone decreasing

sequence of positive numbers tending to zero. We consider the family:

subharmonic, bounded from above on Ω and

dg-a.e.

As above, the lower solution and the upper solution are defined to be

{*»} ttn)

Qφ(a) = sup {u(a); u^ΞFφ}

and

{In.) M

respectively. If Qφ and Qφ are equal and are harmonic, their common harmonic
tffi) ttn)

function is denoted by Qφ. We denote by M{λn} the set of all solutions Qφ.

Obviously we have

MdM[λn] .

1.3. Another formulation of Dirichlet problem on Green lines was given by

M. Brelot [1], In [1], he introduced important notions such as radial, weakly

minor, indifferent, etc., which will play a fundamental role in our present paper.

A function v on Ω is said to have a radial (resp. major ant radial) φ if

3) Cf. [3], th. 30, p. 253.
4) In the case where Ω is a hyperbolic Reimann surface, this is stated in [4], Hilfssatz 16.1,

p. 167. The fact, however, can be easily extended to the general case.
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limJKλ, l)~φ(l)\dg = 0 (resp. limί[t»(λ, l)-φ(lψdg*> = 0).
λ-*o J λ->o J

A radial is a function defined on X df̂ -almost everywhere. A harmonic (resp.

subharmonic) function u on Ω is called indifferent (resp. weakly minor) if for each

λ > 0 , H%λ=u (resp. u<H%\ where H%κ is a Dirichlet solution on Dλ with

boundary value u\ more precisely, we consider the one-point compactification

Ω* of Ω with Alexandroίf point Jί. In a formulation of the Dirichlet problem

on Z)λ, we agree that all topological notions are refered to this topology and a

boundary function is extended as

(a) if a <Ξ Ω ,

0 if α = J .

In the sequel, instead of the Dirichlet solution H%λ we write it simply //£ λ .
λ *

The existence of the solution H% is equivalent to the rf^-integrability of w(λ, /)

as a function of /, and then, we have H%λ(yo)= I u(\J)dg6:>.

We consider the families:

err ί subharmonic on Ω, weakly minor! . . r o o |

~~ I ' and has a majorant radial φ J

and

-ϊφ = { U

The envelopes

HRφ(a) = sup

and

^(fl) = i n f {u(a);

are either harmonic or = + oo or Ξ — oo. It is known that

HRφ^ HRφ —

If HRφ and //i?^ are equal and are harmonic, their common harmonic function

is called the Dirichlet solution on Green lines and will be denoted by HRφ. It is

known that HRφ is indifferent and has a radial φ. K. Endl [8] discussed the

Dirichlet problem on Green lines in this formulation. He called HRφ the solu-

tion for a principal radial φ. The set of all Dirichlet solutions on Green lines

will be denoted by JC.

5) a+denotes max (α, 0).
6) Cf. [1], p. 431.
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Lemma 1. If φ is a dg-integrable function on X, then we have

(1. 1)

and

(1.2)

Proof. Since each member u^ — °° of 3?_φ is bounded from above, we have

i.e., u is weakly minor. Since [u(\, /)—<p(l)]+<M+-\- \φ(l)\, for every λ and
l^X> where M is an upper bound of u, and since

lim(>(λ, I)—φ(l)]+ == 0 dg-a.e.,
λ->0

we have

λ->0

i.e., u has a majorant radial φ. Thus uEΞ3[φy which implies (1.1).
Next, for each M E ^ w e have

By making λ->0, we have u(yo)<\φdg, therefore HRφ(yn)<\φdg, q.e.d. .

Since a Dirichlet solution 3φ is associated with rf^-integrable <p> we obtain
from this lemma relations among the families of Dirichlet solutions relating to
Green lines formulated above.

Theorem 1. We have

(1.3) JίdJC

and

(1.4) icn^( i l l

where Λ is the family of all monotone sequences of positive numbers tending to zero.

In section 2, we shall see further Jίd U M{xΛ}

Corollary. If f is a resolutive function on the Kuramochi boundary Aκ of
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Ω, then we have

where Hf denotes the Dirίchlet solution on Ωκ with boundary value f. In particular,
the Dirίchlet solution Hf is indifferent and has a radial [/].

REMARK. Here we state some results on the solutions of M[χn) which can
be easily proved.

μ«) [λn] {λn\

1. If u=<2φj then we have u=Qφ+ — Sφ-, where φ =max(—φ, 0). If, fur-
{λn)

ther, φ>0 then uk=<2minCφ Λ) exists for every k and lim uk=u. From these facts,

we know M{χn) c MHB(Ω), where MHB(Ω) is the family of all quasi-bounded
harmonic functions.

M {λn} [λn] M

2. If u—Qφ and v=S^9 then we have uVv=3maxcVt^ and u/\v=3mincφ^y
where u\/v (resp. u/\v) denotes the least (resp. the greatest) harmonic function
which dominates (resp. is dominated by) u and v.

3. Let {φk} be an increasing sequence of functions tending to φ such that
{**) ^ {Jn) {λn}

uk=Qφk exists for every k. If Qφ is harmonic, then 3φ exists and coincides with
lim uk.

2. Lattice modifications of radials

2.1. As we have touched on it in the preceding section, the Dirichlet
solution on Green lines HRφ is just the harmonic function which is indifferent
and has a radial φ. Thus, given a boundary function φ, in order to find the Di-
richlet solution on Green lines HRφy we arrive at the problem to seek a harmonic
function which is indifferent and has a radial φ. The first point, to find in-
different harmonic functions, can be solved easily since the class of indifferent
harmonic functions is fairly large for example, quasi-bounded harmonic functions
are indifferent. In view of the second piont, to get a harmonic function with
radial, it is preferable to extend a family of harmonic functions with radials. To
this end, we investigate two sorts of modifications: the lattice modification and
the convex modification.

We begin with definitions. A subharmonic function u is said to be minor,
if it is weakly minor and lim H%λ is harmonic. If u is minor, the harmonic

function lim H%λ is the smallest indifferent harmonic majorant of u. It is called
λ->o

the best harmonic majorant of u and is denoted by ΰ. Denoting by ύ the least
harmonic majorant of u, we have u<ύ<ΰ.

