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Introduction

The Dirichlet problem on Green lines was investigated by Brelot-Choquet
[3]- In their work, we can find some results concerning the relations between
the Dirichlet problem on Green lines and the completion of Green spaces.
Some special compactifications, for instance the Kuramochi’s, are becoming
more and more important to the study of the potential theory, as the recent
researches on the compactifications of Green spaces show. It was shown for
instance by F-Y. Maeda [12] that almost every Green line tends to a point of the
Kuramochi boundary of a Green space. We discuss in this paper an extension
of a radial limit of functions on the unit disc in the classical function theory in
connection with the family of Dirichlet solutions. It becomes clear in the
course of the discussion that the Dirichlet solutions on Green lines play an
important role in the study of harmonic functions.

In §1, we discuss the inclusion relations among the families of Dirichlet
solutions related to Green lines. In view of the importance of radial, we have
to get a family of functions having radials. To do so, we investigate two sorts
of modifications; a lattice modification and a convex modification. They will be
stated in §2 and in §3 respectively. As an application of our preceding study,
we consider in §4 some classes of holomorphic functions on a hyperbolic Riemann
surface and establish the unicity theorem of Riesz type. §5 is devoted to the
study of Green spaces where all Dirichlet solutions on Green lines are quasi-
bounded. Theorem 10 gives a generalization of a theorem of Garding-Hor-
mander [9]. In the last section, we show first that in some measure almost every
h-Green line tends to the Kuramochi boundary, by using relative notions in-
troduced by L. Lumer-Naim [13], [14]. Then we discuss the relative Dirichlet
problem on A-Green lines in connection with the Kuramochi’s compactification.

For the following notions we refer to Brelot-Choquet [3]. Let Q be a
Green space. We fix a point y, in Q and consider the family L of all Green
lines issuing from y,. On _£, we introduce the topology homeomorphic to the
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unit sphere and the Green measure g such that g(.£)=1 and g(e)=o X (area of
[e]), for each Borel set e on £, where [¢] is the set of the unit sphere correspond-
ing to e and o is a constant depending only on the dimension of Q. We define

D' = {yeQ; G, (y)>)\}
and
r={yeq; G,(y) =1}

for 0<A <G, (y,), where G, is the Green function of Q with pole at y,. A
Green line / is called a regular Green line if inf G, (y)=0. The set of all regular
yE!

Green lines will be denoted by £”. It is known that g(L—_L")=0.

1. Dirichlet problem on Green lines

1.1. 'The Dirichlet problem on Green lines was first considered by Brelot-
Choquet. For the following definitions and properties we refer to [3]. Let @
be an extended real valued function on the set of all Green lines [, i. e., @ is a
mapping from £ into [—oco, 4 c0]. We consider the class:

G { subharmonic, bounded from above on Q) andl
=¢

“ mou(n, D<) dg-a.e (U {—c},
A>0

where u(\, I) denotes the value of % at the point @ on / where G, (a)=X. The
lower solution G, is defined to be an upper envelope of ¥, i.e.,

Gy(a) = sup {u(a); ucLy}.
G, is either harmonic or =+ o0 or =—oo. The upper solution is by definition

Ego = _“g(—v) .
It is known that G,< G, and

pdg <[pdg <T5.) .

ey

Go(y0) <
If G, andG, are equal and are harmonic, their common harmonic function will
be denoted by G,. We denote by 4 the set of all Dirichlet solutions &,.

Next, let 3 be a compactification of Q which is resolutive® and possesses
the following property: except a set of Green lines of Green measure zero, each
Green line converges to a point of A=0—Q. For le_L converging to a point of
A, the limit point of / will be denoted by x(/). Given an extended real valued

1) “dg-a.e.” means “except a set of Green lines of Green measure zero”.
2) For the resolutive compactification, we refer to [4].
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function f on A, we define a function on _£ as follows:

f(), if / has a limit point x=x(/),
(A1) = { 0, otherwise.

Then, we have
I_{ = _g_)[fla) .

It was shown by F-Y. Maeda [12] that the Kuramochi’s compactification
QF of O possesses the above property. Since the family of all Dirichlet solutions
on QX is MHD(Q)* we have

MHD(Q)C 4 .

1.2. A slightly more general formulation of the Dirichlet problem on
Green lines was also considered in [3]. Let {A,} be a monotone decreasing
sequence of positive numbers tending to zero. We consider the family:

{4n) { subharmonic, bounded from above on Q and Ul )

B lim u(\,, )<@(l) dg-a.e.
As above, the lower solution and the upper solution are defined to be

{2n} {An}
Gy(a) = sup{u(a); uEdy}

and

(24} {2n)
gcp - _‘g(—tf) )

U} {4n)
respectively. If G, and g, are equal and are harmonic, their common harmonic

{4n) {2n}
function is denoted by &,. We denote by 4, the set of all solutions &,.

Obviously we have
HC Hu, -

1.3. Another formulation of Dirichlet problem on Green lines was given by
M. Brelot [1], In [1], he introduced important notions such as radial, weakly
minor, indifferent, etc., which will play a fundamental role in our present paper.
A function v on Q is said to have a radial (resp. majorant radial) ¢ if

3) Cf. [3], th. 30, p. 253.
4) In the case where Q is a hyperbolic Reimann surface, this is stated in [4], Hilfssatz 16.1,
p. 167. The fact, however, can be easily extended to the general case.
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{ingm(x, D—g(l)|dg = O (resp. 132)18[1)(7», I)—p(I)]*dg® = 0) .

A radial is a function defined on L dg-almost everywhere. A harmonic (resp.
subharmonic) function « on ) is called indifferent (resp. weakly minor) if for each
A>0, HP* =y (resp. u<H E}‘), where HP" is a Dirichlet solution on D* with
boundary value u; more precisely, we consider the one-point compactification
Q* of Q with Alexandroff point (4. In a formulation of the Dirichlet problem
on D* we agree that all topological notions are refered to this topology and a
boundary function is extended as

a if a€Q,
{(a) - {f(O) if a= le .
In the sequel, instead of the Dirichlet solution H2" we write it simply H2,
The existence of the solution H2" is equivalent to tl?e dg-integrability of ﬁ(x, 0
as a function of /, and then, we have HE)‘(yO)=Su(7\,l)dg o,

We consider the families:

G — {u; subharmonic on Q, we'akly mmor} U {— oo}
and has a majorant radial ¢

and
o= {—u; ueTi_p}.
The envelopes
HRy(a) = sup {u(a); v Fy}
and
HR,(a) = inf {u(a); uc F,}
are either harmonic or =-4 o0 or =—oo, It is known that
HR,< HR, = —HR(_,, .