2.2.
Lemma 2. If u is subharmonic, minor and has a radial φ, then



DIRICHLET PROBLEM ON GREEN LINES 353

(i) the best harmonic majorant u of u has a radial φ, i.e., ΰ=HRφ.
(ii) u+=max(u, 0) is also minor and has a radial <p+ and ΰ+=HRφ+.

Proof, re (i). In order to see that ΰ has a radial φ, we consider

\\ύ(\ l)-φ{l)\dg<\[ΰ(X, l)-u(\y l)]dg+\\u(Xy l)-φ(l)\dg

\ ? J | z/(λ, l)-φ(l) \ dg

\u(\, l)-φ(l)\dg.

In the above inequalities, the last terms tend to zero as λ->0. Thus, ΰ is
indifferent and has a radial φ, that is, ΰ=HRφ.

re (ii). Since u is minor, u<H£λ<H%+ . Consequently, we have

i.e., u+ is weakly minor. On account of the inequality

\a+-b+\<\a-b\ ,

we know that u+ has a radial φ+. Since φ is a radial of a minor subharmonic
function, it is df^-integrable. Making λ-^0 in

H$(yo) = \u+(X, ΐ)dg <J[M

+(λ, l)-φ+(l)]dg + \φ+(l)dg ,

we have

lim H°ϊ(y0) < \φ+(l)dg < + <χ> ,

which implies that u+ is minor, q.e.d..

Theorem 2. If u and v are indifferent harmonic functions with radίals
φ and ψ respectively, then there exist indifferent harmonic functions with radίals
max{φy ψ) and min(φ, ψ) respectively.

An indifferent harmonic function with radial is quasi-bounded.

Proof. The harmonic function u—v is indifferent and has a radial φ—Λ}r.
By Lemma 2, there exists an indifferent harmonic function w with radial (φ—ψ)+.
v-\-w is indifferent and has a radial max(<£>, ψ).

Next, if u is an indifferent harmonic function with radial φ> then there exist
harmonic functions ux and u2 which are indifferent and have radials φ+ and
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φ~ respectively. Since u = u1—u2y u^HP(Ω)Ό. Since a sequence of in-

different harmonic functions wn with radials min(<p+, n) is increasing and wn<uly

we see that w=lim wn is harmonic and w—uλ. Thus u19 and then u are quasi-

bounded, q.e.d..

Corollary 1. Ifu is subharmonίc, minor and has a radial φ, then the best
/\

harmonic majorant u+ coincides with the least harmonic majorant u+ of u+, i.e.,

In fact, on account of Theorem 2, HRφ+ is quasi-bounded. Therefore

0<u+<uτ=HRφ+
/\ /\

implies that u+ is quasi-bounded. Thus, u+ is indifferent and we conclude
/\
u+=u+ .

Corollary 2. JCc U M[λn].

In order to prove this, it would be enough to show that for any positive

u=HRφy there exists a decreasing sequence of positive numbers {λΛ} tending to
{*n}

zero such that u=Ωφ. Since u is indifferent and has a radial φy we can find an

indifferent harmonic function uk with radial min(<p, k). Then, there exists a

sequence of positive numbers {λ£} tending to zero such that limwAί(λn, /) =

min (<£>(/), k) dg-a.e.. From this and the boundedness of uk, we conclude
[λnk)

uk= <2minCφfk> By choosing a subsequence, we can assume that {λ£} is a sub-

sequence ot {λίΓ1}. We set λM=λS Since it is clear that uk=£mincφ>ki for all

ky by making Λ->oo? W e have u=<3φ, i.e., u^M{χn-).

REMARK. By Corollary 2, the Dirichlet solution on Green lines u—HRφ

has an experssion u=Qφ for suitable {λΛ}. Then, u+=HRφ+=<2φ+=u+=u\/0.

2.3.

Theorem 3. Let u be an indifferent harmonic function with radial φ, and

let F be a bounded continuous function defined on [—°°, +°°]. Then, there exists

an indifferent harmonic function with radial Foφ.

Proof. Let 3i be the family of bounded continuous function / on

[— oo, +oo] such that/093 is a principal radial, i.e., there exists an indifferent

harmonic function with radial f°φ. Obviously 31 is a vector space. By

Theorem 2, we observe that 3ά forms a lattice by the usual maximum and mini-

7) HP (Ω) denotes the family of all harmonic functions each of which is expressed by a
difference of two non-negative harmonic functions.
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mum operations. Constant functions are contained in <3ί. Finally, any two
distinct points t19 t2 of [—°°, +°°] are separated by a function of 31.
Indeed, assuming tx<.t2y we take τx and τ2 so that tx<.Tx<iT2<it2. If we set
/ T l t φ ) = minfmax^, t\ τ2}, then fTl>φ^ = τv^τ2 =fτχ φ2). Since/Tl>T2°<p =
min{max(τ1, φ)y τ2}, we hzvefTlfΊ2^3ί. By the Stone's theorem85, 31 is dense
in the space of all bounded continuous functions on [-oo, +oo] with respect to
the topology ot the uniform convergence. From this we conclude easily that,
for each bounded continuous function F on [— °o, + oo], F°φ is a principal radial.

REMARK. If u=HRφ, then u is quasi-bounded; therefore u is a Dirichlet
solution on the Martin space ΩM. Thus, u is expressed by Hψ for suitable
resolutive function / on the Martin boundary ΔM . Then, by a similar way as in
the proof of Theorem 3, we may prove that if F is a bounded continuous
function on [—°°, +°°]> then Hψof=HRFoφ. Further, when F is a Baire func-
tion on (—oo, +°°)> F°φ is a principal radial if and only if Fof is integrable
with respect to the harmonic measure ωM on ΔM . For HD-function9), this is
stated in [6]10).

Corollary. Let u be an indifferent harmonic function with radial φy and let
S be a continuous function on (—°°, +°°) such that Urn S(t) and lint S(t) exist

(which may be i t 0 0 ) . If

then S°φ is a principal radial.

Proof. Without loss of generality, we may suppose S>0. Since Sn

=min(S', n) is bounded and continuous, S^o^ is a principal radial. If we set
wn=HRSnθφ, {wn} is an increasing sequence.

shows that lim wn is indifferent and has a radial Soφy q.e.d. .