If HR, and HR, are equal and are harmonic, their common harmonic function
is called the Dirichlet solution on Green lines and will be denoted by HR,. It is
known that HR, is indifferent and has a radial . K. Endl [8] discussed the
Dirichlet problem on Green lines in this formulation. He called HR, the solu-
tion for a principal radial . The set of all Dirichlet solutions on Green lines
will be denoted by X.

5) a*denotes max (a, 0).
6) Cf. [1], p. 431.
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Lemma 1. If @ is a dg-integrable function on _L, then we have

(L.1) G,<HR,
and
(1.2) HR (7)< (pdg

Proof. Since each member uz= — oo of &, is bounded from above, we have
u<HZ,

i.e., # is weakly minor. Since [u(N, [)—@())]*<M*+ |@(])|, for every A and
le L, where M is an upper bound of #, and since

1:_13 [u(X, D)—o(D)]* =0 dg-a.e.,

we have
lim S[u(x, )—o(l)]*dg = 0,
A>0

i.e., # has a majorant radial . Thus ue 7, which implies (1.1).
Next, for each us &, we have

(v, D— 00+ > [fucr, H—ptidg

= HZ(3)= [p(0dg > u(y)— e .

By making A—0, we have %( yo)gg¢>dg, therefore HR,(y,)< S(pdg, q.ed..

Since a Dirichlet solution g, is associated with dg-integrable ¢, we obtain
from this lemma relations among the families of Dirichlet solutions relating to
Green lines formulated above.

Theorem 1. We have

(1.3) Hc K
and
(1.4) dlc N ﬂ(z,,)
(An}EAN

where A is the family of all monotone sequences of positive numbers tending to zero.

In section 2, we shall see further XC U H,.
(an}EN

Corollary. If f is a resolutive function on the Kuramochi boundary A¥ of
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Q, then we have
H;f - g[f] == HR{f] y

where H¥ denotes the Dirichlet solution on QK with boundary value f. In particular,
the Dirichlet solution HY is indifferent and has a radial [f].

REMARK. Here we state some results on the solutions of %, which can

be easily proved.
{An} {2n} {An}
1. If u=Z,, then we have u=G,+— G,-, where " =max(—e, 0). If, fur-
{An)
ther, >0 then u,= G, ;. 1 exists for every k and lim u,=u. From these facts,
k>

we know ;) € MHB(Q), where MHB(Q) is the family of all quasi-bounded

harmonic functions.
(2n} (2} {2n} (2n}
2. If u==G, and v=4,, then we have u\V v=G,, o, y> aNd U AV= G ;1cp, 42

where #\/ v (resp. # Av) denotes the least (resp. the greatest) harmonic function
which dominates (resp. is dominated by) u and .

3. Let {@,} be an increasing sequence of functions tending to ¢ such that
{4} (n} Aoy . .
u,=G,, exists for every k. If G, is harmonic, then G, exists and coincides with

lim .

k-

2. Lattice modifications of radials

2.1. As we have touched on it in the preceding section, the Dirichlet
solution on Green lines HR, is just the harmonic function which is indifferent
and has a radial @. Thus, given a boundary function @, in order to find the Di-
richlet solution on Green lines HR,, we arrive at the problem to seek a harmonic
function which is indifferent and has a radial @. The first point, to find in-
different harmonic functions, can be solved easily since the class of indifferent
harmonic functions is tairly large; for example, quasi-bounded harmonic tunctions
are indifferent. In view of the second piont, to get a harmonic function with
radial, it is preferable to extend a tamily of harmonic functions with radials. To
this end, we investigate two sorts of modifications: the lattice modification and
the convex modification. |

We begin with definitions. A subharmonic function  is said to be minor,

it it is weakly minor and lim H2?" is harmonic. If # is minor, the harmonic
A>0

function lim H2" is the smallest indifferent harmonic majorant ot . It is called
A->0

the best harmonic majorant of u and is denoted by #. Denoting by # the least
harmonic majorant of «, we have u <#<#.

2.2.
Lemma 2. If u is subharmonic, minor and has a radial @, then
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(i) the best harmonic majorant @ of u has a radial @, i.e., #=HR,.
(i) wu*=max(u, 0) is also minor and has a radial ¢ and u*=HR,+.

Proof. 7e (i). In order to see that # has a radial ¢, we consider
[1a0n D—ad1dg<la(r, H—ur, D1dg+ 10, D—) 4
<IHP ()~ HE (01 | 1u(r, D—o(D) | dg

<[#(y)— HZ 1+ lun, D—e(l) dg .

In the above inequalities, the last terms tend to zero as A—>0. Thus, # is
indifferent and has a radial @, that is, #=HR,.
re (ii). Since u is minor, u< HP?*<HP}. Consequently, we have

ut<H ff ,
i.e., u* is weakly minor. On account of the inequality
la*—b*| <|a—b],

we know that u* has a radial @*. Since @ is a radial of a minor subharmonic
function, it is dg—integrable. Making A—0 in

H2Xy) = [wr (v, Ddg <[00, D—g*@lde+ [0 (e
we have
lim H2X(y) < o (Ddg< + o,

which implies that «* is minor, q.e.d..

Theorem 2. If u and v are indifferent harmonic functions with radials
@ and \ respectively, then there exist indifferent harmonic functions with radials

max(p, \r) and min(p, ) respectively.
An indifferent harmonic function with radial is quasi-bounded.

Proof. The harmonic function u—wo is indifferent and has a radial @—n)r.
By Lemma 2, there exists an indifferent harmonic function » with radial (p—Jr)".
v4w is indifferent and has a radial max(gp, V).

Next, it # is an indifferent harmonic function with radial ¢, then there exist
harmonic functions #, and u, which are indifferent and have radials @™ and
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@~ respectively. Since u=uwu,—u, uc HP(Q)”. Since a sequence of in-
different harmonic functions w, with radials min(e™, #) is increasing and w,<u,,
we see that w=Ilim w, is harmonic and w=wu,. Thus %,, and then u are quasi-

n-yo0

bounded, q.e.d..

Corollary 1. If u is subharmonic, minor and has a radial @, then the best
. . - . . . . . /\ .
harmonic majorant u* coincides with the least harmonic majorant u* of u*, i.e.,
— A
ur=ut=HR,+

In fact, on account of Theorem 2, HR,+ is quasi-bounded. Therefore
AN
0<u*<u* = HR,+

/\ . . /\ . . .
implies that #* is quasi-bounded. Thus, #* is indifferent and we conclude
A

Corollary 2. KC U Hu,.
) EA

In order to prove this, it would be enough to show that for any positive

u=HR,, there exists a decreasing sequence of positive numbers {\,} tending to
{2n)
zero such that u=G,. Since u is indifferent and has a radial @, we can find an
indifferent harmonic function #, with radial min(g, k). Then, there exists a
sequence of positive numbers {\}} tending to zero such that limu,(\:, /)=
o0
min ( (l), k) dg-a.e.. From this and the boundedness of u,, we conclude
(an*)
ur= G inw - By choosing a subsequence, we can assume that {\}} is a sub-
’ {2n)
sequence of {57}, We set A,=\n. Since it is clear that u,=G ;.o » for all

{n)
k, by making k—co, we have u=G,, i.e., u& H ).

Remark. By Corollary 2, the Dirichlet solution on Green lmes u=HR,
{2n)
has an experssion u=g, for suitable {\,}. Then, u*=HR, +—Q’ r=u _u\/O

2.3.

Theorem 3. Let u be an indifferent harmonic function with radial ¢, and
let F be a bounded continuous function defined on [— oo, 4+oo). Then, there exists
an indifferent harmonic function with radial Fogp.

Proof. Let M be the family of bounded continuous function f on
[— oo, 4oo] such that foep is a principal radial, i.e., there exists an indifferent
harmonic function with radial fop. Obviously H is a vector space. By
Theorem 2, we observe that (¥ forms a lattice by the usual maximum and mini-

7) HP (Q) denotes the family of all harmonic functions each of which is expressed by a
difference of two non-negative harmonic functions.
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mum operations. Constant functions are contained in #. Finally, any two
distinct points #,, t, of [—oco, 4-oo] are separated by a function of H.
Indeed, assuming #,<t,, we take 7, and 7, so that t,<7,<7,<t, If we set
fop, o(t) = min{max(7,, t), 7.}, then f, . (t,)=7*7,=f, .(t,). Sincef, .ocp=
min{max(7,, @), 7.}, we have frr,nE M. By the Stone’s theorem®, M is dense
in the space of all bounded continuous functions on [— oo, - oco] with respect to
the topology ot the uniform convergence. From this we conclude easily that,
for each bounded continuous function F on [— co, + oo], Fog is a principal radial.

Remark. If u=HR,, then u is quasi-bounded; therefore u is a Dirichlet
solution on the Martin space QM. Thus, u is expressed by H¥ for suitable
resolutive function f on the Martin boundary AM. Then, by a similar way as in
the proof of Theorem 3, we may prove that if F is a bounded continuous
function on [—oo, +oo], then H¥ ,=HR.,. Further, when F is a Baire func-
tion on (—oo, +o0), Fog is a principal radial if and only if Fof is integrable
with respect to the harmonic measure ™ on AM. For HD-function®, this is
stated in [6]'*.

Corollary. Let u be an indifferent harmonic function with radial ¢, and let
S be a continuous function on (—oo, 4 o) such that lim S(t) and lim S(t) exist

(which may be + o). If

[1stpunide<-too,
then So@ is a principal radial.

Proof. Without loss of generality, we may suppose S>0. Since S,
=min(S, #) is bounded and continuous, S,o® is a principal radial. If we set
w,=HRg .,, {w,} is an increasing sequence.

Wa( Vo) =SSn[¢(l)]dgs SS[¢(Z)]dg< +oo

shows that lim w,, is indifferent and has a radial Seg, q.e.d. .

nyoo

3. Convex modifications of radials

3.1. In the following, W(¢) denotes always a function defined on (— oo, 4 o)
which is non-negative, increasing and convex. We set W(— oo)=limW¥().

8) Cf. [4], Hilfssatz 0.1, p. 5.
9) An HD-function is a harmonic function with finite Dirichlet integral.

10) Cf. [6], pp. 580-581.
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Lemma 3. If a non-negative Borel function u has a quasi-bounded harmonic
majorant V, then u(\, I) is uniformly integrable with respect to dg, i.e., for any
positive number € there exists a positive number & such that if e is a set of Green

lines whose Green measure is less than 8, then S u(n, l)dg <& holds for every \.

Proof. We follow the Doob’s idea [5]. Let e be a Borel subset of L.
For >0 we set [e],={IN>*; Ice}. It is known that o) ([e].)=g(e), where
wy, is a harmonic measure on >* with respect to y,. To prove the lemma it is
enough to show V(x, /) is uniformly integrable with respect to dg.

In the first place, we shall show that V(x) is uniformly integrable with
respect to dwy. In fact, since V=HY for some resolutive function f on AM,
given any positive € we can find subharmonic functions s, and—s, such that

3. 1) §,<M, and—s,<M,, where M, is a constant,
(3.2) <V <s,,
(3° 3) Ogsz(yo)_sx(yo)<e/4 .

Let us write 4, »={xe>"; V(¥)>a} for >0. We have

S pr de;ogg [5,—5)dw}, + SAM, sido,

Aa,}\
A A
< SZA[sz—sl]dw,,o—{— SA:», . s, dawy,

<HEZ_,, (y)+M, w)(Aa )
Z[so(yo)—8:(¥o)]+M,- wgo(Am, A)
<EA+MV (y,)ex .

The last inequality follows from
A DA
sgpg - Vdwh = sup Hy (y)) < V(y,) -

Next, we set A, ,={l€L; V(\, )>a}. Then [4, . ]\=4a  We select
a,>0 so large that M V(y,)/a,<&/4. We set 8=&/2a,. 'Then, g(e)<<8 implies

SeV(x, Ddg =Sm o, Vo l)dg—l—Se_ 4. VOuDdg

<( 0 VOuDdgt{ ade

g,
<[ V@t g

<&l4tejhte2=¢.
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Thus, the lemma is proved.

Lemma 4. Let v be a subharmonic minor function with radial @, and let ©
be an increasing continuous function on (—oo, 4c0). Then © [v(X, )] converges
to O() in dg-measure as A0, i.e.,

lim g({l€ £; |8[e(, I]—O[p()]| 2o}) = 0
for all a>0.
Proof. Suppose, on the contrary, there exists o,>>0 such that
lim g({l€ L5 |8[o(r, D]—B[p()]| 20})>0.
Then, we could seek >0 and a sequence of positive numbers {A,} tending to
zero such that
B4 g{leL;18[v(\y, D]—B[p(l)]| Zo})=a for n =1, 2,-,
(3.5) %gg (A 1) = @(I) dg-a.e. .
By Egoroff’s theorem, there exists dg-measurable subset e, of £ such that
(N, [) converges to @(/) uniformly on _L—e, and
(3.6) gle)<al4.
We select N so large that
3.7 gle)<al4, where e, = {I; |@(l)| >N} .
For é=0,/2 there exists 7<<N such that
(3.8) |©(t,)—0(t,)| <€ whenever |¢,—%,| <7 and ¢, t,=[—2N, 2N].