3. Convex modifications of radials

3.1. In the following, Ψ(t) denotes always a function defined on (— 00,-^00)
which is non-negative, increasing and convex. We set Ψ(—oo)=H

8) Cf. [4], Hilfssatz 0.1, p. 5.
9) An HD-function is a harmonic function with finite Dirichlet integral.

10) Cf. [6], pp. 580-581.
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L e m m a 3. If a non-negative Borel function u has a quasi-bounded harmonic

majorant V, then u(\, I) is uniformly integrable with respect to dg, i.e., for any

positive number 8 there exists a positive number δ such that if e is a set of Green

lines whose Green measure is less than S, then I w(λ, l)dg<8 holds for every λ.
J e

Proof. We follow the Doob's idea [5]. Let e be a Borel subset of X.

For λ > 0 we set | > ] λ = { / n Σ λ ; /£β}. It is known that ω$0([e]λ)=g(e), where

coy0 is a harmonic measure on ]>]λ with respect to y0. To prove the lemma it is

enough to show V(Xy ϊ) is uniformly integrable with respect to dg.

In the first place, we shall show that V(x) is uniformly integrable with

respect to dω\o. In fact, since V=^Hψ for some resolutive function / on ΔM,

given any positive S we can find subharmonic functions s1 and—s2 such that

(3. 1) s1<M0 and—s2<M0i where Mo is a constant,

(3.2)

(3.3)

Let us write Λ»,λ={#<ΞΣλ; V(x)>a} for α > 0 . We have

<εl4+M0V(y0)la.

The last inequality follows from

sup ( Vdωϊj = sup H?(y0) < V(y0).

Next, we set Λa>λ={l^X; V(\9 ΐ)>ά). Then [AΛ^x=AΛtX. We select
ao>0 so large that M0F(j/0)/α0<£/4. We set h=8j2a0. Then, £(*)<δ implies

\ V(X, l)dg =\ V(X, l)dg+ \ F(λ, l)dg

<\ V(X,l)dg+[ aodg

<\ V(x)dω^+aog(e)

< 8/4+6/4+8/2 = 8 .
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Thus, the lemma is proved.

L e m m a 4. Let v be a subharmonic minor function with radial φ, and let Θ

be an increasing continuous function on (—oo? -f-°°) Then Θ [v(X, /)] converges

to Θ(φ) in dg-measure as λ->0, i.e.,

lim *({/€= J7; |θ[ι;(λ, l)]-Θ[φ(l)] I >σ}) = 0
λ->o

for all GΓ>0.

Proof. Suppose, on the contrary, there exists σo>O such that

>σ0})>0 .

Then, we could seek α > 0 and a sequence of positive numbers {λn} tending to
zero such that

(3. 4) g({l^X;\Θ[v(XH, l)]-Θ[φ(l)]\ >σo})>a for n = 1, 2,-,

(3. 5) lim v(Xn, I) = φ(l) dg-a.e. .

By Egoroff's theorem, there exists ^-measurable subset ex of X such that
v(Xny I) converges to φ(l) uniformly on X—ex and

(3.6) £ « ) < α / 4 .

We select N so large that

(3. 7) *(**)<α/4, where e2 = {/; | φ(l) I >iV} .

For £=σo/2 there exists ?7<iV such that

(3. 8) I θ (0-Θ(* 2 ) I <6 whenever | tλ-t2\ <v and tly *2<Ξ [—2iV, 2iV].

On account of the uniform convergence of v(\ny I) on X—ex there exists a
number τz0 such that

(3.9) sup I v(Xm I)—φ(l) \<η for all n>n0.

/<ΞJ7-OiUβ2)

From (3.9), if w>w0 and l^(e1\Je2), then

therefore in view of (3. 8)

θ[φ(l)]-£<θ[φ(l)-v]<Θ[v(Xn, l)]<

that is,
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|Θ[>(λM, /)]—θ[φ(l)] I <ε = σJ2 whenever n>n0 and /<Ξ J7—(^ \Je2).

In other words

{/Gl; \Θ[v{\m l)]-Θ[φ(l)] I > σ o } c ^ U^2 for all n>n0.

From (3.6) and (3.7), we have for all n>n0

g{{l^X; \Θ[v(\n, l)]-θ[φ(/)]!>σ o})<«/2,

which contradicts (3.4), q.e.d..

Theorem 4. Let u be subharmonίc, minor and have a radial φ. If Ψ[u]
has a harmonic major ant, then Ψ[u] has a quasi-bounded harmonic major ant and it

is minor with radial Ψ[φ]. The least harmonic major ant Ψ[u] of Ψ[u] is an in-

different harmonic function with radial Ψ[<p], i.e., Ψ[u]=Ψ[u]=HRΨιφy

Proof. We write Ψn(t) = min(Ψ(*), n). Since ΰ = HRφ, there exists
wn=HRΨnθφ. Let {λn} be a decreasing sequence of positive numbers tending
to zero such that

lim u(Xnί ϊ) = φ(l) dg-a.e. .

Denoting by V the harmonic majorant of Ψ[u]y we have

[ψ[φ(l)]dg=\limΨ[u(Xnil)]dg<hm[ψ[u(Xny l)]dg

< lim (V(\m l)dg = lim H?λn(y0) < V(yo)< + oo,

which implies ψoφ is rf^-integrable. From

wn(y0) = HRΨnθφ(y0) = \ψn[φ(l)]dg < \ψ[φ(l)]dg,

we conclude lim wn=HRψoφ.

Since ϋ=HRφ=Hf, by the remark in 2.3, HRψoφ=H^of. By M. Parreau

[17]n:> we have jHΓψr

o/=Ψ[w]. Hence Ψ[u] has a quasi-bounded harmonic
majorant.

By the properties of Ψ and the Jensen's inequality, we can derive from

u(y)<H%\y)=\ ud
v 2jλ

11) In [17] it is not considered a Green space. We have, however, an obvious extension
to our general case.
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which means that Ψ(u) is minor.
Finally, by the above lemmas, Ψ[u(\y /)] is uniformly integrable with respect

to dg and Ψ[w(λ, /)] converges to Ψ[φ(l)] in ^-measure. Therefore

lim

i.e., Ψ[u] has a radial ψoφ. Thus the proof is completed.