On account of the uniform convergence of v(A,, /) on L—e, there exists a
number 7, such that

(3.9) sup oA D—p(l)| <7 for all n>n, .
le.['—(el Uez)

From (3.9), if n>n, and /& (e, Ue,), then
—2N<—N—n<p(l)—n<ov(\,, )<@p(l)+7<N+2<2N,
therefore in view of (3. 8)
Ol ()] —E <O[p())— 1] <O[o (N, D] <Olp(D)-+ 7] <Op(D]+ ,

that is,
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| ®[v(Nyy 1)]—O[())]| <€ = 7,/2 whenever n>n, and I€ L—(e, Ue,) .
In other words
{leL; 18[v(\,, N]—OB[p()]| 20jce,Ue,  foralln>n,.
From (3.6) and (3.7), we have for all n>n,
g({le L; |8[v(xn D]—B[p(D]| Z00)<a/2,
which contradicts (3.4), q.e.d..

Theorem 4. Let u be subharmonic, minor and have a radial @. If V[u]
has a harmonic majorant, then V[u] has a quasi-bounded harmonic majorant and it

is minor with radial Y[p). The least harmonic majorant V[u] of ¥[u] is an in-
different harmonic function with radial W[g], i.e., ¥[u]=Y[u]=HRy .

Proof. We write W¥,(¢) = min(W(¢), n). Since # = HR,, there exists
w,—=HRy,.,. Let {\,} be a decreasing sequence of positive numbers tending
to zero such that

liIB (N, 1) = p(I) dg-a.e. .

Denoting by V the harmonic majorant of W[u], we have

[wioh1de = tim wlucn,, Dide <tim{wu(r,, 11de
<tim [V, Ddg = lim HE"(7) <V(5<+=,

which implies Wog is dg-integrable. From

w,(30) = HRo,e0() = | WlD)dg < (WIp)de

we conclude lim w,=HRy.y.
n.y00

Since #=HR,=H?, by the remark in 2.3, HRy.,—=H4,, By M. Parreau

[17]*> we have H{.,,=W[i4]. Hence W¥[u] has a quasi-bounded harmonic
majorant.
By the properties of ¥ and the Jensen’s inequality, we can derive from

uN<HP() = udo}
ZA

v <[ wdoi]<(  vide} = HE0)<VG),

11) In[17]itis not considered a Green space. We have, however, an obvious extension
to our general case.
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which means that ¥(%) is minor.
Finally, by the above lemmas, W[u(), /)] is uniformly integrable with respect
to dg and W[u(\, [)] converges to W[p(l)] in dg-measure. Therefore

tim [ 1wu(r, ]— wlp(d)]Idg =0,

i.e., W[u] has a radial Woep. Thus the proof is completed.

The following example shows that the condition “u is minor” is essential
in Theorem 4.

ExaMPLE. Let a and b be two distinct non-zero complex numbers in the
unit disc. We consider the Green space Q={|z|<1}—{a, b}. We denote by
G, and G, Green functions of Q with poles at @ and b respectively. We take the
reference point y, at the origin. #=G,—G, is harmonic and has the radial
zero. Since #<G,, u has a harmonic majorant. The function

W) = { t it £>0
1o otherwise

is non-negative, increasing and convex. Then, ¥[«] is not minor, since the
indifferent harmonic function with radial ¥(0) is identically zero and is not the
best harmonic majorant ot ¥[u].

When a subharmonic function u has a radial, the property “u is minor” is
closely connected with the property ‘“W¥[u] has a quasi-bounded harmonic
majorant”. We shall state this fact precisely in the following theorem.

Theorem 5. Let u be a subharmonic function with radial @, and let U (t) be
a non-negative non-constant increasing convex function. Suppose that W[u] has a
harmonic majorant. In order that u be minor, it is necessary and sufficient that

W[u] have a quasi-bounded harmonic majorant. In this case, we have W¥[u]="Y[u]
=HR\F°¢.

Proof. The necessary part is already proved in Theorem 4. Suppose that
W[u] has a quasi-bounded harmonic majorant W. We can find numbers #,>0,
a>0 and b such that W(#) >at+b whenever ¢>¢,. Denoting by u'o=max(u, t,),
we have

au—+b<au'o+b<W(u') <W(u)+W(t,) < W+(¢,),
therefore ‘

u<l/a-[W+W(t)—b] = W,.

Since W, is a quasi-bounded harmonic majorant of  and W,—u is positive
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superharmonic, we have for every A >0,
A A A A
U= Wl_(W1_u)SH$V1—H?W1—u) = HY SHli?Vl =W,
which proves that u is minor.

3.2. Here we shall mention the results related to the work of K. Endl [7].

0G)(x)/on
oG} (x)fon’
function of D* with pole at -, 3/0n is the outer normal derivative on >* and «x is
the point of / on 3, namely x=(x, I). Let {\,} be a monotone decreasing
sequence of positive numbers tending to zero. In [7], the followings are estab-
lished:

[1°] there exist a set _L* of Green lines of Green measure 1 and a function
K(l, y) defined on _L* X Q such that for fixed /, K(I, y) is harmonic as a function
of y and K(/, y,)=1 for all /.

[2°] there exists a subsequence {a,} of {\,} such that

For yeD*, we set K, (I, y)= where G denotes the Green

tim Ko, (4, ) (g = (K( ) p(D)dg

holds for every dg-integrable . Further, if a harmonic function  has a radial
@, then HE“’"(y)=SK,,”(l, y)u(a,, l)dg tends to SK(I, y)p(l)dg as n—oo.

[3°] if @ is dg-integrable, then SK( I, y)p(l)dg is a harmonic function of y.

[4°] if u is an indifferent harmonic function and has a radial ¢, then

uy) = (Kt 5) o

In view of our preceding study, we conclude:
(1) If v is subharmonic, minor and has a radial @, then the best harmonic
majorant D of v is expressed by

o(y) = |K( )eD)dg .

This is an immediate consequence of [4°].
(2) If @ is dg-integrable, then

HR(») < |K(, ) p)dg <HR,(»).

Therefore, if both HR,, and HR,, are harmonic, thenSK(l, y)p(l)dg is an indifferent

harmonic function.
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In fact, let ve F," and v —oo. Since v is weakly minor
o) SHZ*() = [Kay(l, y)o(ctm D
On the other hand,
[Kanlt, 9)0(ctn Ddg— KO, »)pdg
(3.10) = { Kunll, D) [0t D — @018 + | [Kan(t, 9)— K (e
< | Kunlt )o@t D— 9D e+ ([Kas 1)~ K (G )l

Since the family of positive harmonic functions K, (/, ) is normalized at y,, i.e.,
K, (l, y)=1 for all /[e_L*, by the Harnack’s inequality, {K,, (I, y); n>n} is
uniformly bounded as a function of /& _L* whenever y is fixed and #, is suffici-
ently large. ‘Therefore, if n is so large that y € D%, then K, (/, y) does not
exceed a constant C for all such #» and /e_L*. The first term of the last

integrals of (3.10) does not exceed C- S [v(ty I)— ()] +dg for sufficiently large n

and therefore tends to zero as n—>oo. This is also true for the second term in
view of [2°]. Thus,

o(y)<lim HZ*(3) = lim( Ko, ye(ende < |K (L 2)ol)de ,

which proves

sup ©(y) = HR, () <|K(, »)o(dg .
If both HR, and HR, are harmonic, then they are indifferent and

SK(I, )e(D)dg is also indifferent.

We restate Theorem 4 in

(3) Let v be a subharmonic function with radial @. If v is minor and ¥(v)
has a harmonic majorant, then

/N .
o] = P = | K0, ) [p(D)de

4. An application to the theory of Riemann surfaces

In connection with our previous investigation, we mention here the unicity
theorem of Riesz type for holomorphic functions on a Riemann surface.
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Theorem 6. Let Q be a hyperbolic Riemann surface, and let f be holo-
morphic on Q) belonging to the Smirnov class S(Q), i.e., logt | f| has a quasi-
bounded harmonic majorant. For a subset o of L of positive Green measure, if we
have

lim | 1£0v Didg =0,
then f=0.

Proof. Suppose, on the contrary, f==0. Then, log | f| is minor. In fact,
let U be a quasi-bounded harmonic majorant of log* | f|. Since v=U—log | f|
is a positive superharmonic, v>H?">0 in D* which means that v is dw)y,-
integrable. Since U is dwj -integrable, log | f| is dwj -integrable, therefore

U——lOglfI ZHgi‘-loglfl = U_Hg);lfl ’

that is, log | f|<H ﬁ;, 4 <U, which means that log | f| is minor.
flog 10, 1dg = | 1ogl (v, D1dg+{ . 1ogl fv, D)1de
SS, log| f(n, l)Idg—l—SI_a log* | f(x, 1)|dg SS., log| f(n, l)ldg-l—SU(?u, I)dg
= [ tog1 fOn, D1dg+HE () = | 10g] f(x, D1dg+U (30
1
< g(a)lo A, )| dg-+log —— + U(y,) -
gle)og| | fn, Dl de-+log oos + Uy
By making A—0, the right hand side tends to — oo, therefore lim HEZ A(y0)
=—oc0, This implies that the best harmonic majorant of log | f| is —co at y,,

which is a contradiction, q.e.d. .

Since the Hardy class H,(Q) (»>0) is contained in the Smirnov class we
have

Corollary. Let Q be a hyperbolic Riemann surface, and let f be holomorphic
on Q belonging to the Hardy class H ,(Q) for p>0, i.e., | f|? has a harmonic majo-
rant. For a subset a of _L of positive Green measure, if we have

tim | 1 fOn, D1dg =0,

then f=0.

M. Brelot [1] considered the unicity theorem tor bounded holomorphic
functions. The theorem of Riesz type for holomorphic functions with finite
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Dirichlet integrals was established by M. Nakai [15] by means of the Royden’s
compactification and the radial limits along Green lines.

5. Green spaces of type MHB(Q)=MHD(Q)

5.1, In this section, we consider strongly subharmonic functions of which
importance in the theory of harmonic functions is clarified by Garding-Hor-
mander [9]. A generalization of the results of Garding-Hérmander is given in
Theorem 10 below in connection with Green lines. A research for generalizing
Garding-Hormander’s results was done by S. Yamashita [19] in terms of the
Martin’s compactification not containing a notion of “radial limit”.

Throughout this section, we suppose MHB(Q)=MHD(Q). In [11}],itis
shown that in the case where Q is a hyperbolic Riemann surface above condition
is equivalent to the following: the Martin boundary A™ and the Kuramochi
boundary A¥ of Q correspond each other in the one-to-one manner almost every-
where, that is, there exist two sets E of do™-measure zero and E' of dw™-measure
zero and the bijection ® form AM—E to A¥—E’. This tact is also valid for a
Green space Q. Using above bijection @, we have a surjection © from a subset
of L to a subset of AM; more precisely, to every regular Green line / tending
to a point x'(/) of A¥—E’ we assign O(/)=® '[x'(/)]. © is defined dg-almost
everywhere on £ and has the image of do™-measure 1. We note ® is not a
bijection in general.

Any ue MHB(Q) is expressed by

u=HY=HY = HR,,
where f(x)=f'[®(x)] and o(l)=f"[x'(l)]=f[6(I)]. From what we have shown in

81, it follows that all families of Dirichlet solutions on Green lines considered in
81 coincide with those of the Dirichlet solutions with respect to Martin’s and
Kuramochi’s compactifications.

5.2

Lemma 5. Let u be a positive singular harmonic function on Q. Given any
decreasing sequence of positive numbers {\,} tending to zero, then there exists a

subsequence {\}} such that ¢'={l€ L"; lim u(\},, 1)>0} is of Green measure zero.
7500

Proof. For every positive integer k, the function u,—min(x, 1/k) is a
potential, therefore u, has the radial zero. Hence we can choose a subsequence
{Aa,} of {1,} such that

lvim U(Aw,, ) =0, dg-a.e. .

By taking subsequences successively, we can find a diagonal subsequence {\j}
of {\,} and a subset e of L of dg-measure zero such that
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5. 1) lim u,(\, 1) =0 for everyle L—eand k=1, 2, ---.

We assert that e’={/c L”; lim u(\}, [)>0} is of Green measure zero. In fact,
7300

we suppose, on the contrary, that the outer Green measure of e’ is positive.
Then, there would exist /e’ N [-L—e] and a subsequence {\/} of {\,} satisfying
lim u(\}, [)=a>0. From this we deduce u(\y, [)>a/2 for all sufficiently large

n. If we take k, so large that a/2>1/k,, then we have

lim ug (N, D=1/,

which contradicts (5.1), q.e.d. .