The following example shows that the condition "u is minor" is essential
in Theorem 4.

EXAMPLE. Let a and b be two distinct non-zero complex numbers in the
unit disc. We consider the Green space Ω={|#|<1}—{a y b}. We denote by
Ga and Gb Green functions of Ω with poles at a and b respectively. We take the
reference point y0 at the origin. u=Ga—Gb is harmonic and has the radial
zero. Since u<Gay u has a harmonic majorant. The function

t if t>0

0 otherwise

is non-negative, increasing and convex. Then, Ψ[u] is not minor, since the
indifferent harmonic function with radial Ψ(0) is identically zero and is not the
best harmonic majorant of Ψ[u].

When a subharmonic function u has a radial, the property "u is minor*' is
closely connected with the property "Ψ[«] has a quasi-bounded harmonic
majorant'\ We shall state this fact precisely in the following theorem.

Theorem 5. Let u be a subharmonic function with radial φ, and let Ψ(t) be
a non-negative non-constant increasing convex function. Suppose that Ψ[u] has a
harmonic majorant. In order that u be minor, it is necessary and sufficient that

/\
Ψ[u] have a quasi-bounded harmonic majorant. In this case, we have Ψ[#]=Ψ[#]
=HRψoφ.

Proof. The necessary part is already proved in Theorem 4. Suppose that
Ψ\u] has a quasi-bounded harmonic majorant W. We can find numbers to>i)y

a>0 and b such that Ψ{t)>at-\-b whenever t>t0. Denoting by uto=mzx(uy to)y

we have

therefore

u<l/a.[W+Ψ(to)-b]= Wx.

Since W1 is a quasi-bounded harmonic majorant of u and Wλ—u is positive
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superharmonic, we have for every λ > 0 ,

u = Wi-{Wι-u)<.H£i-H&-v> = Ht

which proves that u is minor.

3.2. Here we shall mention the results related to the work of K. Endl [7].

For y^Dλ

y we set Kλ (/, y)= p '' y where G\ denotes the Green

function of Dλ with pole at , d/dn is the outer normal derivative on Σ λ a n d x 1S

the point of / on 2 \ namely x=(\y I). Let {λn} be a monotone decreasing
sequence of positive numbers tending to zero. In [7], the followings are estab-
lished:

[1°] there exist a set _£* of Green lines of Green measure 1 and a function
K(ly y) defined on Jβ* X Ω such that for fixed /, K(l, y) is harmonic as a function
of y and K(l, yo)=l for all/.

[2°] there exists a subsequence {αn} of {λw} such that

limj^B(/, y)φ{ϊ)dg = \K{1, y)φ{l)dg

holds for every d^-integrable φ. Further, if a harmonic function u has a radial

φ> then H%«n(y) = \καn(ly y)u(αny l)dg tends to Jiq/, y)<p(l)dg as n-oo,

[3°] if φ is rf^-integrable, then \ K(ly y)φ(l)dg is a harmonic function of y.

[4°] if u is an indifferent harmonic function and has a radial φy then

u(y)= \K(1, y)φ{ΐ)dg.

In view of our preceding study, we conclude:
(1) If v is subhαrmonίc, minor and has a radial φy then the best harmonic

major ant Vofv is expressed by

This is an immediate consequence of [4°].
(2) If φ is dg-integrable, then

, y)φ{τ)dg<HRφ{y).

Therefore, if both HRφ and HRφ are harmonic, then\K(l, y)φ(ΐ)dg is an indifferent

harmonic function.
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In fact, let υ^^φ

r and ϋ ί — oo. Since v is weakly minor

On the other hand,

f \Kan{l, y)v{an, I)dg-\K{1, y)φ{ΐ)dg

(3. 10) \[Koβ,y)-K{l,y)]φ{l)dg

\ Kan(l, y)Mam l)—φ(l)]+dg+ \ [KaH(l, y)—K(l, y)]<p(Γ)dg.

Since the family of positive harmonic functions KΛn(l,y) is normalized at yQy i.e.,
Kan(l, y0) = 1 for all l(ΞX*y by the Harnack's inequality, {KΛn(l, y) rc>rc0} is
uniformly bounded as a function of /G-f* whenever 3/ is fixed and n0 is suffici-
ently large. Therefore, if n is so large that y^D*", then KΛn{l> y) does not
exceed a constant C for all such w and l^X*. The first term of the last

integrals of (3.10) does not exceed C \ [v(an, I)—φ{l)]+dg for sufficiently large n

and therefore tends to zero as n-+°°. This is also true for the second term in
view of [2°]. Thus,

v(y)<lim Hf\y) = limίi^/, y)v(aj)dg<\κ(l, y)φ(l)dg ,

which proves

sup v(y) = HRΨ(y) < \K(l, y)ψ{l)dg .

If both HRφ and HRφ are harmonic, then they are indifferent and

\K(ly y)φ{ΐ)dg is also indifferent.

We restate Theorem 4 in

(3) Let v be a subharmonίc function with radial φ. If v is minor and Ψ(v)
has a harmonic major ant y then

Ψ[υ(yj] = ΨMy)] = j K(l, y)Ψ[φ(l)]dg .

4. An application to the theory of Riemann surfaces

In connection with our previous investigation, we mention here the unicity
theorem of Riesz type for holomorphic functions on a Riemann surface.
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Theorem 6. Let Ω be a hyperbolic Riemann surface, and let f be holo-
morphic on Ω belonging to the Smirnov class S(Ω), i.e., log+ | /1 has a quasi-
bounded harmonic major ant. For a subset a of X of positive Green measure, if we
have

\f(\,l)\dg =
λ-*0 Jβ»

thenf=O.

Proof. Suppose, on the contrary,/^0. Then, log | / | is minor. In fact,
let U be a quasi-bounded harmonic majorant of log+ | / | . Since v= U—log \ f \
is a positive superharmonic, v>H%λ>0 in Z)λ, which means that v is dω\Q-
integrable. Since U is rfωyo-integrable, log | /1 is dω^-integrable, therefore

U-log\f\ >

that is, log I/I <Hgg\/\<U, which means that log | / | is minor.

jlog |/(λ, l)\dg= \jog\f(X, l)\dg+\χ_a\og\f(X, ΐ)\dg

<\ log|/(λ, l)\dg+\ log+I/(λ,/)!<&<( log|/(λ, I)\dg+\U(\, ΐ)dg

= ( log I f(X, I) I dg+Htf(y0) =\ log I /(λ, I) \ dg+ U(y0)

By making λ->0, the right hand side tends to — oo, therefore lim Hf£\f\(y0)

= — oo. This implies that the best harmonic majorant of log | / | is —°o a t ^ ,

which is a contradiction, q.e.d. .