5.3. A subharmonic function is called strongly subharmonic if it is the com-
posed function of ¥ and u, i.e., Wou, where u is subharmonic and ¥ is a real
valued real variable function satisfying the conditions:

1) W is non-negative, increasing and convex,
2) lim W(t)/t =oco.
-y
We define W(— co)= lim W(2).
tp =0

If a strongly subharmonic function W[«] has a harmonic majorant, then it

is known that « has the least harmonic majorant # which is decomposed into a

quasi-bounded #z and a non-positive singular harmonic part #s'®. Under our
assumption MHB(Q)=MHD(Q), % is a Dirichlet solution HR,. Hence

U = HR¢+ ﬁs—p y
where p is a potential.

Lemma 6. Under the assumption MHB(Q)=MHD(Q), if ¥ [u] is strongly
subharmonic and has a harmonic majorant, then u=HR,~+#s—p for some potential

— N\
p and a singular harmonic function d4s. Moreover, for every c, we have u®=u®
=HR., where f° denotes the function max(f, c).
Proof. Only the latter half of the lemma needs to be proved. Write
v=max(HR,, ¢). Since #5<0, we have u°<v. o has a radial ¢°, and
. . . . . N ;.
v<HR,Vc¢ implies v is minor. Thus v <HR,, which proves u°<u°<HR,e.

N . . /\ .
Since #° is quasi-bounded, we can write u°=HR,;. By Lemma 5, there exists
{\,} tending to zero such that

lim|#s(N,,, )] =0, dg-a.e. .

Replacing, if necessary, {\,} by a suitable subsequence, we have

12) Cf. [19], Lemma 3, p. 64.
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lim|u‘(n,, D—@°(D)] =0,  dg-aee..
n.y00

and
lim|u*(Ny, D—())] =0, dg-a.e. .

These show that y»=¢° dg-a.e., q.e.d..
Theorem 7. Under the assumption MHB(Q)=MHD(Q), every strongly

subharmonic function possessing a harmonic majorant has a radial. More precisely,
if a strongly subharmonic function ¥[u] possesses a harmonic majorant, then

u = HR,+ds—p
and Y [u] has a radial ¥[p).

Proof. Let us consider the subharmonic function #“=max(x, c), where ¢ is
a real number. Since, by Lemma 6, 4° is a Dirichlet solution on Green lines
and u°—u° is a potential, #° is minor and has a radial @°. Since ¥[u] has a
harmonic majorant also, we deduce form Theorem 4 that W[x°] is minor with
radial W[p°], and therefore \I’/[;\‘]zmzHwac]. When ¢—>—co, ¥[u]
decreases and ¥[p°]>¥[p]. Hence 0<W[u] gclimW\I'[u‘] =£1imm\m=Hme.

This means that é[\u] is quasi-bounded and W[u]=Y[u]=HR, for some . We
clearly have \»<W[p] dg-a.e.. The converse inequality is also valid. Indeed,
let o be a non-negative bounded dg-measurable function on L. By Lemma 5,
there exists {\,} tending to zero so that u(\,, )—>@(l) dg-a.e.. Then, we have

[ wlom1o0de) = tim wiun,, Doz
<lim | w[u(n,, D]o(Dde()
<{ v ohde) .

From this we conclude that ¥[p] <+ dg-a.e., thus, we complete the proof.

Corollary. Let Q be a hyperbolic Riemann surface satisfying MHB(Q)
=MHD(Q), and let p=>1. If feH,(Q), that 1s, f is holomorphic on Q and | f|?
has a harmonic majorant, then f=HR, for some p=p,+ip, and

(5.2) tim {1 700, (1) 2dg = 0.

In particular, f has a radial @ and @dg is a boundary measure of f, that is,
J(\, Ddg tends to ¢(l)dg vaguely as x—0.



366 T. IKEGAMI

Proof. First we consider the case p=1. Since |f|=exp(log |f|), | f] is
strongly subharmonic and has a harmonic majorant, therefore, by Theorem 7,

AN
i f1=1f1=HRy for some . Since the modulus of the real part # of f and

that of the imaginary part v of f are both bounded by | f|, it follows that # and
v are quasi-bounded, and therefore u=HR,, (resp. v=HR,,) for some @, (resp.
@,). Thus,

f=HR,+iHR,,

and
tim {1700, D—(t) 1 dg = 0,

where p=@,+1 @,.
Next, let p>1. If we set

£ if t>0,

= {0

otherwise,

then | f|? = ¥(|f]|), which implies |f|? is strongly subharmonic and has a
harmonic majorant. We have seen that | f| has a quasi-bounded harmonic
majorant, therefore both the real part # and the imaginary part v of f are quasi-
bounded. Hence u=HR,, (resp. v=HR,,) for some @, (resp. ¢,). Since

L D—=[p(D+i oo D11 <2°(Ju(N, H—@i(D]74 (N D—2LD1?),

to prove (5.2), it is sufficient to show

lim S lu(n, 1) —gu(l)|?dg = 0.
A->0

Since strongly subharmonic function |u#|? has a harmonic majorant, |#|? has a
quasi-bounded harmonic majorant. It follows from Lemma 3 that {|u(, [)|?}
are uniformly integrable with respect to dg. The inequality

[u(hy D—pi(D12<2°(Ju(n, DI*+ (D))

implies that {|u(\, [)—@,(l)|?} are also uniformly integrable. From this and
the fact that u(\, /) converges in measure to ¢,(/) as A—0, we derive the result,
q.e.d..

Remark. For 0<p<1, a function f in H ,(Q) can not be expressed by the
form f=HR, in general. For, if f & H,(Q), either the real part or the imaginary
part of f does not belong to HP(Q).

5.4. In §4, we have discussed the unicity theorem for some function
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classes. Here we state, under the assumption MHB(Q)= MHD(Q), the
unicity theorem for a wider function class.

Theorem 8. Let Q be a hyperbolic Riemann surface. Assume MHB(Q)
=MHD(Q). Let fe AL(Q), that is, f is holomorphic on Q and log* | f| has a
harmonic majorant. For a set o C L of positive dg-measure, we suppose

tim [ 170r, D1dg =0,
A>0 Ja
or more generally, there exists a sequence {\,} of positive numbers tending to zero

such that

lim f(A,, [) =0 forallea,

then f =0.

Proof. Suppose, on the contrary, f=0,. Then, the least harmonic majo-
rant U of log | f| could be written in the form U=HR,+ Us, where Ug is
singular. Therefore, log | f|=HR,+ Us—p, where p is a potential. Then,
there exists a subsequence {\;} of {\,} so that log | f(\:, )| —>@(]) dg-a.e. .
This means @= —co on a of positive dg-measure, which is a contradiction
since @ is dg-summable.