Since the Hardy class HP(Ω) (p>0) is contained in the Smirnov class we
have

Corollary. Let Ω be a hyperbolic Riemann surface, and let f be holomorphic

on Ω belonging to the Hardy class HP(Ω) forp>0, i.e., \f\p has a harmonic majo-

rant. For a subset a of J2 of positive Green measure, if we have

m\ \f(\,ΐ)\dg = 0,lim

thenf=0.

M. Brelot [1] considered the unicity theorem tor bounded holomorphic
functions. The theorem of Riesz type for holomorphic functions with finite
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Dirichlet integrals was established by M. Nakai [15] by means of the Royden's
compactification and the radial limits along Green lines.

5. Green spaces of type MHB(Ω) = MHD(Ω)

5.1. In this section, we consider strongly subharmonic functions of which
importance in the theory of harmonic functions is clarified by Garding-Hor-
mander [9]. A generalization of the results of Garding-Hormander is given in
Theorem 10 below in connection with Green lines. A research for generalizing
Garding-Hϋrmander's results was done by S. Yamashita [19] in terms of the
Martin's compactification not containing a notion of "radial limit'\

Throughout this section, we suppose MHB(Ω)=MHD(Ω). In [11], it is
shown that in the case where Ω is a hyperbolic Riemann surface above condition
is equivalent to the following: the Martin boundary AM and the Kuramochί
boundary Aκ of Ω correspond each other in the one-to-one manner almost every-
where, that is, there exist two sets E of dωM-measure zero and Er of dωκ-measure
zero and the bijection Φ form AM—E to Aκ—E'. This tact is also valid for a
Green space Ω. Using above bijection Φ, we have a surjection Θ from a subset
of X to a subset of AM more precisely, to every regular Green line / tending
to a point x\ϊ) of Aκ—E' we assign θ(Z)=Φ-1[V(/)]. Θ is defined ^-almost
everywhere on X and has the image of rfωM-measure 1. We note Θ is not a
bijection in general.

Any we MHB(Ω) is expressed by

u = Hψ = Hf, = HRφ ,

where f(χ)=f'[Φ(χ)] and <p(l)=f'[x'(I)]=f[θ(l)]. From what we have shown in
§1, it follows that all families of Dirichlet solutions on Green lines considered in
§1 coincide with those of the Dirichlet solutions with respect to Martin's and
Kuramochi's compactifications.

5.2.

Lemma 5. Let u be a positive singular harmonic function on Ω. Given any

decreasing sequence of positive numbers {\n} tending to zero, then there exists a

subsequence {\ή} such that e'={l^X'; Urn u(\ή, l)>0] is of Green measure zero.

Proof. For every positive integer k, the function uk=min(u, 1/k) is a
potential, therefore uk has the radial zero. Hence we can choose a subsequence
{λΛJ of {λj such that

lim %(λnv, l) = 0, dg-a.e..
V->oo

By taking subsequences successively, we can find a diagonal subsequence
of {λΛ} and a subset e of X oί ^-measure zero such that
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(5. 1) lim MΛ(λ£, /) = 0 for every l^X-e and k = 1, 2, ••• .

We assert that e'={l^X'; lim u(X'n, /)>0} is of Green measure zero. In fact,

we suppose, on the contrary, that the outer Green measure of e' is positive.

Then, there would exist Zee' Π \X—e\ and a subsequence {X'ή} of {λ£} satisfying

lim u(Xn, l)=a>0. From this we deduce u(X'n, l)>a/2 for all sufficiently large

n. If we take k0 so large that <z/2>l/A0, then we have

lim fi^λίT, / ) = l / * 0 ,

which contradicts (5.1), q.e.d. .

5.3. A subharmonic function is called strongly subharmonίc if it is the com-

posed function of ψ and u, i.e., ψo«, where u is subharmonic and ψ is a real

valued real variable function satisfying the conditions:

1) ψ is non-negative, increasing and convex,

2) lim Ψ(t)lt = o o ,

We define Ψ(— oo)= Hm ψ(t).
t+-oo

If a strongly subharmonic function Ψ[u] has a harmonic majorant, then it

is known that u has the least harmonic majorant ύ which is decomposed into a

quasi-bounded ύB and a non-positive singular harmonic part ώs

12). Under our

assumption MHB(Ω)=MHD(Ω), ύB is a Dirichlet solution HRφ. Hence

u = HRφ+ύs—ρ,

where p is a potential.

Lemma 6. C//z<fer *λe assumption MHB(Ω)=MHD(Ω), if Ψ [u] is strongly

subharmonic and has a harmonic major ant > then u=HRφ-\-ύs—p for some potential
/\

p and a singular harmonic function us. Moreover, for every c, we have uc = uc

=HRφcy where fc denotes the function max(f, c).

Proof. Only the latter half of the lemma needs to be proved. Write

v=max(HRφ, c). Since w s <0, we have uc<v. v has a radial φc, and
/\

v<HRφVc implies v is minor. Thus v<HRφc, which proves uc<uc<HRφc.
/\ /\

Since uc is quasi-bounded, we can write uc=HRψ. By Lemma 5, there exists

{Xn} tending to zero such that

]im\ύs(\m l)\ = 0 , dg-a.e..

Replacing, if necessary, {λΛ} by a suitable subsequence, we have

12) Cf. [19], Lemma 3, p. 64.



lim I uc(h,, l)-9c(l) I = 0 , dg-a.e. . 
n+- 

and 

lim I uc(h,, 1)-+(I) I = 0 , dg-a.e. . 
n+O0 

These show that += qc dg-a.e., q.e.d.. 