5.5. Relations between the boundary measure of a subharmonic function
u and its radial seem to be not so simple, when the least harmonic majorant #
of u has a singular part. On the other hand, if # is quasi-bounded, we can
write #=#=HR, for some @. Then, we have

lim g |u(n, )—o(D)|dg <lim g [, D—u(n, D]dg

+1im [ 1a(x, —a(D)1dg
Sl}\igl[HgA(yo)—Hg)\(yo)]
Sli_gl[ﬂ(yo)—‘HfA(yo)] =0.
This shows that ¢(/)dg is a boundary measure of . Thus, we have

Theorem 9. Under the assumption MHB(Q)= MHD(SQ)), if the least
harmonic majorant of a subharmonic function u is quasi-bounded, then the boundary
measure of u exists and is absolutely continuous with respect to the Green measure.

Now we state a generalization of Garding-Hérmander’s theorem [9].

Theorem 10. We assume MHB(Q)=MHD(Q). Let ¥[u] be a strongly
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subharmonic function possessing a harmonic majorant. Then

(1)  for every sequence {a,} of positive numbers tending to zero, there exists a
subsequence {\,} so that u(\,, [)dg tends to a measure dy on L vaguely.

(11) of du=qpdg+dus is the Lebsgue decomposition of du into an absolutely
continuous and a singular measure with respect to dg, then we have

(1) ps<0.

(2) denoting by i, the quasi-bounded part of the least harmonic majorant 4
of u, if we write ig=HR,, then ¢ <+Jr.

(3) the boundary measure of V[u] is V[ep] dg.

(4) r is the least majorant radial of u.

Proof. In the decomposition of
u = 128+ ZZSHP y

where 75 and #s are the quasi-bounded and the singular part of the least
harmonic majorant # of u respectively and p is a potential, #; and — p have
radials respectively, therefore they have boundary measures. Since #s<0,

[150v, 1dg = § 15, Dldg = —HEX ) <~

which means that the total mass of |#s(\, [)|dg is bounded. Hence, for a
suitable {1}, the vague limits of @x(\,, I)dg, ds(\4 D)dg and p(\,, [)dg exist.
We denote them by +dg, dv and 0 respectively. Now {\,} and du=+) dg+dv
fulfill the proposition (i). Since #5<0, in the Lebesgue decomposition of dv
=@, dg+dvs, we see that ¢,<0 and vs<0. Thus, if du=@pdg+dug is the
Lebesgue decomposition, then we have g=+r+¢, and vs=pus. 'The proposi-
tions (1) and (2) in (ii) are now easily derived, and (3) is an immediate con-
sequence of Theorem 7. 'To prove (4), we note first that +J» is a majorant radial
of u. 'This is a consequence of relations:

u<u, i—ig = #s<0and 13 = HRy .
Indeed, in the following inequality
o, D—vanrdg<{rer, n—aon, g+
[ aov, D—aa(r, D1dg+
[ tasr, D—vii) e,

the first two terms of the right-hand side vanish and the remainder tends to zero
as A—0. Next, let 4, be an arbitrary majorant radial of «, i.e.,
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lim S[u(x, —yr(D]*dg = 0 .

A>0

We have clearly
tim { O, D— i1 *dg = 0.

By Lemma 6, l/l\c—:;l_c:HR\pv for all real numbers ¢. By making A—0 in the
following inequalities

[lpe—pirdg < [ fwe—us (v, D1 dg+ [ [weon, D1 dg
< (1w, D—veldg+ [ wtr, D—virdg,
we have
[ve—vs1de =0,

i.e., ¥ <§ dg-a.e.. Since c¢ is arbitrary, we get \» <+, dg-a.e.. Thus the
proof is completed.

6. Relative Dirichlet problem on Green lines

6.1. The relative notions such as k-radial, A-indifferent etc. were intro-
duced by L. Lumer-Naim. We refer for them to [13] and [14]. Let % be
a positive harmonic function on Q. For simplicity, we assume that y, is not
an infinity point. Throughout this section, we shall fix A. We introduce the
notations

DMt = {yeQ; G, ()/h(y)>N}

and

2= {yeQ; G,(y)/h(y) = r}.

The maximal orthogonal trajectories of a curve family {3™*} are termed A-
Green lines. All h-Green lines issue from y,. On the set of all A-Green lines
Ly, we can give a topology homeomorphic to the unit sphere. 'When we refer to
the topological notions on _[,, we agree that they are always considered with
respect to this topology. On _[},, we can also define a positive Radon measure,
which will be called k-Green measure and is denoted by g,, such that

1) the total mass of g, is A(y,),

2) gi(e)=(area of €)X h(y,)/o, for every Borel set e on [, where e’ is
the set on the unit sphere corresponding to e and o, is a constant depending
only on the dimension 7 of Q.
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An h-Green line [ js called A-regular if the infimum of G, [k on [ is zero.
It is known that dg,-almost all ~-Green lines are h-regular.

Let f be a function defined quasi-everywhere'® on Q=0— {infinity points}.
We denote by [, I] the point where an A-Green line / intersects > ™% f is
termed to have an A-radial @, if there exists a dg,-integrable function ¢(/) on
L, such that

tim {1 £, D~ () dgu) = 0.

A harmonic function u is said to be k-indifferent if g),f])‘h'h = u for all A>0,
u,

where Q;’)‘h"' is an h-Dirichlet solution on D** for a boundary function u/h'*.
’l,,

6.2. An extension of the notion of BLD-functions was given by L. Lumer-
Naim as follows [13]: a function u is an A-BLD function if it is a quasi-ever-
ywhere finite limit of u,& C~(Q) such that ||u,—u||,—0, where

lullz =, #*
Q

2
aslav.
grad -
We obtain an extension of Godefroid’s result [10] to A-BLD fuctions.

Theorem 11. For any h-BLD function u, ulh has a finite limit along dg,-
almost every h-Green line.

The proof is quite simlar to that of Godefroid’s [10]. We shall omit the
proof.

More interesting case is that where, instead of 2-BLD functions, BLD-func-
tions are connected with A-Green lines. By applying Ohtsuka’s method of ex-
tremal length [16], we have the following theorem under the restriction that
h is bounded.

Theorem 12. Let h be a bounded positive harmonic function on Q. Every
BLD-function f has a finite limit along dg,-almost every h-Green line.

Proof. It is known that a BLD-function has a finite limit along each open
curve except a family of curves of extremal length oo™, It is proved by a
similar argument in [16] that the set of k-regular A-Green lines, along each of
which f has a limit is dg,-measurable.

If T is a set of h-regular A-Green lines of dg,-measure positive, the module

13) fis said to be defined quasi-everywhere, if f is defined except a polar set.
14) For a relative Dirichlet solution 9y , we may refer to [2].
15) Cf. [16], th. 2, p. 68.
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of IV=T—D""*® is positive for sufficiently large A,. In fact, let p be admissible
for I, that is, p is a measurable function in  such that

Slpdszl for all I€T .