Theorem 7. Under the assumption M H B ( f l ) = M H D ( f l ) ,  every strongly 
subharmonic function possessing a harmonic majorant has a radial. More precisely, 
if a strongly subharmonic .function Y [u] possesses a harmonic majorant, then 

and Y [u] has a radial W [q] . 

Proof. Let us consider the subharmonic function uc=max(u, c), where c is 

a real number. Since, by Lemma 6, u" is a Dirichlet solution on Green lines 

and 2 - u c  is a potential, uc is minor and has a radial 9 " .  Since Y [ u c ]  has a 
harmonic majorant also, we deduce form Theorem 4 that Y [ u c ]  is minor with 

P, 
radial v [ q ~ " ] ,  and therefore '4' [uc]= Y [uZ]= HR,,,~,. When c+- m, ~ ' [ u " ]  

A A 
decreases and Y[qc]+Y[q]. Hence O<Y[u] 5 lim Y [ u c ] = l i m  U p ] =  HR,,,,. 

A /\ "+-- 

c + - w  

This means that Y [ u ]  is quasi-bounded and Y[U]=Y \V[~]=HR{, for some +. We 
clearly have +<Y[~I]  dg-a.e. . The  converse inequality is also valid. Indeed, 
let O- be a non-negative bounded dg-measurable function on L. By Lemma 5, 
there exists {h,} tending to zero so that u(h,, l)-.q(l) dg-a.e.. Then, we have 

5l;m Y [ u ( h , ,  I ) ]  O-(l)dg(l) 
"+- J 

From this we conclude that W [ q ]  dg-a.e., thus, we complete the proof. 

Corollary. Let f l  be a hyperbolic Riemann surface satisfying M H B ( f l )  
= M H D ( f l ) ,  and let p 2 1 .  I f f  E H p ( f l ) ,  that is, f is holomorphic on f l  and I f I P 
has a harmonic majorant, then f=HR,  for some 9=q,+i9, and 

I n  particular, f has a radial q and q~dg  is a boundary measure of f ,  that is, 
f (h, 1)dg tends to q~(l)dg vaguely as h+O. 
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Proof. First we consider the case p=l. Since |/ |=exρ(log | / | ) , | / | is

strongly subharmonic and has a harmonic majorant, therefore, by Theorem 7,

| / | = \f\=HRψ for some ψ. Since the modulus of the real part u of / and

that of the imaginary part v of / are both bounded by | / 1 , it follows that u and

v are quasi-bounded, and therefore u=HRΨl (resp. v=HRΨί) for some φ1 (resp.

<p2). Thus,

f=HRΨl+iHRψ2

and

lim\\f(\,l)-φ(l)\dg = O,

where φ=φ1-\-i φ2-
Next, let p > 1. If we set

tp iff>0,

0 otherwise,

[
= 1

then I / 1 p = Ψ ( | / 1 ) , which implies \f\p is strongly subharmonic and has a

harmonic majorant. We have seen that | /1 has a quasi-bounded harmonic

majorant, therefore both the real part u and the imaginary part v of / are quasi-

bounded. Hence u=HRΨi (resp. v=HRφ^) for some φλ (resp. <p2). Since

X, l)-φi(l)\P+\v(X, l)-φ2(l)\P) ,

to prove (5.2), it is sufficient to show

lim(Kλ, l)-φi(l)\*dg = 0 .

Since strongly subharmonic function \u\p has a harmonic majorant, \u\p has a

quasi-bounded harmonic majorant. It follows from Lemma 3 that {| w(λ, /) | p )

are uniformly integrable with respect to dg. The inequality

implies that {|w(λ, ΐ)—ψi(ΐ)\p} are also uniformly integrable. From this and

the fact that w(λ, /) converges in measure to φλ{ΐ) as λ->0, we derive the result,

q.e.d..

REMARK. For 0<^><l, a function/in HP{Ω) can not be expressed by the

form f=HRφ in general. For, if f&H^Ω), either the real part or the imaginary

part of/ does not belong to HP(Ω).

5.4. In §4, we have discussed the unicity theorem for some function
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classes. Here we state, under the assumption MHB(Ω) = MHD(Ω), the
unicity theorem for a wider function class.

T h e o r e m 8. Let Ω be a hyperbolic Riemann surface. Assume MHB{Cί)
=MHD(Ω). Let f<=AL(Ω), that is, f is holomorphic on Ω and log+ \f\ has a
harmonic major ant. For a set ad X of positive dg-measure, we suppose

lim( \f(\,l)\dg = O,
λ->o Ja

or more generally, there exists a sequence {λn} of positive numbers tending to zero
such that

lim/(λM, /) = 0 for all l€Ξa ,

thenf = O.

Proof. Suppose, on the contrary,/^0,. Then, the least harmonic majo-
rant U of log I/ | could be written in the form U=HRφ-\-Us, where Us is
singular. Therefore, log \f\=HRφ-\-Us—p> where/) is a potential. Then,
there exists a subsequence {λ£} of {λn} so that log |/(λ£, ΐ)\-*φ{ΐ) dg-a.e. .
This means φ = — CXD on a of positive ^-measure, which is a contradiction
since φ is rf^-summable.

5.5. Relations between the boundary measure of a subharmonic function
u and its radial seem to be not so simple, when the least harmonic majorant ύ
of u has a singular part. On the other hand, if ύ is quasi-bounded, we can
write ύ=ΰ=HRφ for some φ. Then, we have

ίiϊn f |«(λ, l)—φ{ΐ)\dg <l im [ [ύ(X, /)—w(λ, l)]dg

+ Km\\M(X,l)-φ(l)\dg
λ->0 J

<lim[U(yo)-Hζ\yo)] = 0 .
λ->0

This shows that φ(ΐ)dg is a boundary measure of u. Thus, we have

Theorem 9. Under the assumption MHB(Ω) = MHD(Ω), if the least
harmonic majorant of a subharmonic function u is quasi-bounded, then the boundary
measure of u exists and is absolutely continuous with respect to the Green measure.

Now we state a generalization of Garding-Hό'rmander's theorem [9].

Theorem 10. We assume MHB(Ω)=MHD(Ω). Let Ψ[u] be a strongly
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subharmonic function possessing a harmonic majorant. Then

(i) for every sequence {an} of positive numbers tending to zero, there exists a

subsequence {λn} so that u(\ny ΐ)dg tends to a measure dμ on X vaguely.

(ii) if dμ=φdg-^dμs is the Lebsgue decomposition of dμ into an absolutely

continuous and a singular measure with respect to dg, then we have

(1) μs<0.

(2) denoting by ύB the quasi-bounded part of the least harmonic majorant ύ

of uy if we write ύB=HR^y then φ<ψ.

(3) the boundary measure of Ψ[u] is Ψ[φ] dg.

(4) ψ is the least majorant radial of u.

Proof. In the decomposition of

u = ύB-\-ύs—p ,

where ύB and ύs are the quasi-bounded and the singular part of the least
harmonic majorant ύ of u respectively and p is a potential, ύB and —p have
radials respectively, therefore they have boundary measures. Since ύs<0,

j Iύs(X, l)\dg=\ [-ύs(X, l)]dg = -Hg(y0) <-ύs(y0),

which means that the total mass of |ώs(λ, ΐ)\dg is bounded. Hence, for a
suitable {λrt}, the vague limits of ύB(\ny l)dgy ύs(\n, ϊ)dg and p(Xn, ΐ)dg exist.
We denote them by ψ dg, dv and 0 respectively. Now {λM} and dμ=ψdg-\-dv
fulfill the proposition (i). Since ύs<0, in the Lebesgue decomposition of dv
=φodg-\-dvSy we see that φo<O and ̂ s < 0 . Thus, if dμ = φdg-\-dμs is the
Lebesgue decomposition, then we have φ=ψ-\-φ0 and vs

=μs- The proposi-
tions (1) and (2) in (ii) are now easily derived, and (3) is an immediate con-
sequence of Theorem 7. To prove (4), we note first that ψ i s a majorant radial
of u. This is a consequence of relations:

u<ύ> ύ—ύB = ύs<0 and ύB = HRψ .

Indeed, in the following inequality

\ )-ώ(λ, ιψdg+

, l)-ύB(X, lψdg+

\[ύB(X, l)-ψ(lψdg,

the first two terms of the right-hand side vanish and the remainder tends to zero
as λ-^0. Next, let ψ1 be an arbitrary majorant radial of u> i.e.,
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We have clearly

lim[[uc(X, l)-ψl(l)]+dg=0.
λ-> 0 J

/\
c cBy Lemma 6, uc=uc=HR^c for all real numbers £. By making λ-^0 in the

following inequalities

< J \uc(\y l)-ψc\dg+\[uc(X, l)-ψΐ\+dg,

we have

i.e., ψc <ψi dg-a.e.. Since £ is arbitrary, we get λlr<ψ1 dg-a.e.. Thus the
proof is completed.

6. Relative Dirichlet problem on Green lines

6.1. The relative notions such as λ-radial, λ-indifferent etc. were intro-
duced by L. Lumer-Naϊm. We refer for them to [13] and [14]. Let h be
a positive harmonic function on Ω. For simplicity, we assume that y0 is not
an infinity point. Throughout this section, we shall fix h. We introduce the
notations

Gyo{y)lh{y)>\}

and

Σ λ l A = {jeΩ; Gyo(y)lh(y) = λ} .

The maximal orthogonal trajectories of a curve family {2λ>Λ} a r e termed h-
Green lines. All A-Green lines issue from yQ. On the set of all h-Green lines
Jlhy we can give a topology homeomorphic to the unit sphere. When we refer to
the topological notions on J^hy we agree that they are always considered with
respect to this topology. On J?A, we can also define a positive Radon measure,
which will be called h-Green measure and is denoted by gh, such that

1) the total mass of gh is h(yo)y

2) £Λ(e)=(area of e')xh(yo)lστ for every Borel set e on Xh, where e' is
the set on the unit sphere corresponding to e and σr is a constant depending
only on the dimension T of Ω.
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An λ-Green line / is called h-regular if the infimum of GyJh on / is zero.

It is known that d^-almost all h-Green lines are λ-regular.

Let/be a function defined quasi-everywhere13) on Ω=Ω— {infinity points}.

We denote by [λ, /] the point where an λ-Green line / intersects Σ λ ' Λ . / is

termed to have an h-radίal φ, if there exists a t/g^-integrable function φ(ΐ) on

Xh such that

A harmonic function u is said to be h-indifferent if W% * = u for all

where 3)% 'h is an A-Dirichlet solution on Dk'h for a boundary function M/<

6.2. An extension of the notion of BLD-functions was given by L. Lumer-

Naϊm as follows [13]: a function u is an h-BLD function if it is a quasi-ever-
V

ywhere finite limit of κBeC"(Ω) such that \\uH—M||A-*0, where

grad: dV.

We obtain an extension of Godefroid's result [10] to A-BLD fuctions.

Theorem 11. For any h-BLD function u, u/h has a finite limit along dgh-
almost every h-Green line.

The proof is quite simlar to that of Godefroi'd's [10]. We shall omit the
proof.

More interesting case is that where, instead of A-BLD functions, BLD-func-

tions are connected with A-Green lines. By applying Ohtsuka's method of ex-

tremal length [16], we have the following theorem under the restriction that

h is bounded.

Theorem 12. Let h be a bounded positive harmonic function on Ω. Every

BLD-function f has a finite limit along dgh-almost every h-Green line.

Proof. It is known that a BLD-function has a finite limit along each open
curve except a family of curves of extremal length -)-oo15\ It is proved by a
similar argument in [16] that the set of A-regular A-Green lines, along each of
which /has a limit is ^-measurable.

If Γ is a set of A-regular A-Green lines of rf^Λ-measure positive, the module

13) / is said to be defined quasi-everywhere, if/ is defined except a polar set.
14) For a relative Dirichlet solution 3)f,h we may refer to [2],
15) Cf. [16], th. 2, p. 68.
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of Γ/=Γ—Z)λo Λ 1 6 ) is positive for sufficiently large λ0. In fact, let p be admissible

for Γ/, that is, p is a measurable function in Ω such that

^p forall/eΞΓ'.

For / G Γ ' , we have

j^j G^/AI-V^.^lgrad GyJh\ds).