For IeT’, we have
1 g(gl pds>23(gl o*| grad Gyo/h;-lds)-<sl|grad Gl ds).

Since / is an A-Green line, on / locally by using a local coordinate x,,:-, x, we
have

dx, e dx, . ds
h'(G)xl—G'(h)xl - o h'(G)x.,—G'(h)x,,. o [Z;-l{h'(G)x,‘_G'(h)x,'}z]l/z ’

where we abbreviate G, , 0k/0x; etc. to G, (h),;, etc., respectively. From

h*|grad G/h|* = (1 /hz)'zn:{h-(G),,.——G - (h).,)

we get
A\ = d(GJh) = |‘21 h'(G)x;;G-(h)x‘. dxi‘
= [;_]: {h-(G)xi—G-(h)x‘_}z]llz % — |grad GJh|ds.
Therefore

-1 2 -1
1g<Sl 0’| grad G| ds)(Sldx)gxo- S, 0’| grad GJh| ™ ds,
from which we derive

(6.1) &< | o grad Glh ™ ds dg,

Since ds dg,=(F|p.) |grad G/k|dV, where @, is a constant depending only on
the dimension 7 of Q, the second member of (6.1) is equal to

1, gr, PR dV
Consequently, denoting by M the supremum of 4%, we have the estimate

SN (Mlg)-| oV,

16) We use I to denote a curve family {{—D>*o*; [T}, i.e., consisting of curves in I'
taken off a neighbourhood of y,. We shall also denote the set {x&l/—D*ok [T} by the

same I,
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which means that the module of TV is not less than g,(T")-,/(A,M)>0. Thus,
we have proved that the exceptional family of curves of extremal length+ oo is
of dg,-measure zero, which completes the proof.

Corollary. Let h be a bounded positive harmonic function. Then, dg,-
almost every h-Green line tends to a point of the Kuramochi boundary AX.

This is an easy consequence of the above theorem and those of Maeda'.

6.3. In the sequel, we shall always suppose that % is bounded. Under this
assumption the axiom (A,,), that is, all bounded continuous functions are h-resolutive,
is valid for the Kuramochi’s compactification Q¥. When Q is a hyperbolic
Riemann surface this is proved by H. Tanaka'®.

In view of the corollary to Theorem 12, we may consider the relative
Dirichlet problem on A-Green lines in connection with compactifications.

Let @ be an extended real valued function on _£,. The upper envelope of
the class in which each function # is identically —oco or subharmonic sati-
fying the conditions that /A is bounded from above and

Tim U 1) i
lirg M, 1) <o()) dg,-a.e.,

is denoted by &, ,, where [\, 4] is the point on / at which G, /h=x. We define
gl?,h:_g(—f?),h'

Let f be a function on A¥. For every h-regular h-Green line tending to
¥’ A¥, we shall set [f],()=f(x'). The function [f], is defined dg,-almost
everywhere. By giving the value zero for the other /, we consider [f], is to be
defined on _[,. Asin §1, we have

(6.2) DEn <Gy <Gipyyn < DEn,

where D%, and DX, are lower and upper relative Dirichlet solutions for a
boundary function f with respect to the Kuramochi’s compactification respec-
tively.
A subharmonic function « is called to be weakly h-minor if .Q),,v?)‘h'h}_ u for all
u,

A>0. Also, if lim§ [u([x’@—<p(l)il+dgh=0 for some @, then u/k is termed to
A0 ) LA([n, 1))

have a majorant h-radial . HR, , is defined to be the upper envelope of the
class consisting of functions, each of which is identically — co or weakly A-minor
subharmonic » such that u/h has a majorant k-radial . We define HR, ,=
—HRc_,,, also.

17) Cf. [12] th. 1, p, 60 and th. 5, p. 64.
18) Cf. [18], Cor. 3, p. 55.
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If @ is dg,-integrable, then we can prove as in §1
(6.3) Gy 4<HR,,<HR,,<G,,,
(6.4) HR, () < | (g, <HR, (30

From (6.2), (6.3) and (6.4) we obtain the following theorem which is an ex-
tension of Maeda’s result'®.

Theorem 13. Let X be an h-harmonic measure on AX and let A be a
family of all h-regular h-Green lines tending to a point of AX. Denoting by x'(l)
the limit point of | on AX for I€ A, we have for any dol-measurable set eC A¥, the
set [e]={l€ \; x'(])E e} is dg,~measurable and w¥(e)=g,([e])-

By the above theorem we conclude in particular, if e is of dwX-measure
zero, then an k-Green measure of [e] vanishes. As is shown in the following
examples, the converse of this is not ture in general.

ExampLE 1. We consider Q=R® and the one-point compactification Q*.
The Alexandroff point ./ is of harmonic measure 1, while all Green lines issuing
from the origin tend to this point.

ExampLE 2. Let 2 be bounded minimal. Then A=c-K,, where K, is
the Martin kernel corresponding to a minimal Martin boundary point x,. In
this case, dg,-almost every #-Green line tends to the same point ®(x,), the pole
of x, on A¥*®. In fact, denoting by f, the characteristic function of the set ¢,
consisting of a single point ®(x,), we have

&L = W3 = D () = Gign ) = | [filiden = galled) -

6.4. The solution u=HR, , of the relative Dirichlet problem on A-Green
lines for boundary function @ is characterized as a harmonic function such that
1) wu is h-indifferent,
2) u/h has an h-radial .
In the ordinary Dirichlet problem on Green lines, to get the solution, we only
find a quasi-bounded harmonic function having a given boundary function as a
radial. The situation is however more difficult in the relative Dirichlet problem
on h-Green lines. To solve the problem, following Naim, we set

Ay = {x€ AM; lim G, (y)/h(y) = 0} .

It is known that AM—A, is of dw)-harmonic measure zero. Every positive

19) Cf. [12], th. 8, p. 65.
20) Cf. [11], p. 286.
21) Cf. [14], pp. 85-86.
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harmonic function # can be decomposed into

u= uA,,+uAH-A;, )

where u,, and u,x_,, are reduced functions of # on A, and on AM—A, respec-
tively. u,, is h-indifferent and (u,x_,,)/h has the h-radial zero*>. Therefore,
u is h-indifferent if and only if u,x_,, is so and u/k has an A-radial @ if and only
if u,,/h has an h-radial . Thus we have

Theorem 14. Let @ be a positive function on L,. If we can obtain a
positive harmonic function w such that ulh has an h-radial @, then u,, in the
decomposition

U= Up,FUp¥_,, ,

is the solution HR,, .
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