Since / is an A-Green line, on / locally by using a local coordinate xu •••, xΎ we

have

dxi dxr ds

h*{G)x-G {h)Xl

where we abbreviate Gyo, dhjdxt etc. to G, (h)x. etc., respectively. From

A2|grad G/h\z =

we get

dX = d(G/h) = ±h.(G)xi-G (h)xUv;

= [Σ τ {h (G)x.-G'(h)x.}ψ* fj = |grad G/A|Λ.

Therefore

1 < ( \ p2Igrad G/h\ ~λds jί I d\)<λo I p2Igrad Gjh\ ~ι ds ,

from which we derive

(6. 1) gh(T)/X0< \ f p 2 1 g r a d Gjh\~λ ds dgh.

Since ώ dgh=(h2/φτ) Igrad G/h\dV, where <pτ is a constant depending only on

the dimension T of Ω, the second member of (6.1) is equal to

Consequently, denoting by M the supremum of h2, we have the estimate

16) We use Γ" to denote a curve family {/ — Dλofh; / G Γ } , i.e., consisting of curves in Γ
taken off a neighbourhood of y0. We shall also denote the set {x^l—Z)λo A, /eΓ} by the
same Γ'.
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which means that the module of Γ' is not less than<§
r

Λ(Γ) 9?τ/(λ0M)>0. Thus,

we have proved that the exceptional family of curves of extremal length+°o is

of ^-measure zero, which completes the proof.

Corollary. Let h be a bounded positive harmonic function. Then, dgh-

almost every h-Green line tends to a point of the Kuramochi boundary Δ^.

This is an easy consequence of the above theorem and those of Maeda17).

6.3. In the sequel, we shall always suppose that h is bounded. Under this

assumption the axiom (^Λh), that is, all bounded continuous functions are h-resolutivey

is valid for the Kuramochi's compactification Ωκ. When Ω is a hyperbolic

Riemann surface this is proved by H. Tanaka18).

In view of the corollary to Theorem 12, we may consider the relative

Dirichlet problem on A-Green lines in connection with compactifications.

Let φ be an extended real valued function on Xh. The upper envelope of

the class in which each function u is identically —°o or subharmonic sati-

fying the conditions that u/h is bounded from above and

dgh-a.e.y

is denoted by 3φ^ where [λ, h] is the point on / at which GyJh=X. We define

Let/be a function on Δ^. For every λ-regular /z-Green line tending to

x ' e Δ * , we shall set [/]*(/)=/(*')• T n e function [f]h is defined dg h-almost

everywhere. By giving the value zero for the other /, we consider [f]h is to be

defined on £h. As in §1, we have

(6-2)

where 3)$th and 3)fth are lower and upper relative Dirichlet solutions for a

boundary function / with respect to the Kuramochi's compactification respec-

tively.

A subharmonic function u is called to be weakly h-minor if <£%λ'h>u for all
htfι

λ > 0 . Also, if limϊ K [ λ > /])_φ(l)Ύdgh=0 for some φ, then u/h is termed to

have a majorant h-radial φ. HRφ h is defined to be the upper envelope of the

class consisting of functions, each of which is identically — oo or weakly A-minor

subharmonic u such that u/h has a majorant A-radial φ. We define HRφ h=

ωϊh also.

17) Cf. [12] th. 1, p, 60 and th. 5, p. 64.

18) Cf. [18J, Cor. 3, p. 55.
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If φ is <ί£A-integrable, then we can prove as in §1

(6. 3) 3r,H<HR*,H<HRφ,h<βφ,h,

(6 4) HB*M < J

From (6.2), (6.3) and (6.4) we obtain the following theorem which is an ex-
tension of Maeda's result1*0.

Theorem 13. Let ω% be an h-harmonic measure on Aκ and let Λ be a
family of all h-regular h-Green lines tending to a point of Δκ. Denoting by x\ΐ)
the limit point of I on Δκ for / G Λ , we have for any dω%-measurable set e C Aκ, the
set [ ^ ] = { / G Λ ; x'(ΐ)^e) is dgh-measurable and coζ(e)=gh([e]).

By the above theorem we conclude in particular, if e is of rfω^-measure
zero, then an A-Green measure of [e] vanishes. As is shown in the following
examples, the converse of this is not ture in general.

EXAMPLE 1. We consider Ω=R3 and the one-point compactification Ω*.
The Alexandroff point Jl is of harmonic measure 1, while all Green lines issuing
from the origin tend to this point.

EXAMPLE 2. Let h be bounded minimal. Then h=c*KXQ, where KXQ is
the Martin kernel corresponding to a minimal Martin boundary point x0. In
this case, rf^-almost every A-Green line tends to the same point Φ(x0), the pole
of x0 on Δ^2^. In fact, denoting by f0 the characteristic function of the set e0

consisting of a single point Φ(#o)> we have

gh{Xh) = h(y0) = <D«th(y0) = βί/oUih(yo) = j Uo]hdgh =

6.4. The solution u=HRφ h of the relative Dirichlet problem on A-Green
lines for boundary function φ is characterized as a harmonic function such that

1) u is A-indifferent,
2) ujh has an A-radial φ.

In the ordinary Dirichlet problem on Green lines, to get the solution, we only
find a quasi-bounded harmonic function having a given boundary function as a
radial. The situation is however more difficult in the relative Dirichlet problem
on A-Green lines. To solve the problem, following Naϊm, we set

ΔA = {^A M ; lim Gyo(y)lh(y) = 0} .

It is known that ΔM—ΔA is of rfω^-harmonic measure zero. Every positive

19) Cf. [12], th. 8, p. 65.
20) Cf. [11], p. 286.
21) Cf. [14], pp. 85-86.
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harmonic function u can be decomposed into

where uLh and # Δ # _ Δ A are reduced functions of u on Ah and on ΔM—ΔΛ respec-

tively. uA/t is A-indifferent and (wΔ-tf_ΔA)/λ has the λ-radial zero2υ. Therefore,

u is λ-indifferent if and only if u^κ_Lh is so and ujh has an λ-radial φ if and only

if u^Jh has an A-radial φ. Thus we have

Theorem 14. Let φ be a positive function on Xh. If we can obtain a

positive harmonic function u such that ujh has an h-radial φ, then uάfι in the

decomposition

u = _ Δ A

is the solution HRφ h.
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